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On the New Method of Analysis in Gravity Prospecting

By
Kiyoshi Seyva

Abstract

There are two problems in the analysis of gravity anomalies, namely, one is to detect
local and weak anomalies and the other is to interpret quantitatively those. In the former
problem there are many methods, but in the latter problem the established method is not
present.

In the present paper, the results of writer’s study on these problems are mentioned. That
is, at first he considered in detail the filtering effects of the detections of the “ Running
Average Method ™ which was previously proposed by him as the method to detect local and
weak gravity anomalies, and secondly he described the method by which subterranean densi-
ty anomalies(residual densities)were directly calculated from the residual gravities obtained
by his method.

In the former considerations, he always paid attention to the possibility of applications to
other geophysical prospectings. And he could have the very important and interesting results.
In the latter considerations, he considered particularly the filtering action in detail which the
equation of the Fourier transform representation of the residual density—residual gravity rela-
tion meant. Then as the results of this consideration very interesting and important results
were obtained.

I. Imtroduction

Bouguer anomaly observed on the earth surface is caused by the subterranean
mass distribution. Then, we can presume the geological structures from the Bou-
guer anomaly distribution qualitatively. But in this interpretation of gravity
we must always pay attention to that subterranean mass distribution can not be
calculated theoretically from the Bouguer anomaly distribution without any assump-
tions on the subterranean density distribution. In other words, as the gravity
method based upon the potential theory, it is difficult to obtain the unique solu-
tion of the subterranean density distribution from. the Bouguer anomalies. How-
ever, besides gravity data, usually in many cases we have various data, those are
geological, bore hole and seismic data, etc., consequently subterranean structures,
which can be presumed, are very restricted by using these various data. For
instance, from these various data in many surveys we consider that observed values
of gravity are composed of regional gravity which may be caused by bedrock and
local gravity which may be caused by undulation of basement or subterranean
structures of various scales at any depth. And on the other hand, we can assume that
the density increases with depth. From this point of view, the sectional calculation
of a basement has often been performed by using of the trial and error method
or the direct method in two dimensional approximations. And for local gravity,
we have often estimated its depth and calculated roughly its shape assuming the
existence of the massive body. However, in the case of presence of the geological
structures of comparatively small scale, it is difficult even to point out the pre-
sence of these geological structures, and still more it is very difficult to estimate
the depth of these geological structures and to presume their shapes. Therefore,
it is necessary to consider the following two points to solve these difficult pro-



blems.

(1) To detect local gravities which may be caused by geological structures.

(2) To know the distribution of subterranean density anomalies by assuming the
adequate model of density distribution from the corresponding gravity anomalies
detected by the method obtained in the investigation of the subject (1).

In the case of the surveys which objects are to point out the presence of some
geological structures of comparatively small scale and to presume their kinds and
to estimate their depths, the detection of a weak and local gravity anomaly and
its interpretation have great significance. Then in the following, outlines of the
previous and the writer’s studies on the above two subjects will be described.

As the method to detect a weak anomaly of objective scale, the various meth-
ods were proposed in the past. These methods can be classified into two methods,
i.e, one is the residual gravity method and the other is the derivative method.
For a while, these two methods will be explained very briefly. Then after, the
outline of the writer’s study on the subject (1) will be mentioned.

Generally speaking, the strong point of the residual gravity method is the sim-
ple interpretation of the residuals compared with the latter method. In the former,
there are many methods, those are (1) profile method, (2) smoothed contour
method, (3) Fourier analysis method, (4) Griffin’s method ®,(5) method of least
squares (Agocs®, Simpson*”, Oldham and Sutherland'”) and (6) minimum vari-
ance method (Brown®),

In these methods, the first two are the simplest methods, but a residual gravity
obtained can not be considered theoretically and a weak anomaly can not be
detected by these methods, then in the presence these methods are not used. The
method (3) seems to be the exact method apparently, but this is not sufficiently
analyzed by reason of both the natures of compensation and the structural charac-
ter® in which any terms of the Fourier series have not been taken into consider
ation. And further, the calculation in this method is complicated, so this method
is not performed generally. The method (4) is the simple method and has the
analytical meaning (i.e. this method is recognized as the lst approximation of the
2nd derivative method), therefore, this method is often used in surveys. However,
it is supposed that in this method an influence of noise is large. The hoth methods
of the last are the methods to obtain a regional gravity, but the calculations by
these methods are very complicated and then practically the calculations are carried
out by using the electronic computer. Fowever, the use of this method gives us
no significant information despite of the labor of calculation,

Now, here in the derivative method there are two kinds, i.e, (1) the 1st ver-
tical gradient method and ( 2) the 2nd derivative method. In the former there are
the formulae proposed by Evjen™, Tsuboi*® and Kato', but in these formulae
Evjen’s and Tsuboi’s formulae include the treatment of the integral, therefore, these
formulae are not suitable for the practical use. A vertical gradient is a quantity
concerning the free air reduction and then its physical meaning is important.
However, in the case of interpretation of the gravity anomaly it becomes difficult
to presume the subterranean excess mass distribution from the distribution of the
Ist vertical derivatives. Moreover, in this method an influence of noise is large
too.

In the usual method of the gravity analysis there is the 2nd derivative method,
and in the formulae of this method there are many formulae proposed by Peters'®,
Henderson and Zietz'®, Elkins®, Rosenbach!® and Kato! and others. However,
as pointed out by Kato'”, the 2nd vertical derivative has not the direct physical



meaning as the 1st vertical derivative has, and as pointed out by Elkins®, the errors
caused by noises can become the same order magnitude as the 2nd derivatives.
And then the interpretation of the gravity anomaly becomes more difficult by
using this method than the case of the Ist vertical derivative method. Therefore,
a new method to obtain a residual gravity is required.

The defects which are included in the previous various methods to detect the
local weak anomaly are mentioned above. The desirable characters as the method
to detect the weak anomaly are as follows:

(a) The calculations must be simply performed.

(b) The regional gravity and noises must be well removed.

(¢) The anomaly of objective scale must be clearly pointed out.

(d) The anomalies obtained must become an object of the theoretical considera-
tions,

(e) The anomalies obtained must have simple physical meaning.

(f) The interpretation of the gravity anomaly must be performed comparative-
ly easily without high physical and mathematical knowledges.

The writer researched the method of gravity analysis possessing the characters
mentioned above, and published “The Running Average Method” *® which is a
kind of the residual gravity method. This new method possesses the characters
mentioned above and further other excellent characters. And so now his method
is being adopted by our Geological Survey instead of the previous method (Hen-
derson-Zietz’s method).

“The Running Average Method” can be also used in other geophysical pros-
pecting by reason of its excellent character. For example, the writer applied this
method to detect the anomalous potential in the study of the spontaneous poten-
tial at the Oage Pyrite Mine®® which area is covered by silicified rock, and he
made success to detect a part of anomalous potentials which may be caused by
ore deposits removing the characteristic potential of silicified zone and noise poten-
tials. As the result of this study, it is found that anomalous potentials detected
appear over the three of five known ore deposits.

In the present paper, at first the writer discusses the filtering effect of “run-
ning average method” in chapter 1, and in chapter Il he discusses the exten-
sion of this method to the two dimensional problems. In chapters I and T, he
pays attention to the possibility of the applications to other geophysical prospecting.
In chapter IV he considered the physical meanings of a quantity detected by the
present method.

For the subject (2) we often perform the quantitative interpretation of gravity
anomalies by the use of the adequate assumptions for the subterranean density
distribution. That is, for the two dimensional cases the shape of the surface of the
basement is calculated by means of the trial and error method or the direct meth-
od from the regional gravity, and so sometimes good results were obtained. And
also for strong and local gravity anomalies which are caused by the existence of
the massive bodies of large density the results of calculations in which the simple
geometrical models are assumed for these bodies were often good. But when the
residual gravity is caused by the geological structures within the very thick for-
mations, its quantitative interpretation becomes very difficult.

The relation between the residual gravity and the subterranean excess mass
distribution has being studied by many investigators. And in these studies the
depth estimation of the excess mass was researched by the investigators who are
Fisher” Kogbetliants'®, Saxov and Nygaard®, Bott and Smith?, Smith®*>, etc. And
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then the estimation of the excess mass distribution at given depth was researched
by Tsuboi and Fuchida?, Hammer'®, Bullard and Cooper®, etc. However, these
studies assumed the massive distribution of the matter or the presence of the con-
densation surface. Then from each point of view of these studies it is supposed
that it is difficult to interpret quantitatively a residual gravity for the geological
strutures within the very thick formations.

The writer investigates the problem (2) successively to the proposal of the
running average method.

In chapter VI, he discusses the method to obtain the subterranean excess mass
distribution directly from the residual gravity by assuming the suitable mathema-
tical model of the density distribution. In this method “the depth of the presence”
of the subterranean excess mass is able to vary with the value of the parameter
“k”. This method can be also applied to the interpretation of the regional gravity.
But in this case we can not well forecast analytically the excess mass distribution
as in the case of the residual gravity of small scale. The consideration of the cha-
racteristics of “the density-spacial filter” in the relation between the distribution
of the residual gravity and the distribution of the corresponding “residual density”
is done in VI. 2, and the computing formulae of the residual density are obtained
in VI, 3.
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II. Theoretical Consideration of the Running Average Method
II. 1 Definition of the Running Average Method

The technical term of “the running average method” has been named by the
writer in the reference (6). And this is the inclusive name of the method to cal-
culate the anomalous quantities of any scale at arbitrary point P; set up with the
same interval S on the a-axis, and this anomaly is calculated by subtracting the
average value (arithmetic mean) of observed values at (28+1) points which center
point is P; from the average value of observed values at (2a+1) points with the
same center point P;. This method is illustrated in Fig. 1.

Now, when the position of the measurement point P; is denoted by the sym-
bol z; (7=0,1,2, 8, -+ ), the observed value at the point P; is denoted by the sym-
bol g; and when the anomalous quantity obtained by the present method at the
same point P; is denoted by Auwpg (z;), this anomaly can be expressed by

8
Nepgla)= 2a+1)k2' Givr— (2,81_*_1),6_:_,5;91-%

SO S AP S
=~ gy (0pre Tt gt
B 01 TR (S NN S S 1
TBa+ (2B+1){g-“”+ + gt Garef

S S SOy NP T \
’(g);_ljﬁ{gwtﬂ*-gaﬂwﬁ- +g5+[f (1)
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Fig. 1 Illustration of the running average method

Therefore, the present method which is able to understand as the operation of
computing the difference between two arithmetic running averages each other dif-
fers is also understood as the operation of a kind of the weighted running average.
Then the present method has been named “the running average method” because
of the meaning mentioned above,

It is supposed that we can not always expect to obtain good results for arbi-
trary values of « and @3 in the present method. Then, in the reference (6), the
writer investigates the filtering effects of the detections with the various values of
«a and B. As the result of this investigation, he arrived the conclusion that the
combination of (& =1, 8=3) which has not necessarily best characteristic, but it
should be usually used. Then after, he named “the normal detection” for this
detection. Moreover, for the interpretation of the gravity anomaly he concluded
that the both detections of (=0, B8=1) and (a¢=3, B8=7) should be performed,
and he named “the noise detection” and “the bistructural detection” for each de-
tection respectively.

