地質調査総合センター速報 No.81 GSJ Interim Report No.81

令和元年度沿岸域の地質・活断層調査研究報告

Annual Report of Investigations on Geology and Active Faults in the Coastal Zone of Japan (FY2019)

> 中島 礼(編) Rei Nakashima (Editor)

> > 令和2年9月 September 2020

地質調査総合センター速報 No.81 GSJ Interim Report No.81

令和元年度沿岸域の地質・活断層調査研究報告

Annual Report of Investigations on Geology and Active Faults in the Coastal Zone of Japan (FY2019)

> 中島 礼(編) Rei Nakashima (Editor)

> > 令和2年9月 September 2020

緒 言

地質情報研究部門 沿岸域プロジェクトリーダー

中島 礼

産総研では、平成19年の3月に発生した能登半島地震と7月に発生した中越沖地震が海岸線 に近い浅海の沿岸部で発生したことを重視し、沿岸域の地下地質情報を整備する目的の「沿岸 域の地質・活断層調査(沿岸域プロジェクト)」を平成20年より開始しました.沿岸域には人 ロや産業インフラが集中し、港湾の埋立地などが位置しています.一方、海域が近いことから 自然災害の影響も受けやすい地域です.活断層や地震などによる防災を考慮するだけではなく、 沿岸域の調査は私たちの生活に密接した重要な意義があると考えています.私たちはこれまで に、能登半島北部、新潟、福岡、石狩低地帯南部、駿河湾北部、房総半島東部と調査を進め、 とくに陸域から海域へと連続する活構造の分布や活動を明らかにするという成果を上げてきま した.令和2年度には、相模湾北部沿岸域の調査結果を報告できる予定です.

平成29年度からは、名古屋市を中心とした中京エリアである伊勢湾・三河湾沿岸域の地質調 査を開始しました.この地域には、愛知県から三重県まで広範囲において、人口密集地や工業 地帯が立地しています.また、内陸域や海域においては活断層が多数分布しており、海陸にわ たるシームレスな地質情報の整備が急務です.令和元年度(平成31年度)にこの地域の調査は 完了し、現在は調査成果のとりまとめと公開の準備を行っているところです.

本報告には、令和元年度(平成31年度)に実施した伊勢湾・三河湾の海域及び陸域の調査・ 研究活動を主に報告するものです.本報告には、9件の研究成果の報告が収められています.海 域の調査報告として、名古屋港から知多半島におけるSESによる音波探査(八木ほか)、伊勢湾 南部の音波探査結果(佐藤ほか)、白子-野間断層を挟んで行った海上ボーリングの解析結果(天 野ほか)、湾内堆積物の調査結果(清家・天野)、伊勢湾西岸沖における重力探査(大熊ほか) が掲載されています.陸域の報告としては、鈴鹿市におけるボーリングコア解析結果(佐藤ほか)、 松阪市におけるボーリング調査(佐藤ほか)、知多半島における段丘調査(小松原)、四日市市 における反射法物理探査(小松原ほか)があります.本報告は速報として調査終了直後に作成 されたため、データの解析やそれに基づく解釈は十分とは言えませんが、本調査の現状を示し、 沿岸域の地質学の進展と社会への研究成果の迅速な還元を進めるものです.

ご高覧いただき,調査・研究内容や成果についてご理解いただくとともに,忌憚のないご意 見を賜りたくお願い申し上げます. 令和元年度沿岸域の地質・活断層調査研究報告

目 次

伊勢湾東部沿岸域における伊勢湾断層の位置・形状およびその活動性 八木雅俊・坂本 泉・藤巻三樹雄
伊勢湾沿岸域における反射法音波探査の追加調査,データベース化の概要 佐藤智之・鈴木克明・古山精史朗
伊勢湾ボーリング試料の岩相と層序区分 天野敦子・田村 亨・佐藤善輝・大上隆史・佐藤智之
伊勢湾・三河湾の表層コア試料に見られる堆積構造 清家弘治・天野敦子
伊勢湾沿岸域における海底重力調査 大熊茂雄・宮川歩夢・駒澤正夫・杉野由樹・押田 淳
鈴鹿市南部における第四系ボーリングコア試料の ¹⁴ C年代測定と花粉分析 (速報) 佐藤善輝・興津昌宏・田中義文 51
三重県松阪市,櫛田川下流域における第四系ボーリング調査(速報)

緒言・・・中島 礼

知多半島の段丘の地表調査

三重県四日市市垂坂断層の反射法地震探査速報

Annual Report of Investigations Geology Active Faults in the Coastal Zone of Japan (FY2019)

Contents

Preface

Geometry and paleo-activity of the Ise Bay Fault at the coastal area in eastern Ise Bay YAGI Masatoshi, SAKAMOTO Izumi and FUJIMAKI Mikio
Preliminary results of the additional seismic reflection survey and the database in the coastal sea area of Ise Bay, Japan SATO Tomoyuki, SUZUKI Yoshiaki and FURUYAMA Seishiro
Lithofacies and stratigraphy of boring cores collected in Ise Bay AMANO Atsuko , TAMURA Toru , SATO Yoshiki , OGAMI Takashi and SATO Tomoyuki 25
Sedimentary structures in core samples obtained from seafloor surface in Ise and Mikawa bays SEIKE Koji and AMANO Atsuko
Ocean bottom gravity survey in the coastal zone of the Ise Bay area, central Japan OKUMA Shigeo , MIYAKAWA Ayumu , KOMAZAWA Masao , SUGINO Yoshiki and OSHIDA Atsushi
Preliminary report of radiocarbon ages and pollen fossil analysis of Quaternary sedi- ments in southern part of Suzuka City, Mie Prefecture, central Japan SATO Yoshiki, OKITSU Masahiro and TANAKA Norifumi
Preliminary report of coring survey of Quaternary sediments in the lower reach of Kushida River, Mie Prefecture, central Japan SATO Yoshiki 59
Field Survey on the Terraces in Chita Peninsula, central Japan KOMATSUBARA Taku 67
Preliminary report on seismic reflection survey across the "Tarusaka Fault" (uncertain active fault), in Yokkaichi City, Mie Prefecture, central Japan KOMATSUBARA Taku, AKINAGA Yasuhiko, SAWADA Motoki, SUEHIRO Masaki and TERADA Tatsuya

伊勢湾東部沿岸域における伊勢湾断層の位置・形状およびその活動性 Geometry and paleo-activity of the Ise Bay Fault at the coastal area in eastern Ise Bay

八木雅俊^{1*}・坂本 泉²・藤巻三樹雄³ YAGI Masatoshi^{1*}, SAKAMOTO Izumi² and FUJIMAKI Mikio³

Abstract: We performed a high-resolution stratigraphic survey to confirm the formation, distribution and displacement of geological structure at the coastal area in Ise Bay. In this study, the Ise Bay Fault was divided into three areas, A, B and C from north. In the section across the Ise Bay Fault, no activity was observed in the areas A and B for the past 20,000 years. On the other hand, a clear deformed structure was recognized in the area C. The average vertical displacement velocity was calculated to be 0.12-0.20 m/kyr from the deformation observed in the area C, and vertical displacement per event is estimated to be at least 0.8 m or more.

Keywords: Ise Bay Fault, Paleo-activity, High-resolution stratigraphic survey

要 旨

平成29年度より開始した伊勢湾・三河湾沿岸域を対象とした地質総合調査の最終年度として、伊勢湾中部から東部において分解能の高いSES2000探査システムを用いた音波探査を実施した.本調査では伊勢湾断層を北から順にA,B,C海域の3つに区分し、各海域において伊勢湾断層を横断する音波探査記録からその活動性を検討した.その結果、A海域からB海域にかけて、少なくとも10km以上の区間においては約20,000年前以降の堆積層に明瞭な変位は確認されなかった.C海域では完新統に撓曲変形が認められ、これを伊勢湾断層の活動を反映したものと仮定すると平均上下変位速度は0.12~0.20m/kyrと算出される.また、一度の活動に伴う隆起量は少なくとも0.8m以上と推定される.

1. はじめに

産業技術総合研究所地質調査総合センターでは,平 成29年度より伊勢湾・三河湾沿岸域をテーマとした3 年計画の地質総合調査を開始した.初年度は,伊勢湾 及び三河湾の全域を対象とした反射法音波探査が実施 された.次年度には,初年度に認められた活構造を対 象とし,その詳細な位置・形状及び活動履歴の把握を 目的とした高分解能音波探査や柱状試料採取が実施さ れた.以上の結果から,伊勢湾西部海域において確認 された活構造の活動性評価に資するデータを得ること ができている.最終年度となる令和元年度においては, 伊勢湾の中部から東部にかけて分布する伊勢湾断層及 びその周辺の地質構造の把握を目的とした高分解能音 波探査を実施した.本報告では,調査により取得した 反射記録に基づき,対象地域に分布する活構造の位置・ 形状及びその活動性についてまとめる.

2. 地域概説

伊勢湾は、南北約50 km,東西約30 kmの太平洋に 開く内湾であり、本州のほぼ中央に位置している.湾 内においては、これまでに多くの音波探査が実施され ており、活構造の分布や伊勢湾の北側に拡がる濃尾平 野との地下層序の対比が試みられてきた(中条・高田, 1970;桑原ほか、1972;岡田ほか、2000).本調査対象 地域である伊勢湾東部沿岸域においては、中部国際空 港建設に伴う地形・地質的調査が実施され、その結果 が報告されている(財団法人中部空港調査会,1994). 深浅測量による結果からは、中部国際空港周辺の海底 地形は、水深7 m以浅の上部平坦面、水深7 m~15 m の海底急斜面及び水深15 m 以深の沖合緩斜面に区分さ れている(豊蔵ほか、1999).また、音波探査結果とボー リング調査に基づき、地質構造が明らかにされてきた (例えば、岡田ほか、2000).

伊勢湾の中央付近には北西-南東方向に延びる伊勢 湾断層が分布し,その南東に延びる内海断層を含めて 伊勢湾断層帯主部と呼ばれている(地震調査研究推進

^{*}Correspondence

¹株式会社ジオシス (GEOSYS, INC)

² 東海大学(Tokai University)

³ 沿岸海洋調査株式会社(Coastal Ocean Research Co., LTD)

第1図 伊勢湾周辺の地質図及び活構造.地質図は20万分の1地質図「名古屋」(水野ほか,2009),「伊勢」(西岡ほか, 2010),「豊橋及び伊良湖岬」(牧本ほか,2004)より.

Fig. 1 Geological map around Ise Bay. Geological sheet map 1:200,000 (Makimoto *et al.*, 2004; Mizuno *et al.*, 2009, Nishioka *et al.*, 2010).

本部,2005;第1図).知多半島の野間崎沖から白子沖 にかけては、ほぼ東西方向で白子-野間断層が分布し ている.また、伊勢湾の湾口周辺において、渥美半島 から志摩半島にかけて中央構造線が東北東-西南西方 向で延びている(牧野内,1976).伊勢湾断層は、北東 側が相対的に隆起する逆断層成分を有する長さ約25km の断層で、平均的な上下方向のずれ速度は0.1 m/kyr程 度であり、その平均活動間隔は10,000年~15,000年程 度とされている(地震調査研究推進本部,2005).また、伊勢湾断層の北端約10km区間においては、20,000

- 第2図 SES2000 による探査測線(黒線).緑色の測線は財団法人中部空港調査会(1994)による探査測線,水色の測線は 岩淵ほか(2000)による探査測線を示す.地質図は20万分の1地質図「名古屋」(水野ほか,2009),「伊勢」(西 岡ほか,2010),「豊橋及び伊良湖岬」(牧本ほか,2004)より.
- Fig. 2 Seismic survey lines by SES2000 (black line). Green line is survey line of The Chubu International Airport Research Foundation (1994), Blue line is survey line of Iwabuchi *et al.*, (2000).Geological sheet map 1:200,000 (Makimoto *et al.*, 2004; Mizuno *et al.*, 2009, Nishioka *et al.*, 2010).

年前以後の活動が確認されていないため(岩淵ほか, 2000),本断層の活動性を明らかにするための資試料が 必要である.

3. 調査概要

伊勢湾東部海域において、伊勢湾断層の位置・性状 及びその活動履歴の把握を目的として、SES2000 探査

第1表	伊勢湾における層序対比表.
Tabla 1	Geological classification in the Ise Pa

E	=1	陸上地質 (土質工学会 中部支部,1988)	財団法人中部空港調査会 (1994)	岩淵ほか (2000)	岡村ほか (2013)	八木ほか (2019)
	完新世	南陽層	上部砂質土層	la		A1
第四紀			粘性土層	lb	A	AZ A3
	更新世	濃毛層	下部砂質土層	lc	B1	B1
		第一碟層 鳥居松礫層 大曽根層	上部砂礫層	ld	1.1	1-1
		1000	下部砂礫層	lla		B2
		熱田層	粘性土層	llb	D2	
		第二碟層	砂質土層	llc		
		海部累層 第三碟層 弥富累層		ш	B3	B3
新第三紀	鮮新世	東海層群		IV		
			246.2/5 (22 5)/			
	中新世		吊滑層群	V	1.1.1	
先新第三紀		Ī		VI		

Table 1 Geological classification in the Ise Bay.

システムを用いた音波探査を実施した.調査において は,必要に応じて測線の追加が可能なように、オンボー ドのモニター記録で概略の地質構造を確認しつつ実施 した.

本調査は、2020年2月1日から同年2月5日にかけ て実施した.調査範囲は、伊勢湾東部沿岸域を北部・ 中部・南部の3つのエリアに区切り,北部から順にA 海域, B海域, C海域とした(第2図). 調査に用い たのは Innormar 社製の SES2000 である. 船体の動揺は TSS 社製ダイナミックモーションセンサー (DMS-05) を用いることで補正を行った.海上の位置決定には Hemisphere 社製の D-GPS (VS100) を用い、調査船の 誘導はHYPACK社製の統合型海洋測量・調査ソフトウェ アから構成される D-GPS 測位システムを使用した.

SES2000 探査システムによる調査測線は、伊勢湾断 層を横断する東西断面およびこれらを繋ぐ検測線から 構成され,その総測線長は,約232kmである.

4. 音波探查結果

4.1 層序区分

伊勢湾においては、反射法探査及び柱状試料採取の 結果に基づき陸上地質との対比がなされてきた(例え ば、財団法人中部空港調査会、1994;豊蔵ほか、1999; 岩淵ほか, 2000). その後, 岡村ほか (2013) は伊勢湾 西部沿岸域で実施された SES2000 探査システムによる 音波探査結果から、調査海域の地質層序をA層及びB 層に区分し、B層内をさらにB1~B3層に細分した. 佐藤・古山(2018)はブーマー音源を用いたマルチチャ ンネル反射法探査結果に基づき,伊勢湾の地質層序を A層~C層に区分した.また、八木ほか(2019)は岡 村ほか(2013)による区分を踏襲しつつ、堆積層の音 響的特徴から A 層内部を A1 ~ A3 層に細分し, 各層の 形成時期についてまとめている(第1表).本調査で取 得した反射記録断面の地質解釈においては、調査海域 の重なりや音波探査装置のスペックを考慮し、八木ほ か(2019)による層序区分に従った.なお、B層より も下位に位置する地層については分布や音響的特徴か ら東海層群と推定され、本稿ではT層として扱う.

Depth [m]

第4図 20G-3 測線における記録断面(上)とその解釈断面(下).

Fig. 4 Seismic profile of line 20G-3 (upper) and the interpretation (lower).

八木雅俊・坂本 泉・藤巻三樹雄

第6図 20G-7 測線における記録断面(上)とその解釈断面(下). Fig. 6 Seismic profile of line 20G-7 (upper) and the interpretation (lower).

第7図 20A-2 測線における記録断面(a) とその解釈断面(b) 及び 20A-4 測線における記録断面(c) とその解釈断面(d). Fig. 7 Seismic profile of line 20A-2 (a) and the interpretation (b), seismic profile of line 20A-4 (c) and the interpretation (d).

4.2 地質構造

本調査で取得した反射記録断面およびその解釈断面 を第3図~第12図に抜粋し,各断面における地質構造 の特徴を以下に示す.また,記録断面の縦軸は深度(メー トル単位)を示し,5mおきに軸線を描画している.横 軸は距離(メートル単位)を示しているが,船速から 算出された距離であるため,軸線の幅がやや異なるこ とに留意されたい.

4.2.1 概查測線断面

【20G-1 測線】

伊勢湾北部で四日市港から名古屋港沖へと北東-南 西方向に伊勢湾を横断する測線であり,既知の伊勢湾 断層北端部を横断する測線である(第3図).本記録断 面のTRACK1,000m付近において,B2層上面からB1 層に撓曲変形が認められる.また,TRACK8,000m~ 9,500m付近において,TRACK9,000m付近を頂部とす る褶曲構造が認められる.

【20G-3 測線】

伊勢湾北部で四日市港沖から名古屋港沖へと東西方 向に伊勢湾を横断する測線であり、東端はA海域に到 達する(第4図).本測線は既知の断層である四日市港 断層と伊勢湾断層にほぼ直交する.TRACK1,000m付 近で, B1層の撓曲変形が認められる. 伊勢湾西部に あたる TRACK0 m ~ 6,000 m の A1層内部は複数の強 反射面による成層構造が卓越しているが, A2層内部 の反射は弱く堆積構造が不明瞭である. 伊勢湾東部の TRACK7,000 m ~ 11,000 m では, 西部に比べ A1層内 部の反射強度は弱いものの, A2層内部の堆積構造が明 瞭であり, 西側へのダウンラップ構造が認められる. TRACK13,000 m 以東に T層の隆起が認められ, その斜 面部である TRACK11,000 m ~ 13,000 m の範囲で, 強 反射面をもつ A3層が斜面に沿うように分布している.

【20G-5 測線】

G-3 測線より3km程度南に位置する東西測線であり, 東端はB海域に到達する(第5図).TRACK0m~3,000 m付近のA1層上部には複数の強反射面が認められる. TRACK3,000m付近を境としてA2/A3層境界付近まで の堆積層に撓曲変形が認められる.TRACK10,000m~ 12,000mの深度35m付近に起伏に富んだB2層上面が 認められ,B1層は以西に比べ薄いもしくは分布せず, A3層やA2層と不整合に接している.TRACK9,500m 付近においては,約300mの幅でB2層上面にチャネル とそれを埋積するB1層が認められる.20G-3測線に比 べ伊勢湾東部においてA2,A3層内部の堆積構造は明 瞭ではない.

第8図 20A-6 測線における記録断面(a) とその解釈断面(b) 及び 20A-8 測線における記録断面(c) とその解釈断面(d). Fig. 8 Seismic profile of line 20A-6 (a) and the interpretation (b), seismic profile of line 20A-8 (c) and the interpretation (d).

【20G-7 測線】

四日市港沖から中部国際空港南方沖への北西-南 東測線であり、東端はC海域に到達する(第6図). 既存の津市沖撓曲や伊勢湾断層を横断している. TRACK3,000m~4,500mにT層の隆起が認められ、そ の頂部は海底面に達している.この隆起部の東翼部の TRACK4,500m付近を変曲点としてB1層からA2/A3 層境界面付近までの撓曲変形が認められる.伊勢湾東 部にあたるTRACK11,000m~17,000mの範囲におい て、A2層内部に西側へのダウンラップが顕著に認めら れるが、A3層より下位の堆積構造は不明瞭となる.

4.2.2 A 海域横断面

【20A-2 測線】

伊勢湾北東の名古屋港沖を対象とした A 海域におい て,北東端にあたる北西-南東方向の測線である(第 7図 a,b). TRACK1,000 m 付近および TRACK4,000 m の海底面に認められる溝は,船の航行のために実施さ れた人工的な改変である.TRACK0 m ~ TRACK800 m の範囲で,A1層内部に強反射面が複数認められ る.TRACK1,000 m ~ 3,000 m 付近の A2層内部には, 北西側に向けて緩傾斜する反射面が複数認められる. TRACK4,500 m 以東に T 層の隆起が認められ,その斜 面部において A2 層および A3 層は強い反射強度を有し ている.

【20A-4 測線】

20A-2 測線から南西へ約 2km の北西-南東測線である(第7図 c,d). TRACK0 m ~ 2,000 m の範囲において, A1 層の層厚が南東側に向けてくさび状に薄層化する. TRACK6,000 m 以東には, T 層の隆起が認められ, その 斜面部では, A2 層および A3 層に強反射面が認められ る.

【20A-6 測線】

20A-4 測線から南西へ約2kmの北西-南東測線であ り、既知の伊勢湾断層位置を横断する(第8図 a,b). 全体として、A1層、A2層、B1層、B2層の内部構造が 良好に記録されているが、A3層の分布は不明瞭となる. A2層内部のダウンラップ構造は、北西に向けて傾斜し ており、南東側から北西側にかけてやや傾斜が急にな る傾向がある.TRACK6,000 m以東でT層の隆起が認 められ、その斜面部において局所的にA2層およびA3 層が強い反射強度を有して認められる.

【20A-8 測線】

A海域の南西端を成す北西-南東方向の測線であり, 既知の伊勢湾断層を横断する断面である(第8図 c,d).

第9図 20B-2 測線における記録断面(a) とその解釈断面(b) 及び 20B-4 測線における記録断面(c) とその解釈断面(d). Fig. 9 Seismic profile of line 20B-2 (a) and the interpretation (b), seismic profile of line 20B-4 (c) and the interpretation (d).

TRACK1,000 m を軸として A1 層~ A3 層が下方に向け やや撓んでおり、この範囲は伊勢湾の中軸部に相当す る. 記録断面を通して B1 層および B2 層の分布は連続 的に追跡される. TRACK5,500 m~ 5,800 m の範囲にお いて、チャネルとそれを埋積する B1 層が確認される. TRACK6,000 m 以東では、B2 層上面が深度 40 m 付近 に分布し、起伏に富んだ形状を成している.