In the below sections the characteristics of the running average method as a
sampling operation will be discussed.

II. 2 Filtering Effect of ‘“‘the Extended Running Average Method”

In this section, the continuous sampling operation will be considered, which is
the limiting case of the present method in order to investigate the analytical char-
acter of the present method as the selective sampling operation.

Now, suppose the physical quantity ¢ is the function of (time or distance) var-
iable x, then g is expressed by

g=g().
And if g (x) has the continuous spectrum denoted by G (w), where w/27 is the fre-
quency in cycles per unit time or the frequency in cycles per unit length in the
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a-direction, g (x) is expressed by

g il = S"_"N Gl(w)e!v*do, (2)
And G (®) is given by the Fourier transform of

Glw)= 21” S:, glx)ye tozdy, (8)
Then g (x) can also be expressed by

g (@) =%Slg:’ g(&)eto==dEdo, (4)

Here, when the average value of the quantity g (x) in arbitrary range,
xy—@=x=2x;+a, is denoted by §%(x;), we have

_ 1 (xete
§* @) =5, Sxi s
_1( (= SINA® 5 uea; -2
g A0 e 200 pcninzdo, (5)
Similarly, the mean g* (»,) is given by
R o G T (5

When the difference between above two means is denoted by 4,,,9(x),1. €.,

da,ng (@) =g (@) —g* (=),
the following Fourier integral representation is obtained for this quantity.

By g @) =" |7 K@) g @ ctwsdtdo. (6)
where
_singw _ sinbw
Ka,b(w)—‘ P b (7)

and when b is # times of @, another symbolK:(w) is used instead of K,,,(w),1. €.,

a 1 % Y 1 '
K (0)= == {n sin @w—sin naw; (7)

Eq. (6) is also expressed by
buypg@) =|" Ko@) Glo)edo, (8)

Therefore, if the function 4,,,G (») is the Fourier transform of the function
44,59 (x), then the following frequency equation is obtained.

44,0 G(0) =Ky (0) G (@), (9)
Then we can say analogously that the above operation of obtaining a quantity
44,5 g(x) is the mathematical procedure of obtaining the output 4 .,, g(x) when the
input is given as g(z), and in this case the frequency response of the filter is given
by eq. (7). Here, when the impulse response of the filter with its frequency res-
ponse K, ,(w) is denoted by k,,,(x), we have

apy @) =" Kap(@)evodo. (10)
Therefore, eq. (6) becomes
duypg@) =" R @—E)g®)E. (1)

Above equation indicates that the integral transform with the kernel kg, (z) of
the function g(z) is 4,,,9(x).

The operation mentioned above is understood as the limiting case when in eq.
(1) the interval S between successive discrete values is approached to 0, and si-
multaneously « and 3 are both taken infinitely large, that is,

lim(2a+1)S=2a, lim(2B+1)S=2b.



Accordingly, the operation mentioned in this section can be named “the extended
running average method”. Namely K,,,(w) is the characteristic function of such
a continuous sampling filter.

In the following the characteristic functions for several values of & will be
calculated and their characteristics will be investigated.

The following expressions are obtained easily from eq. (7)’ for several values
of n.
(1) For n=2

K :’ (w) = si;lzw (1—cosaw). (12)
(2) For n=3

K: () = g sn(ll';t)uu (13)
(3) For n=4%

K’ (o) ;%;L(f(—”(l—cosam - cos2am). (14)

In these expressions of the characteristic functions, when the quantities w,,, K.,

a
C. and o* are introduced, where w,,, represents the central angular frequency of
the characteristic function KZ (w) and Kpu represents the first maximum value of

K: (w) and the normalizing constant C, and the relative frequency w* are given by

C,=1/Kun (15)

and
m*=cu/co:M (16)
respectively, eq. (12), eq. (13) and eq.(14) give the following expressions.

. a 3
Sin (sz u®@

(1) K (@)=C, (1-—cosaw,,, *), an

a

LZ(OzM w

*

where C;=1.5 and w,, =1.8182/a.
sin:“aw:}u w*

@Y Elr)=1 e , (18)

3 %
a(l):z M w

where C,=1,0838 and w:M=1.3123/a.

i sin acocho* a " _
(3) K, (o%)=C, = (1-cosaw,’, w*cos2am,’ o), (19)
4M

where C,=0.9524 and o, =1.0526/a.

These characteristic functions are illustrated in Fig.2. From Fig. 2 we can under-
stand readily the frequency selectivity characteristics of the present operations as

follows: The characteristic of the principal part of K ie (0*) is nearly same as that
of Kj:(m*) but a little differ from it of Kt(m*), The particular characteristic in

v . ¥* . .
the narrow frequency range, as shown in the curve of K (w*), is not desir-
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Fig. 2 Filter curves of the extended running average method

able. The presence of this particular characteristic can be easy explained by sepa-
rating the function K?: (o*) into two parts as
* a 2a
K, (") =C,| K, () +K; (@) | (20)

That is, we can understand that the appearance of the particular characteristic

in the curve of Ifj (%) is caused by the characteristic of the function K j (w) in-
cluded in K: (w). 'Therefore, we should not adopt the operation with its charac
teristic of K (w) excepting the special case. As the characteristic of the subordinate
part (continued to principal part) of the curves, the characteristic of K, (w) is
most excellent and the characteristic of KZ (w) is wrong. Therefore, synthetically
speaking, K : (o) of these three may be the most excellent characteristic function,

@
Andthe simple expression of K, (w) is very convenient when we treat of various

problems theoretically.
These characteristic functions of the extended running average method are also

expressed as follows respectively :
(1)"” For b=2aq,

¢ %

A A
K:(X*jzcg M gin 2(:—{ |1 1—cos 2“”“_& 21

L
2 ma XZ)IX X‘ZMX




where A, =3.4557a and A* represents the relative wave length (relative period),

L e, N =A Agu=1/0"
(2)"  For b=3a,

AT
Efoty=t g, gur| 276 (22)
HIRY 3 3 27T(l a %
AN
where A =4, 7879,
M
(3)" For b=4a,
X(l X* ‘i
*
K, () =C, 2“‘ sin 2(17”1* 1—cos fina* cos L{-lﬂ-a*— (23)
e XAMX k‘iMX A“‘MX Bty

where A =5.9692a.

So these functions will be called as ”the normalized selection coefficient”. In Fig.
3, these normalized selection coefficients are shown.
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Fig. 3 Curves of normalized selection coefficients

11.3 Filtering Effect of the Running Average Method

In many cases physical values observed are given as values at discrete meas-
urement points. ‘Then in the following, the case in which the running average
method is applied to series of the values observed at consecutive equally spaced
points will be considered. In this case the detected quantities are expressed by
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Aa-ﬁg (m) =S°_o Ka,ﬂ (w) G ((0) ey (24)
or
— 1 Sw Sm 1"‘ ( | ia)(w—g)dg d (25>
=9x ). ) Beplw)g)e i
where
sin _@"“Ziﬁsw o @@;—QSQ)
s So 5 (26)
(2a4-1) SinT&’ 28+ I)Sin\;)‘l

The function given by eq. (26) is the characteristic function of the present selective
sampling operation, namely, of the running average method defined by eq.(1).

We must pay attention to that we have not any information of physical quantity
g(») in ranges excepting the discrete measurement points, accordingly, the true func-
tion of g(x) is not known. Therefore, we must assume adequate function §()
which may approximate to the true function instead of g) in eq. (26) by using
observed values,

Then the continuous function expressed by the following equation is consid-
ered.

9 (w)=fg§(w) etvde, (27)
And we assume that this function has the values g, at the measurement points P,
moreover, we choose the value of Q as Q=#/S. Then we have

gn=gnS) :Si/s/s G () et Sdew, (28)

Therefore, the function § (v) expressed by eq. (27) is a continuous function which
approximate to true function and coincide to observed values at each measurement
point, and not include a variation of wave length below As (A s=2S). Tomoda and
Sensyu* indicated that this approximate function is expressed by

sin 2 (z—nS)

§@=Zgms) > (29)
5 (x—nS)

and they also indicated that the Fourier transform of g (x) is expressed by

G @)= 23 gnS)e=tons, (30)
So we can have the following equation instead of eq. (24) and eq. (25) respectively :

40pf@)={" Kop(@)Gw)edo (24)"

= 7 Es@@eedg do. (25"

Then the spectrum of 4. g §(z) is~ given by

456G (@)= K, p (0)G (@). (31)

Next we will investigate the characteristics of various normalized selection

coeflicients given by general form of
in(2a+ 1)z in (284 D #S/A
K s =Con [ S S ianS . ~ BB F st | -

where C,p denotes the normalizing constant,

In Fig. 4 these various normalized selection coefficients are shown. From Fig.4
it is evident that the most excellent selection coefficient of these is K, (A), but if
we consider the detection for a variation of smaller scale than the former, the
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Fig. 4-a Normalized selection coefficients of various detections of the
running average method (principal part)
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characteristic of K* (A) is most excellent. And the characteristics of K* (A) and
K% (\) are somewhat inferior to K% (A) and K% (A) respectively, However, it
is supposed that in the actual use the differences of these characteristics are negli-
gible. In the previous paper the writer adopted the detections with those charac-
teristics K15 (A) and Ks7 (A) as the method of analysis in the gravity prospecting,
and he named “the normal detection” and “the bi-structural detection” for each
detection respectively.