4.2.3 B 海域横断面

【20B-2 測線】

中部国際空港の北側を対象とした B 海域の北部に 位置する東西断面である(第9図 a,b).本記録断面上 における海底面は,財団法人中部空港調査会(1994) による地形区分から TRACK1,500 m 以東は上部平坦 面,TRACK1,000 m ~ 1,500 m は海底急斜面,TRACK0 m ~ 1,000 m は沖合緩斜面にそれぞれ相当している. TRACK1,500 m 以東の T 層内部には不連続に傾斜する 反射面が部分的に認められる.

【20B-4 測線】

20B-2 測線より約3km南方に位置する東西断面である(第9図 c,d). TRACK1,000m以東ではT層の隆起が認められ, TRACK1,500m付近のT層内部には, 傾斜する内部反射が不連続に認められる. この斜面部で

ある TRACK500 m ~ 1,200 m の範囲において,強い反 射強度を有する内部反射が A2 層および A3 層に認めら れる.また,A2 層内部の反射面の傾斜に対して A3 層 内部の反射面は緩傾斜であり,傾斜不整合の関係にあ る.B1 層および B2 層も斜面部に沿うように分布深度 が5 m 程度浅くなる.

4.2.4 C 海域断面

【20C-0 測線】

中部国際空港の南側を対象とした C 海域の北端部に おける東西測線であり,伊勢湾中軸部付近から既知の 伊勢湾断層を横断する(第10図).TRACK3,500 m 以 東において T 層の隆起が認められ,T 層内部には断片 的に傾斜する反射面が認められる.TRACK2,200 m ~ TRACK3,500 m の範囲において,A2 層および A3 層が 隆起する T 層の斜面部に沿うように分布し,強い反射 強度を呈している.また,TRACK1,000 m 付近の A2 層 および A3 層内部反射面に傾斜変換点が認められ,これ を境に見かけ上 2 m 程度の高度差が認められる.傾斜 変換点直上の海底急斜面上には微小な起伏が認められ る.

【20C-2 測線】

20C-0 測線より南方約2kmに位置する東西測線で

八木雅俊・坂本 泉・藤巻三樹雄

第10図 20C-0 測線における記録断面(上)とその解釈断面(下). Fig. 10 Seismic profile of line 20C-0 (upper) and the interpretation (lower).

第11図 20C-2 測線における記録断面(a) とその解釈断面(b) 及び 20C-3 測線における記録断面(a) とその解釈断面(b). Fig. 11 Seismic profile of line 20C-2 (a) and the interpretation (b), seismic profile of line 20C-3 (c) and the interpretation (d).

第12図 20D-4 測線における記録断面(上)とその解釈断面(下). Fig. 12 Seismic profile of line 20D-4 (upper) and the interpretation (lower).

あり,既知の伊勢湾断層を横断する(第11図 a,b). TRACK2,000 m以東にはT層の隆起が認められ,その 斜面部にあたるTRACK2,000 m ~ 3,000 m の範囲では, A2層およびA3層の内部反射面が強い反射を呈してい る.また,TRACK1,000 m付近を軸として,東側が急斜面, 西側が緩斜面となる傾斜変換点が認められる.この傾 斜変換点を境とした見かけ上の高度差には累積性が認 められ,下位から2m, 1.2m程度である.

【20C-3 測線】

20C-2 測線より南方1kmに位置する東西測線で あり,既知の伊勢湾断層を横断する(第11図 c,d). TRACK2,000 m以東でT層の隆起が認められる.この 斜面部にあたるTRACK2,000 m ~ 3,000 m の範囲でA2 層およびA3層が明瞭な反射面を有して認められる. TRACK2,000 m 付近を境として,東側が急斜面,西側 が緩斜面となる傾斜変換点が認められ,この直上の海 底面には上に凸の起伏が発達している.この傾斜変換 点を境とした A3 層の見かけ上の高度差は 2 m 程度である.

4.2.5 B/C 海域中間部

【20D-4 測線】

上述の B 海域および C 海域の中間となる中部国際空 港西側を対象とした東西断面であり,既知の伊勢湾断 層を横断する(第12図).全体として音響インピーダ ンスの差が小さく,A層内部の堆積構造が不明瞭とな る.TRACK3,000 m 付近を境として,東側が急斜面, 西側が緩斜面となる傾斜変換点が認められ,東側の B2 層上面の分布深度が西側と比べ10 m 程度浅くなる.

5. 活構造の位置・性状

M3 測線(岩淵ほか,2000)における SP700 付近に は西側が相対的に沈降する撓曲が認められ,隆起側に おいて T 層の削剥が顕著に認められる(第13 図 b,c).

第13図 20G-5 測線と M3 測線(岩淵ほか, 2000 の Fig.26(A) を一部改変)及び中部空港周辺の模式断面図(財団法 人中部空港調査会, 1994 の図 3-4 を一部改変)の対比.

Fig. 13 Comparison the seismic profile of line 20G-5(a), line M3 (modified from Iwabuchi *et al.*, 2000) (b) and schematic profile (modified from The Chubu International Airport Research Foundation, 1994)(c).

この SP700 付近の撓曲変形は伊勢湾断層によるものと されており(岩淵ほか,2000),M3 測線に平行する 20G-5 測線の TRACK9,500 m 付近における T 層の褶曲 構造位置と一致する(第13図a).こうした伊勢湾断層 に伴う撓曲は,20D-4 測線における TRACK3,000 m 付 近においても認められ,C海域ではA2層までの堆積層 を変形させている.以上のことから,伊勢湾断層に伴 う撓曲変形は既存の分布位置と一致しており,南側か ら北側に向けて上位の堆積内における変形が認められ なくなる傾向がある.

6. 活動性評価

20G-5 測線以北において,沖積層中に明瞭な変形構造が認められないことから,少なくとも伊勢湾断層の北端から約17kmの区間においては約2万年前以降の活動がないと推定される.B海域とC海域の中間に位

置する 20D-4 測線では、A 層中の堆積構造が不明瞭で あり, B2 層上面の隆起と B1 層がそれに沿うように堆 積し層厚に変化が認められないことから,2万年前以降 における活動は不明瞭である.C海域においてはA層 中に明瞭な変形構造が認められ、20C-2 測線では見か け上の上下変位として 1.12 m 及び 1.99 m が計測された (第14図 a,b). 伊勢湾東岸では, 財団法人中部空港調 査会(1994)によりボーリング調査が実施されており、 その中で鬼界アカホヤ火山灰(K-Ah: 7,300 yr BP)や 鬱陵隠岐火山灰(U-Oki:10,700 yr BP)が認められてい る(豊蔵ほか, 1999; 第14図 c). 両火山灰に挟まれた 堆積層をその層厚から年代を内挿し平均上下変位速度 を推定すると、0.12~0.20 m/kyr と算出され、変位の 累積が約10,000年前と約9,000年前の層で0.8m生じて いる. 地震調査研究推進本部 (2005) によれば、最新 活動時期は1,000年前以後500年前以前で平均活動間隔 が10,000年~15,000年とされていることから、本調査

第14図 20C-2 測線の解釈断面(a) と内部反射面の上下変位量(b) 及びその周辺において実施されたボーリングコア結果 (財団法人中部空港調査会, 1994の図 3-12 を一部改変)(c).

Fig. 14 Interpretation of line 20C-2 (a), displace of reflectors (b) and boring result around line 20C-2 (modified from The Chubu International Airport Research Foundation, 1994) (c).

で認められた変形構造は1つ前の活動を捉えたものと 考えられ、少なくとも0.8m以上の上下変位を伴うこと は調和的な結果となった.

7. まとめ

伊勢湾断層帯主部を構成する伊勢湾断層の詳細な位置・形状およびその活動性を評価するため、分解能の高い SES2000 探査システムを用いた音波探査を実施した.その結果、既知の伊勢湾断層位置を横断する各記録断面上において、同位置において変形構造が認められたことで伊勢湾断層の分布形状が再確認された.また、伊勢湾断層の活動に伴う堆積層の撓曲変形は、C

海域でB2層より上位で認められたがそれより北側のB 海域及びA海域では明瞭には認められなかった.した がって,伊勢湾断層の北部約17km区間には約20,000 年前以降の活動が認められず,南部でのみ活動が認め られる.C海域における伊勢湾断層の平均変位速度は 0.12~0.20m/kyrと算出され,最新活動時期の1つ前 の活動として約10,000年前~約9,000年前が推定され る.また,1回の活動による上下変位量は少なくとも0.8 m以上であった可能性が示唆される.

文 献

土質工学会中部支部 (1988) 最新名古屋地盤図. 名古屋

地盤図出版会,名古屋,487p.

- 岩淵 洋・西川 公・野田直樹・川尻智敏・中川正則・ 青砥澄夫・加藤 勲・安間 恵・長田 智・角谷 昌洋 (2000) 伊勢湾における活断層調査. 水路部 研究報告, no. 36, 73–96.
- 地震調査研究推進本部(2005)伊勢湾断層帯の評価. http://www.jishin.go.jp/main/chousa/02may_ise/index. htm, 2020年3月28日確認.
- 桑原 徹・松井和夫・吉野道彦・高田康秀(1972)伊 勢湾と周辺地域の埋没地形と第4系-"沖積層"細 分と伊勢湾の新しい沈降盆地化の問題-.地質学論 集,7,61-76.
- 牧本 博・山田直利・水野清秀・高田 亮・駒澤正夫・ 須藤定久(2004)20万分の1地質図幅「豊橋及び 伊良湖岬」. 産業技術総合研究所地質調査総合セン ター.
- 牧野内 猛(1976)知多半島南部の地質構造と伊勢湾 周辺地域の構造運動.地質学雑誌,82,311-325.
- 水野清秀・小松原 琢・脇田浩二・竹内圭史・西岡芳晴・ 渡辺 寧・駒澤正夫 (2009) 20 万分の1 地質図幅「名 古屋」. 産業技術総合研究所地質調査総合センター.
- 中条純輔・高田康秀(1970)音波探査による知多半島 の研究. 地質調査所月報, 21, 3, 187-218.
- 西岡芳晴・中江 訓・竹内圭史・坂野靖行・水野清秀・ 尾崎正紀・中島 礼・実松健造・名和一成・駒澤 正夫(2010)20万分の1地質図幅「伊勢」. 産業技 術総合研究所地質調査総合センター.
- 岡田篤正・豊蔵 勇・牧野内 猛・藤原八笛・伊藤 孝(2000)知多半島西岸沖の伊勢湾断層.地質学 雑誌, 109,10-26.
- 岡村行信・坂本 泉・滝野義幸・横山由香・西田尚央・ 池原 研(2013)伊勢湾に分布する布引山地東縁 断層帯東部海域部の位置・形状と過去の活動.活 断層・古地震研究報告, no. 13, 187-232.
- 佐藤智之・古山精史朗(2018)伊勢湾沿岸域における 反射法音波探査の概要.平成29年度沿岸域の地質・ 活断層調査研究報告,産業技術総合研究所地質調 査総合センター速報, no. 76, 1–9.
- 豊蔵 勇・岡田篤正・牧野内 猛・堀川義夫・長谷川
 淳(1999)「中部国際空港」海域(知多半島常滑市沖)
 の海底地形・地質.地学雑誌,108,5,589-615.
- 八木雅俊・坂本泉・藤巻三樹雄(2019):伊勢湾に分布する白子-野間断層及び鈴鹿沖断層の位置・形状と活動履歴.平成30年度沿岸域の地質・活断層調査研究報告,産業技術総合研究所地質調査総合センター速報,no.79,13-27.
- 財団法人中部空港調査会(1994)中部新国際空港建設 予定地における地象調査報告書.88p.

伊勢湾沿岸域における反射法音波探査の追加調査, データベース化の概要

Preliminary results of the additional seismic reflection survey and the database in the coastal sea area of Ise Bay, Japan

佐藤智之^{1*}・鈴木克明¹・古山精史朗² SATO Tomoyuki^{1*}, SUZUKI Yoshiaki¹ and FURUYAMA Seishiro²

Abstract: Additional seismic reflection survey was conducted in Ise Bay based on the results of the surveys in 2017. We obtained seismic data to clarify the structures and the formation processes of the channels developed on the uplift side of the Shiroko-Noma Fault, the plateau-like structure where the upper surface of the A layer is higher than the surrounding area, and the structure off the Ise plain. We created a script that automatically creates polygons with seismic-section images attached, and that enables them to be three-dimensionally displayed in a kml viewer such as Google Earth. We created a database that can display the survey results since 2017 in three dimensions using it.

Keywords: seismic reflection survey, Ise Bay, Ise Bay fault group, active fault, coastal area, data display

要 旨

2017 年度からの調査に基づき,伊勢湾にて反射法音 波探査を追加で実施した.白子-野間断層の隆起側に 発達するチャネルやA層上面が周囲より高い"台地" 状の箇所,伊勢平野沖の構造を明らかにするための地 下断面を得ることができた.断面画像を張り付けたポ リゴンを自動作成し,Google Earth などの kml ビュー アで三次元表示できるようにするスクリプトを作成し, 2017 年度以降の調査結果を三次元で一元表示できる データベースを作成した.

1. はじめに

産業技術総合研究所地質調査総合センターの重点プロジェクトの一つである「沿岸域の地質・活断層調査」の一環として 2017 年度から3ヵ年で伊勢湾周辺の調査 を行っている.海底地質図作成のための調査として、 2017 年度に地域の概要を把握すべく伊勢湾および三河 湾全域を対象に反射法音波探査を実施した(佐藤・古山、 2018). 2018 年度には,層序対比・年代測定のために伊 勢湾中央部で掘削を行い(天野ほか、2019),活断層を 精査するためにより高精度の反射法音波探査を行った (八木ほか, 2019). それらの結果を踏まえ 2019 年度には、 地質図を完成させるために情報密度が不足していた地 点を中心に反射法音波探査を追加実施した.

本報告では、追加実施した反射法音波探査の概要、 および、これまでの探査記録を特別なソフトウェアを 用いずに三次元表示できる形でデータベース化したの でその概要を報告する.

2. 地域概説

調査対象海域は伊勢湾および三河湾である(第1図). 伊勢湾は、南北約50km、東西約30kmで太平洋に対 して南東側に開いた内湾である.湾の北部中央付近に 南北に延び最大水深38mの凹地があり、全体としてそ の凹地に向かって緩やかに傾斜する地形を示す.湾内 では、地質調査所による音波探査(中条・高田,1970) や重力探査(中条・須田,1971,1972)が1960年代に なされ、桑原ほか(1972)はその結果をもとに伊勢湾 断層、鈴鹿沖断層、白子-野間断層の存在を明らかに した.その後、東部の伊勢湾断層の詳細な調査(中部 空港調査会,1994;豊蔵ほか,1999;岡田ほか,2000) が行われたほか、海上保安庁水路部が湾全体にわたっ て音波探査およびボーリング調査(海上保安庁,1996; 岩淵ほか,2000)を行い、鈴鹿沖断層の正確な位置と 変位速度を明らかにしている.そのほか、国土地理院

*Correspondence

¹ 産業技術総合研究所 地質調査総合センター 地質情報研究部門(AIST, Geological Survey of Japan, Research Institute of Geology and Geoinformation)

² 東京海洋大学 学術研究院 海洋資源エネルギー学部門 (Tokyo University of Marine Science and Technology, Department of Marine Resources and Energy)

第1図 反射法音波探査測線図. 黒線が2019年度,灰色線が2017年度に実施した反射法音波探査の測線を示す. それぞれの太線部は図3~5で参照した反射断面.陸域の地質図および海域の活断層は、牧本ほか(2004), 水野ほか(2009)および西岡ほか(2010)に基づく.

Fig. 1 Line map of the seismic survey. Black and gray lines represent the positions of the seismic lines obtained in 2019 and 2017, respectively. Broad parts of the lines represent the positions of the seismic sections referred in following figures. Geology in land and active faults in marine are based on Makimoto *et al.*, (2004), Mizuno *et al.*, (2009) and Nishioka *et al.* (2010).

も湾全域で音波探査を実施している(建設省国土地理院,1973).これら断層のうち,伊勢湾断層と白子-野間断層は伊勢湾断層帯として長期評価がなされている(地震調査研究推進本部,2005).

2017 年度の反射法音波探査によって暫定的に層序区 分が行われており、下位から A 層, B 層, C 層と区分 されている(佐藤・古山, 2018). 既存のボーリング調 査(海上保安庁, 1996)と対比することにより, C 層

第2図 反射法音波探査の探査機器設置図.

Fig. 2 Equipment layout for the seismic reflection survey.

が上部更新統の熱田層から上部更新統の濃尾層,A層 が完新統の南陽層とされている.B層については,チャ ネル内部にのみ分布しボーリング資料との直接対比が できないため、上下関係からC層とA層の間とされて いる.

3. 調查方法

本研究の反射法音波探査は 2019 年 10 月 1 日から 10 月 20 日にかけて行った.発振装置はブーマー(Applied Acoustics Engineering 社製 AA251 を CAT100 に固定)を 用い,出力は 200 J とした.受振用のストリーマーケー ブル (Geometrics 社製 GeoEel Solid)のチャネル数は 24,チャネル間隔は 3.125 m であり,発振間隔は 1.56 m とした. 収録長は 0.25 sec,サンプリングレートは 0.125 msec とした.位置情報については,調査船に設置した ディファレンシャル GPS (Global Positioning System)を 用いて発振ごとのアンテナ位置を得た.アンテナと共 通反射点の距離は進行方向に約 26.7 m であり,発振間 隔が 1.56 m なので,17 発振分だけずらすことでアンテ ナと共通反射点の位置のずれを補正した(第 2 図).

デジタル信号として受振した信号はオープンソフト ウェアである Seismic Unix を用いて以下のように処理 を行った.まずバンドパスフィルタリング,直達波の ミュート,ゲイン補償,デコンボリューションを行っ た.その後,速度解析と垂直動補正 (Normal Move Out) を行って重合し,再びデコンボリューションとバンド パスフィルタリング,ゲインの正規化を行った.処理 後のデータは SEG-Y 形式,位置情報は重合後の共通反 射点位置について ASCII 形式で出力した.バンドパス フィルタの通過周波数などは調査結果ごとのノイズレ ベルに合わせて適宜調整したが,300 Hz ~ 2,000 Hz を 基本とした.そのため,音速を1,500 m/s とした場合の 波長は5 m 以下であり,垂直方向の分解能はその4分 の1となることから1 m 程度である. 総発振数は125,866 であり,そこから計算した総測 線長は合計 197 km である(第1図).調査測線によっ ては調査工程,海況に応じて複数回に分けて観測を行っ た場合もある.その場合は重合後の共通反射点の位置 を基準につなげ合わせて一つのデータとし,一連の断 面として扱った.こうした断面の継ぎ目では,潮位や 波浪条件の違いによって1m未満の深度方向のずれや, ノイズレベルの違いが認められる.得た反射断面は png 形式のラスター画像に変換して解釈を行った.なお, ラスター画像化した断面の三次元表示データベースの 作成方法については後述する.

4. 追加調査地点

今年度調査した地点は、2017年度に取得した反射断 面に基づいて決定した.以下にそれぞれの探査で狙っ た構造と得られた概要について報告する.

4.1 伊勢湾中央部: 白子 - 野間断層の隆起側に発達す るチャネル

まず,伊勢湾中央部やや北よりにおいて東西に2測線(第1図,第3図a,b)に沿って観測を行った.こ れらは白子-野間断層の北側の隆起側にのみ発達する チャネル構造を狙ったものである.白子-野間断層を 挟んでA層の上面深度が変化するが(第3図),隆起 側では,沈降側よりも高いA層上面を削る大規模な チャネルが発達しその内部だけにB層が堆積している (第3図a,b,c).また,チャネルの西側のA層が海 底面直下に分布する地域でも,A層を削り込む小規模 なチャネルが数本発達している.これらのチャネルは 概ね南北に延びていると予想され,この分布を明らか にするため,105-eg17と106-eg17の間に測線を追加し た.2測線の4分の1,および,中間の地点で観測した ため,測線名については測線番号に小数を加えた.本 来105.25-eg19と105.5-eg19とすべきところだが,後述

- 伊勢湾中央部を東西に横断する反射断面図. (a) 105x25-eg19, (b) 105x5-eg19, (c) 106-eg17, (d) 107-eg17. 断面の位置は第1図の黒色太線と灰色太線で示す. 第3図
 - Fig. 3 Transverse seismic section in the middle part of the Ise Bay. (a) 105x25-eg19, (b) 105x5-eg19, (c) 106-eg17, (d) 107-eg17. The positions of the sections are indicated in Fig. 1.

伊勢湾沿岸域における反射法音波探査の追加調査、データベース化の概要

第4図 伊勢湾中央部を南北に横断する反射断面図(5-eg17). 断面の位置は第1図の灰色太線で示す.
 Fig. 4 Longitudinal seismic section (5-eg17) in the middle part of the Ise Bay. The position of the section is indicated in Fig. 1.

する自動処理の際に、小数点を意味するピリオドがファ イル名と拡張子の区切り文字と誤認されることを避け るためにピリオドをxに代えた.

また,この付近でA層上面が"台地"状に周囲より 高い地点がある(第4図).A層の内部構造がほぼ水平 で,このA層上面の比高と整合的な変形は認められず, 断層による隆起とは考えられない.この形成要因の解 明も目指した.

新しく得た断面でも、A層を削り込むチャネルが認められた(第3図a,b).また、"台地"の東西断面も得られ、その三次元構造についての情報が得られた. この"台地"は円形と推測していたが、大規模チャネルの西側の壁につながる様子を示し(第3図a)、東西に延びた形状を示す可能性が高い.この地域の20mの等水深線が東に張り出している(第1図)こととの関連性が示唆される.今後、詳細な解析によって、チャネルの分布と連続性と合わせ、この"台地"の形状・成因を論じていきたい.

4.2 伊勢湾南部:伊勢平野沖の構造

湾南部ではもともと測線密度が低かったが,伊勢平 野の南縁において中央構造線に関連して断層の発達が 予想されること,知多半島沿いにみつかったチャネル と伊勢平野およびそこに発達する河川との関係が不明 瞭なことが課題として残っていた.そのため,湾南部 にて2017年度の調査測線の中間を探査することで,測 線密度を増やした.ただ,最南部では定置網が特にた くさん設置されており,海岸付近の調査が限られてし まった.