In Fig. 5 these excellent selection coeflicients are shown in normalized expres-

wnor
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—— K (O
Lo - K;e7 (7\*)
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Fig. 5-a Curves of normalized selection coefficients
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sion and by the use of the relative wave length. The general form. of these co-
efficients is given by
gin 2a+1)7zS 1 gin 2B+1)7S 1

B ¥* .
K::BO\,*) :Ca.ﬁ __.—7\'-”?5%‘ = ;\:M P 7\i (33)
(QCY-H)SlnTM =3 (QB-H)smE ~

where A, represents the central wave length. From Fig.5 it is evident that the

&= * s A . .
characteristic of K _(A*) is nearly same to the characteristic of K_::()\,*) and simi-

larly the characteristic of K *4 (\¥) is nearly same to that of KZ*,, (»*), and moreover,

all the principal parts of these are nearly coincident each other. The latter fact is
also present, as pointed out in the previous paper, even for other various values of
« and B. In addition, the curves of dotted line in Fig.5 (a) and (b) are the cur-
ves of Kr (A*) and K :(X*) respectively, Then we can understand that the differ-
ence between any selective sampling and a corresponding continuous sampling to it
may be little so far as we do not consider variations of small scale. That is, as
shown in Table 1, for the normal detection the ratio (28+1)/(2a+1) is equal to
2,333 and for the bi-structural detection this ratio is equal to 2. 143, Therefore, it
is supposed that these characteristics may approximate to the characteristic of K:
(A*). Fig.5 (a) shows that in the practice the degree of this approximation is as
higher as we can regard these as identical. For the case of Fig.5 (b) we can also
say similarly,
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Thus it becomes clear that the characteristic functions of the normal detection
and bi-structural detection can be approximated by the use of the characteristic

function K:L (w), and that the characteristic functions K , (@) and K, ,(w) can be

approximated by the use of .R':: (w). For the purpose of performing the approxima-
tions above mentioned, we must take the values of @ in each characteristic
function K; (0) and K Z (w) as follows:

That is, when the central wave length of the selection coefficient K, z(A) is de-
noted by the symbol A.pa, it is necessary for upper purpose that the following
relations are present.

P (n=2 and 3).
Then when denote the value of « satisfying above relation by the symbol
a: g WE have

a, ;=0.2894 Ao pu for n=2 (34)
and

a:fo, 2089 A, par for n=3, (34)/

In Table 1 the central wave length Au s, the ratio (268+1)/(2a+1) (correspond

to b/a in continuous sampling) and 2\. g/ (2004-1) S (correspond to X:M/a in con-

tinuous sampling) are tabulated. And in Table 2 a: , and b:‘ ﬁ=na: g are tabulated,

Table 1 Values of the central wave length of the
various detections

28+1 24
a 1 44a,BM
| 8 Za+1 e B <va+1>s
1 3 2.333 5.78 3.80
) 4 3 6.9S 4.60
2 7 3 | 1208 4.80
3 | 7 2.143 | 12.45 3.54
I I |
Table 2 Inner parts of brackets indicate the values which were calculated

formally by respective relations of eq, (34) and eq. (34)'

3

@ B aq.8 ’

1 5 (1188 5) 1650 S \ @.564%) | 2,298
| 4 1.438S L97s) | 4.314s (3.993S)
2 7 25008 | (3.473S) |  7.500S (6.945 S)
3 7 ‘ (.55 | 2585 i (1.749'S) 7.177S

By using these values of a: g and b: s we can perform nearly the same detec-
tion as the detection of the selection coefficient K, z(A). Though, in this case we
should take the continuous function g (x) which does not include a variation of a
wave length below the wave length Ag=2S instead of the true function g (x). In
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the following, this matter will be proved analytically.
Now we introduce the new function

K, (@)=C., K. (o), (35)
where
A < W A (36)

Then by using this characteristic function K. s (o) instead of K. (@) in the inte-
grand of eq. (25)/, we have

4.5 §(x) szwKa,ﬁ (m)é (w) e***dow

=_2% 5 g(ns>S°_° Ko p(w) €15 doy, (37)
By the use of eq. (10), the right hand of above equation becomes
dop §(@) =S 3 Cupkaep (x—nS) g(nS). (38)

In Table 3 (in the 2nd and 3rd column), the kinds of selective sampling equi-
valent to the continuous sampling that the right hand of eq. (37) indicates are
compared with those of the selective sampling corresponding to each case.

Here, for reference the case in which 4. §(x) is approximated by the use of

ada
the detection of its characteristic function K, () will be investigated, where a,=

(2a+1)S/2. In this case, we have

203 §@) ~ |7 Ksy(@) Clw) evda, (39)
where

Ki,(@)=Cap K (@), (40)
By similar treatment as before, we have

dop §(x)=S Y Cupka,(x—nS) g(nS). (41)

Table 3 Equivalent selective sampling

P . 24,8 q,p (] a
a 8 iy ALy canogiias Gl casde & i

A R - a A a f M ‘M
1 3 1 3 1 3 1 4 1 3 7.18S 5.18S
1 4 1 4 | 1 3 1 4 il 3 7.18S 5185
2 7 2 7 3 6 2 5 2 5 1.97S 3.64S
3 7 v 7 3 7 310 3 7 16.76S 12.108

In the other part of Table 3 the results of this case are tabulated. Moreover, x:l

in each column means the central wave length of the corresponding detections.

II. 4 Filtering Effect of the Running Average Method for Periodic Function

1t is not general case in which a physical quantity has periodicity. Although,
even in the case in which g (x) possesses a continuous spectrum, in many cases we
often assume that g (x) possesses a line spectrum for reason of its theoretical con-
venience. The characteristics of the procedure of the running average method in
this case is given by the expression of the same form as the characteristic function
obtained in previous section excepting the difference of line spectrum and contin-
uous spectrum. That is, in the presence the following equation corresponding to
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eq. (25) in the previous section is obtained.

- L
Aa,ﬂ g(m) =3 %SO Ka.B("—’n) g(s) COS wy, ({E'—E} d‘sy (4‘2)
where
&=1, 51=52:......:2
and
w,=2nmn/L,

and K. s (w) is the characteristic function given by the following equation
Jn (2a+é)wnS i (2,8+21 oS
Ko p(0a) = - 5 (43)

(2a+1)sinﬁr~2.§ 28+ D)sin 25

This is the expression of the same form as eq.(26).

IIT. Application to the Two Dimensional Problems of the Running
Average Method

III. 1 Case of the Selective Sampling

In this section, the case in which the observed values are given intermittently,
as shown in Fig. 6, is considered. Actual distribution of observed points is uni-

¥

Lqn
I5y
QN
&
QQ"‘ i
4
B
X
L=

QQ'

Fig. 6 Illustration of selective sampling of the two dimensional case

form, but in Fig.6, unnecessary points are neglected for simplicity. At first the
mean of the measured values at (2a+1) points with the center point P, (x4, ;) on
each measurement line [, (n=1,2, 3:----- ,N) is computed, and then next the sum S,
of these means is also computed. When the average value of the sum S, for the

- . S oy . . B v
measurement lines is denoted by S, this average value is given by

S 1 N a
SY¥= (26‘(+1)N glmgugn,m» (44)

where g,,» represents the observed value at the point P,,. on the line /,,,and gu,o
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is equal to the value, g,, at the center point P, i.e.,

G0 = a0 ="""""" gn.0=fo.
Eq. (44) is also expressed by the simpler form of
o _ 1
52 _Z'Qa+l){ 42 2 G} (45)

where g‘z represents the mean of the values on the circle of its radius r=mS.

the following, the average value S will be calculated analytically.
The physical quantity g (x, y) is expressed by the Fourier transform of

g (x, y)=Sf S"j G (@4, ) €1055% 0D deo, deo,, (46)
And when we put
rx=x;+7cos v, y=1vy;+7rsinvf

and
g (x,y)=g (r,v8),
eq. (46) becomes

g(r,v8)= S(z)” Sm G (o, ¢) @ le (% cos g+¥j sin Pg e cos W -4) ¢ (ded(i), (47)
0

where
0=+ w,?, ¢=tan™t Lv
.
and
G (w,¢)=GC (v, 0,).
Therefore,

27 (Yoo
N — 1 G (]5 fw (@ COS$+YjSin¢)

w [3) CZa Al Jjsm
9y QNSO So (@, ¢)

x 3" giro cos 00-9 gy dip, (48)

v=1

By using this equation, the average value S¥ is given as

giv (Qal_l_l) ggﬂg oG (C() ¢) gt (@i cos ¢+ ] sin @)

X[ 142{ Jw(Se) + Ju(2Sw)+ -+ Jy(aSw)} | do dp,  (49)
where
e B - 170 COS (w—¢) 50
.,N(r(o) 2N ‘%‘le ( )
Now, if the quantity
dopg (e, y5) =Sy =57
is considered, this quantity is given by using eq. (49) as
2 Peo
dusg @i,y =[0G (0, 4) KD (@)

X eiw(mi cos ¢+vjsind oy d(l,’ (51)
where
o . 2(B—-a) 4{(B—-a) 2
K2 @)= gty @ e @t oo S o k) = g1y 2, Ju(kSw)

and this is the characteristic function of the running average method in the
dimensional case.

In

(52)

two

In the practice, NV is taken as small number, In such a case, Jy (r®) can be

expressed by simple form as follows :
For N=2
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F(ra) =y {cos (r,) +cos (ry) ) (53)

For N=3
Je(ro) =—?l)— {cos (ro,) +2 cos (JQ',,C%) cos (~k rmy)} (5)

For N=4
Ji(row) = ‘1} {cos (rw,)+2 cos (Vr?w,) cos (7"_2:w,,)+cos (rw,,)_}. (55)

Next, the ideal case will be considered, in which the value of N is taken as
infinitely large, then eq. (50) gives
: _ 1 £ trw cos (0—¢) =
lim [y (ro) =5 [ e o=, (re),
where ], (ro) represent the Bessel function of 0th order. In this case, the ideal-

ized characteristic function K :ﬁ (w) is given by

KD, @)= 28— _, HE-a) 3, Jo (kSw) =

2 Jo (kSew). (56)

Ca+D)(2B+1D) Ra+D(2B+1) 4 (2,8+1)K=a+
For example, for the normal detection in the two dimensional case, it becomes
K7, (@) =5 {2+4]; (So) =3J, (250) ~3], (35@)} (57)

In Fig. 7, this characterlstlc function is indicated in normalized and relative wave
length expression. The curve of dashed line in Fig. 7 is the filter curve of the normal
detection of the one dimensional case.

0~ % %
Kis (A

o |

—' T 1

——— Kis (A

ol

i

Fig. 7 Filtering curve of the normal detection.in the twe dimensional

case (central wave length Aa=4,6496 S)
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III. 2 Case of the Continuous Sampling

Eq. (56) is the equation of the characteristic function of the case in which the
continuous sampling procedure is performed for the mean on a circle. In this
section, the case in which the continuous sampling procedure is also applied to the
radius direction will be considered.

When the characteristic function in this case is denoted by K, (@), this char-

acteristic function is expressed by
K, (w)= S Jo (rw) dr— lb S: Jo (re) dr. . (58)
Here, it must be attended to that the anomalous quantity obtained by the detection

with its characteristic K _, () is represented by

das 9@, y) = 27ra5 Sg(r 0) dr df— S”S';g(r,m drdd (59

but is not the difference of two average values of usual meaning for different
circles, namely, is not the quantity

ez (‘o 1 2 (D
£ gz, y) ——”azg SO g(r, @) rdrd(?——”ﬁgo 50 g (r,0) rdrdd. (60)
In the following, the characteristic function of the detection defined by eq. (60)

will be investigated.
The integral

2 (fa
Ia=50 50 g (r.0) rdrdd
is given by the Fourier transform expression of

I,=2ra* So S L((law) G (w, p) etacoss+usind do dp,

Therefore, eq. (60) becomes
4% g (x,y) :SE”S:K:((U) G (o, ) eloCocos s+using doy deb, (61)
where
K @)= 2 [#] (aw)~ ], (na0) | n=2 (62)
and this is the characteristic function in this case.
In Fig. 8, the normalized selection coefficients for #=2a and for b =3gq, i.e.,
Klf_,*(x*) and KI:I;*(X*) respectively, are shown by using the relative wave length

A¥*. And the expressions of these coefficients are respectively
(1) for b=2a,
m* = 1 A 2\ 4

K 00 = O [21 (55) -4 (5] G
where

C=1.6402 and Aww=ra,
(2) for b= 3a

4 11
s o= 5 O 37 () - 7 () e

where

C'=1.1811 and Noa=ma

The characteristics: of these two are nearly equal each other for the values of A*>
0.7, but for the values of A* < 0.7 the difference of the characteristics between
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3 II*
Fig. 8 Curves of K (1%)
7%

these two is large as shown in Fig.8. On the character of high cut it is concluded
that the intermediate characteristic of these two is desirable. The curve of solid
line in Fig.8 is the filter curve of which function is

11

7C
AT P e 12N _ 30
i Ly 5T (e ) =27 ()], )
where
c™ —1. 3298 =
5= 1. and Agpu= 6 ra,

The characteristic” of this function is very similar to that of K f(x*) in the one di-

mensional case excepting the range of small A¥, but the characteristic of the former
in the range of small A* is more excellent than that of the latter.

From the considerations mentioned above, it is concluded that the adoptation
of the sampling. procedure with its characteristic K;I:‘(m) is desired for two dimen-
sional problems if it is possible. However, practically it is not necessarily requir-
ed the best treatment theoretically, but rather in many cases a simple treatment
is required even if it were more or less. rough treatment. An analysis of gravity
is this case, then in the analysis of the gravity prospecting the running average
method of N=2 is always used. This calculation is very simple, and it seems
that the characteristic of this detection will not become very worse than Kgs ()

in spite of its simplicity presuming from the characteristic of eq. (57).
When we consider theoretically gravity anomalies detected by the use of the

running average method, the characteristic function KIOI (w) can be adopted approx-

imately as the characteristic function in two dimensional case instead of the true
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characteristic function, as in one dimensional case, by reason of its simple analyti-
cal expression.

IV. Meanings of Quantities detected by the Running Average Method
IV. 1 Superficial Meaning

From the considerations of the characteristic functions of the running average
method, it is concluded that this method has the filtering effect with the character
of a band pass filter and so the anomalous quantities obtained by this method are
not including noises (errors and variations of small scale) and the variations of
large scale. From the definition of the running average method the same conclu-
sion is also obtained directly as follows :

From the definition

dapg (v)=g"(z) — g ().
Therefore,

§4(0) =dop g (@) +G%(2).
Subtracting each side from g(z), we have

g (x)-ge(z)=g (x) ~{dap g (®)+3°(@)]}.
From the definition the left side of above equation becomes

g (@) —g(x)=4do.g (2).
This quantity is obtained by applying the detection with the characteristic function
Ky« (w), and include errors and variations of small scale, i.e., this is so-called noise.
Therefore,

dapg (@) =g (2) —{4o.a g () +§°(x)). (66)
Eq. (66) means that the quantity d.pg (x) is the quantity which is obtained by
removing the tendency of large scale and noises from the observed value g ().

IV. 2 Meaning as Indication

Bouguer anomaly g (z) is caused by the subterranean density distribution, in
other words, the gravity distribution on the earth surface can be calculated by
performing the integral transformation to all the subterranean density distribution
p(z,2). Similarly, also when g (2) is an arbitrary physical quantity, it is considered
that this quantity is produced as all effects for variable z of quantities which are
obtained by any integral transformation from the physical quantity p (z,2) of the
same kind or the different kind. In this case what is the physical quantity corres-
ponding to anomalous quantity 4 ¢ (2) obtained by applying the running average
method ?

Now let the integral transformation in the presence be linear and let the ker-
nel of this integral transformation be

I (x,&;2)=] (2§, 2).
So the following general expression is obtained.

g@=" " 1e-capadda (67)
However, when z i1s a mere parameter or a constant, we have ‘

9 @)= 1@-8ap@2 & (68)
or

g (“’)ZS‘_‘J (—8) p (§) d&. (68)'

In the following, the corresponding quantity 4g () to the quantity dp (,2). is
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considered. 'The quantity 4p (x,2) is given by

dp (=, z)=§1k (x=§) p (§,2) d§,
where k (x—&) is the Fourier transform of the characteristic function K () and
K (») is an arbitrary characteristic function of the running average method. Then
4g (=) is given by

Ig (m)zgf Sf I (x—E 2) dp (&,2) dt dz

:Sm S:S:’ (x—&,2) b (E—&) p (§%,2) d6* di dz

tapeni e

Sm S; S:,l (x—~§,2) p (§—E% 2) k (£%) dEdzdE™.

Il

—oa

Here,
" (" re-t2o@-en2 dide=g oo,
‘Then we have
Ig@={"_g @& k) ae
=" k@ g @ @r=tg @.

Therefore, it is concluded that 4 g (x) is produced by 4p (=, z) and, reversely speak-
ing, when p (x,2) is known, the corresponding quantity to 4g () is given by 4p
(z, z) for arbitrary value of z. Here, it should be paid attention that we can not
calculate 4p (=, 2) from dg (z) unless the functional form of p (2, 2) is known. How-
ever,in the case of eq. (68) or eq. (68)' it is proved that 4p (#) can be calculated
uniquely from 4g (2) or g (z) as follows:

, Now, when the kernel of the inverse transform of the integral transform ex-
pressed by eq. (68) is denoted by the symbol [ (x, &), we have

p@=|" 1= g ® as
=" re-o 9@ a - (69)

By using above relation the corresponding quantity 4p (x) to dg (x) is calculated
as below.
dp@={" 1m0 29 © a
:‘S:S:"‘(m—ﬂ k (§—6%) g (&%) d&*d
ZSLSZZ“IW—@ g (E—6%) k (£%) d& d&*

|7 k@-9 0 ® d=d0 @ (70)

Therefore, the physical quantity corresponding to 4g (») is given by 4p (x), and
this quantity can be calculated from 4g () or g (x) directly.

From the considerations mentioned above, it becomes clear that the residual
gravity obtained by the use of the running average method is produced by the
distribution of the corresponding residual density which is obtained by applying
the present method to the subterranean density distribution at arbitrary depth.

Further, if the hypothesis of the condensation surface was used, the distribu-
tion of the residual density on this condensation surface can be calculated from
the distribution of the residual gravity, and in this time parameter z represents
the depth of this condensation surface.
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V. Detections used in Gravity Prospecting

As already pointed out, there are many methods which purposes are to remove
the larger regional background anomalies and the smaller anomalies (noises) and
to bring out the significant features. However, these methods have some defects,
e.g., complexity of an actual calculation, insufficiency of removing the noises and
indistinctness of the physical meaning of detected anomalies and so on. Then the
writer considers in detail the desirable natures of the method to obtain the signi-
ficant features of gravity anomalies by removing the regional gravity and noises.
As the results of this consideration, he concludes that the desirable natures of the
method of gravity analysis are as follows:

(1) The method should be able to well point out only the presence of the anom-
alies of objective scale, but their magnitude and their shapes,

(2) It is desirable that the physical meaning of the anomalies detected is dis-
tinct.

(3) 1t is desirable that the qualitative interpretation of the anomalies obtained
can be easily performed without any mathematical and physical knowledges of
high degree.

(4) The anomalies detected must become the object of the theoretical considera-
tion.

(5) Tt is necessary that the calculation of obtaining the objective anomalies can
be performed simply and easily.

(6) The economy of the measurement points should be considered.

(7) It is necessary that the relation of the two anomalies of the different scale
can be considered theoretically.

It may be able to understand easily from the discussion in the previous chap-
ters that the running average method has the several characters generally of the
desirable natures mentioned above. However, all the detections of the present
method have not always all the characters mentioned above. That is, when we
make much of the condition (1), we have only the two excellent detections of their
selection coefficients Kis(A) and Ky (M) for anomalies of small scale. Fig.9 shows
the comparison of the characteristics between the Henderson-Zietz’s formula and
the normal detection in one dimensional case, where the former was used in our
Geological Survey in the past. As shown in Fig.9, it is evident that the influence
of noises to the significant features in the use of the normal detection is very

o8- ] —————  normal detection

By smssssseaie s t
i \ Henderson-Ziets' eq.

a6

04~

relative wave length

Fig. 92 Comparison of the characteristics between the normal detection
and Henderson-Zietz’s formula (principal part)
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smaller than that in the use of the Henderson-Zietz’s formula.

Further, when the conditions (6) and (7) are considered, particularly the
condition (7), we can not help but adopt the normal detection, That is, when
the anomalies of larger scale than the scale of the normal structure is considered,
the bi-structural detection should be adopted for the following reason.

From the definition of the running average method it is evident that the grav-
ity anomaly composed of the normal structure and the bi-structure is the same
as the residual gravity obtained by the detection with the selection coefficient Ki s
), i.e.,

ding ()=d1sg () +4da7g(w).
Therefore, the consideration of the gravity anomalies is performed in detail by
dividing a gravity anomaly into four parts of different scale, namely, the noise
structure do1 ¢ (), the normal structure 4139 (x), the bi-structure 4sr ¢ (x) and
the regional background anomaly §7 (z). As the result of such a consideration, the
underground structures, particularly their significant features, may be clarified.

If any other detection is adopted instead of the bi-structural detection, e.g.,
the detection with its selection coefficient K,-(\), we shall be sorely perplexed.
Because, this detection has the excellent characteristic as before pointed out, but
the anomaly obtained by this detection includes the quantity 423g¢ (). That is,

Adi13g (@) +doqrg (¥)=d17g (2)+dasg ().
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Therefore, when the subterranean structures based on disg (2) and 4279 (x) are
presumed, we shall make a mistake that we add the overmuch excess mass based
on 4239 (x).