2017年度の測線の中間に設定した測線については, 上述の伊勢湾中央部の場合と同様に2017年度の測線名 に小数を付して命名した.伊勢平野の海岸線に平行, および,直交に設定した測線は,他と方向性の異なる 測線としてそれぞれ, 604-eg19, 605-eg19とした.

今回得た断面では、宮川沖に幅2km,厚さ20msec(往 復走時,音速を1,500m/sと仮定して15m程度)でC 層が分布している他は,概ねA層が海底面直下に分布 し,湾北部で認められるようなチャネルは認められな かった(第5図).B層が埋積する大規模なチャネルが 発達する湾北部との比較や,断層による変位を考慮に 入れたうえで地形発達も含めた地史復元,および,そ の形成要因について今後検討していきたい.

5. データベース化

2017 年度以降得た地質情報について、データベース 化したので以下に概要を報告する.得たデータは地質 図を書くために解釈するためにも、地質図公開後にそ の根拠として公開するためにも、閲覧しやすい形で整っ ていると利便性が高い.

反射法音波探査記録のデータベース化と簡易閲覧に ついては, 佐藤ほか (2012) による位置情報の圧縮, 佐藤・ 荒井 (2013) による断面の png 形式への変換と位置情 報の kml 化を自動で行うことによる Google Earth 等に よる簡易閲覧がなされている.

今回新たに、断面のポリゴン化による Google Earth での三次元閲覧システム(知的財産:産業技術総合研 究所 2020PRO-2477)を構築し、2017年度からの調査 記録すべてを閲覧できる形に自動変換した(第6図a). このシステムでは、調査で得られた ASCII 形式の位置 情報と SEG-Y 形式の反射断面から、Linux のターミナ ルでスクリプトを一つ実行するだけで kml への変換が 完全に自動で完了する.閲覧は生成されたファイルと Google Earth などの kml ビューアだけでよい.

変換に関しては、まず測線の位置情報を佐藤ほか (2012)の方法で一定の精度を維持したまま間引き、そ 佐藤智之・鈴木克明・古山精史朗

Seismic section (604-eg19) along the coastline of the Ise Plain in the southern part of the Ise Bay. The two sections are continued in the broad line(A). The position of the section is indicated in Fig. 1. Fig. 5

伊勢湾沿岸域における反射法音波探査の追加調査、データベース化の概要

- 第6図 2017年度から2019年度に取得したデータの三次元表示の例.(a)全体図.(b) 白子 野間断層に沿った表示例. ボーリングコアの柱状図は天野ほか(2019),陸上地質はシームレス地質図詳細版(産業技術総合研究所地質 調査総合センター,2015)に基づく.
- Fig. 6 Three-dimensional display of the data obtained from 2017 to 2019. (a) General view. (b) The view along the Shiroko-Noma Fault. Columnar sections of the borehole cores are based on Amano *et al.* (2019) and geological map in land area is based on the detailed version of Seamless Digital Geological Map of Japan (1:200,000)(Geological Survey of Japan, 2015).

第7図 実際の航跡に沿った反射断面の三次元表示の例. (a) 波浪によって蛇行した例. (b) 変針した例. Fig. 7 The examples of the three-dimensional display of the seismic sections along the actual track. (a) The example of the meandering due to the wave. (b) The example of the veering.

れをもとに測線上に立つ垂直の壁を COLLADA 形式の ポリゴンとして作成する.そしてその壁に佐藤・荒井 (2013) と同様の方法で png 形式のラスター画像に変換 した反射断面画像を外部リンクとしてテクスチャ貼り 付けを行う.最後にそれらのテクスチャ付きポリゴン にリンクをつけた kml を生成する.

表示される断面画像については、相対パスで同じフォ ルダに存在する png 形式画像に外部リンクしてあるた め、kml 作成後であっても、OS 上の通常動作で画像を 差し替えて同じファイル名にするだけで閲覧時に表示 される画像を差し替えることができる.また、作成さ れたファイルを一フォルダにまとめてさえあれば保存 先や OS を問わず動作するため、データの受け渡しも簡 単である.

断面は本来地中だが、それでは観察できないので上 方にずらし上空に表示させている.スクリプト実行時 に高さを指定することにより、表示される縦横比や、 上空へのシフト量を調整できる.表示位置について、 始点・終点だけではなく航跡そのものを利用している ため、避航や変針、船速変化をそのまま再現して表示 できる(第7図)ため、蛇行に伴うノイズなどもわか りやすい.

また,掘削資料についても,掘削地点の位置と深度 の情報を与えれば掘削地点に任意の画像を張り付けた 三角柱のポリゴンを自動作成するスクリプトも作成し た.これにより,反射法音波探査とボーリング調査の 結果を三次元で同時に閲覧できるようになった(第6 図 b).

今回作成したデータベースによる三次元表示によっ

て、活断層(第6図b)やチャネルの空間分布が専用ソフトウェアなしで簡単に観察・把握できるようになった. 仕様が公開されて一般的に利用されている kml 形式なので、データの受け渡しや閲覧に制限が少なく、20万分の1シームレス地質図 V2(産業技術総合研究所地質調査総合センター、2017)をはじめ、ほかの地理情報との同時表示も簡単に行える.

これは第一には研究用だが、外部研究機関・官公庁 向けの情報公開や一般向けのアウトリーチでの活用も 見込んでいる.これまで、地質図出版と同時に反射断 面をその解釈図をウェブ公開してきたが、これに今回 自動作成したポリゴンファイルと kml ファイルを加え ることで、この閲覧データベースもウェブ公開する予 定である.自動変換スクリプトに関しても、産業技術 総合研究所の第4期中期計画の方針に合わせ知的財産 として登録し、いつでも外部提供できる態勢を整えた.

6. まとめ

2017 年度と 2018 年度の調査結果をもとに伊勢湾にて 反射法音波探査を追加実施した. 白子-野間断層の隆 起側に発達するチャネルや A 層上面が周囲より高い"台 地"状の箇所,伊勢平野沖の構造を明らかにするため の地下断面を得ることができた.

また、断面画像を張り付けたポリゴンを自動作成し、 Google Earth などの kml ビューアで三次元表示できるようにするスクリプトを作成し、2017 年度以降の調査結 果を三次元で一元表示できるデータベースを作成した. 閲覧にライセンス認証の必要な専用ソフトも不要で、 データの受け渡しがフォルダごとコピーするだけで可 能である.

今後詳細な解釈を行い、これらの活構造の分布や活 動性などを明らかにしていくとともに堆積層の区分、 分布の詳細など層序についても解明し、地質図を作成 する予定である.

謝辞:反射法音波探査の実施にあたり,船長,大和探 査技術株式会社の調査員の方々には大変お世話になっ た.また,愛知県,愛知県漁連,三重県,三重県漁連 および地元の各漁協をはじめとする関係機関には調査 にあたり,便宜を図っていただいた.以上の方々に厚 くお礼申しあげます.

文 献

- 天野敦子・清家弘治・大上隆史・田村 亨(2019)伊 勢湾・三河湾の海洋堆積物採取調査の概要.平成 30年度沿岸域の地質・活断層調査研究報告,産業 技術総合研究所地質調査総合センター速報, no. 79, 1-11.
- 中部空港調査会(1994)中部新国際空港建設予定地に おける地象調査報告書. 88p.
- 中条純輔・須田芳朗(1971)伊勢湾北部の重力分布と その考察.地質調査所月報, 22, 415–435.
- 中条純輔・須田芳朗(1972)伊勢湾南部と三河湾の重 カ分布とその考察.地質調査所月報,23,573-594.
- 中条純輔・高田康秀(1970)音波探査による知多湾の 研究. 地質調査所月報, 21, 187-218.
- 岩淵 洋・西川 公・野田直樹・川尻智敏・中川正則・ 青砥澄夫・加藤 勲・安間 恵・長田 智・角谷 昌洋 (2000) 伊勢湾における活断層調査.水路部 研究報告, 36, 73-96.
- 地震調査研究推進本部(2005)伊勢湾断層帯の評価. http://www.jishin.go.jp/main/chousa/02may_ise/index. htm. 2020年4月17日閲覧
- 海上保安庁(1996)大都市周辺海域活断層調査-伊勢 湾海上作業及び解析処理作業-報告書.海上保安 庁.
- 建設省国土地理院(1973)沿岸海域基礎調査報告書(四日市・津地区).建設省国土地理院,44P.
- 桑原 徹・松井和夫・吉野道彦・高田康秀(1972)伊 勢湾と周辺地域の埋没地形と第四系-"沖積層" 細分と伊勢湾の新しい沈降盆地化の問題-.地質 学論集, no.7, 61-76.
- 牧本 博・山田直利・水野清秀・高田 亮・駒澤正夫・ 須藤定久(2004)豊橋及び伊良湖岬,20万分の1

地質図幅.産業技術総合研究所地質調査総合セン ター.

- 水野清秀・小松原 琢・脇田浩二・竹内圭史・西岡芳晴・ 渡辺 寧・駒澤正夫 (2009) 名古屋第3版, 20万分 の1地質図幅. 産業技術総合研究所地質調査総合 センター.
- 西岡芳晴・中江 訓・竹内圭史・坂野靖行・水野清秀・ 尾崎正紀・中島 礼・実松健造・名和一成・駒澤 正夫(2010)伊勢,20万分の1地質図幅.産業技術 総合研究所地質調査総合センター.
- 岡田篤正・豊蔵 勇・牧野内 猛・藤原八笛・伊藤 孝(2000)知多半島西岸沖の伊勢湾断層.地学雑誌, 109, 10-26.
- 産業技術総合研究所地質調査総合センター (2017) 20 万分の1日本シームレス地質図 V2. https://gbank. gsj.jp/seamless/v2.html. 2020年4月17日閲覧.
- 産業技術総合研究所地質調査総合センター (2015) 20 万分の1日本シームレス地質図詳細版. https:// gbank.gsj.jp/seamless/kml/detailed.kml?lang=ja. 2020 年4月17日閲覧.
- 佐藤智之・荒井晃作(2013)日本周辺海域の反射断面 データベースへの資源調査,広域調査データの追 加. 平成24年度沿岸域の地質・活断層調査研究報 告,産業技術総合研究所地質情報総合センター速 報, no. 62, 129–132.
- 佐藤智之・古山精史朗(2018)伊勢湾沿岸域における 反射法音波探査の概要.平成29年度沿岸域の地質・ 活断層調査研究報告,産業技術総合研究所地質調 査総合センター速報, no. 76, 1-9.
- 佐藤智之・荒井晃作・岡村行信(2012)日本周辺海域 の反射断面データベースの復旧と代替システムの 構築.平成23年度沿岸域の地質・活断層調査研究 報告,産業技術総合研究所地質情報総合センター 速報, no.59, 117-120.
- 豊蔵 勇・岡田篤正・牧野内 猛・堀川義夫・長谷川 淳(1999)「中部国際空港」海域(知多半島常滑市沖) の海底地形・地質.地学雑誌, 108, 589-615.
- 八木雅俊・坂本 泉・藤巻三樹雄(2019)伊勢湾に分 布する白子ー野間断層及び鈴鹿沖断層の位置・形 状と活動履歴.平成30年度沿岸域の地質・活断層 調査研究報告,産業技術総合研究所地質調査総合 センター速報, no. 79, 13–27.

伊勢湾ボーリング試料の岩相と層序区分 Lithofacies and stratigraphy of boring cores collected in Ise Bay

天野敦子^{1*}・田村 亨¹・佐藤善輝¹・大上隆史²・佐藤智之¹ AMANO Atsuko^{1*}, TAMURA Toru¹, SATO Yoshiki¹, OGAMI Takashi² and SATO Tomoyuki¹

Abstract: To reconstruct the sedimentary environmental changes since the late Pleistocene, drill cores GS-IB18-1 and GS-IB18-2, 36 and 65 m long, respectively, were obtained from Ise Bay off Shiroko, Suzuka City. The drilling sites are located across the Shiroko-Noma Fault: GS-IB18-1 was obtained from the uplifting side while GS-IB18-2 from the subsiding side. These cores were described and analyzed with radiocarbon and OSL dating, and diatom fossil assemblages. As a result, GS-IB18-1 was divided into 6 sections and GS-IB18-2 into 7 sections. Aided by seismic profiles, these sections are corresponded to the Tokai Group, lower part of Atsuta Formation, First Gravel Formation, Nobi Formation and Nanyo Formation in ascending order.

Keywords: boring core, lithofacies, sedimentary environment, Ise bay

要 旨

2018年に伊勢湾の鈴鹿市白子町沖で掘削した2本の ボーリング試料, GS-IB18-1 (コア長36m), GS-IB18-2 (65 m)の岩相記載,放射性炭素とOSLの年代測定,珪藻 化石群集分析を行い,堆積環境の推定を行った.その 結果, GS-IB18-1を6セクション,GS-IB18-2を7セク ションに区分した.さらに,このボーリング結果と音 波探査記録を対比し,下位から東海層群,熱田層下部, 第一礫層,濃尾層,南陽層に区分した.

1. はじめに

産業技術総合研究所地質調査総合センターでは,沿 岸域を中心とした活断層や地下地盤に関する地質情報 の整備を目的として,2017年度から3年計画で伊勢湾・ 三河湾周辺で調査を行った.その一環として,海底活 断層の活動性評価と沿岸域の地下構造の解明を行うた めに,2018年に伊勢湾の鈴鹿市白子町沖で海上ボーリ ング調査を実施した.天野ほか(2019)では簡易的な 記載と放射性炭素年代の結果を基に岩相記載を行った. 本研究では,詳細な岩相記載と年代測定の追加,珪藻 化石群集の概査を行い,堆積環境について検討した. そして,この結果を基に,音波探査記録の岩相と層序 の推定を行った.

2. 調査海域と採取地点

調査海域は伊良湖水道により太平洋から隔てられた 伊勢湾である(第1図).伊良湖水道では水深が50m 以深と急激に深くなるが,伊勢湾内の主要部は40mよ りも浅く,湾央で深くなる.湾西部の白子沖約2kmの, 白子-野間断層を挟む2地点で2018年にボーリング掘 削を行った(天野ほか,2019). GS-IB18-1は断層の上 盤側,GS-IB18-2は下盤側に位置する.

3. 試料処理·分析方法

本報告では、詳細な記載を行った結果を基に柱状図 を作成した(第1図).また、新たに8試料について地 球科学研究所に依頼して加速器質量分析計(Acceleration Mass Spectrometer; AMS)を用いた放射性炭素(¹⁴C)年 代測定を行った(第1表).得られた¹⁴C年代はIntcal13 または Marine13 (Reimer *et al.*, 2013)($\Delta R = 0$)をデー タセットとし、Calib (Stuiver and Reimer, 1993)を用い て暦年校正を行った.

GS-IB18-1 では6試料,GS-IB18-2 では3試料の予察 的なOSL分析を産業技術総合研究所で行った.赤色 光下の暗室内でボーリングコアを半裁し,コア中央部 から遮光試料を採取した.試料は一部を含水率測定と ICP-MS分析に用いて年間線量の推定に用い,残りは塩 酸・過酸化水素・沈降法により粒径4 µm ~11 µm の粒 子を取り出し,Risø Automated TL/OSL Reader (DA-20)

*Correspondence

¹ 産業技術総合研究所 地質調査総合センター 地質情報研究部門 (AIST, Geological Survey of Japan, Research Institute of Geology and Geoinformation)

² 産業技術総合研究所地質調査総合センター活断層・火山研究部門(AIST, Geological Survey of Japan, Research Institute of Earthquake and Volcano Geology)

第1図 調査海域とボーリング掘削点図. 白子一野間断層の位置は岩淵ほか(2000)から編集した. Fig. 1 Map of study area and sampling sites. The position of Shiroko-Noma Fault was referred by Iwabuchi *et al.* (2000).

を用いて OSL 計測を行った. 修正 SAR (Single-Aliquot Regenerative dose) 法 (Thomsen *et al.*, 2008; Buylaert *et al.*, 2009) により, 50 °C での IRSL (Infrared-Stimulated Luminescence) の発出の後に 290 °C で計測される post-IR IRSL_{50/290} 信号を計測し,等価線量を決定した.等価 線量を年間線量で割ることにより,OSL 年代を求めた. なお繰り返し測定による等価線量の決定やフェーディ ングテストを行っていないため,ここではフェーディ ング補正前の予察値を報告する.

また, GS-IB18-1 から 34 試料, GS-IB18-2 から 35 試 料を分取してスミアスライドを作成し, 堆積物中に含 まれる珪藻化石群集について概査した. 観察は光学顕 微鏡を用いて 1,000 倍の倍率で行い,珪藻化石の有無と, 産出する場合は卓越する種を調べた. 生息環境の解釈 は千葉・澤井 (2014) などを参照した.

4. ボーリング岩相と放射性炭素年代

第2図に柱状図, 粒度, 年代, 珪藻の予察結果を示 す. この結果を基に GS-IB18-1 は6層に, GS-IB18-2 は 7層に区分し、各層の岩相記載と堆積層の解釈について 下記に説明する.

4.1 GS-IB18-1

4.1.1 セクション1 (深度:0 cm ~ 755 cm)

このセクションは塊状の灰色~暗灰色の粘土~シル トから構成される.全体的に1 cm以下の貝殻片が散 在しているが、コア深度0 cm~100 cmではシオガマ ガイやウミタケなどの5 cm程度の比較的に大きな貝 殻を含む.内湾指標種の Paralia fenestrata や Cyclotella striata, Thalassiosira 属、外洋指標種の Thalassionema nitzschioides などの珪藻化石が産出する.¹⁴C年代は0.3 ~ 8.0 cal kyr BPを示す.一方で、OSL年代結果は17.1 kyr を示し、¹⁴C年代よりも約 10,000年古い値を示す. 一般に pIRIR₅₀₂₉₀信号による年代は余剰線量により過大 評価になりやすいことが知られるが、この堆積環境で は1万年程度の過大評価と考えられる.貝化石や珪藻 化石から海成の泥質堆積物と考えられ、年代測定値を 考慮すると、本セクションは完新世に形成された内湾 で堆積したと推定される.

伊勢湾ボーリング試料の岩相と層序区分

Boring No.	core depth (cm)	type of material	Conventional ¹⁴ C Age (yr BP)	Calibrated ¹⁴ C Age (cal yr BP)	Laboratory number	reference
GS-IB18-1	38	shell	660 ± 30	402 - 253	Beta-519567	Amano et al. (2019)
GS-IB18-1	81	shell	2530 ± 30	2299 - 2113	Beta-519568	Amano et al. (2019)
GS-IB18-1	99	shell	3950 ± 30	4055 - 3840	Beta-516436	Amano et al. (2019)
GS-IB18-1	192	shell	6030 ± 30	6543 - 6353	Beta-516437	Amano et al. (2019)
GS-IB18-1	247	shell	6320 ± 30	6877 - 6685	Beta-519569	Amano et al. (2019)
GS-IB18-1	311	shell	4460 ± 30	4779 - 4530	Beta-516438	Amano et al. (2019)
GS-IB18-1	345	shell	6590 ± 30	7210 - 7005	Beta-519570	Amano et al. (2019)
GS-IB18-1	450	shell	7020 ± 30	7570 - 7439	Beta-517832	Amano et al. (2019)
GS-IB18-1	580	shell	7350 ± 30	7910 - 7726	Beta-516440	Amano et al. (2019)
GS-IB18-1	712	shell	7570 ± 30	8123 - 7948	Beta-519571	Amano et al. (2019)
GS-IB18-1	766	shell	7600 ± 30	8148 - 7975	Beta-516441	Amano et al. (2019)
GS-IB18-1	859	shell	8500 ± 40	9251 - 9003	Beta-516442	Amano et al. (2019)
GS-IB18-1	955	shell	9110 ± 30	10013 - 9686	Beta-516443	Amano et al. (2019)
GS-IB18-1	1043	shell	9140 ± 40	10103 - 9732	Beta-516444	Amano et al. (2019)
GS-IB18-1	1108	shell	> 43500		Beta-516445	Amano et al. (2019)
GS-IB18-2	60	shell	1010 ± 30	646 - 530	Beta-516446	Amano et al. (2019)
GS-IB18-2	145	shell	4150 ± 30	4348 - 4106	Beta-519572	Amano et al. (2019)
GS-IB18-2	284	shell	5370 ± 30	5850 - 5642	Beta-516447	Amano et al. (2019)
GS-IB18-2	403	shell	5970 ± 30	6458 - 6294	Beta-519573	Amano et al. (2019)
GS-IB18-2	535	shell	6380 ± 30	6945 - 6750	Beta-516448	Amano et al. (2019)
GS-IB18-2	593	shell	6420 ± 30	6992 - 6795	Beta-519578	Amano et al. (2019)
GS-IB18-2	788	shell	6680 ± 30	7282 - 7145	Beta-540640	This study
GS-IB18-2	978	shell	7090 ± 30	7640 - 7498	Beta-516449	Amano et al. (2019)
GS-IB18-2	1122	shell	7150 ± 30	7680 - 7556	Beta-540641	This study
GS-IB18-2	1244	shell	7460 ± 30	7990 - 7840	Beta-540641	This study
GS-IB18-2	1372	shell	7500 ± 30	8030 - 7874	Beta-519574	Amano et al. (2019)
GS-IB18-2	1620	shell	7760 ± 30	8316 - 8157	Beta-516450	Amano et al. (2019)
GS-IB18-2	1792	shell	8120 ± 30	8696 - 8486	Beta-519575	Amano et al. (2019)
GS-IB18-2	1903	shell	8350 ± 30	9013 - 8787	Beta-542786	This study
GS-IB18-2	1997	shell	8820 ± 30	9530 - 9425	Beta-540644	This study
GS-IB18-2	2085	shell	9330 ± 30	10230 - 10115	Beta-516451	Amano et al. (2019)
GS-IB18-2	2384	shell	9980 ± 30	11106 - 10802	Beta-516452	Amano et al. (2019)
GS-IB18-2	2549	plant material	9940 ± 30	11407 - 11245	Beta-519576	Amano et al. (2019)
GS-IB18-2	2877	wood	10380 ± 30	12399 - 12083	Beta-519577	Amano et al. (2019)
GS-IB18-2	3624	wood	> 43500		Beta-540645	This study
GS-IB18-2	3885	wood	> 43500		Beta-540646	This study
GS-IB18-2	4195	wood	> 43500		Beta-540647	This study

第1表 ボーリング試料の放射性炭素年代. Table 1 Radiocarbon age of boring cores.