Moreover, if we adopt any other detection, e. g., its selection coefficient is
K (N), what problem arise ? In this case (25+1)/(2a+1)=3, then the detection
has the excellent characteristic and at this time there is no defect as pointed out
above. But in this case two problems occur, namely, one is the problem with
regard to the condition (6) and the other is the problem that the scale of the
anomaly obtained seems like somewhat large. Particularly, the former is important
in the practice,

Further, the reason of that the detection with its selection coeflicient K4 (A)
dose not be adopted is as follows:

(a) 'To adopt this detection is in conflict with the condition (6).

(b) The difference between K f () and K ia(h*) can be neglected practically.

(c) Moreover, when an anomaly of larger scale is considered, we must take a
detection of =4 and B=11~15, then this is also in conflict with the condition (6).

Thus the reasons of the adoption of the normal detection and the bi-structural
detection become clear.

It is sure, if we do not consider very much the influence of noises and if we
make much of the condition (6), we can adopt some other detection, e. g., detec-
tion of its selection coefficient K; 2 (A) for anomalies of small scale and detection
with Ky 5 (A) for anomalies of larger scale,

VI. Quantitative Interpretation of Residual Gravity

VI. 1 Fundamental Theory

As already mentioned in chapter I, it is possible to calculate a gravity value
on the earth surface from the subterranean density distribution, but on the contrary
it is impossible to calculate theoretically the subterranean density distribution
from the gravity distribution on the earth surface without any assumption of
density. However, practically, the solution of this problem is expected from the
requirement in the prospecting of underground resources. And by this reason
many efforts to calculate the subterranean density distribution from the given grav-
ity anomalies have been done by using various assumptions for models of the
density distribution. But so far, in the presence we have no established method of
the interpretation of the gravity anomaly.

The residual gravity obtained by the writer’s method means deviation from
average tendency of large scale, and its causes are undulation of comparatively
small scale of the basement, massive bodies of different material (e.g., rock salt
dome) and geological structures in thick sedimentary formations (e.g., anticline,
fault) etc. The last cause of these has generally small influence to the gravity in
spite of the significant meaning in the geophysical prospecting, and then with this
reason the various methods to detect local and weak anomalies have been investi-
gated. However, as pointed out above, the established method of the quantitative
interpretation of the residual gravity detected is not present.

In this chapter, he will explain the method which may be applicable for the
case that the residual gravity obtained by his method is caused by the geological
structures in the sedimentary formations thick enough.

In the following, the two dimensional case is considered. ‘Then, let the subter-
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ranean density distribution be independent of y-coordinate, and suppose the z-axis
is taken vertically. So the density distribution is represented as

o (x,2)=p (2)+p (x,2), (71)
where p (2, 2) is the density at point P (2,z) in the subsurface and p (z) is average
density at a depth z. Accordingly, p (z,z) means a deviation from the average
density at the depth z. Here, put

p(x,2)=p: (2) py (%,2) (72)
and denote the spectrum of o, (z,2) for distance variable x by symbol R, (e, z),
ie.,

2 o z):%j:q,ol (z,2) et da, (73)

The residual density at the depth z corresponding to the residual gravity is

given by

do (%,2)=4p (»,2) =p; (2) 4p; (z,2), (74)
where 4 denote a operator of any detection of the present method, e.g., normal

detection, bi-structural detection, etc. The quantity 4p, (z,2) is given by the use
of eq. (73) as

i (@w2)=("_k@-0 o (G2) d

=S°_° K (0) R, (,2) ¢"* do. (75)

Gravity anomaly on the earth surface caused by infinitely extended horizontal
plate of infinitesimal thickness d& with the density distribution 45 (£, {) at the
depth ¢ is

ddg (2, =277p, ©) dE|" K (@) R, (0,8) e et do,
where v is the universal constant of gravitation. Then the residual gravity is ex-
pressed by the following analytical representation.

4g () =2y S: K (@) et [ S: po () Ry (,8) e-9¢dt | do, (76)

The integration in the bracket of above equation can not be performed unless the
functional forms for the variable z of p, (2) and R, (®,2) is known. Then the fol-
lowing relations are assumed.

(o (@) =1—e-wiwa, (77)

2 2 2
| Pips @A=] o 42 | o1 (@0 =0, (78)

where w, & and k are the constants and the symbol Az means the generalized La-
placian,

Next, for a while the above assumptions will be considered.

For the assumption of eq. (77), we must call to mind that in many cases there
is the well-known relation between density of sedimentary rock and its buried
depth, that is,

p(R)=A+B (1-e-v?), (79)
where A and B are the constants and other symbols are already explained. There-
fore, a density at arbitrary subsurface point can be expressed as

p(v,2)=A+DB (1—e-%), (80)
where B’ is a function of variables # and z, i.e.,
B'=DB (z,z).

If the initial density distribution expressed by eq. (80) is kept unchangeable
for the erosive action, the density distribution at the time when the erosion has
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acted untill the depth « (see Fig.10) is expressed by the following equation for
the new earth surface.

Fig. 10 Erosive action

p(®2)=A+B {l-evC+ro )} B=PB (xz+a), (81)

In eq. (79), the constant A means the average density at the earth surface, but
the constant A of eq.(81) has not such clear meaning and this should be calculated
from the data of the density of rocks together with the value of «. From the
above consideration it is concluded that the assumption of eq. (77) is reasonable,

On the contrary, the hypothesis of eq. (78), namely, the assumption on the
function B’ (z,z) in eq. (80), is including problems. This matter is caused by the
fact that the relation between the force by which various subterranean structures
are produced and the density of sedimentary rocks is not known entirely. How-
ever, it is supposed that when geological structures are formed, density of rocks at
any depth will be changed its value with their structural variation to horizontal
and vertical directions, and the density variations of each direction is not indepen-
dent each other. Then the hypothesis eq. (78) can be understood as the mathemat-
ical expression of the consideration mentioned above. And it is supposed that the
constant k is the parameter determined by the dynamical characteristics of the
tectogenesis and by the natures of sedimentary formations.

Kato*” assumed the density distribution in his paper as

PZp‘!‘Z X S?i A,
where

Xp=e 2D, + (1 —e-4) e~ miC,,
and he took 0,5 km™ as the value of A, i.e., 2 in the present paper, from many
data of sedimentary rocks at various depth. And he studied on the two examples
about three cases in which he assumed A, =0, =\, and=ga,, respectively. As the
results, he concluded that in the case of A, =a, good result is obtained. This
assumption of A,, is the same to the case of k=1 in eq. (78).

In this paper the assumptions of eq. (77) and eq. (78) are adopted by consider-
ing the Kato’s result. This matter is considered unaboidable in the present stage
as far as we have little data for a variation of underground density and we can
not overcome the theoretical difficulty of the problem.

From the assumption of eq. (78) the following general solution of py (2,2) is
obtained.

ou(e,2)="_ R emectredp,
where R, (@) is an arbitrary function of variable @. Therefore, we have
R, (w,2)=e "z R (o), (82)
Then the integration in the bracket of eq.(76) can be carried out by using eq.(77)
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and eq. (82), i.e,

o0 1 e - :
~lwlg . —kjola
SO pz (2) Ry (0,0) e dC—[(I I g ST }]e 1olaRy (),
If « is comparatively small, the right hand of above equation becomes

w{l+(+k)alol} -1 ¥
IF Bl tRelte’ R ).
Therefore, eq. (76) becomes

o (™ @R alol e -
49 @ =2y o wloye K (@) Ru(w) edo.  (85)

On the other hand
49 () =S°_° 4G (o) e**do,

so we have

I (+k)o{(l+k)o|+w) .. 4G(o) (84)
zy w{l+{(+k)alel} K (o) " :
Thus a residual density at arbitrary subsurface point is obtained as follows:
l—e-verafe (1+E)e[{(1t+k)|o|+w}, . tue]
LT, i w{l20thele) & AC@eTEe (G
When the value of « is 0 or small enough, above equation gives
dp(x,2)= 1§;;w=_sm (I+B)lol{(1+k)|o|+w} e 4G (o) e* dw, (86)
These equations, eq. (85) and eq. (86), indicate what a filtering action the den-
sity distribution has. That is, analogously saying, when the input is the residual
gravity of its spectrum 4G (o) and the output is the residual density given by eq.
(85) or eq. (86), the frequency responses of the filters of respective cases are expres-
sed as follows respectively :

R, (w)= 9

4p(z,2)=

_ l—e—vCra (14 o {(1+E)o|+w}  _i e
E oS gen  (eiilBaleny =« 8
F (0,2) =5 S (1Bl {1+ )]+ w) e =Ho*. (88)

VI. 2 Characteristics of ‘“the Density-Spacial Filter”

VI. 2. 1 Characteristics of F (o, 2)

Thus, it becomes very important that the characteristics of the frequency
(wave number) responses mentioned above are considered. So, at first, the case
of eq. (88) will be examined for its simplicity.

In eq. (88) the part of the function of variable z, 1. e,

Z (w,2) =(1—e-ws) g~klol® (89)
is considered. 'This function has the maximum value Z, for arbitrary constant
value of w at the depth

B .IL -log(l-l—ﬁ)' (90)
In Fig. 1]l the function Z (w,z) are illustrated for several values of w. From Fig. Il
it is evident that this function changes its value gradually with depth in consid-
erably broad range about the depth za Therefore, it is supposed that a gravity
anomaly of wave number /27 is caused by a density anomaly of same wave
number in comparatively wide range of before and behind the depth zux (the depth
of maximum amplitude) which is determined by the wave number /27 and at
which the density anomaly has the maximum amplitude. Here, we must pay
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Fig. 11 Curves of the function Z (o, z) for several values of @ (k=1)

attention to the meaning of k. That is, as shown in eq. (90), the depth za is
depend on the constant k, and the depth of maximum amplitude zx of the wave

number ®/27 in the case of k=1 is equal to that of the wave number —2"’;/1‘: for

the case of arbitrary taken value of k.
Eq. (90) becomes for comparatively large values of o
zu=1/k o). (90)’

This is important relation for our purpose. That is, we are now considering the
residual gravity, and in many cases we take the spacing of measurement as S=
500m or S=250m, so the predominant wave number of normal structure of gravity
becomes w /2w =1/7w km™ or w/27n=2/7 km™ respectively. On the other hand,
w=0,5 km™ as pointed out by Kato,*” therefore, we can accept usually the approx-
imate relation of eq. (90)’. And from this relation we can estimate “the depth
of the presence” of the residual density, and we can modify this depth by means
of adequate value of k.

From the matter mentioned above it is presumed that £ is the parameter
which may be dependent on “the depth of action” of the force acting in the tec-
togenesis, on the magnitude of this force, the scale of this force, etc. or on the
nature of sedimentary formations and their history.

Next, the character of the function F (w,2) will be investigated. 'Then the
following function is considered.