4.1.2 セクション2 (コア深度:755 cm ~ 1,110 cm)

このセクションの深度 755 cm ~ 880 cm は薄いシル ト層が共在する砂質シルト層, 880 cm ~ 1,110 cm は細 礫を含む粗粒砂~極粗粒砂層から構成される. 全体的 に上方細粒化を示し, また直径 5 mm ~ 3 mm の泥また は砂で充填された円状の生痕が確認される. コア深度 1,030 cm ~ 1,036 cm では極粗粒砂~細礫層があり, 下 面は浸食面である. コア深度 1,100 cm のこのセクショ ンの基底面も浸食面である. このセクションの¹⁴C 年 代は 8.1 ~ 9.9 cal kyr BP を示す. また, 珪藻化石は全 体的に産出数が少ない. コア深度 840.9 cm では少量な がら, 内湾指標種の *C. striata* や海水泥質干潟指標種の Diploneis smithii が産出した. これらの汽水~海水生珪 藻に加えて貝や生痕化石が確認され,¹⁴C年代は海水準 上昇期を示すため,本セクションは定常的に波浪の影 響を受ける浅海の海進期堆積物と解釈できる. また下 に示す MIS5e の内湾堆積物を覆う基底侵食面はラビン メント面と考えられる.

4.1.3 セクション3 (コア深度:1,110 cm ~ 1,540 cm)

このセクションは上下に細分され,上部のコア深度 1,010 cm ~ 1,500 cm が 2 mm ~ 3 mm の貝殻片を含む半 固結した塊状の灰色~暗灰色の粘土~シルト層,下部 の 1,500 cm ~ 1,540 cm が上方細粒化を示す淘汰の悪い 泥質な細粒砂~小礫層によって構成される.上部の粘 土~シルト層では P. fenestrata, C. striata などを内湾に 生息する珪藻の殻が確認された.コア深度 1,108 cm の 貝殻破片の¹⁴C年代結果は、測定限界年代(43 kyr)よ りも古いことを示す.また OSL 年代は 122 kyr を示す. セクション1の¹⁴C年代値との差分を考慮すると、122 kyrよりも 10,000 年程度若い堆積年代を示すと考えら れる.含まれる珪藻化石から、内湾の泥質堆積物とい える.OSL 年代結果から、MIS5e の海進期から高海水 準期に堆積したと考えられる.

4.1.4 セクション4 (コア深度:1,540 cm ~ 1,737 cm)

このセクションは灰色~暗灰色で中礫を含む淘汰の 悪い礫質砂~砂質礫で構成される.本セクション中の コア深度1,655 cm では珪藻化石が産出しなかった.本 セクションの上位層との関係から海進期のラビンメン ト堆積物,または低海水準期の扇状地堆積物の可能性 が考えられる.

4.1.5 セクション5 (コア深度:1,737 cm ~ 2,520 cm)

セクション5のコア深度1,737 cm~1,880 cm は塊状 の砂質シルト層, 1.880 cm ~ 1.960 cm は塊状の中粒砂 からなり、両者とも黄色~オレンジ色を呈する. コア 深度 1,960 cm ~ 2,315 cm は淘汰の悪い中粒~極粗粒砂 層, 2,315 cm ~ 2,480 cm は生痕が確認される砂泥互層, 2,480 cm ~ 2,520 cm は細礫~小礫からなる礫層で、こ れらの層は灰色~緑灰色を呈する. このセクションは 全体として含まれる珪藻殻が少ないものの, コア深度 1,840 cm では海水砂質干潟指標の Planothidium hauckianum や内湾指標種の C. striata が, また 2,420 cm, 2,540 cm では淡水生種の Eunotia 属や Navicula 属が確認され た. OSL の予察結果は、コア深度 1,850 cm で 150 kyr を示す.木炭が多く含まれ、淡水~内湾の珪藻が確認 され, OSL 年代は MIS5 ~ 6 を示すため、このセクショ ンは低海水準期から海進期にかけての淡水~汽水域で 堆積したと考えられる.

4.1.6 セクション6 (コア深度: 2,520 cm ~ 3,600 cm)

このセクションは植物根痕が確認される固結したシ ルト層(コア深度 2,520 cm ~ 2,740 cm, 3,180 cm ~ 3,410 cm) と斜交層理が確認される細粒砂~粗粒砂層(2,740 cm ~ 3,180 cm, 3,410 cm ~ 3,600 cm) で構成される. シルト層には淡水生種の Aulacoseria 属, Pinnularia 属, Eunotia 属, Gomphonema 属の珪藻化石が多産した.また, OSL 年代は測定限界値を超えており,コア深度 2,630 cm で> 315 kyr, 3,240 cm で> 283 kyr と, 10,000 年の 過大評価を考慮しても MIS7 よりも古い年代であること が示唆された. 植物根痕,淡水生種の珪藻化石が確認 されるため、このセクションは淡水域で堆積したと考 えられる.斜交層理が確認される細粒砂〜粗粒砂層は 強い一方向流を受けたことを示すことから、このセク ションは河川流の影響を受けたと考えられる.そのた め、このセクションは河川流路から氾濫原の堆積物と 解釈される.

4.2 GS-IB18-2

4.2.1 セクション1 (コア深度:0 cm ~ 2,100 cm)

このセクションは灰色〜暗灰色の塊状のシルトに よって構成され,全体的に1 cm以下の大きさの貝やウ ニの破片を含む. コアの表層 100 cm では,5 cm 大の貝 殻片が確認された.全体的に内湾に生息する *P. fenestrata*, *C. striata*, *Thalassiosira* 属が多産する.¹⁴C 年代は 0.6 ~ 10.2 cal kyr BP を示す.一方で,OSL 年代は 16.9 ~ 19.9 kyr を示し,GS-IB18-1 と同様に,¹⁴C 年代よりも約 10,000 年過大評価している.含まれる化石から完新世 の内湾の泥質堆積物といえる.

4.2.2 セクション2(コア深度: 2,100 cm ~ 2,455 cm)

このセクションは淘汰の悪い暗灰色の砂質礫で構成 され、1 cm 大の貝殻破片や木炭を含む. コア深度 2,100 cm ~ 2,200 cm は中礫~中粒砂を含む砂礫から粗粒砂 ~中粒砂を含む砂質泥へと上方細粒化し、上位のシル ト層との境界は不明瞭である. 欠損部分が多く、下位 層との境界は欠損により不明である. コア深度 2,122 cm から内湾指標種の C. striata や汽水~海水生種の Diploneis 属が多産し、これより下位では珪藻化石が 産出しなかった. このセクションの¹⁴C 年代は 11.0~ 11.3 cal kyr BPを示す. 岩相と年代, 上位層との関係から、 このセクションは海進期のラビンメント堆積物といえ る.

4.2.3 セクション3(コア深度:2,455 cm ~ 3,510 cm)

このセクションは主に比較的淘汰の良い砂~砂礫で 構成され、シルト層が狭在する.砂礫部分は欠損が多 い.コア深度2,475 cm ~ 2,500 cm は淘汰の良い中礫~ 細礫、2,542 cm ~ 2,755 cm は中礫交じりの細礫~中粒 砂で構成される.コア深度2,755 cm ~ 2,982 cm は主に 暗灰色のシルト層で、2,825 cm ~ 2,832 cm, 2,960 cm ~ 2,982 cm に上方細粒化する砂礫層を挟む.このシル ト層の2,755 cm ~ 2,825 cm の植物根痕と生痕が確認さ れ、2,832 cm ~ 2,960 cm では5 cm 以下の大きさの木炭 が多く含まれる.このセクションでは全体として珪藻 化石の産出が少ないが、コア深度2,755 cm ~ 2,982 cm のシルト層には比較的多くの珪藻化石が含まれ、主に 淡水生種のEunotia 属、Pinnularia 属、Gomphonema 属 などが確認された.コア深度からなる.コア深度2,982

第3図 白子一野間断層を横断する反射断面図とボーリング柱状図との対比図. Fig.3 Seismic profile across Shirako-Noma Fault with sedimentary columns of GS-IB18-1 and GS-IB18-2.

 $cm \sim 3,050 cm は塊状の中礫〜細粒砂からなり, 3,025 cm <math>\sim 3,050 cm$ は上方粗粒化, 2,982 cm $\sim 3,025 cm$ は上方細粒化を示す. コア深度 3,050 cm $\sim 3,100 cm$ は各層厚が 2 cm $\sim 5 cm$ の砂泥互層で, 砂層には平行葉理が確認される. コア深度 3,100 cm $\sim 3,510 cm$ は淘汰の良い中礫〜極粗粒砂の砂礫からなり, 3,300 cm $\sim 3,400 cm$ に淘汰の良い極粗粒〜粗粒砂の砂層を挟む. コア深度 2,877 cm の¹⁴C 年代は 12.2 cal kyr BP を示すことから, 最終氷期の低海水準期から海進期に形成されたと考えられる. 植物根痕, 木炭を多く含むことや淡水生種の 珪藻化石が多産すること, 砂礫が主体となることから本セクションは河川性の堆積物と考えられる.

4.2.4 セクション4 (コア深度: 3,510 cm ~ 5,900 cm)

セクション4は上下に細分され、上部のコア深度3,510 cm~4,340 cm は平行または高角の斜交層理が確認され る極細粒〜細粒砂とシルトの砂泥互層で、下部の4,340 cm ~ 5,900 cm は半固結した貝殻破片を含む粘土~シル トで構成される. 上部の砂泥互層では全体的に生痕が 確認される. コア深度 3,545 cm ~ 3,790 cm の砂層が上 部に向かって粗粒化し、3,545 cm ~ 3,680 cm では植物 根痕が確認される. また, コア深度 3,790 cm ~ 4,340 cmの砂層には黒雲母が多く含まれる.下部の粘土~シ ルト層ではコア深度 4,340 cm ~ 4,510 cm で生痕が確認 され, 内湾指標種の C. striata, P. fenestrata, Thalassiosira 属などが多産する.本セクション下部の粘土~シル ト層は、内湾に特徴的な珪藻化石が多く泥質堆積物と いうことから、内湾の堆積物と推定される.本セクショ ン下部の粘土~シルト層は、内湾に特徴的な珪藻化石 が多く泥質堆積物ということから、内湾の堆積物とい える. 上部の砂泥互層では、上方粗粒化を示し、最上 部では植物根痕が確認されることから、上部に向かっ て堆積環境は浅海化し、淡水の影響を受けるデルタに なったと解釈できる.本セクション中に含まれる木炭 試料の¹⁴C年代がいずれも測定限界年代を越えており, コア深度 4,840 cm の OSL 年代が 141 kyr を示すことか ら、このセクションは MIS5e に堆積したと考えられる.

4.2.5 セクション5(コア深度: 5,900 cm ~ 6,100 cm)

このセクションは上下に細分され,上部のコア深度 5,900 cm ~ 5,950 cm は細粒砂とシルトの砂泥互層,下 部の 5,950 cm ~ 6,000 cm は塊状の細粒~中粒砂層で, 上方細粒化を示す.両層に直径 1 cm ~ 2 cm の円状の 生痕が確認される.コア深度 6,040 cm ~ 6,100 cm では 花崗岩やチャートの中~大礫から中粒~極粗粒砂~と 上方細粒化を示す層が 2 層確認される (6,000 cm ~ 6,040 cm は欠損).下位層との境界は明瞭である.上部のコ ア深度 5,925 cm では内湾指標種の P. fenestrata や C. striata が産出した.上位層との関係から,上部の砂泥互層 と砂層は海進期の浅海で堆積したと考えられる.一方, 下部の砂礫層は海進期のラビンメント堆積物と考えら れるが,掘削時に混入したスライムの可能性も考えら れる.

4.2.6 セクション6(コア深度:6,100 cm ~ 6,300 cm)

このセクションは上下に細分され,上部のコア深度 6,100 cm ~ 6,200 cm は 1 cm ~ 5 cm 大の木炭を含む有 機質な半固結したシルト層で,下部の 6,230 cm ~ 6,300 cm は極粗粒砂からシルト質細粒砂へと上方細粒化した 砂層で構成される (6,200 cm ~ 6,230 cm は欠損).下部 の砂層には植物根痕が確認される.本セクションに含 まれる珪藻化石の保存状態が悪く,産出数が少ないが, コア深度 6,185 cm のシルト層中からは淡水域に生息す る Eunotia 属がわずかながら産出した.淡水生種の珪 藻化石と植物根痕が確認されることから,このセクショ ンは淡水域の堆積物と考えられる.

4.2.7 セクション7 (コア深度: 6,300 cm ~ 6,500 cm)

このセクションは上下に細分され,上部のコア深度 6,300 cm~6,385 cm はシルト質な細粒砂層,下部の6,385 cm~6,500 cm は平行および斜交葉理が確認される細粒 ~極粗粒砂とシルトの砂泥互層である.本セクション からは珪藻化石が産出しなかった.セクション全体で 直径が 0.5 cm~2 cm の円状で砂または泥で充填された 生痕が確認される.このセクションはセクション4上 部の砂泥互層と類似することから,デルタの堆積物の 可能性が考えられる.今後,生痕の判定などを行い, 堆積環境の推定を行う.

5. ボーリングコアの岩相と音波探査記録,濃尾平野の 層序区分との対比

GS-IB18-1,2の岩相と解釈した堆積環境を,これら コア採取地点近傍で取得された白子-野間断層を横断 する音波探査記録(第1図,佐藤・古山,2018)と対 比し,この記録の反射断面の岩相と年代を推定した(第 3図).佐藤・古山(2018)は、この反射断面の上位層 を「反射強度は弱いものの連続性がよいC層」,下位層 を「成層するものの連続性が弱く,最上部で反射強度 が強いA層」として区分している.ボーリング試料の 層相と比較すると、C層はGS-IB18-1,2のセクション 1(それぞれのコア深度は0cm~755 cm,0cm~2,100 cm)の完新世間の内湾に堆積した泥質堆積物,A層は これよりも下部層と対比される.

さらに A 層を第3 図中の青破線で示したように、反 射面の特徴から A1 ~ A5 の5 層に区分した(第3 図).

				1			
Geological age		Strat	igraphy	Lithofacies / Sedimentary environment (Makinouchi et al., 2005)			
Holocene		Nan-yo Form.		Sand and mud with shell fraction / Delta front~prodelta			
	ate	Not	oi Form.	Sand / Non-marine			
ре		First (Gravel Form.	Sandy gravel / Regression			
leistoce	Ľ	Form.	Upper part	Sand with pumice and tephra / Non-marine			
đ		Atsuta	Lower part	Mud with shell fraction / Marine			
	Middle	Ama-Y	′atomi Form.	Alternation of mud, sand and gravel / Marine			
	Early						
Pliocene		Tokai Group		Alternation of mud, sand and gravel / Freshwater			

第4図 濃尾平野の層序区分図. 牧野内ほか (2005) を基に作成した. Fig. 4 Stratigraphy of the Nobi Plain based on Makinouchi *et al.* (2005).

最上部のA1層は,層厚は薄いが連続性がよい成層構 造が確認される. A1 層の下位で白子-野間断層の下盤 側でのみ確認される比較的反射面の強い層を A2 層と した. 断層の上盤側ではA1層の, 下盤側ではA2層の 下位で反射強度が弱く、白く抜けて見える層をA3層 とした. A4 層は強い反射強度で成層構造を示し、上盤 側の層厚は10m程度,下盤側は下位層との境界が不明 であるが、上盤側よりも厚い. A5 層は上盤側でのみ確 認され不連続な反射面を示し、上位のA4層との境界 は凹凸に富む.ボーリング試料と比較すると、A1層は GS-IB18-1, 2ともにセクション2(コア深度755 cm~ 1,100 cm, 2,100 cm ~ 2,455 cm)の海進期の砂層または 砂礫層, A2層はGS-IB18-2のセクション3 (2,455 cm ~ 3,510 cm)の低海水準期から海進期の砂礫層, A3 層 は GS-IB18-1 ではセクション3 (1,100 cm ~ 1,540 cm), GS-IB18-2 ではセクション4 (3,510 cm ~ 5,900 cm)の MIS5e のシルト層~砂泥互層, A4 層は GS-IB18-1 のセ クション4, 5 (1,540 cm ~ 2,525 cm), GS-IB18-2 のセ クション5, 6, 7 (5,900 cm ~ 6,500 cm) の MIS5e 以 前の海進期,低海水準期,海退期の砂礫~砂層,A5層 はGS-IB18-1のセクション6 (2,525 cm ~ 3,600 cm), 鮮新世の淡水域の砂~シルト層に対比できる.

本結果を濃尾平野の層序(第4図)と比較した.濃 尾平野の第四紀の地層は上位から南陽層,濃尾層,第 一礫層,熱田層,海部・弥富累層に区分され,この下 位に東海層群が分布する.沖積層の完新世の内湾堆積 物であるC層は南陽層,A1層は海進期の堆積層である ことから濃尾層に対比される.A2層は最終氷期の低海 水準期に河川に堆積した砂礫からなることから第一礫 層に対比できる.A3層はMIS5eの内湾堆積物であるこ とから熱田層下部,A4層は更新世の前~中期に堆積し た海部・弥富累層,A5層は鮮新世に形成された東海層 群に対比できる.

6. まとめ

三重県鈴鹿沖の白子-野間断層を挟む2地点で掘削 されたボーリング試料の詳細な岩相記載と年代と珪藻 化石群集の分析を行った.岩相変化からGS-IB18-1を6 セクション,GS-IB18-2を7セクションに区分した.こ のボーリング結果と音波探査記録を対比し,下位から 東海層群,熱田層下部,第一礫層,濃尾層,南陽層に 区分した.

謝辞:貝化石の同定は地質情報研究部門の中島 礼博 士にご協力いただいた.深く感謝申し上げます.

文 献

- 天野敦子・清家弘治・大上隆史・田村 亨(2019)伊 勢湾・三河湾の海洋堆積物採取調査の概要.平成 30年度沿岸域の地質・活断層調査研究報告,産業 技術総合研究所地質調査総合センター速報, no. 79, 1–11.
- Buylaert, J.P., Murray, A.S., Thomsen, K.J. and Jain, M. (2009) Testing the potential of an elevated temperature IRSL signal from K-feldspar. *Radiation Measurements*, 44, 560–565.
- 千葉 崇・澤井祐紀 (2014) 環境指標種群の再検討と 更新. Diatom, **30**, 17–30.
- 岩淵 洋・西川 公・野田直樹・川尻智俊・中川正則・ 青砥澄夫・加藤 勲・安間 恵・長田 智・角谷 昌洋 (2000) 伊勢湾における活断層調査.水路部 研究報告, 36, 73-96.
- 牧野内 猛・内園立男・塚本将康・濃尾地盤研究委員 会断面 WG (2005) 濃尾平野東縁部の地盤構成. 土と基礎(地盤工学会誌), **53**, 567-569.
- Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Cheng,H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatté, C.,Heaton, T.J., Hoffmann, D.L., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer,R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.S.M. and van der Plicht, J. (2013) IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0-50,000 Years cal BP. *Radiocarbon*, 55, 1869–1887.
- 佐藤智之・古山精史郎(2018)伊勢湾沿岸における反 射法音波探査の概要.平成29年度沿岸域の地質・ 活断層調査研究報告,産業技術総合研究所地質調 査総合センター速報, no.76, 1-7.
- Stuiver, M. and Reimer, P.J. (1993) Extended ¹⁴C database and revised CALIB radiocarbon calibration program. *Radiocarbon*, **35**, 215–230.
- Thomsen, K.J., Murray, A.S., Jain, M. and Bøtter-Jensen, L. (2008) Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts. *Radiation Measurements*, 43, 1474–1486.

伊勢湾・三河湾の表層コア試料に見られる堆積構造

Sedimentary structures in core samples obtained from seafloor surface in Ise and Mikawa bays

清家弘治^{1*}・天野敦子¹ SEIKE Koji¹ and AMANO Atsuko¹

Abstract: This study examined sediment core samples using X-ray computed tomography scanning and grain size analysis to reveal the sedimentological characteristics of the sea bottoms in Ise and Mikawa bays. Biogenic sedimentary structures, or bioturbation structures, were seen throughout the study site. Images of X-ray CT showed <3-cm-diameter mud-filled burrows in the sediments, indicating that colonization of the seafloor sediment by large and deep-burrowing animals. On the other hand, physical sedimentary structures such as parallel laminations were rarely observed. Inner part and mouth of the bays were covered with silt and fine-grained sand layers, respectively.

Keywords: multiple corer, bioturbation, enclosed system, X-ray CT, grain size

要 旨

伊勢湾および三河湾の18地点において、小型マルチ プルコアラーを用いて海底表層の堆積物コアを採取し た.そしてX線CTスキャナーによって、コア中に含 まれる物理的堆積構造および生物源堆積構造(生痕) を観察した.その結果、全ての地点において、堆積物 は底生生物の活動によって激しく撹拌されていること がわかった.その一方で、湾奥等の場所では、部分的 ではあるが初成の物理的堆積構造も保存されているこ とがわかった.

1.はじめに

産業技術総合研究所地質調査総合センターでは,平 成 29 年度から伊勢湾・三河湾沿岸域を対象として活断 層や地下地質の情報整備に関する調査,例えば海上・ 平野ボーリング試料の収集・解析などを実施している. 沿岸域の堆積物を扱うにあたり,その場での生物攪拌 (バイオターベーション,生物擾乱とも呼ばれる)の実 態を理解することは重要である.なぜなら,生物攪拌 により堆積物は上下に混合され,また初成の物理的堆 積構造が破壊され堆積相が変化してしまうからである (Seike *et al.*, 2016 など).

本報告書では,平成30年度に伊勢湾および三河湾で 採取された海底表層堆積物コア試料の堆積構造を解析 した結果について,その概要を記載する.

2. 調査海域

調査の対象とした海域は、閉鎖性水域である伊勢湾 および三河湾である(第1図).伊勢湾のほとんどの 部分は水深40mよりも浅く、湾口部は砂質堆積物が 卓越する一方で湾奥部はシルト質堆積物で覆われてい る(天野ほか、2019).三河湾のほとんどの部分は水 深15mよりも浅く、伊勢湾と同様に湾口部および湾奥 部は砂質およびシルト質堆積物が卓越する(天野ほか、 2019).

3. 堆積物コアの採取および分析方法

海底堆積物試料の採取は、2018年9月27~29日に 第三開洋丸(海洋エンジニアリング社所有)によって 実施された.伊勢湾および三河湾の全域をカバーする ように18の調査地点を設定した(第1図).調査地点 の水深は11.0m~41.7mである(第1表).この航海 調査では、本研究で対象とする海底表層のコアに加え て、グラビティーコアの採取も実施された(天野ほか、 2019).

3.1 小型マルチプルコアラーによる海底表層堆積物の 採取

海底堆積物試料の採取には,海底をほぼ不攪乱で採 取できる小型マルチプルコアラー(離合社製)を用いた. 当調査海域は閉鎖性水域であり海底が軟泥で構成され ることが予想された.そのため,コアラーが海底に深

*Correspondence

¹ 産業技術総合研究所 地質調査総合センター 地質情報研究部門 (AIST, Geological Survey of Japan, Research Institute of Geology and Geoinformation)

- 第1図 調査地点図(上)とサンプリングの様子(下).調査地点図の陸域は国土地理院の基盤地図情報(数値標高モデル)5m/10mメッシュによる.海域は日本水路協会(2015)に基づく.
- Fig. 1 Sampling stations (upper) and sediment sampling using a multiple corer (lower). Land area is after 5 m/10 m grid digital elevation model (DEM) provided by Geospatial Information Authority of Japan. Sea area is based on Japan Hydrographic Association (2015).

く沈み込みすぎないように、木材の枠の「げた」を装 着して採泥作業を実施した(第1図).小型マルチプル コアラーは一度に4本のコア試料(パイプ直径約8 cm, 長さ40 cm)の採取が可能である.なお、本調査ではコ アラーのフレームにアクションカメラ GoPro Hero3 を 装着し海底状況の撮影を試みた.しかしながら、調査 期間中の当海域は透明度が非常に悪く、海底状況を撮 影することはできなかった.

3.2 粒度分析

各地点で採取されたコア4本のうち1本は、船上で

第1表 マルチプルコアラー試料の採取位置と水深. Table 1 Information for multiple-core sampling sites.

Site No.	Latitude N	Longitude E	Water depth (m)
St.1	34° 57.0083'	136° 43.4649'	26.9
St.4	34° 55.2116'	136° 43.5974'	31.9
St.6	34° 49.1571'	136° 40.2208'	24.2
St.7	34° 49.2019'	136° 43.5418'	35.3
St.9	34° 45.0236'	136° 38.0473'	28.8
St.11	34° 45.0131'	136° 43.4968'	37.8
St.13	34° 42.4757'	136° 48.3295'	34.0
St.14	34° 41.1086'	136° 36.0963'	27.0
St.16	34° 39.2678'	136° 42.2212'	32.3
St.17	34° 39.1929'	136° 50.4802'	34.3
St.18	34° 37.4132'	136° 39.0397'	20.6
St.22	34° 36.1003'	136° 49.5273'	30.8
St.23	34° 35.9224'	136° 53.6123'	41.7
St.26	34° 46.3395'	136° 57.5524'	16.0
St.27	34° 44.3210'	137° 3.5540'	11.0
St.28	34° 44.2979'	137° 9.0517'	14.4
St.29	34° 41.4317'	137° 3.6143'	19.4
St.30	34° 41.6207'	137° 9.2637'	16.9

深さ1 cm 毎にスライスし分取された. そのうち, 深さ 2 cm 毎の試料の粒度分析を実施した. 例えば, 深さ0 cm ~ 1 cm, 2 cm ~ 3 cm, 4 cm ~ 5 cm というように コア深度 2 cm 毎の試料の分析を実施した. 分析には, 島津製作所製のレーザー粒度分析装置 SALD-2000 を用 いた. 堆積物試料を蒸留水中に懸濁させ超音波を当て, 粒子を分散させた状態で粒度測定を実施した.

3.3 X線 CT スキャンによる堆積構造の観察

X線CTスキャンを用いて堆積物コアを観察することで、通常の観察手法(例えばコアの縦断面の肉眼観察)では識別できないような不明瞭な堆積構造を観察できる(Seike et al., 2016, 2018 など).各調査地点で採取されたコア試料4本のうち1本を、X線CTスキャン観察用とし、冷蔵状態(4℃以下)で保管・運搬した.持ち帰ったコア試料を、X線CTスキャナーSupria Grande(日立製作所製)を用いて観察した.得られたX線CTスキャンデータは画像解析ソフトウェアOsirix(Pixmeo SARL 社製)を用いて画像処理し、堆積物コアの鉛直断面像を作成した.

St. 9

0

Core depth (cm) 07

20

30

0

30_

	Grain size	
° 25 percentile	• 50 percentile (median)	° 75 percentile

伊勢湾の湾奥部における堆積物コアの X線 CT スキャンイメージと粒度分布結果. 第2図 Fig. 2 X-ray CT images and grain-size distributions of the cores collected at the inner part of Ise Bay.

第3図 伊勢湾の湾口部における堆積物コアの X線 CT スキャンイメージと粒度分布結果. Fig. 3 X-ray CT images and grain-size distributions of the cores collected at the mouth of Ise Bay.

4. 解析結果

伊勢湾の湾奥部,伊勢湾の湾口部,および三河湾で 採取されたコアの粒度分析およびX線CTスキャンに ついての結果をそれぞれ第2図に,第3図,第4図に 示す.各地域の詳細は以下の通りである.

4.1 伊勢湾・湾奥部

海底表面からコア下部まで中央粒径 6~7φの中粒 ~細粒シルトから構成される. 粒度は鉛直方向にほと んど変化せず,ほぼ一定である.ほとんどの箇所は激 しい生物攪拌を受け直径が数 mm~3 cmのサイズの生 痕が見られる.その一方で,不明瞭ではあるが,湾奥 部では平行葉理が散見される.例えば St.6 や St.7 の深 さ10 cm~20 cmの部分に,ぼんやりとした平行葉理 が存在する.これは,湾奥の富栄養・貧酸素環境によっ て海底が底生生物不在となり生物攪拌が生じず,初成 の堆積構造が残されたためと考えられる.

4.2 伊勢湾・湾口部

海底表面からコア下部まで中央粒径4~5φの極細 粒砂~粗粒シルトから構成される. 粒度は鉛直方向に 若干変化する地点も見られるものの,ほぼ一定である. ほとんどの箇所は激しい生物攪拌を受け直径2cm~3 cmの生痕が見られる. St.22および St.23の深さ数セン チの部分には、CT 値の低い部分(暗色で示された部分, より泥質な堆積物で構成されていることを示す)が存 在する.平行葉理やトラフ型斜交層理などの物理的堆 積構造は観察されない. St.17 および St.22 には,所々 に貝殻片が含まれる.また,St.17 および St.23 のコア 下部には,不明瞭な平行葉理が存在する.これは,生 物攪拌によって完全に堆積構造が破壊される前に,さ らに堆積が生じたため堆積構造が保存されたと考えら れる.

4.3 三河湾

湾口部付近の St. 29 以外は,海底表面からコア下部 まで中央粒径 6~7 φの中粒~細粒シルトから構成さ れる. St. 29 は中央粒径 3~4 φの細粒砂~極細粒砂か ら構成される. ほとんどの箇所は激しい生物攪拌を受 け直径 1 cm~3 cmの生痕が見られる. St. 26 および St.27 のコアには貝殻片が多く含まれ,特に St.26 のコ アでは海底表面付近に大型二枚貝が自生産状で含まれ ている. St.28 の海底面から深さ 10 cmにかけて,平行 葉理が観察される. 伊勢湾の湾奥部と同様に,湾奥の 富栄養・貧酸素環境によって海底が底生生物不在とな り生物攪拌が生じず,初成の堆積構造が残されたため と考えられる.

5. まとめ

伊勢湾・三河湾において18地点で海底表層堆積物コ ア試料の採取をおこない、それぞれの地点における鉛 直方向の粒度分布、堆積構造の観察を実施した.海底 表面から深さ30 cm までは、表層と同じ堆積物が分布 していることが確認できた.全ての地点において、激 しい生物攪拌が存在している.一方で、部分的には初 成の堆積構造が残っていることが確認できた.今後、 コアのX線CTスキャンデータのさらなる解析を実施 し、当海域における生物攪拌作用のより詳細な理解を 目指す.

謝辞:本調査を行うにあたり,愛知県防災局・農林水 産部,愛知県漁業協同組合連合会,三重県防災対策部・ 農林水産部,三重県漁業協同組合連合会に協力いただ いた.第三開洋丸の採泥調査においては,東京大学大 気海洋研究所の石山玄樹氏,大熊祐一氏,梶田展人氏, 小林元樹氏,吉村由多加氏に協力いただいた.コアの X線CT スキャンおよび堆積物の粒度分析においては, それぞれ地質情報研究部門の横井久美氏,松崎優佳氏 に協力いただいた.東京大学大学院新領域創成科学研 究科の須貝俊彦教授には,同研究室所有の粒度分析装 置を使用させていただいた.以上の方に心からお礼申 しあげる.なお,本調査航海の実施には,清家に与え られた文部科学省・卓越研究員事業研究費を使用した.

文 献

- 天野敦子・清家弘治・大上隆史・田村 亨(2019)伊勢湾・ 三河湾海洋堆積物採取調査の概要. 平成 30 年度沿 岸域の地質・活断層調査研究報告,産業技術総合 研究所地質調査総合センター速報, no. 79, 1–11.
- 日本水路協会(2015)海底地形デジタルデータ M7002 ver.2.3 遠州灘.
- Seike, K., Kitahashi, T., Noguchi, T. (2016) Sedimentary features of Onagawa Bay, northeastern Japan after the 2011 off the Pacific coast of Tohoku Earthquake: sediment mixing by recolonized benthic animals decreases the preservation potential of tsunami deposits. *J. Oceanogra.*, **72**, 141–149.
- Seike, K., Sassa, S., Shirai, K., Kubota, K. (2018) Lasting impact of a tsunami event on sediment-organism interactions in the ocean. J. Geophys. Res.-Oceans, 123, 1376–1392.

伊勢湾沿岸域における海底重力調査

Ocean bottom gravity survey in the coastal zone of the Ise Bay area, central Japan

大熊茂雄^{1*}・宮川歩夢¹・駒澤正夫¹・杉野由樹²・押田 淳³ OKUMA Shigeo^{1*}, MIYAKAWA Ayumu¹, KOMAZAWA Masao¹, SUGINO Yoshiki² and OSHIDA Atsushi³

Abstract: To better understand the shallow subsurface structure of the coastal area of the Ise Bay, an ocean bottom gravity survey was conducted in July - August 2019. Seventy two measurement points were arranged offshore between Yokkaichi and Suzuka, Mie Pref., at an interval of 0.25 km from north to south. These newly measured ocean bottom gravity data were processed with a terrain correction, assuming a density of 2.3 g/cm³ and the first-order residual bouguer gravity profile was created in addition to a bouguer gravity one. According to the profiles, the bouguer gravity increases steadily to the south, and the north-south difference amounted to around 35 mGal. Three highs were recognized on the first-order residual bouguer gravity profile. The southern part of the central one corresponds to the Shiroko-Noma Fault and the southern-most one may indicate a shallow basement there. The northern-most one shows the smallest amplitude and the southern part of the high may correspond to the Suzuka-oki Fault. However, further examination will be needed as there might have been some problems in the measurement. Comparing the gravity between new and past data, the latter which were measured a half century ago and both stations were closely located within 200 m with each other, no obvious differences were recognized. Therefore the newly observed data were merged with the existing ones to compile a complete bouguer gravity map.

Keywords: ocean bottom gravity survey, Bouguer anomalies, Ise Bay, Suzuka-oki Spur, Shiroko-oki Spur, active fault, Suzuka-oki Fault, Shiroko-Noma Fault, Ise Bay Fault

要 旨

伊勢湾沿岸域で浅部地下構造を広域的に把握するた め2019年7月~8月に海底重力調査を実施した. 三重 県四日市市沖から鈴鹿市沖にかけての海域において 250 mの測定間隔で測線上に測点を設け海底重力計を用い た重力調査を実施した.総測点数は72点である.新 規に測定した重力データを処理し、地形補正も行って 仮定密度 2.3 g/cm³のブーゲー異常を求めた.また,一 次傾向面残差も計算しプロファイル図を作成した.プ ロファイルデータを参照すると,ブーゲー異常は北部 から南部に向かってほぼ一様に増大し、南北差は約35 mGal に及ぶ. ただし、一次傾向面残差のブーゲー異常 を見ると3箇所で局所的な高まりがあり、中央の高ま りの南側が白子-野間断層の位置に相当する.また, 南部の高まりは3つのなかで最も顕著であるが、対応 する表層の地質情報は認められず伏在する基盤構造に 対応すると思われる.北部の高まりは3つのなかで最 も振幅が小さく、その南側が鈴鹿沖断層の位置に対応 するが,重力測定に付随する原因の可能性もあるため,

今後詳細に検討する必要がある.一方,今回新たに測 定された海底重力データと約50年前に測定された既往 の海底重力データについて200m以下の近接した測点 で比較すると大きな相違は認められないことが分かっ た.この後,新規測点データに既往の測点データを加 えてブーゲー異常図を編集した.

1. はじめに

調査地の伊勢湾周辺は,渥美半島から紀伊半島は伊 勢へ伸びる中央構造線の北部に位置し鈴鹿山脈,布引 山地や美濃三河高原などの周囲を取り囲む山地に西南 日本内帯の代表的な地質であるジュラ紀付加コンプ レックス(美濃帯および丹波帯;水野ほか,2009)や 領家帯を構成する領家変成岩類および領家深成岩類(牧 本ほか,2004)が露出する.一方,伊勢湾は,上述を 基盤として東海湖の構造的発展に伴い鮮新世-更新統 の東海層群が堆積した後,更新世の間氷期の海面上昇 に伴い古伊勢湾が形成された(桑原,1975).

重力異常は、地下の密度構造を反映し、その分布形

*Correspondence

1 産業技術総合研究所 地質調査総合センター 地質情報研究部門 (AIST, Geological Survey of Japan, Research Institute of Geology and Geoinformation)

² 元産業技術総合研究所 地質調査総合センター 地質情報研究部門 (previously AIST, Geological Survey of Japan, Research Institute of Geology and Geoinformation)

³川崎地質株式会社 (Kawasaki Geological Engineering Co., Ltd.)

20km

- 第1図 重力測定点分布図.背景の陰影図は地形.50mメッシュ DEM (国土地理院,1997)との海底地形デジタルデータ(日本海洋データセンター,2012)を使用.水深のコンター間隔は5m.青の十字:既存の重力測点.水色の十字:海底重力測点および新規の陸上測点.A-B:海底重力探査測線.赤の実線:伊勢湾の活断層分布(水野ほか,2009).①:伊勢湾断層,②:内海断層,③:鈴鹿沖断層,④:白子一野間断層,⑤:白子沖海脚,⑥:鈴鹿沖海脚.
- Fig. 1 Distribution of gravity stations. Shaded terrain relief is superimposed. The 50 m mesh DEM (GSI, 1997) and Bathy-Topography Digital Data (JODC, 2012) were used. Bathymetric contour interval is 5 m. Blue crosses: Pre-existing gravity stations. Light blue crosses: Ocean bottom gravity stations and newly land gravity stations. A-B: Ocean bottom gravity survey line. Red solid lines show offshore active faults after the Mizuno *et al.* (2009). Circled numbers show active faults (Mizuno *et al.*, 2009) and marine topography. 1: Ise Bay Fault, 2: Utsumi Fault, 3: Suzuka-oki Fault, 4: Shiroko-Noma Fault, 5: Shiroko-oki Spur, 6: Suzuka-oki Spur.

状や急変部の位置が断層分布と関連を持つ場合が多い ことから、地下の断層構造を推定する有力な調査手法 となっている.また、重力データの編集により、浅部 地下構造も広域的かつ面的に把握することができる. 伊勢湾東部には伊勢湾断層帯、西部には鈴鹿沖断層、 湾中央部には東西方向に白子-野間断層等の存在が知 られている.そこで、令和元年度には、伊勢湾沿岸域 の三重県四日市市沖から鈴鹿市沖にかけての海域にお いて、海底重力調査を実施した.当該海域では、半世 紀前に海底重力調査が実施されており(中条・須田、 1971)、重力異常分布の概略が分かっている.しかしな がら、測点間隔は2km~3kmのため、詳細な重力異 常の変化を捉えられていない可能性もある.また,半 世紀を経て重力計や位置測量装置も更新され,既往の 測定データの信頼性を確認する必要もある.そこで, 今回,上記の目的のため,加えて海陸に渡る断層の連 続性や構造を明らかにするため,当該地域において測 線上に測点を海底重力調査としては高密度に配置し海 底重力測定を実施した.

2. 調査地域と編集データ

2019年7月下旬~8月上旬に伊勢湾沿岸域の四日市 市沖から鈴鹿市沖の水深50m以浅の海域で,250mの 第1表 伊勢湾沿岸域海底重力調査の仕様.

Table 1 Outline of the ocean bottom gravity survey in the Ise Bay area, central Japan.

Survey period	July 27 – August 9, 2019
Survey area	Refer to Fig.1
Survey vessel	Umikaze (No.295-46435), 19 tons, 17 m (Yamaguchi Marine Co.,
	Ltd.)
Station number	72 points
Navigation / Station location	DGPS
recovery	
Base ports	Shiroko Port, Suzuka, Mie Pref.
Reference absolute gravity station	Tsu GS (TSU, 34°44'04"N, 136°31'12"E, -1.26 m, 979714.99 mGal
	(JGSN2016)) (https://sokuseikagis1.gsi.go.jp/top.html)
Survey instruments	<u>At sea</u>
	Ocean bottom gravimeter: OBG-2 (Sensor: Scintrex CG-5 with
	custom software/hardware (No. 081240453), Canada)
	DGPS: Crescent R100, Hemisphere Inc., USA
	Navigation System: Navigation Software, Marimex Japan,
	Gyro: GyroTrac, KVH Industries, Inc., USA
	Echo sounder: PDR-1300, Senbon Denki, CVS-1410, Koden
	Electronics Co., Ltd.
	Pressure sensor: miniIPS, Valeport Ltd., UK
	CTD (Conductivity Temperature Depth profiler): MIDAS CTD,
	Valeport Ltd., UK
	On ground
	Land gravimeter: Scintrex CG-5 (No. 300900050), Canada
Contractor	Kawasaki Geological Engineering Co., Ltd.

測定間隔で測線上に測点を設けて海底重力計を用いた 重力調査を実施した. 当該地域では1970年代前半に当 時の地質調査所により LaCoste& Romberg 社 H 型海底 重力計を用いた重力調査が行われており(中条, 1971; 中条・須田, 1971, 1972), 伊勢湾では 326 点, 伊勢湾 湾口部で 54 点,三河湾で 143 点,計 523 点の測定がな されている(中条・須田, 1972).また,併せて陸上で も重力調査が行われ、383 点の測定がなされた(中条・ 須田, 1972). また, 海底重力の測点間隔は2km~3 kmの格子状に近い配置がなされている. なお, 重力探 査に用いられた探査機材の詳細については中条(1971) に詳しい.これによると、測位はオーディスターと呼 ばれる電波測量機(精度10cm)を用いて実施している. 半世紀前とはいえ測点配置などの調査仕様は今日でも 十分通用するものだが、測位については現行の GNSS 測位に比べ実用精度に関しては劣る事が予想される. したがって,当該地域で同程度の測点密度で海底重力 測定が新たに実施できれば、半世紀前のデータの精度 を検証し、かつより詳細な重力異常分布が得られるこ とが期待できる.しかしながら,限られた予算のなか で上述の調査の実施は困難なため、今回は伊勢湾で実 施された音波探査測線に関連した測線を設定し、測線 状に重力調査を実施した.当初は、複数の測線を想定 したが、沿岸域プロジェクトで新たに実施された音波 探査結果を参考に、効率の観点から単一の測線で調査 を実施している.従来の海底重力調査では二次元分布

の測点配置をとっており、今回が初めての測線配置での調査となった.

伊勢湾沿岸域では、水深が浅く、かつ 250 m の測点 間隔の測線上での測定であったため、調査船の移動時 間も少なく通常の海底重力調査と比べ効率的に調査が 行えたのが特徴である.ちなみに、測定点の水深の最 深値は測点番号 72 の 31.98 m であった.

測定点分布図を陸域データ,船上重力データととも に第1図に示す.海底重力の測定点数は72点となった.

3. 海底地形データ

海底重力データの補正で留意せねばならないのは, 測点周辺で精密な地形データによる地形補正が必要で あることである.今回,日本海洋データセンターによ る海底地形デジタルデータ M7000 シリーズのうち当該 地域である遠州灘 M7002 を基礎データとして用いて地 形補正に使用する DEM のメッシュ構成に合わせてメッ シュ化した.地形補正の精度を確保するため沖合域も 含め極近傍・近傍地形補正用の 200 m メッシュの DEM を作成した.なお,重力の測定は,伊勢湾の水深が浅 いため,水深値は 13.32 m ~ 31.98 m となった.

4. 調査の方法

今回の調査の仕様を第1表に示す.基本的に使用機

第2図 海底重力調査の模式図.

Fig. 2 Schematic diagram of the ocean bottom gravity measurement.

写真1 海底重力調査船. Photo 1 Survey vessel, Umikaze, 19 tons, 17 m (Yamaguchi Marine Co., Ltd.).

写真 2 海底重力調査風景. Photo 2 Ocean bottom gravity measurements.

材などは相模湾での調査(大熊ほか,2016)と同様で ある.