W (w,2)=(1+k)o| {(1+ k) w|+w) et 91
Here, at first the constant @ in eq. (91) is neglected for the simplicity of the con-
sideration. That is, the function

W, (w,2)=(1+k)*0?eFlk (92)
is considered. This function has the maximum value W4 (z) for the constant
value of z at

w ;iux =2/ka. (93)
Eq. (92) is also expressed by the form
Wy(o, 2) =W, (w0, 2) = Wou(2). - Wi*(04), (94)
where
_f20+k0*, 1
Wou(2) "{_‘e*f (kz)® (95)
and
Wi (0x) =a,f e72D, (96)

The function W,*(w,) is independent of depth and has the characteristic shown
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in Fig. 12. 'Therefore, the function W, (®,2) has the maximum value inversely
proportional to the square of depth z at the wave number o’ /27 (maximum de-

tected wave number) determined by a depth, and its value approaches to 0 mo-
notoniquely for a wave number larger or smaller than “the maximum detected wave

number”,w’ /27, but types of filter curves for arbitrary values of z are strictly

o
Max

identical,

0

|

005 07 a5 7 5 10

Fig. 12 Curve of the function Wo* (wx)

Moreover, the influence of the parameter k is similar to the previous case as
shown in eq. (93), and this is very interesting matter. That is, from the deformed

relations,
1 | 1

FATES w=--

Lz— 1 | == -__w“ " :fL
2% ko wax ) R J

it is able to say that the depth of maximum amplitude of a density variation of

a wave number 7“’77 is a half of the depth at which the gravity variation of the

same wave number is subjected to the maximum detection. or that a wave num-
ber of which the amplitude of a density variation becomes maximum at a depth
2a is a half of the maximum detected wave number at the same depth.

Thus we can presume a structure of residual densities corresponding to residual
gravities of comparatively small scale. For example, a residual density of the
normal structure will distribute in comparatively broad range of depth about the
depth S/k so far as the spacing S is taken comparatively small, because the nor-
mal structure of gravity is the structure with its predominant wave length of about
6S, i. e., predominant wave number of about 1/12zS. And the depth at which this
density variation becomes predominant than other scale variation will be estimated
of about 2=2S/k. And at this depth a density variation of its wave number larger
than about three times of 1/12zS or less than about fifth of 1/12#S can be neg-
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lected. So it is supposed that, roughly saying, the figure of residual density may
be similar to the figure of the residual gravity.

In the consideration mentioned above, the constant w in the expression of the
function W (w, 2) was neglected, but in the following the constant 2 will be con-
sidered.

The maximum point of the function w (w, z) for a constant value of z is given

by

i :M@M}CZHJ‘_: kzw/2(1+k) . (98)
This equation becomes simpler in the present case, for depth considered is at most
a few kilometers, That is,
=2 [ ke, (k2)Y
s = - g e
Here, a magunitude of kz/8 (14 k) is estimated for a few cases. When k=1 and
2=2(km), that value is equal to 1/8. And when k=2 and z2=2 (km), that value
becomes 1/6. Therefore, in practice the following approximate relation can be

used,
e, 22 ke ‘}
0 pMax = ]CZ {1 = 8(1+k> . (99)
Further, for small values of z it becomes

4 0

O T k}ﬂ-wMax
On the other hand, the maximum value of W (w, 2) is given by

s kz :
Wa(z) = {l 5 m_[_-];)*} Won(2). (100)
Therefore, the influence of the constant 2 to the maximum value of the function

is somewhat larger than that to the maximum point.

ior .
e

Z= 2

I 1L I 1 alt

005 a1 7 70

%
— W =Y Max

Fig. 13 Curves of w (@,2) for different values of z (W* (0, 2)=C: W (», 2),
where C: is the normalizing constant)

As the conclusion, it is supposed that the difference between W (w,z) and W,
(®,2) is a little as far as consider a residual gravity of usual scale, and accordingly,
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in usual case, we can use

kz
T LG
little precisely or merely Wy(w, z) instead of the function W (w,2).
In Fig. 13 this difference is illustrated concretely for a few cases.
VI. 2.2 Characteristics of F, (o, 2)

In the following, the function F, (@, z) will be considered. The constant w is
also neglected in the middle bracket { } in eq. (87) for the simplicity of the
consideration. That is,

: ] —g~w+a) 14+ k)2 w? .
Wi 0, 0 e —gr— l—lga(l—lzlc)lmi R DL

Here, at first the function

Z, (,2) ={l —e~?@+a) } g-hiele ' (102)
is considered as before. Then the maximum point of this function for' a constant
value of o is given by

_ 1 w
Zas=, Tog {1+ 70} - (103)
that is,
1 w
Ll log {H—k—lc})_l/‘ (103)

The left hand side of above equation means the depth of maximum amplitude of
a density variation of wave number w/27 for the earth surface before the erosion.
Therefore, the depth of maximum amplitude of a density variation of wave num-
ber w/27 for the former earth surface is retained to constant throughout the
erosion.
Next, the function
g2
Wos .9 =3 (14" (104)
is considered. This function has the maximum value for the constant value of z

at the point o  on the w-axis which value is calculated by the equation

a(14+k)o’ oaax +2

Z:ka}Mux ' ﬁ%ﬂ%' (105)
‘Then we have
for z € 1,

o avax = 1/kz,
for z > 1,

o amax ~ 2/kz2,
and for general value of z

o 2
S iy
kz = maMux - kz.

In Table 4, 27 times wave numbers of the variation and corresponding depths
for the earth surface before the erosion are shown for a few values of @, And in
2nd column of this table the depths corresponding to each wave number in the
case of @=0, i, e., the erosive action was not present, are tabulated.

Thus, it is concluded that the influence of the erosive action is not present on
the depth of maximum amplitude but that erosive action influences to the depth
correspond to the maximum detected wave number. However, this matter was
already expected in the previous consideration. That is, from the previous consid-
eration it is recognized that the function Z (w, z) indicates the model of the
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Table 4 Depths for the earth surface before the erosion at
which the characteristic function wo,s (w,z) has

o
the central wave numberag oy /27

x| e | — hta -
: a=0.25 | a=0.5 a=1,0

0,2 10.0 9.795 9.667 9.600

0.5 4.0 3.850 3.830 4.000

0.8 2.5 2.393 2.444 2.731

1.0 2.0 1.917 2.000 2333

1.5 1.3 1.298 1.433 1.833

2.0 1.0 1.000 1.170 1.600

3.0 0.6 0.717 0.917 1.381

4.0 0.5 0.583 0.800 1.270

distribution of the density anomaly and the function W (o, z) is the characteristic
function of “the density-spacial filter” which is determined by the presence of the
space and the density distribution, then consequently it is presumed that the influence
of the erosive action is not present in the former but may complicate the charac-
teristic of the filter,

In order to investigate the characteristic of the function W, . (w, z) the case of
k=1, a«=05 is considered in the following, i.e., in this case the characteristic

function becomes
N = {? —lwiz
Wo,o.s((u,z)—mw—Je i (106)
In Fig. 14 the characteristic curve of this case for 2=1 is shown by dotted line.

And the curve of solid line is that of the same function but is represented by the
different expression, i.e.,

2. Ke¥ D = K
W;T,Oﬁ(w**’ 1) =4C la':‘l:;ﬁ::w** G R ’ (107)

Fig. 14 Filter curve of the characteristic function Wy, (@.2) for @=0.5 at kz=1
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where wyax=1.4286, and C= 12411 is the normalizing constant. Moreover, the
curve of dashed line is the characteristic curve of Wy*(w,). From Fig. 14 it be-
comes clear that the position of the maximum point of 0, 5 (@, 2) transit to the
direction of small wave number, and the character of high cut becomes strong.
But the curves of W% ;5 (w**, 1) and W,*(w,) are nearly identical, and we can also
see the similar relations for other arbitrary values of z. Such character of the den-
sity-spacial filter indicates that the erosive action dose not give the essential influ-
ence to the character of this filter,

VL. 2.3 Characteristics of K, (w)

Hitherto the characteristics of the density-spacial filter have been considered,
but in the following the wave number response of the case in which the residual
density distribution is calculated directly from the gravity distribution will be
investigated.

Eq. (86) can be deformed by using the relation 4 G (0) =K (0) G () as

dp(x,2)= 1_;:/2 S‘f (14 k)2t et . K (o) - G () e'*do. (108)
Then when the function K, (w) is defined by
K, (@)=K (&) - W, (@,2), (109)
eq. (108) becomes
_l—e-=2 = s Lo 110
dp(@=1"2" " K@) G @) edo (110)

This is the equation to calculate the residual density directly from the gravity
distribution on the earth surface. Then the wave number response of this case

becomes
l—e-22

7y - Ky (w).
Eq. (109) is also expressed by the normalized form of
K, *(0*)=CW,u(2) - Wi*(ws) K*(o*), (111)

where C is the normalizing constant and

Oy =0/ \ax, OF=w/0n
and oy denotes the central wave number of the characteristic function K (o). In
order to investigate this combined characteristic function, the following three cases,
i.e,, cases of kz=1/wy, =2/wu and=4/w,s, will be considered,
(a) The case of kz=1/wy
In this case we have w'yay=2wxn, SO

1

w*=—§—w*‘
Then eq. (111) gives
(K@ ], = o YW () K@),

(b) The case of kz=2/wxu
In this case we have o’ yax=wan, SO
0, =w%,
Then eq. (111) gives
[Kt (m*)]“ﬂ/wﬂ:CWo,M ( wi,) W (@) K*(w*) .
(¢) The case of kz=4 /oy

Wy, SO

Ry
2

In this case we have w° =
Max

w,=2w*
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Then eq. (111) gives
:LK: (m*):l ke=d/oM = CWO'M( aiu) A L

The characteristic curves of these three are shown in Fig. 15, where as the
function K (w) the characteristic function of the normal detection is chosen. But
the curve of solid line is the curve of the normalized characteristic function K 13

(0*). From Fig. 15 the characteristics of the wave number response in the present

101

Ky (wh

~-04

*
Fig. 15 Filter curves of Kz(w*) for several values of kz

case become clear as follows: That is, the characteristic function K % (0*) at the
depth 2=2/kws at which the central wave number of the normal detection be-
comes the same as the maximum detected wave number has the both characters of
low cut and high cut slightly stronger than those of Kfs(w*), And at the depth
z=1/kwou which is the depth of maximum amplitude of a density variation of the
same wave number as the central wave number of the normal detection the char-
acter of low cut of the characteristic function K, (*) becomes more remarkable
compared with the former case, but in this case the influence of noises becomes

larger. And the central wave number of the characteristic function [K j (w*)]k B
t2=1/w.

is nearly equal to 1/5S. For the case of kz=4/wj the central wave number of the

characteristic function [K j (co*)l - transit to 1/7,6S, and the character of
ve =4/ w
high cut becomes remarkable as shown in Fig. 15 then the influence of noise is not
almost present in this depth.
From the consideration mentioned above, it is supposed that the residual den-

sity distribution which contribute substantially to the residual gravity may have
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similar figure to that of the residual gravity distribution at arbitrary depth.
If the characteristic function K,*(w) is used as the function K (w), the com-
bined characteristic function K, (») is expressed by the simple representation of

K, (w)= ; (1+k)*2 c{‘l’ sin® awe=*1iz,

The result of the consideration of the characteristic of the above combined
characteristic function is the very same as mentioned above.