海域での重力測定は,産業技術総合研究所で所有す る海底重力計を使用した(平成21年度製作;大熊ほか, 2010). 使用した海底重力計は、センサー部に Scintrex 社製の CG-5 にハードウエアとソフトウエアの一部にカ スタマイズを施したものを利用し、更に、システム制 御部やデータ収録部を加えて耐圧容器に収納されたも のである.測定システムの概要を第2図に、測定に使 用した調査船を写真1に、また調査の様子を写真2に 示す.本システムは、海中に投入後は全てオフライン でデータを収録できるので船上から制御しながら測定 せねばならない LaCoste & Romberg 社製の海底重力計 (HG-22) システムに比べ簡便で、ウインチやケーブル も小型で済む特徴がある. なお, 日本国内で使用可能 な海底重力計としては東京大学地震研究所所有(藤本 ほか, 1998) のものがあり, 平成 20 年度に本研究の一 環として実施された能登半島北部沖の海底重力調査に 使用された.また,最近では民間の応用地質(株)・総 合地質調査(株)が Scintrex 社の INO 海底重力計を導 入している. こちらはアーマード・ケーブルを介して 船上の制御装置で重力観測値をリアルタイムで表示す ることが可能だが、ケーブルの太さから大きめのウイ ンチが必要となるなど産総研の海底重力計に比べやや 大がかりとなる. さらに、最近、川崎地質(株) は産 総研所有の海底重力計と同様なセンサー部に Scintrex 社製のCG-5にハードウエアを持つ海底重力計を開発 し,海底熱水鉱床の調査等に適用している(押田ほか, 2020).

測定作業は令和元年7月27日~8月8日(移動日等 も含む)に実施した.このうち,移動,陸上重力測定, 艤装および艤装解除を除いた実質的な海底重力調査の 期間は7月30日~8月7日の9日間である.内訳は調 査実施日(出航日)が9日で待機日は0日であった. 台風の影響で波高がやや高い日もあったが,調査地が 内湾であったことに加えて,前回の相模湾東部と同様 に使用した調査船(写真1)が今までよりもやや大型で 安定性が高かったことで稼働率の高さにつながった.

実際の測定は、海底重力システム(写真2)を19トンの調査船(うみかぜ;写真1)に搭載し、測定点においてウインチ操作で重力計を海底に着底させ、約10分程度海底に静止状態で設置し自動収録する方法である(第2図).調査地点までの誘導は、GPS装置と音響測深器を併用した.測定の精度は、陸上重力計と同様に重力計が如何に水平に保持されるかにかかっているが、本システムでは耐圧容器内にある自動姿勢制御機構により水平が保持され、更に、重力値はレベル補正が施される.精度は、陸上用重力計と同じで、約0.01 mGal

写真 3 白子港重力基点. Photo 3 Gravity base station at the Shiroko Port.

- 写真4 津第二地方号合同庁舎地下室内に設置されている一 等重力点(津 GS).
- Photo 4 First-order gravity station, Tsu GS (the second common building for government offices in Tsu, Tsu, Mie Pref.).

である. なお,海底重力計の器械定数チェックのため の測定は,2019年7月18日に海底重力調査に先だって 東京都港区の川崎地質(株)本社ビルと筑波山重力検 定点との間で行った.今回の検定ルートは最大で189 mGalの重力差がある.

海底重力測定は, 鈴鹿市の白子港に設置した重力基 準点(写真3)での閉塞測定により行った. 基点での重 力測定は出港前と帰港後にそれぞれ実施し, 閉塞時間 は1日以内とした.

白子港に設置した重力基準点の絶対重力値(日本重 力基準網 1996 に準拠)は、7月29日に実施した津第 二地方号合同庁舎地下室内に設置されている一等重力 点(津GS)(写真4)を基点とした2往復の閉塞測定に より求めた。

なお, 基点の重力値を得るには, Scintrex CG-5 (No.300900050)陸上重力計を用い, 検証測定として LaCoste & Romberg 社製G型陸上重力計G-911を用いた. 結果として,両者は数10µgal で概ね整合したが、G-911 は重力基準点での測定がなされていないので今回の絶 対重力値の接続には反映させていない.

海底重力の測定地点の位置測量は、DGPS 航法システ ムで行った.DGPS 航法システムは、位置精度を高める ことのほか、海底重力計を海底に設置している間、調 査船が定点に留まらず重力計を牽引してしまう事態を 避けるためにも利用した.位置精度は約0.002'(実長約 4 m)以内である.

今回の調査海域は水深が浅く平坦な場所が多いこと から,基本的に高精度の圧力計(Valeport 社製 miniIPS) により水深値を決定したが,念のため音響測深データ も測定している.本調査で使用した音響測深機は PDR-1300(千本電気(株)製,発振周波数 200 kHz,指向角 6°)である.さらに補助として調査船装備の魚群探知 機((株)光電製作所製 CVS-1410,発振周波数 50 kHz(指 向角 58°×20°)/200 kHz(指向角 17°×6°))も使用した. PDR-1300と CVS-1410 は測深値をデジタル収録した. なお,CTD(Conductivity Temperature Depth Profiler)に よる測定を1日に1回実施し,圧力計による測定値か らの水深値への圧力補正を行った.また,同様にCTD の測定から音響測深機による水深データの音波補正を 行っている.

測点の音響測深機による深度は調査船が測点の直上 にいる海底重力計着底時の値とし,圧力計による深度 は計測値が落ち着く離底直前の値を採用した.これに 潮位補正を施して 0.05 m 以内の精度で決定した.潮位 補正用のデータは国土地理院鳥羽験潮所の毎時の実測 潮位データを国土地理院 HP から入手し,必要な時刻の 値をスプライン補間により求めた.

5. 重力データの処理手法および編集

ブーゲー異常図を作成するに当たり、陸域も含めて 統一した手法によって各種補正を行い、重力データを 編集した.地形補正に関しては、陸域・海域とも地球 の曲率による地形の球面効果を考慮した仮想扇形の集 合体で近似する方法で実施した(駒澤,1988).地形補 正に用いた標高(水深)データについては、陸域は国 土地理院作成の50mメッシュを用い、海域については、 日本海洋データセンターによる海底地形デジタルデー タM7000シリーズのうち当該地域である遠州灘M7002 を基礎データとして用いて地形補正に使用するDEMの メッシュ構成に合わせてメッシュ化した.

本調査域では、地形補正の精度を確保するため極近 傍・近傍地形補正用の 200 m メッシュの DEM を作成 した.また、ブーゲー補正については、陸域と同じよ うに海水準に一致する均質地球モデルからの残差密度

第3図 新規海底重力測点による伊勢湾沿岸域のブーゲー異常プロファイル. 仮定密度は 2.3g/cm³. プロファイル位置は第 1 図参照. (a) 標高断面, (b) ブーゲー異常プロファイル(青点と青線)とその一次トレンド(赤線), (c) 残差ブーゲー 異常プロファイル.

Fig. 3 Bouguer anomaly profile in the coastal zone of the Ise Bay area compiled from the newly observed data. Assumed density is 2.3g/ cm³. See the location of the profile in Fig. 1. (a) Topographic cross-section, (b) Bouguer gravity anomaly (blue dot and line) and its linear trend (red line), (c) Residual Bouguer gravity anomaly by a subtraction of the linear trend from the Bouguer gravity anomaly.

20km

第4図 既存測点による伊勢湾沿岸域のブーゲー異常. 仮定密度は 2.3 g/cm³. コンター間隔は 1 mGal. ①~④は第 1 図参照. Fig. 4 Bouguer anomalies of the coastal zone of the Ise Bay area compiled from pre-existing data. Assumed density is 2.3 g/cm³. Contour interval is 1 mGal. See also Fig.1 for the circled numbers.

がブーゲー異常に反映するよう海水を仮定密度の物質 で置き換える操作を行った.補正式については,無限 平板ではなく地形補正と同じ範囲の有限の球殻(球帽) による方法によった.測定重力値は,日本重力基準網 1996 (JGSN96) に準拠させ,地球規模の広域トレンド 除去(緯度補正)には正規重力式による値(測地基準 系 1980)を用いた.なお,これらの処理にはフリーエ ア補正も含まれているが,それは厳密にはポテンシャ ル論的なリダクションでないためブーゲー異常値を海 水準での値と考えるのは誤りで,あくまで海底(陸域 については地表面)の測定点での値と考えるべきもの である.

以上をまとめるとブーゲー異常 4g₀"は,

$$\Delta g_o^* = g + \rho B_s + T(\rho) + C_A - \left(\gamma - \beta h + 4\pi G \rho h H(h)\right)$$
(1)

[g-term] [γ -term] となる. ただし、g は測定重力値、 ρ は地殻の密度(仮 定密度)、 B_s は球面ブーゲー補正値、 C_A は大気補正値、 yは正規重力値, βは鉛直勾配, hは標高(深度の場合 は負値)で, H(h)は,以下とする.

$$H(h) = \begin{cases} 1 & (h < 0) \\ 0 & (h \ge 0) \end{cases}$$
(2)

水の密度を ρ_w とした陸域と海域の地形を合わせた全地 形補正値 $T(\rho)$ は,

$$T(\rho) = \rho \cdot T_L + (\rho - \rho_W) \cdot T_W = \rho \cdot T_C - \rho_W \cdot T_W$$
(3)

となる. 但し, T_c (単位密度換算) は, 測定面と地殻上 面に挟まれた地形補正値, T_L (単位密度換算) は, 測 定面と地殻上面もしくは水面で挟まれた部分の地形補 正値, T_W (単位密度換算) は, 水域部分による地形補 正値となる (駒澤, 1989). また, 球面ブーゲー補正を 実施したことにより球殻項を導入したことが従来と違 う点となっている.

20km

第5図 既存および新規測点による伊勢湾沿岸域のブーゲー異常. 仮定密度は 2.3 g/cm³. コンター間隔は 1 mGal. 測線 A-B および①~④は第1 図参照.

Fig. 5 Bouguer anomalies of the coastal zone of the Ise Bay area compiled from the pre-existing and newly observed data. Assumed density is 2.3 g/cm³. Contour interval is 1 mGal. See also Fig.1 for the line A-B and circled numbers.

6. ブーゲー異常

仮定密度を変えて検討を行ったところ,2.3 g/cm³の 場合に陸域の基盤岩の露出地域で重力異常のコンター パターンが滑らかになることから,陸域の表層の平均 的な密度として2.3 g/cm³を採用した.この仮定密度に 基づきデータを編集して,海底重力測線に沿ったプロ ファイル図(水深(標高値),ブーゲー異常,一次傾向 面残差重力異常)を作成し第3図に示す.また,既存 の陸域および海底の測点データから作成したブーゲー 異常図(第4図)と,既存の測点に今回新たに実施し た海底重力調査の測点を加えて作成したブーゲー異常 図(第5図)とを作成した.

重力データは以下の要領で編集を行った.編集面積 は約6,400 km²で編集に用いた重カデータの総数は7,715 点である.今回の編集では、日本重力 DVD-ROM(地 質調査総合センター,2013)による地質調査所と新エ ネルギー・産業技術総合開発機構のデータ,国際石油 開発帝石(株),(株)中日スタヂアム,米国国家地理 空間情報局(National Geospatial-Intelligence Agency), 名古屋大学の測定資料(Gravity Research Group in Southwest Japan, 2001),および国土交通省国土地理院の閲 覧資料を用いた.また,伊勢湾については海底重力計 によるため通常の陸域測定と統一した精度で編集され ている.

2019年に実施した海底重力調査結果について,第 3図を参照して簡単に述べる.水深プロファイル(第 3図(a))をみると,水深は北部の湾奥から南部の湾 口に向けて水深を増し,その途中の2箇所で水深が浅 い部分があり各々鈴鹿沖海脚と白子沖海脚(岡村ほ か,2013)に相当する.また,それら海脚の南方脚部 においては,各々鈴鹿沖断層と白子--野間断層(岩淵, 2000;水野ほか,2009)が分布する.ブーゲー異常プ ロファイル(第3図(b))においては,ブーゲー異常

第2表	既存および新規取得海底重力データの比較.	

Table 2 Comparison between the gravity values of the previously and newly observed data.

Previously observed data (Chujo and Suda, 1971)					Newly observed data (this study)				Differences			
NST	x1	y1	Ht1	BGA1	NST	x2	y2	Ht2	BGA2	Dist.	Ht	BGA
1121	(m)	(m)	(m)	(mGal)		(m)	(m)	(m)	(mGal)	(m)	(m)	(mGal)
94	652368.23	3853653.98	-21.40	-10.596	30	652168.37	3853668.79	-20.93	-10.554	200.41	0.47	0.042
97	652287.94	3849308.08	-25.90	-0.067	48	652244.34	3849167.94	-26.07	0.126	146.77	-0.17	0.193
145	652274.59	3844593.52	-30.90	10.170	66	652317.45	3844669.30	-30.87	10.241	87.06	0.03	0.071

NST: gravity station number, (x, y): x and y coordinate values in UTM 53 N, Ht: Height, BGA: Bouguer gravity anomaly, Dist.: distance.

は北部から南部に向かってほぼ一様に増大し,南北差 は約35mGalに及ぶ.ただし,一次傾向面残差の重力 プロファイル(第3図(c))を見ると3箇所で局所的 な高まりがあり,中央の高まりの南脚部が白子-野間 断層の位置に相当する.また,南部の高まりは3つの なかで最も顕著であるが,対応する表層の地質情報は 認められない.北部の高まりは3つのなかで最も振幅 が小さく,その南脚部が鈴鹿沖断層の位置に対応する が,丁度調査日の境界(7/31と8/1)でもあることか ら,重力測定に付随する原因の可能性もある.いずれ にしても,密度コントラストを考慮すると,重力異常 は表層の堆積層分布と言うよりは,佐藤・古山(2018) にあるような音波探査による反射断面図での音響基盤 の分布を反映していると考えられる.このため,今後, 音波探査結果との比較検討を実施する予定である.

また,第4図と第5図とを比較すると、少なくとも このスケール(原寸50万分の1)での1mGalコンター の重力図において大きな相違は認められず、伊勢湾に おける既往の海底重力測点が従来どおり使用可能であ ることを示している.事実、距離が大凡200m以内の 近接した測点間における重力値(ブーゲー異常値)の 差は、数10 μ Gal程度であるが、場合によっては100 μ Galを超える点もある(第2表).

次に,第5図を参照してブーゲー異常分布の概略の 特徴を述べる.

重力異常は、フィリピン海プレートの沈み込みによ る南から北に向かって重力異常が小さくなる広域傾 向面を除けば、概ね地形と相関を示している(駒澤、 2009). 知多半島以東の領家変成岩類および領家花崗岩 類の分布域では高重力異常が分布する.また、渥美半 島から志摩半島方向に中央構造線南方に高重力異常が 分布し、三波川変成岩類の分布と対応する.知多半島 とその北方は低重力域となるが、常滑市の西方海域の 伊勢湾では、局所的な高重力域が海岸線と平行に北北 西-南南東方向に分布する.付近に建設された中部国 際空港の事前調査で、当該海域には常滑層群(知多半 島の東海層群)が音波探査の基盤として認められ,ま たボーリングによってもその存在が確認されており, 高重力域は常滑層群の分布域に対応する可能性がある.

一方,濃尾平野や伊勢平野では低重力異常域となり, ボーリング調査により濃尾平野の地下には中新統を 覆って最大層厚1,500m以上の未~半固結堆積物(東海 層群および中部更新統以上の地層)が分布する(小松原, 2009)ことから,これらの分布に対応すると考えられる. 図面北西端および西端付近は,養老山地,鈴鹿山脈(共 に図画外)の縁辺部に位置し,高重力異常が分布し,各々 美濃帯付加コンプレックスおよび領家変成・深成岩類 の分布に対応する.

伊勢湾およびその周辺においては、湾口から湾奥の 濃尾平野および伊勢平野北部に向かってブーゲー異常 値が小さくなり、その範囲は大凡-37.8 mGal~38.4 mGal でその差は約76 mGal に及ぶ.前述のように湾奥 から知多半島の西方海域に約5mGalの高重力異常が分 布し、その西端付近に北北西-南南東方向の伊勢湾断 層が分布する.一方,知多半島南端部の伊勢湾断層延 長部には、内海断層が方向を北西-南東に変え海岸線 付近に分布するが、そこは重力異常の急変帯となり重 力値は大凡15mGal陸側が低くなる.伊勢湾のほぼ中央, 白子と津の中間地点の東方海域には東西方向に白子ー 野間断層が分布し、詳細に見るとこの南北で重力異常 分布の特徴が異なる. 断層の北側では大凡北方への単 調減少となるが、南側では水深が 30 m を超える部分の 東西に各々局所的な高重力異常帯が認められることか ら,当該海域では基盤深度が浅くなることが推察され る.

7. まとめ

伊勢湾沿岸域で浅部地下構造を把握するため海底重 力調査を測線上の72点で実施した.新規に測定した重 カデータを処理し,地形補正も行って仮定密度2.3g/ cm³のブーゲー異常を求めた.処理結果のプロファイル データを参照すると、ブーゲー異常は北部から南部に 向かってほぼ一様に増大し、南北差は約35mGalに及 ぶ.ただし、一次傾向面残差の重力異常を見ると3箇 所で局所的な高まりがあり、中央の高まりの南側が白 子-野間断層の位置に相当する.また、南部の高まり は3つのなかで最も顕著であるが、対応する表層の地 質情報は認められず伏在する基盤構造に対応すると思 われる.北部の高まりは3つのなかで最も振幅が小さく、 その南側が鈴鹿沖断層の位置に対応するが、重力測定 に付随する原因の可能性もあるため、今後詳細に検討 する必要がある.一方、今回新たに測定された海底重 カデータと約50年前に測定された既往の海底重力デー タとを比較すると大きな相違は認められず、親和性が 高いことが分かった.

謝辞:本調査に関連して地元漁業協同組合(三重県四 日市市,同鈴鹿市,同白塚,以上3漁協)にご協力い ただいた.ここに記して感謝申し上げます.

文 献

- 地質調査総合センター(2013)日本重力データベース DVD版.数値地質図 P-2,産業技術総合研究所地 質調査総合センター.
- 中条純輔(1971)伊勢湾北部の重力探査と海底重力計. 地質ニュース, no. 201, 5, 1–13.
- 中条純輔・須田芳朗(1971)伊勢湾北部の重力分布と その考察.地調月報,22,8,415-435.
- 中条純輔・須田芳朗(1972)伊勢湾南部と三河湾の重 力分布とその考察.地調月報,23,10,573-594.
- 藤本博巳・押田淳・古田俊夫・金沢敏彦(1998) 海底 重力計の開発.海洋調査技術, 10, 1, 25-38.
- Gravity Research Group in Southwest Japan (Representatives: Ryuichi Shichi and Akihiko Yamamoto) (2001) Gravity Measurements and Database of Nagoya University and Kyoto University, Gravity Database of Southwest Japan (CD-ROM). *Bull Nagoya University Museum*, Special Rept., no. 9.
- 岩淵 洋・西川 公・野田直樹・川尻智敏・中川正則・ 青砥澄夫・加藤 勲・安間 恵・長田 智・角谷 昌洋(2000)伊勢湾における活断層調査.水路部 研究報告, 36, 73-96.
- 国土地理院(1997)数値地図 50 m メッシュ(標高), 日本 II.
- 小松原琢 (2009) 3.8 地下地質. 20 万部の1 地質図 「名 古屋」(第3版),産業技術総合研究所地質調査総 合センター.
- 駒澤正夫(1988)仮想扇形地形による重力地形補正法.

測地学会誌,**34**, 11–23.

- 駒澤正夫 (1989) 海水準下測定のブーゲー異常の考え方. 測地学会誌, 35, 349-351.
- 駒澤正夫(2009)6. 重力異常.20万部の1地質図 「名 古屋」(第3版),産業技術総合研究所地質調査総 合センター.
- 桑原 徹(1975)濃尾形動盆地と濃尾平野. アーバン クボタ, no. 11, 18-20.
- 牧本 博・山田直利・水野清秀・高田 亮・駒澤正夫・ 須藤定久 (2004) 20 万部の1 地質図 「豊橋及び 伊良湖岬」. 産業技術総合研究所地質調査総合セン ター.
- 水野清秀・小松原 琢・脇田浩二・竹内圭史・西岡芳晴・ 渡辺 寧・駒澤正夫(2009)20万部の1地質図 「名 古屋」(第3版).産業技術総合研究所地質調査総 合センター.
- 日本海洋データセンター(2012)海底地形デジタルデー タ M7000 シリーズ(アスキーファイル). M7002 Ver. 2.0 遠州灘.
- 岡村行信・坂本 泉・滝野義幸・横山由香・西田尚久・ 池原 研(2013)伊勢湾に分布する布引山地東縁 断層帯東部海域部の位置・形状と過去の活動.活 断層・古地震研究報告, no. 13, 187-232.
- 大熊茂雄・駒澤正夫・押田 淳(2010)海底重力計の 製作と実海域試験.平成21年度沿岸域の地質・活 断層調査研究報告,産業技術総合研究所地質調査 総合センター速報, no. 54, 95-103.
- 大熊茂雄・駒澤正夫・伊藤 忍・押田 淳(2016)相 模湾東部沿岸域における海底重力調査. 平成27 年度沿岸域の地質・活断層調査研究報告,産業技 術総合研究所地質調査総合センター速報, no.71, 129–137.
- 押田 淳・立花冬威・角 知則・久保田隆二 (2020)
 海底重力計の開発と海底熱水鉱床探査への適用.
 物理探査, 73, 23–32.
- 佐藤智之・古山精史朗(2018)伊勢湾沿岸域における 反射法地震探査の概要.平成29年度沿岸域の地質・ 活断層調査研究報告,産業技術総合研究所地質調 査総合センター速報, no.76, 1–9.

鈴鹿市南部における第四系ボーリングコア試料の¹⁴C 年代測定と花粉分析 (速報)

Preliminary report of radiocarbon ages and pollen fossil analysis of Quaternary sediments in southern part of Suzuka City, Mie Prefecture, central Japan

佐藤善輝^{1*}·興津昌宏²·田中義文² SATO Yoshiki^{1*}, OKITSU Masahiro² and TANAKA Norifumi²

Abstract: Radiocarbon dating and pollen fossil analyses were carried out on two core samples, GS-SZK-1 and 2, drilled in southern part of Suzuka City, Mie Prefecture, central Japan to clarify the depositional environments and ages. The radiocarbon ages indicate that the units above the Unit 1-4 of GS-SZK-1 are likely to be Holocene deposit, while the Unit 1-5 is fluvial sediments during the Marine Oxygen Isotope Stage [MIS] 2. The radiocarbon ages and pollen fossil assemblage suggest that the Units 2-3 to 2-7 are Pleistocene. Abundance of *Lagerstroemia* indicates that the Unit 2-6 is MIS5 marine deposit. The results suggest that the comparison between the GS-SZK-1 and 2 cores in the previous work should be modified, and that there is no vertical displacement between them in Pleistocene, especially MIS5 marine deposit. This shows the possibility that the Suzuka-oki Fault, which located in the Ise Bay, does not extend into the land toward southwest.

Keywords: Ise Plain, Quaternary, pollen fossil, radiocarbon age, Suzuka-oki Fault

要 旨

鈴鹿市南部の計2箇所で掘削されたボーリングコア 試料(GS-SZK-1,2)について,放射性炭素年代測定お よび花粉化石分析を行い,堆積環境と堆積年代につい て検討した.得られた年代測定値から,GS-SZK-1コア は少なくともユニット1-4以浅がMIS1の海成層であり, ユニット1-5はMIS2の河川堆積物である可能性が高い. また,GS-SZK-2コアはユニット2-3以深が更新統で, サルスベリ属などの温暖な気候に特徴的な花粉化石を 多産することからユニット2-5および2-6がMIS5の堆 積物に対比される.この結果は,昨年度のGS-SZK-1・ 2コア間の地層対比に誤りがあることを示しており,両 コア間に地層の上下変位は認められない.このことは, 対象地域東側の海域に存在する鈴鹿沖断層の南西側延 長は陸域までは到達していない可能性が高いことを示 唆する.

1. はじめに

本報告では、「沿岸域の地質・活断層調査」プロジェ クトのうちサブテーマ「平野域の地質調査」として実 施した三重県鈴鹿市南部の第四系ボーリングコア試料 の放射性炭素(¹⁴C)年代測定並びに花粉化石分析の結 果について予察的に報告する.

鈴鹿市南部周辺では、陸域に養老一四日市断層帯南 端の四日市断層と布引山地東縁断層帯東部北端の千里 断層,海域に鈴鹿沖断層が分布する(第1図;岩淵ほか, 2000;岡村ほか,2013など).このうち、鈴鹿沖断層南 西側の陸域延長部については資料が不足しており、本 断層の連続性に関する検討が進んでいなかった.

このような問題点を踏まえ,活構造分布の議論に資 する資料を拡充することを目的として,著者らはこれ まで鈴鹿市南部における第四系地下地質分布に関する 調査を実施してきた(佐藤・水野,2018;佐藤ほか, 2019).佐藤ほか(2019)は計2箇所(GS-SZK-1,2)でボー リング掘削調査を実施し,両コアに海洋酸素同位体ス テージ(以下,MIS)5の海成層が含まれる可能性を指 摘した.しかしながら,佐藤ほか(2019)では年代資 料が十分に得られておらず,堆積年代に関する議論は 不十分であった.そこで,両コアについて¹⁴C年代測定 および花粉化石分析を実施したところ,佐藤ほか(2019) の解釈に誤りがあることが明らかになったので,本稿 で報告する.

2. 試料

GS-SZK-1 コアは鈴鹿市江島公園(北緯 34°50′

*Correspondence

1 産業技術総合研究所 地質調査総合センター 地質情報研究部門(AIST, Geological Survey of Japan, Research Institute of Geology and Geoinformation)

²パリノ・サーヴェイ株式会社 (PALYNOSURVEY Co. Ltd)

第1図 対象地域周辺の地質概況および地質断面図測線位置.地質分布は20万分の1日本シームレス地質図(産業技術総合研究所地質調査総合センター,2015)を簡略化して作成.

Fig. 1 Geological map around the study area and location of geological section. Geological map is modified from GSJ, AIST (2015).

15.4873", 東経 136° 35′ 55.6934"; 孔口標高 3.05 m) で 掘削された(第1図). 掘削深度は 24.75 m である. 佐 藤ほか(2019) は層相と火山灰分析結果からユニット 1-1~1-6の計6ユニットに区分し, それぞれユニット 1-1(深度 0.00 m~2.70 m)が盛土, ユニット 1-2(深度 2.70 m~3.72m)が埋土, ユニット 1-3(深度 3.72 m~5.51 m) が姶良丹沢テフラ(AT; 29,498~30,148 cal BP, Smith *et al.*, 2013) 以前に堆積した低位段丘構成層, ユニット 1-4(深度 5.51 m~8.61 m)が MIS5 期の沿岸砂州堆積 物, ユニット 1-5(深度 8.61 m~14.83 m)が MIS6 以 前の河川堆積物, ユニット 1-6(深度 14.83 m~24.75 m) が東海層群と解釈した.

GS-SZK-2 コアは鈴鹿市鼓ヶ浦駐車場(北緯 34°49′ 18.2447″, 東経 136°34′57.0183″; 孔口標高 1.68 m) で 掘削された(第1図). 掘削深度は 34.12 m である. 層 相からユニット 2-1 ~ 2-7 の計 7 ユニットに区分し, そ れぞれユニット 2-1 (深度 0.00 m ~ 2.57 m)が埋土, ユニット 2-2 (深度 2.57 m ~ 4.65 m) が湖沼 (養殖池) 堆積物と完新世の河川堆積物,ユニット 2-3 ~ 5 (深度 4.65 m ~ 16.53 m) が低位段丘構成層,ユニット 2-6 (深 度 16.53 m ~ 19.72 m) が MIS5 期の潮間帯干潟堆積物, ユニット 2-7 (深度 20.00 m ~ 34.12 m) が東海層群と 解釈した.

3. 方法

GS-SZK-1 および2 コアからそれぞれ3 点の年代測 定試料を採取し, AMS 法による放射性炭素年代測定 を加速器分析研究所に依頼して実施した.年代測定結 果はCALIB 7.1 (Stuiver *et al.*, 2019)を用いて行い, 暦 年較正のためのデータセットとして陸域試料にはInt-Cal13.14c (Reimer *et al.*, 2013)を,海域試料(貝化石) には Marine13.14c (Reimer *et al.*, 2013)を使用した.

また, GS-SZK-1 および2コアからプラスチック製

Site	Depth (m)	Material	δ13C (‰)	Convential age (yrBP)	Calibrated age (cal BP)	Probability %	Median Probability (cal BP)	Dataset
GS-SZK-1	3.89-3.92	plant fragments	-26.34 ± 0.21	$190~\pm~20$	0 - 20	18.6	178	IntCal13
					144 - 215	60.0		
					267 - 289	21.4		
	6.49	plant fragments	-9.64 ± 0.29	$1910~\pm~20$	1819 - 1896	100.0	1857	IntCal13
	8.42-8.47	shell	-0.53 ± 0.24	$2520~\pm~20$	2117 - 2286	100.0	2197	Marine13
GS-SZK-2	3.10-3.20	plant fragments	-27.09 ± 0.25	Modern				
	7.40-7.48	wood fragments	-28.13 ± 0.21	>54010				
	13.38-13.43	wood fragments	-26.85 ± 0.21	>54010				

第1表 放射性炭素年代測定値一覧. Table 1 List of radiocarbon ages.

キューブを用いてそれぞれ 4, 11 点の試料を分取し, 花粉化石分析に用いた.各試料から 20 g を秤量し,塩 酸によるカルシウムの除去,フッ化水素酸による泥化, 水酸化カリウムによる腐植酸の除去,0.25 mm の篩に よる篩別,重液による有機物の分離,フッ化水素酸に よる鉱物質の除去,アセトリシス処理による植物遺体 中のセルロースの分解を行い,花粉を濃集した.残渣 をグリセリンゼリーで封入してプレパラートを作成し, 400 倍の光学顕微鏡下で同定・計数した.同定は現生標 本,Erdman (1952, 1957), Faegri and Iversen (1989),島 倉 (1973),中村 (1980),藤木・小澤 (2007) などを 参照した.

4. 結果

1) ¹⁴C 年代測定(第1表)

GS-SZK-1 コアでは, 深度 3.89 m ~ 3.92 m の植物片 から 0 ~ 289 cal BP (2σ, 以下同様), 深度 6.49 m の植 物片から 1,819 ~ 1,896 cal BP, 深度 8.42 m ~ 8.47 m の 貝化石から 2,117 ~ 2,286 cal BP の年代測定値が得られ た (第 2 図 A, 第 1 表).

GS-SZK-2 コアでは, 深度 3.10 m ~ 3.20 m の植物 片が modern を示し, 深度 7.40 m ~ 7.48 m および深度 13.38 m ~ 13.43 m から採取した木片は測定限界よりも 古い年代測定値(54,010 cal BP よりも前)を示した(第 2 図 B, 第1表).

2) 花粉化石分析

GS-SZK-1

深度 15.25 m ~ 15.27 m, 深度 16.70 m ~ 16.72 m, 深 度 17.70 m ~ 17.72 m および深度 24.20 m ~ 24.22 m の 試料について分析を実施したが,いずれの試料からも 花粉化石が検出されなかった(第2図A).

GS-SZK-2

花粉化石は, 最上位の1点(深度5.72m~5.74m) を除くすべての試料から検出された. 花粉化石群集の 傾向は組成が連続して変化しギャップはみられないものの,花粉組成より大きく上部・中部・下部の3つの花粉帯にわけることができる(第2図B).

花粉帯上部(深度 7.54 m ~ 7.56 m から深度 8.40 m ~ 8.42 m) は木本花粉が多く,スギ属 Cryptomeria,ハンノキ属 Alnus,コナラ亜属 Lepidobalanus が多くみられる. 草本花粉は少ない.

花粉帯中部(深度 12.50 m~12.52 mから深度 19.38 m~19.40 m)は木本花粉が多く,サルスベリ属 Lagerstroemia,ブナ属 Fagus,ハンノキ属 Alnus,マツ属 Pinus などが産出する.木本花粉のうち,ハリゲヤキ属 Hemiptelea,フウ属 Liquidambar,サルスベリ属は消滅種で ある.草本花粉はほとんど産出しない.深度 17.42 m~ 17.44 m 以浅の 3 点は有機物の分析残渣が下位に比べて やや多く,モミ属 Abies,ツガ属 Tsuga,マツ属などの 針葉樹花粉が多い.

花粉帯下部(深度 25.45 m ~ 25.47 m から深度 34.61 m ~ 34.67 m)は木本花粉が多く、スギ属とコナラ亜属がやや多い特徴を示し、これらに加えてモミ属、マツ属、ハンノキ属、ニレ属 Ulmaceae ケヤキ属 Zelkova などを含む.また、消滅種であるハリゲヤキ属、フウ属、サルスベリ属も少量ではあるが産出する.草本花粉ではイネ科 Oryza やカヤツリグサ科 Cyperaceae などを含むが、いずれも低率である.水生シダ植物であるミズワラビ属 Ceratopteris の胞子が産出する.

5. 考察

1) GS-SZK-1 コアの堆積時期

佐藤ほか(2019) はユニット 1-3 中の深度 3.73 m ~ 3.75 mにAT テフラが挟在することから,これよりも上位の ユニット 1-2 および 1-1 を盛土・埋土を含む沖積層と解 釈した.しかしながら,本研究でユニット 1-4 中の深 度 6.49 m や深度 8.47 m から得られた年代測定値は,少 なくともユニット 1-4 以浅が MIS5e の海成層ではなく, MIS1 の海成層であることを示している.従って,ユニッ ト 1-3 最上部で見いだされた AT テフラは再堆積したも

第2区

草本花粉・シダ A:GS-SZK-1 コア, B:GS-SZK-2 コア. 複数種をハイフンで結んだものは種類間の区別が困難なものを示す. 木本花粉は木本花粉総数を, それぞれ基数として百分率で出現率を算出した。+印は産出頻度が1%未満であることを示す。 類胞子は総数から不明花粉を除いた数を,

Geological columns and pollen fossil diagram. Fig. 2

A: GS-SZK-1 core, B: GS-SZK-2 core. Pollen connected by hyphens indicates that it is difficult to distinguish between them. Each pollen frequency (%) of trees and shrub pollen is based on the total sum of them, that of herbs and ferns pollen is based on the total sum of all pollen except for unknown pollen. The plus sign (+) indicates that the frequency is less than 1%. のである可能性が高い. ユニット1-3 は,砂礫を主体 とする下部(深度3.92 m ~ 5.51 m)とシルトを主体と する上部(深度3.93 m 以浅)に細分され(佐藤ほか, 2019),ユニット1-3上部は基底部に黒色を呈する腐植 質シルトを伴っている.このコアの掘削地点がかつて 養殖池として利用されていたことや上述した年代測定 値を考慮すると,ユニット1-3上部は養殖池の堆積物 とそれを覆う埋土層と考えるのが妥当である.ユニッ ト1-4 が沖積層の一部と推定されることから,ユニッ ト1-5 は MIS6 ではなく,少なくとも MIS5 よりも新し い海退期~最終氷期(MIS2)の河川堆積物である可能 性が高い.

2) GS-SZK-2 コアの堆積環境・堆積時期

佐藤ほか(2019)はGS-SZK-2コアのユニット2-2 以浅を埋土を含む沖積層と解釈した.本研究で得られた¹⁴C年代測定値からユニット2-2が沖積層,ユニット 2-4および2-5が更新統であることを示唆する.また, ユニット2-4以深の花粉化石組成は,温暖な場所に生 育する樹木(アカガシ亜属やサルスベリ属など),冷涼 な場所に生育する落葉樹(ブナ属やコナラ亜属など), 針葉樹(マツ属やモミ属,ツガ属など)が混在しており, 最終間氷期よりも古い堆積物の特徴(那須,1991)と一 致する.従って,¹⁴C年代測定値と花粉化石分析結果は 佐藤ほか(2019)の解釈と調和的であるといえる.

次に,各花粉帯の組成から堆積環境や堆積年代につ いて考察する.花粉帯下部は佐藤ほか(2019)のユニッ ト2-7に相当し、水生シダ植物を含み、スギ属、ハンノ キ属、コナラ亜属などの河畔や湿地に飼育する木本類 や水生シダ植物のミズワラビ属を産出する. これらの 特徴から、花粉帯下部(ユニット2-7)は河口付近の沼 沢地で堆積したと推定される.本花粉帯は、消滅種で あるサルスベリ属やハリゲヤキ属,フウ属が産出する. なかでも,温暖な気候を示唆するサルスベリ属は,現 在の本州の自然植生では存在しないものの, MIS5 では 多産する事例が多く報告されている(例えば,水野ほか, 2004; Hayashi et al., 2010 など). 上位の花粉帯中部が海 成層と推定されること(後述)を考慮すると,花粉帯 下部は MIS6 から MIS5 にかけての堆積物である可能性 がある. なお, フウ属は本州各地で MIS13 ~ MIS15 頃 を境としてほとんどみられなくなることが報告されて おり(楡井・本郷, 2018 など), 東海層群などの古い地 層から再堆積したと推定される.

花粉帯中部はユニット2-5および2-6(佐藤ほか, 2019)に相当し、サルスベリ属が多く産出することで 特徴づけられる.サルスベリ属のほかには、ブナ属、 ハンノキ属などの花粉が産出するが、際だって多い種 類は認められない.これは、集水域が広く、様々な場 所から花粉化石が流されて堆積した可能性を示唆する. また, 深度 12.50 m ~ 12.52 m, 深度 16.65 m ~ 16.68 m および深度 17.42 m~ 17.44 m ではマツ属, モミ属, ツ ガ属などの針葉樹のマツ科花粉が多い.マツ科の花粉 は風媒花で生産量が多く、かつスポロポレニンの含有 量が高く風化に強いため、相対的に堆積物中に残りや すい. また、マツ属花粉は浮遊しやすく水の動きに敏 感であり、沖合ほどその割合が高くなるとされる(松 下,1981など).従って,花粉化石が陸域から海域に 流されて堆積した結果, マツ科の割合が相対的に高く なった可能性が考えられる. 佐藤ほか (2019) はユニッ ト2-6 で Paralia sulcata などの汽水~海水生珪藻が多 産することを報告しており、この推論と調和的である. これらの特徴から、花粉帯中部に相当するユニット2-6 は MIS5 の海成層である可能性が極めて高いと考えれ る. ユニット2-5 は海成層を覆う砂礫層であることから, MIS5 以降に堆積した粗粒なデルタ堆積物または海浜堆 積物と推定される.

花粉帯上部はユニット 2-4 (佐藤ほか, 2019) に相当 する.スギ属,ハンノキ属などの湿地を好む木本類が 多産することから,海水の影響が及ばない淡水域になっ たと推定される.下位の花粉帯中部が MIS5 の海成層で あるとすると,この層位は少なくとも MIS5d 以降の海 退期に堆積したと考えられる.

3) 地下地質分布

ここまでの議論から, 佐藤ほか (2019) の示した GS-SZK-1, 2 コアの地層対比に誤りがあったことが明 らかになった. 佐藤ほか (2019) は, GS-SZK-1 コアの ユニット 1-4 と GS-SZK-2 コアのユニット 2-6 をともに MIS5 の海成層と解釈し, これが約 11 m ~ 12 m の高度 差を持つことから両地点間に活断層が存在する可能性 を指摘した. しかしながら, GS-SZK-1 コアのユニット 1-4 は MIS1 の海成層と考えられることから, 両ユニッ トは対比されない.

前節までの堆積環境・堆積時期の解釈を踏まえて, 佐藤ほか(2019)の地質断面図の解釈を修正した(第 3図).GS-SZK-2コアのユニット2-6は,貝化石や汽水 ~海水生珪藻の産出(佐藤・水野,2018)から測線中 央部のSSU-2コアのユニットB-1まで連続的に追跡で きる.この地層は,GS-SZK-1コアのユニット1-6を含 む東海層群にアバットするように分布する.これより も上位は,GS-SZK-2コアのユニット2-5および2-3に 対比される2層の砂礫層とユニット2-4に対比される1 層の砂泥層から成り,側方に比較的よく連続する.GS-SZK-1コアのユニット1-5のうち,深度10mより下位 の粗粒な層準がユニット2-4に対比される可能性がある.

これらの地層のうち、上位の砂礫層は GS-SZK-1 コアの 約 600 m 南西側で連続性が不明瞭になるものの、下位 の 2 層準についてはさらに北東側に連続し、GS-SZK-1 コアよりも約 600 m 北東側で東海層群にアバットする. 沖積層の基底は標高 -2 m 前後に位置し平坦面を成して いるが、GS-SZK-1 コア周辺では標高 -5 m 前後とやや 深くなっている.

上述の地下地質分布の解釈からは MIS5 海成層を含 む更新統に顕著な上下変位は認められない.このため, GS-SZK-1,2コア間に活構造が存在しているとは考え にくく,鈴鹿沖断層は陸側に延長しない可能性が高い. 地質断面図(第3図)からは,MIS5海成層が南端部 で標高約-8 m,GS-SZK-2コアで標高約-15 m(ユニッ ト2-6の頂部),SSU-2で標高約-13.5 m に位置してお り,緩やかに北側に傾斜することが読み取れる.三重 県(2005)は本研究の対象地域の約3 km 西を北端とす る南北約10 kmの測線において反射法地震探査を実施 し,東海層群相当層と第四紀層が北傾斜することを示 している.本研究で確認されたMIS5海成層の分布傾向 は,三重県(2005)の示した大局的な地下地質構造と 調和的であるといえる.

文 献

- Erdman, G. (1952) Pollen morphology and plant taxonomy: Angiosperms (An introduction to palynology. I). *Almqvist & Wiksells*, 539p.
- Erdman, G. (1957) Pollen and Spore Morphology/Plant Taxonomy: Gymnospermae, Pteriodophyta, Bryophyta (Illustrations) (An Introduction to palynology. II), 147p.
- Faegri, K. and Iversen, J. (1989) Textbook of Pollen Analysis. *The Blackburn Press*, 328p.
- 藤木利之・小澤智生(2007)琉球列島産植物花粉図鑑. アクアコーラル企画, 155p.
- Hayashi, R., Takahara, H., Yoshikawa, S., Inouchi, Y. (2010) Orbital-scale vegetation variability during MIS 6, 5, 4, and 3 based on a pollen record from the Takashima-oki core in Lake Biwa, western Japan. 日本花粉学会誌, 56, 5–12.
- 岩淵 洋・西川 公・野田直樹・川尻智敏・中川正則・ 青砥澄夫・加藤 勲・安間 恵・長田 智・角谷 昌洋(2000)伊勢湾における活断層調査.水路部 研究報告, 36, 73-96.
- 松下まり子(1981) 播磨灘表層堆積物の花粉分析-花粉組成と現存植生の比較-. 第四紀研究, 20, 89-100.
- 三重県(2005)平成16年度地震関係基礎調査交付金伊 勢平野に関する地下構造調査成果報告書.https://

www.hp1039.jishin.go.jp/kozo/Mie9frm.htm. (閲覧日: 2020 年 6 月 18 日)

- 水野清秀・須貝俊彦・八戸昭一・仲里裕臣・杉山雄一・ 石山達也・中澤 努・松島紘子・細矢卓志 (2004) ボーリング調査から推定される深谷断層南東部の 地質構造と活動性.活断層・古地震研究報告, 4, 69-83.
- 中村 純(1980)日本産花粉の標徴I・II.大阪市立自 然史博物館収蔵試料目録,第12・13集,大阪市立 博物館.
- 那須孝悌(1991)ナウマンゾウをめぐる古環境. 亀井 節夫編「日本の長鼻類化石」築地書館, 170–179.
- 楡井 尊・本郷美佐緒 (2018) 中部日本における前期 末~中期更新世の花粉生層序.第四紀研究, 57, 143-155.
- 岡村行信・坂本 泉・滝野義幸・横山由香・西田尚央・ 池原 研(2013)伊勢湾に分布する布引山地東縁 断層帯東部海域部の位置・形状と過去の活動.活 断層・古地震研究報告, 13, 187-232.
- Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidison, H., Hajdas, I., Hatté, C., Heaton, T., Hoffmann, D. L., Hogg, A., Hughen, K. A., Kaiser, K., Kromer, B., Manning, S. W., Niu, M., Reimer, R., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. and Plicht, J. (2013) IntCal13 and MARINE13 radiocarbon age calibration curves 0-50000 years calBP. *Radiocarbon*, 55, 1869–1887.
- 佐藤善輝・水野清秀(2018)伊勢平野北部・鈴鹿市南 部における第四紀堆積物の地形・地質調査(予報). 平成29年度沿岸域の地質・活断層調査研究報告, 産業技術総合研究所地質調査総合センター速報, no.76, 11-18.
- 佐藤善輝・水野清秀・中島 礼(2019) 三重県鈴鹿市 南部における第四系ボーリング調査(速報). 平 成 30 年度沿岸域の地質・活断層調査研究報告,産 業技術総合研究所地質調査総合センター速報, no. 79, 95-106.
- 産業技術総合研究所地質調査総合センター (2015) 20 万 分の1日本シームレス地質図 2015年5月29日版. 産業技術総合研究所地質調査総合センター.
- 島倉巳三郎(1973)日本植物の花粉形態.大阪市立自 然科学博物館収蔵目録,第5集,60p.
- Smith, V.C., Staff, R.A., Blockley, S.P.E., Ramsey, C.B., Nakagawa, T., Mark, D.F., Takemura, K., Danhara, T., Suigetsu 2006 Project Members (2013) Identification and correlation of visible tephras in the Lake Suigetsu

SG06 sedimentary archive, Japan: chronostratigraphic markers for synchronizing of east Asian/west Pacific palaeoclimatic records across the last 150 ka. *Quaternary Science Reviews*, **67**, 121–137.