VI. 3 Numerical Calculation of Residual Density

V1. 3.1 Analytical Representation to calculate Residual Densities
In the equation

i b 9 8, kiwle oz
dp (z, z)—~ —— g_m(l-}-k) wle= 11 4G (w) e**"dw
we can make
wle —klo)!z=_£“< azﬁe—k]mw
k*  oz° ’
Then we have
o ot e 117‘;’ a “Z!“V ng’r S"; e*1012 4 G () et doo,

The function defined by
& (x,2) =27y S‘j e %t 4G () e do (112)
can be considered as that this expression means a gravity distribution on the earth
surface when the condensation surface on which a spectrum of a density distribution
is denoted by 4G (w) is considered. By using this “transformed residual gravity”
% (2,2), we can have the analytical representation of a residual density. That is,
AP(%‘, Z)— 2 (7}')”6')2 822 9"’ (‘T’ga)- ( )
Similarly, for eq. (86) we have

_(1+E)2(Q e o° k 1
do A=t Lo ¥ & ~ gy 5y ¥ @A ] A
Moreover, when « can not be neglected i.e., for eq. (85), we ha.ve
_({+k)2(] —e-tetn/z) k
A[l (’U 2) W a e Fa (.’I‘ 2) 2(1—{—7{7) az Fa (x Z)] (115>
where
= T pklatz 4G (CD) tw®
Fa (2, 2) -27tfyg e T do, (116)

VL. 3.2 Computing Formulae

In order to calculate a residual density, eq. (113) or eq. (114) is used according
to a scale of a residual gravity. Then at first the computing formula of the case
of eq. (113) will be reduced.

Now, in order to calculate the transformed residual gravity eq. (112) is de-
formed as follows :

& (x, 2) =27y S‘jwe “hlal 2 g low [% S:,A g (&) et d&] dw
—y S:QA g () U:e~kw et doy | d, (117)

In the above equation, if the discrete values of residual gravity with the uniform
spacing S are given, the continuous function 4§ () which is the approximate
function of the true function 4 g (x) and does not include a variation of its wave
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length below As=2S is expressed by the following equation as given by Tomoda
and Senshu®,
s i”_ (E—uS) |
4§ (€) =249 (nS) —5 > — (118)
22 (£-nS)
Ag
Accordingly, the corresponding transformed residual gravity is given by the To-
moda and Senshu’s method as
3 ¥ (x,2)=y X dg (uS) d (x—nS, 2) (119)
where ¢ (z,2) is the density response for the unit gravity § (z), namely, the unit
gravity § () is § given by

sin —KE @
5 (x)= e g (120)
£ _E‘- m
then ¢ (z, 2) is expressed by
2
B oyt [N i 121
‘P(ac,z)—%rj‘%re kloiz gto% ey, (121)
s
Therefore, we have 9
. 27 2 74
Ko = ey )
5(95 z)___Xs { k2 +wsmxsm kzcos 7wac ;% z} (122)
i 27 Lt k222 N
This equation is also expressed by
= 1 % Fol % _ % ke
P (@%, 2%) = = {x*ikz*z S 7;12_{_;*'(2:05 e *}, G

where z*=x/S and 2z*=Fkz/8S.
Thus eq. (119) becomes
F (¢*,2%) =y X 4 gn b (2% —~m, 2%). (123)
The function ¢ (x,2z) can be used instead of. @ (x,z), then we have the follow-
ing equation to calculate a residual density.
4p (z%,2%) =ig.l(%k))‘:‘ (o) -1 *ai% F (2%,2%). (124)
Eq. (122)/, eq. (123) and eq. (124) give the following computing formula of a re-
sidual density at arbitrary subsurface point.
2 %2 _ il N2
_ a2 cos w (¥ —n) + 2w cos w (&* —n) —a? (2" —n) X
2 (2F —m)*?
x 8in 7 (* —n) .

2 {2cosm (x¥—n)—4mw(@x*—n)sinx (a¥—n)}—
{z*2+ (x*___n)‘.)}2
=6 (a*—n)sinw (a¥—n) +4x (@*—n)?coszw (x*—n) P—

8z (a*—m)?cosmr (a*—n) —8 (a®—n)3sinw (¥ —n) o 195
7 {2 (2 —n)%)s e (125)
At each measurement point eq. (125) becomes simpler as under equation:

- wy_ (L) 1 e v 2%=83 (a*—m)*
Ap(m*z)—w—”srys2 (1—e-%2) X dg,|2 L@ =0 P
7 (1+ 72t z*)
L (¥ —n)?

2% 27 (1*—71)2 @ —7T
{2%%+ (a* —n)%}?

_(___l)w*_n e—nz*_(_l)w*—n
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D et
G P e (126)

By using eq. (126) a residual density distribution can be calculated very easily
from a residual gravity distribution when the values of inner part of the large
bracket in eq.(126) are tabulated for the values of m=|(«*—n)[. Table 5 is such
a table for several values of z.

Table 5 Values of the inner part of the bracket in
eq. (126) for several values of z*

m [I z¥=0.5 ! z¥=1.0 ‘ 2%=2.0
0 Lermo | o.6078 0.1184
1 -0.7535 | -0.1542 | 0.0206
2 ~0.0460 -0.1106 : -0, 0336
3 -0.0316 -0.0167 | -0.019
4 0.0029 -0.0147 -0.0117
5 ~0.0079 0.0011 | -0.0056
6 0.0031 0.0043 | ~0.0036
7 ~0.0034 0.0004 | -0.0015
8 0.0018 0.0009 | -0.0014
9 0.0019 | 0.0006 i -0.0006

10 0.0013 -0.0011 | -0.0006

11 -0.0011 0.0004 ‘ -0,0003

12 0.0010 -0.0006 -0.0004

In many cases eq.(126) can be used approximately for the purpose of obtaining
a residual density, but we can neither use eq. (126) for the case of a residual grav-
ity of large scale nor for the regional gravity. In such a case the exact computing
formula reduced from eq. (113) must be used. As the result of similar reduction,
we have
5 (2%, 2%y = LTI (1 _goon . 28 (0" on)? _
4p (¥, 2%) = iy 52 (1—e~?) X dgn [z (T @0
. w2
(=) e ()"
2F+ (2 —m) {2*%4 (x*—n)%}
4z* (¥ —mn)* ¢ty S gy - (*-m)*
@ = n)P H1+8) G @ —n) )
_(_1])-n 1+ 72" ) —nek — ]\wr-n 2 (w*—'%)z —ne¥ 1
( 1) E*s_m*_%ny € +( 1) {2*2_]_ (w*_n)2}2 e }:\ ( 27)

2¥—2m(x* —mn)® .

(=D

VII. Application of the Present Method and its Discussions

VII. 1 Numerical Example

In Fig. 16, the Bouguer anomaly on a measurement line observed in Akita
Plane is shown. And the residual gravities calculated by the running average
method are shown in Fig. 17. The curve of solid line in Fig. 17 indicates the var-
iation of the normal structure and the curve of dashed line indicates the variation
of the bi-structure with the uniform spacing S=250m. Moreover, Fig. 18 (a), (b)
and (c) show the corresponding residual densities at several depths for several
values of k. And the curves of solid line in these figures indicate the normal
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structure and the curves of dashed line indicate the bi-structure. The results ob-
tained from these figures are as follows:

(1) The curves of the residual density obtained are similar to the curves of the
corresponding residual gravity in wide range of depth.

(2) The residual density obtained has the maximum amplitude at about kz=S
(=0.25) for the normal structure.

(3) 'The amplitude of the residual density variation vary its magnitude very
gradually with depth.,

(4) The residual density does not vary extremely its shape and its magnitude
for different value of k& but the same value of kz.

These natures of the curves of the residual density are already expected in
the previous discussions. Moreover, the following natures are recognized for the
bi-structure of the density.

(5) The two parts with the arrow head of each curve for k2=5/2 (=0.125) in the
figures indicate the influences of the variations of small scale and these become
disappear at deep depth,

(6) The curves of dotted line in Fig. 18(b), which are the curves calculated by
the exact computing formula eq. (127), are nearly same as the curves of dashed
line which are calculated by the approximate formula eq. (126), i.e., by the use
of Table 5.

These matters are also already expected in the previous chapter.

VII. 2 On the Interpretation of Residual Densities

In the interpretation of residual densities it becomes very important that
(1) what value of k should be taken
and
(2) how we should interpret the normal structure and the bi-structure.

In the following, these two subjects will be considered.

For the question (1) there is no answer, that is, any theoretical foundation
and any empirical foundation are not present for the selection of the value of k.
However, when the fact that the depth of the presence of the residual density
becomes shallow with large value of % is considered, the following presumption
will be obtained. That is, the parameter ¥ depends on the dynamical characteris-
tics of the force by which the objective subterranean structures are formed, the
depth of action of this force, the period of the tectogenesis, and on the history
and the natures of the sedimentary formations etc. When a weak force acted on
sedimentary formations consolidated sufficiently, deformations of formations and
variations of their densities might be little, Accordingly, an influence to a gravity
value on the earth surface may be small and geological structures produced may
be of small scale. On the contrary, when the consolidation of rocks is not suffi-
cient, large variations may produce in formations even for small force. So in this
case geological structures produced may appear comparatively remarkable in the
considerable range of depth. From such a consideration it may be considered that
for sufficiently consolidated formations a large value of &k should be taken and for
unconsolidated formations a small value of % should be taken. Here, we must pay
attention to that influences of tectonic forces to sedimentary formations become per-
fectly different each other even when forces of same magnitude and of same scale
acted on same formations if periods of actions of tectonic forces are different each
other, Then a value of k may become different in each case. Generally speaking,
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shallow formations are in the unconsolidated state, so in this case a small value
should be taken as a value of k. Although, for the various geological structures
in deep formations we can not say as mentioned above. Because, it is supposed
that deep formations are in the consolidated state owing to the action of compac-
tion under very high pressure caused by upper thick formations in the presence,
but formations at deep depth may be in the unconsolidated state in the past when
the geological structures were formed.

In the present stage the numerical calculations of the residual density should
be performed for k= 0.5,1.0 and 2.0 as done in the previous section. And then
if there are many or few data, e. g., geological, bore hole and seismic data and so
on, a residual density should be calculated by assuming a suitable value of k.
Moreover, in this time it may be possible that the value of k assumed for the
normal structure is different from that for the bi-structure.

If such a consideration is admitted, the quantitative interpretation of the residual
gravity becomes more difficult and complicated. Then the relation between the
normal structure and the bi-structure of density will be considered in accordance
with the example of Fig. 18.

As shown in Fig. 18, we have the positive residual densities for both the nor-
mal structure and the bi-structure on the Tsuchizaki anticline. Then it is presumed
that this anticline grow vertically in the considerable range of depth. On the
other hand, we have the positive anomaly only for the normal structure and the
negative anomaly for the bi-structure on the Yabase anticline. Then it is presumed
that this anticline may grow in small scale in shallow formations.

Such a presumption as mentioned above also holds good qualitatively even
when different values of k& are taken for the respective structures. However, in this
case the subterranean structures become differ from considerably those of the case
in where the same value of k is assumed for the both structures. This matter will
be evident through the following argument.

Now suppose

p(2,2)=py (%,2) +ps (%, 2),
where

Pr (%,2) =p; (2) - pw(®, 2),

P (2.2) =ps (2) - p3 (2, 2)
in eq. (72). 'Then the following relations are assumed.

4 np (w,2) =4 5 px (2,2),

dpp(x,2)=45p 5 (x2),
where dy=413, i.e., the operator of the normal detection, and dz=431, i.e., the
operator of the bi-structural detection. Further, the following relations are as-
sumed.

82

: B 1 e e
VkNpN (=, Z) =L e +’k? az"z*} On (CL, 2)=0 s
1

g 2 2
Voptn(®, 2)= [@%{ +7€;2— ng] s (x,2)=0.
By these assumptions we have g, (2) - dy oy (2, 2) as the residual density corre-
sponding to the normal structure of gravity, and also have the residual density
ps (2) - 4g pg (%, 2) corresponding to the bi-structure of gravity.

In the following the residual densities obtained for various values of k and %

will be considered.
(a) The case of ky=1.0 and kz=0.5
From Fig. 18 (a) and (b) we can see easily that the normal structure of den-
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sity the maximum amplitude at the depth about 2=0.25 (km) and the bi-structure
of density has the maximum amplitude at the depth about z=1.0 (km). And
their amplitudes vary very gradually in considerable ranges of depth. From these
two figures it is presumed that the Tsuchizaki anticline may grow in formations
at depth shallower than a few kilometers and on the other hand, the Yabase anti-
cline may grow in shallow formations at depth within several hundreds meters.
Fig. 19 shows the residual density composed of the normal structures and the bi-
structure, and the curves of solid line represent the normal structure for ky=1.0 and
the curves with the simbol Cys of dashed line indicate the bi-structure for kz=0.5.
Moreover, the curves with the symbol Ci, of dotted line represent the bi-structure
for kx=1.0. And the curves of dashed line of the other curves represent the re-
sidual density composed of the normal structure and the bi-structure Cos, and the
curves of dotted line with no symbol represent the residual density composed of
the normal structure and the bi-structure Ci,. The latter curves are those of
composed residual density 4i7p (x,2) for k=1.0 corresponding to the composed
residual gravity
dirg(x)=di1ag (@)+4ds79g (x).

From Fig. 19 it is recognized that the difference between 417 p (x,2) for k=1.0
and the residual density composed of 4y p(x,2) for k=10 and 4z p (x,2) for k=0.5
is not large but in the latter the double structure with depth in Yabase district

(X10 °C.G.5) 4 <10
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Fig. 19 Composed residual densities
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becomes somewhat remarkable. This is the matter already expected from Fig. 18.
(b) The case of ky=2.0 and kp=0.5

In this case the normal structure indicating the Yabase anticline becomes
present in very shallow range within a few hundreds meters. And the double
structure with depth in the Yabase district becomes remarkable. Then if the
existence of the Yabase anticline could not be known, the anomaly indicating the
Yabase anticline will not attract our notice as far as the present case is considered.
(¢) 'The case of ky=0.5 and kz=1.0

In this case the Yabase anticline grow in considerable range of depth within
about 1 km. And the residual density composed of the both structures gives us
similar view as 417p (z,2) for k=0.5 (not illustrated).
(d) The case of ky=0.5 and kz=2.0

In this case, from Fig. 18 (a) and (b), it is presumed that there are two anti-
clines, i.e., one is strong and the other is weak, in the range of depth within about
I km. And the double structure with depth in the Yabase district becomes dis-
appear, so it is presumed that the normal structure and the bi-structure may be
caused by the same subterranean structure.
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Fig. 20 Estimated density distributions (dotted line) : by Kato, geological structure
(solid line) & results of seismic prospecting (dashed line) : after Kato

Which case can explain better the actual subterranean structures in the several
cases mentioned above ? In Fig. 20 the subterranean structures (structures estimated
by Kato,'® geological structure and the results of seismic prospecting) are shown.
There is the gravity data as the information on the subterranean density distribu-
tion. But densities of rocks do not always correspond to geological natures of rocks,
but in many cases correspond to the velocity of seismic wave transmitting in rocks.
Then the density anomalies should be compared with the results of seismic pros-
pecting. In Fig. 20 it is recognized that there are two anticlines, one of which grows
in considerable range of depth in the Tsuchizaki district, i.e., this is the Tsuchizaki
anticline, and the other grows in small scale at the depth within | km, i.e., the
Yabase anticline. So the case (c) of the cases mentioned above is most suitable to
the results of seismic prospecting. Then in this example the case of ky=0.5 and
kr=1.0 or the case of ky=0.5 and kz=0.5 is suitable. ‘This conclusion proves the
previous consideration that for shallow formations of unconsolidated state a small
value should be taken as a value of k.

VII.3 On the Interpretation of Gravity Anomaly

Gravity anomalies observed are, as already often mentioned, caused by various
subterranean structures of large and small scale at various depths. Then we should
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consider not only the normal structure and the bi-structure, but also anomalies of
other scale, particularly regional gravity, in an interpretation of gravity znomalies.
For the purpose of an interpretation of a regional gravity eq. (127) or the trial
and error method. In the use of eq. (127) it becomes also important how we should
choose a value of k. And the trial and error method is applicable when there is
a large difference between the density of the bedrock and the average density of
the upper formations. For the purpose of the application of this method. the stand-
ard curves which are the gravity anomaly curves caused by assumed basement with
the various simple geometrical shapes are now being made in our Geological Survey.
Then it is concluded that an interpretation of gravity anomalies should be
performed according to the following procedure,
(a) To calculate the residual gravities of three kinds, those are the noise struc-
ture, the normal structure and the bi-structure, and the regional gravity.
(b) To calculate the residual densities corresponding to respective residual grav-
ities for the various values of the parameter k, e.g., £=0,5, 1.0 and 2.0, at sever-
al depths, e.g., 2=0.5S/k, S/k and 2S/k,
(¢) To consider the composed residual densities as seen in the previous section.
(d) To estimate the regional tendency of geological formations or of the basement
by means of the present method or of the trial and error method (or standard
curves) respectively.
(e) To presume the subterranean structures from the results of the considerations
in the processes (¢) and (d).

VIII. Summary and Conclusion

In the present paper at first the writer discusses the filtering effects of the
running average method, those are in chapter II one dimensional case and in chapter
III two dimensional case. As the results of these investigations he obtains the
following results,

(1) Tt is found that K;® () is the most excellent characteristic function of the
three, i.e., Ky (o), K;*(0) and K,*(o), of the extended running average method.

(2) Characteristic function K, ;(w) of a case in which the ratio (28+1)/(2a+1)
has a value of about 2, e.g., Kia(w), Ks7(w), ete,, can be approximated by K,* (w),
and a characteristic function K, ;(®) possessing a ratio (28+1)/(2a+1)~3 can be
approximated by K;*(w).

(3) In the two dimensional case, it is found that K;:a (A) is the most excellent

. s . 11 i it
selection coefficient of the three, i.e., X (A), K ” (A) and K e ).
2a 3a 0

(4) It is concluded that KH A) is adoptable as the approximate selection co-
5 p PP

cfficient of the two dimensional case, when the theoretical consideration of gravity
ancmalies detected by the present method is done.

In the next place in chapter IV the physical meanings of the present detections

and the quantities detected by these detections are considered in one dimensional
case. And the following result is obtained.
(5) When the physical quantities g (z) are caused by the distribution of the phys-
ical quantities p (2,2) and if the functional form of p (z,2) is known, the physical
quantity which correspond to the residual quantity 4g (z) at arbitrary value of the
variable z is the residual quantity 4p (,2), and the quantity 4p (z,2) can be deter-
mined uniquely from the distribution of the residual quantity 4 g ().
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In chapter V the reasons by which the normal detection and the bi-structural
detection are used in gravity prospecting are mentioned.

Further, the writer studies the quantitative interpretation of the residual grav-
ity obtained by his method. The results of this study are mentioned in detail in
chapter VI, In this study he presumes the two assumptions on the density distri-
bution. And he considers at first the characteristics of the density-spacial filter,
The results obtained are as follows:

(6) A density variation of arbitrary wave number has the maximum amplitude
at the depth za determined by its wave number. And if o is large, the following
relation is obtained.
.1
M= Yoo
(7) A density variation of an arbitrary wave number changes its amplitude with
depth very slowly in the considerable range of depth about the depth of maximum
amplitude 2.
(8) The characteristic curve of the density-spacial filter does not change its shape
with depth in relative expression. And the central wave number of this filter,
namely, the maximum detected wave number, at arbitrary depth z is determined
by its depth. Then if a density variation is considered at shallow depth, the follow-
ing relation is obtained.
waMux':*g- 3
kz
(9) It is supposed that the distribution of the residual density indicates the simi-
lar figure of distribution to the distribution of the residual gravity in the range of
depth about the depth of maximum amplitude za.
In VI.3 the convenient computing formulae for a residual density are reduced.
Finally, in chapter VII the considerations on the interpretation of gravity

anomalies are mentioned.
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In the present paper, the results of writer’s study on “the Running Average Metho.d |
which has been proposed by him as the method to detect local and weak gravity |
anomalies and on the quantitative interpretation of residual gravities obtained by]l
his method are described. About the former he considers in detail the filtering effects |
of the detections of the Running Average Method. And as to the latter, the method :
by which subterranean density anomalies(“residual densities”)were directly calculated |
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from the residual gravities is mentioned. :
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