Stuiver, M., Reimer, P.J., and Reimer, R.W. (2019) CALIB 7.1 [WWW program] at http://calib.org/calib/. (閲覧日: 2020年4月24日)

三重県松阪市, 櫛田川下流域における第四系ボーリング調査(速報) Preliminary report of coring survey of Quaternary sediments in the lower reach of Kushida River, Mie Prefecture, central Japan

佐藤善輝 ^{1*}

SATO Yoshiki^{1*}

Abstract: To clarify the stratigraphy and ages of the subsurface geology in the lower reach of Kushida River, Matsusaka City, central Japan, a 40 m-long core, GS-KSD-1, was obtained. Core observation, X-ray CT imaging and soft X-ray imaging were performed on the core materials. The GS-KSD-1 core is roughly divided into 3 units, Units A to C in descending order. Unit A is Late Pleistocene to Holocene alluvial deposits, so-called "Chuseki-so", and is subdivided into three subunits A-1 to A-3: Subunit A-1 is delta front and delta plain deposits, subunit A-2 is prodelta deposits, and subunit A-3 is wave cut terrace or tidal flat deposit. Units B and C are suggested to be gravely fluvial deposits and flood plain deposits, respectively. These units seem to be laterally continuous. The subunit A-2 is distributed about 4 km inland from the present coastline, suggesting that the area overlaps the maximum sea flooding area during the post-glacial transgression. The Unit B seems to be corresponding to the lower terrace deposits in the Tokuwa district, eastern Matsusaka City, but not to the lower terraces located in the central area of Matsusaka City. This suggests that the two terraces were formed at different time. The Unit C can be an incised valley fill before or during the Last interglacial.

Keywords: Kushida River, Chuseki-so, Quaternary, Ise Plain, Matsusaka City

要旨

地下地質の堆積年代を明らかにすることを目的とし て, 三重県松阪市の櫛田川下流域においてボーリング 調査を実施し, 掘削長40mのオールコア試料(GS-KSD-1 コア)を採取した.得られたコア試料について,コア 観察とX線CT画像撮影,軟X線写真撮影を実施した. コアは大きくユニットA~Cに区分される. ユニット Aは沖積層で、さらに3つのサブユニットA-1~3に 細分される. サブユニット A-1 がデルタフロント堆積 物およびデルタプレーン堆積物,サブユニットA-2が プロデルタ堆積物,サブユニットA-3が波蝕棚あるい は干潟堆積物と推定される.また,ユニットBは礫質 堆積物, ユニットCは氾濫原堆積物と考えられる. 各 ユニットは側方に連続的に追跡できる. ユニット A-2 は現在の海岸線から約4km内陸側まで分布し、縄文海 進によって形成された海域を近似的に示す. ユニット Bは松阪市徳和周辺の低位段丘面構成層に連続する一 方,松阪市街地の立地する低位段丘面とは連続しない ことから、両地形面の形成年代が異なる可能性が示唆 される. ユニットCは最終間氷期以前の谷埋め堆積物 である可能性がある.

1. はじめに

本稿では、「沿岸域の地質・活断層調査」プロジェク トのうちサブテーマ「平野域の地質調査」として実施 した三重県松阪市、櫛田川下流域における第四系ボー リング調査の結果について予察的に報告する.

伊勢湾南西岸に位置する雲出川から宮川にかけての 沿岸部には、海陸方向の幅約3km~8kmの臨海平野 が断続的に発達する(第1図;西岡ほか,2010).この 臨海平野は、西縁~南縁を主に領家深成岩類や一志層 群下部から構成される山地・丘陵と、東海層群基底部 の松阪層(森,1970;吉田1990)からなる丘陵によっ て区切られ、その海側に更新世段丘面と沖積低地が分 布する.沖積低地はさらに氾濫原と浜堤・砂丘列に細 分される(西岡ほか,2010).

対象地域周辺の更新世段丘面は主に河成段丘で,大 きく高位,中位,低位段丘面の3面に区分される(荒 木ほか,1963;木村・竹原,1965;木村,1968;Kimura, 1971,1972;西岡ほか,2010).高位段丘面は松阪市 転回25m前後である(第1図;木村,1968;Kimura, 1971,1972;西岡ほか,2010).高位段丘面を構成する

*Correspondence

¹ 産業技術総合研究所 地質調査総合センター 地質情報研究部門 (AIST, Geological Survey of Japan, Research Institute of Geology and Geoinformation)

第1図 対象地域周辺の地質概況と調査地点および地質断面図測線位置.地質分布は20万分の1日本シームレス地質図 (産業技術総合研究所地質調査総合センター,2015)を簡略化して作成.

Fig. 1 Geological map around the study area and location of GS-KSD-1 and geological section. Geological map is modified from GSJ, AIST (2015).

地層は駅部田礫層(木村,1968)と呼ばれ,松阪層を 不整合に覆う砂礫層で,風化した花崗岩や片麻岩の亜 円礫を多く含む.これらは五輪峠付近の高位段丘面を 構成する地層(五輪峠礫層;山田,1953)よりも新期 と推定されているが(木村・竹原,1965;木村,1968), 詳しい堆積年代は明らかにされていない.

中位段丘面と低位段丘面については、地形面対比に 統一的な見解が得られておらず、詳しい形成時期も不 明である.中位段丘面は津市久居付近から嬉野付近に 海成段丘面が広く分布するが、これよりも南側では分 布が不明瞭となる.木村・竹原(1965),木村(1968) および Kimura(1971,1972)は明和町〜明野町付近に分 布する段丘面(明野原面)を中位段丘面と解釈したが、 西岡ほか(2010)はこれらを低位段丘面と解釈してい る.明野原面は北側に傾斜して沖積低地との比高を減 じ、沿岸部で沖積低地下に埋没する.櫛田川沿いの松 阪市射和付近に広く分布する段丘面はいずれの研究で も低位段丘面と解釈されているが、これよりも櫛田川 の下流側では分布が局所的である.木村(1968)や西 岡ほか(2010)は松阪市徳和付近や松阪市市街地付近 に分布する段丘面を低位段丘面と解釈したが、いずれ も形成年代に関する資料は得られていない.

当該地域の地下地質については鈴木・日吉(1962) や赤嶺・日吉(1962)の研究がある.鈴木・日吉(1962) は多数のボーリングデータを整理し,更新統を海成層 である古伊勢湾層(赤嶺・日吉(1962)の下部粘土層) と陸成層の平田層および伊勢神戸層(赤嶺・日吉(1962) の下部砂礫層)に区分した.伊勢神戸層は平田層より も新期の堆積物で,基底に砂層を伴うとされている. 松阪市付近では古伊勢湾層を欠いており,基盤岩類(東 海層群)を平田層が直接覆うと考えられている.平田 層および伊勢神戸層は中位あるいは低位段丘面の構成 層と考えられるが,鈴木・日吉(1962)や赤嶺・日吉(1962) ではそれぞれの具体的な堆積年代を示す資料は示され

Fig. 2 Geological columnar of GS-KSD-1 core.

ておらず,地形面との関係性は明らかになっていない. 本研究では、上述した地形面やその構成層の編年に 関する問題点を踏まえ、沖積平野下に分布する堆積物 の堆積年代を明らかにすることを目的として、櫛田川 下流域で沖積層とその下位の細粒層を貫くオールコア 試料を採取した.本稿では、得られたコア試料の粒度 や堆積構造、色調などについて概況を報告する.

2. 調查方法

三重県松阪市の高須町多目的公園敷地内において, 孔径 86 mm,掘削深度 40 mのオールコアボーリングを 行った(第1図).掘削はロータリー式油圧型試錐機を 用いて実施した.また,GPS 測量によりボーリング孔 の孔口標高と位置座標を測定した.孔口の位置は北緯 34°35′56.82″,東経 136°34′06.81″で,孔口標高は 0.63 m である.

採取したコア試料を産総研に運搬し、X線CT画像の撮影、コア観察を実施した.X線CT画像撮影は、 Supria Grande(日立製作所製)を用いて、撮影時の電 圧 80 kV, 電流 120 mA の条件で実施し, スライス厚は 0.625 mm とした.得られた X線 CT データは画像解析 ソフトウェア OsiriX (Pixmeo SARL 社製)を用いて処 理し, 試料の鉛直断面像を作成した.X線CT画像撮 影後, コア試料を縦方向に半分に切断し, コア切断面 の写真撮影と粒度, 色調, 含有物などの観察,各種分 析用試料の採取を行った.また,土色計(コニカミノ ルタ製 SPAD-503)を用いて,コア表面の色調(明度(L*), a*, b*)を計測した.一部の試料については軟 X線写 真撮影を実施した.撮影は電圧 40 ~ 45 kV,電流 1.5 A, 照射時間 5 ~ 20 秒の条件下で行い,センサーはアール エフ株式会社製デジタル X線センサー NAOMI を用い た.

また,公的機関や地元自治体が所有する雲出川~宮 川流域の既存ボーリングデータを収集し,ボーリング 柱状図解析システム(木村,2011)を用いて解析を行っ た.提供元の内訳は,三重県が255本,松阪市が122本, 防災科学技術研究所が302本である.本稿ではこのうち, 松阪市街地周辺の32本分のデータを用いた.

第3図 GS-KSD-1 コアのコア写真および X 線 CT 画像 Fig. 3 Core photo and X-ray CT images of GS-KSD-1 core.

3. コアの記載と解釈

は人工改変土と推定される.

ら順に 2) A-2 (深度 5.97 m ~ 10.65 m)

本サブユニットは、未固結でオリーブ灰色~オリー ブ黒色を呈する極細粒砂混じりシルトからなり、植物 片や貝殻片を多く含む.また、全体に生物擾乱が認め られる(第3図B).色調はサブユニットA-1に比べて 明度が小さく、b*が大きい.本サブユニット基底(深 度10.45m~10.65m)にはオリーブ黒色を呈する淘汰 不良の粗粒砂~中礫混じり粘土がみられ、貝殻片を多 く含む.下位のサブユニットA-3との地層境界は明瞭 である.

このサブユニットは、未固結で貝化石を多く含むことから、後氷期の海進によって形成された海域の堆積物と推定され、細粒堆積物が卓越することからプロデルタ堆積物であると考えられる.サブユニット最下部の深度 10.45 m ~ 10.65 m は、海進ラグ堆積物の可能性がある.

3) A-3 (深度 10.65 m ~ 12.29 m)

本サブユニットは、未固結で、オリーブ灰色を呈す る淘汰の悪いシルト〜粘土混じり砂礫からなる.礫は 径 0.5 cm ~ 2 cm (最大で径 4 cm)の亜円~円礫が多く、 砂岩、花崗岩類を主体とする.まれに細かい貝殻片が 混入することがある.後述する下位のユニット B とは

GS-KSD-1 コアは, 層序・層相に基づき上位から順に 大きくユニットA~Cの3つに区分される(第2図). ユニットAはさらにA-1~3の3つのサブユニットに 細分される.

1. ユニットA (深度 0.00 m ~ 12.29 m)

1) A-1 (深度 0.00 m ~ 5.97 m)

本サブユニットは未固結で灰色~オリーブ灰色を呈 するシルト質極細粒砂~中礫からなり、上方粗粒化す る(第3図A).下位のサブユニットA-2との地層境界 は不明瞭である.深度4.00m以深はやや腐植質で、明 度が40未満でやや暗く、植物片や貝殻片が混じる.ま た、一部、平行葉理や生物擾乱が認められる.深度2.31 m以浅は細礫~中礫混じりの粗粒~極粗粒砂を主体と し、淘汰が悪い.深度0.75m以浅は褐色を呈し、角礫 や植物片が混じる.

このサブユニットは掘削地点が沖積低地に位置する ことから、人工改変土を含む沖積層最上部を構成する と考えられる.下位のサブユニット A-2 に比べて粗粒 で、上方粗粒化すること、基底部は貝化石を含み海域 で堆積したことが示唆されることから、デルタフロン ト堆積物(深度 2.31 m 以深)とそれを覆うデルタプレー ン堆積物に対比される可能性が高い.深度 0.75 m 以浅 色調の違いによって明瞭に区別でき、還元的な色調を 示す(第3図C).サブユニット最上部の深度11.0m以 浅はやや細粒で、オリーブ黒色のシルト混じり中粒~ 粗粒砂とそれを覆う黒色の腐植質な極細粒砂混じりシ ルトからなる.

本サブユニットは未固結で緩い砂礫層からなること から沖積層であると考えらえる. 貝化石を含有するこ とは、本サブユニットが陸域の礫質河川堆積物(=沖 積層基底礫層)ではなく、潮汐や波浪など、海水の影 響下で堆積した可能性を示唆する. 詳細な堆積環境の 解釈は微化石分析などを実施して検討する必要がある が、波蝕棚あるいは干潟などの環境が考えられる. 下 位のユニットBが砂礫質であることを考慮すると、本 サブユニットを構成する砂礫は下位からの再堆積であ る可能性がある.

2. ユニットB(深度 12.29 m ~ 26.11 m)

本ユニットは、黄褐色~暗オリーブ灰色を呈する細 礫~大礫を主体とする.礫は径1 cm~5 cmの亜円~ 円礫が多く、ところどころ径10 cm以上の玉石を含む. また、基質支持礫層と礫質支持礫層の互層を示す.最 上部の深度12.29 m~12.70 mは褐色~黒色を帯びる(第 3 図 C). 深度17.67 m~21.00 mは細粒で、シルトと中 粒~極粗粒砂の互層からなる.土色計による色調測定 結果は、この層準が上位のユニットAに比べてやや明 るく、赤・黄色の成分が強いことを示している.深度 18.13 m~18.30 mおよび深度18.40 m~18.47 mには 腐植質で明度が小さく、木片や植物片などが多く混じ る(第3 図 D).下位のユニットCとの地層境界は明瞭 である.

ユニットBは砂礫質で,基質支持礫層と礫質支持礫 層の互層を示すことから礫質河川堆積物と推定できる. ユニット中に挟在するやや細粒な層準は,腐植質な層 相を示すことから,流路から外れた湿地で堆積した可 能性が高い.

3. ユニットC(深度 26.11 m ~ 40.00 m)

本ユニットは、オリーブ灰色あるいは灰オリーブ色 を呈し、粘土~極細粒砂混じりシルトからなる泥層と 主に細粒砂~粗粒砂からなる砂層との互層から構成さ れる.砂層ではところどころ平行葉理あるいは低角斜 交葉理が認められる(第3図E).砂層は層厚10 cm ~ 数10 cm の上方粗粒化あるいは上方細粒化を示す砂層 の累積によって構成されている.また、まれに径0.5 cm 前後の亜角礫の細礫が混じる.泥層はしばしば植物 片を含んでおり、深度33.61 m ~ 34.20 m は特に植物 片や木片が多く、灰色を呈する腐植質シルトからなる. その下位の砂層中には、上位から混入したと推定され る植物根痕が多数認められる(第3図F). 色調は全体 にユニットA・Bと比べてばらつきが大きく,深度30 m付近を境として下位では上方に明度およびa*が減少 する傾向を示す. 深度30m付近より上位では,明度が 45以上,b*が5以上を示す層準が増加する.

本ユニットは, 貝化石を含まず, 腐植質な層準が認 められること, 上方粗粒化する砂層が多数認められる ことなどから, 氾濫原堆積物と推定される.

4. 地下地質分布

既存ボーリングデータとGS-KSD-1コアの観察結果 に基づき作成した測線 A-B および測線 A-C における地 質断面図を第4図に示す. 各測線の位置は第1図に示す.

GS-KSD-1 コアでみられたユニットA(沖積層)とユ ニットBの境界は、いずれの測線においても連続的に 追跡することができる.ユニットAは大局的にみると、 内陸側に向かって薄層化する傾向を示す.また、サブ ユニットA-2はGS-KSD-1コアよりも約2.5km内陸側 (現在の海岸線から約4km内陸側)まで分布しており、 縄文海進時に形成された内湾域を近似的に示すと推定 される.

次に、ユニットBの頂部に着目すると、両測線にお いて若干の差異が認められる. 測線 A-B では、ユニッ トB頂部はほぼ連続的に断面図南端まで連続しており, すぐ上流側に低位段丘面が分布すること(第1図)を 考慮すると、低位段丘面構成層に対比する可能性が高 いと考えられる. 層相や分布高度が類似することから, ユニットBは鈴木・日吉(1962)の平田層および伊勢神 戸層に対比されると考えられる. GS-KSD-1 コアを含 む下流側では礫層中に薄い砂層あるいは泥層を挟在す ることから、これよりも上位が伊勢神戸層に対比され る可能性がある.また、ユニットBの一部には沖積層 基底礫層が含まれる可能性もある.一方,測線 A-C で はユニット B 頂部を上流側にそのまま連続して追跡す ることはできず、西岡ほか(2010)が低位段丘面とし た地形面と沖積低地との間で礫層頂面の高度に約10m の不連続がある.西岡ほか(2010)の低位段丘面では, 既存ボーリングデータからユニットBよりも明度の大 きい黄褐色~茶褐色を呈する砂礫層を主体とし、半固 結する砂層を含む.従って、この「低位段丘面」構成 層はユニットBよりも古い可能性があり、ユニットB はこれらの地層を浸食して堆積している可能性が示唆 される.この場合,松阪市街地の立地する低位段丘面 と松阪市徳和付近の低位段丘面とは異なる時代の地形 面と考えなくてはならない.

ユニットCは測線 A-B においてユニット B の下位に 連続的に追跡することができる.測線上流側ではユニッ 佐藤善輝

Fig. 4 Geological sections along the A-B and A-C lines.

トCの下位にN値50未満の砂礫層が分布し,N値50 以上の固結した泥層を含む基盤岩(東海層群)を覆う. ユニットCも上位の地層と同様に上流側に向かって薄 層化する.ユニットCは氾濫原堆積物と考えられ,海 成層の古伊勢湾層(鈴木・日吉,1962)には対比され ない.このことは鈴木・日吉(1962)や赤嶺・日吉(1962) の示した古伊勢湾層の分布と調和的である.一方,ユ ニットCに対比される砂泥層は既存研究では報告され ておらず,N値10以下の軟弱な泥層を含むことを考慮 すると(第4図),当該地域の地下地質分布は再検討さ れる必要があるだろう. ユニットCは層序・層相から 最終間氷期以前の谷埋め堆積物に対比される可能性が ある.

今後, 放射性炭素年代測定, 花粉化石分析, 珪藻化 石分析などを実施し, 堆積年代や堆積環境を明らかに していく予定である.

謝辞:ボーリング調査にあたっては、松阪市上下水道 部に便宜を図って頂いた.ボーリング作業は阪神コン サルタンツ株式会社により実施された.コア観察作業 では地質情報研究部門の國本節子氏と諏訪有彩氏にご 協力頂いた. X線CT画像撮影では地質情報研究部門の 横井久美氏にご協力頂いた. 既存ボーリングデータの XMLファイル作成にあたっては,地質情報研究部門の 和田明美氏にご協力頂いた.以上の方々に深く感謝申 し上げる.

文 献

- 赤嶺秀雄・日吉 直(1962)第3章 伊勢湾南部臨海 地帯の地盤地質.建設省計画局・三重県編「伊勢 湾南部臨海地帯の地盤(都市地盤調査報告書第2 巻)」大蔵省印刷局.8-11.
- 荒木慶雄・山田 純・木村一朗(1963)三重県の第四系. 日本地質学会関西支部報, 51, 21-22.
- 木村克己 (2011) ボーリングデータ処理システムの公開. 産業技術総合研究所 TODAY, 11, no.1, 19.
- 木村一朗(1968) 三重県松阪市周辺の新生界の地質と
 地形.愛知教育大学研究報告(自然科学編), 17, 81-91.
- Kimura, I. (1971) Pleistocene Sediments and Geomorphic Development in the West Coast Area of Ise Bay, Japan Part 1. The Bulletin of Aichi University of Education (Natural Science), 20, 165–181.
- Kimura, I. (1972) Pleistocene Sediments and Geomorphic Development in the West Coast Area of Ise Bay, Japan Part 2. *The Bulletin of Aichi University of Education* (*Natural Science*), **21**, 125–150.
- 木村一朗・竹原平一(1965)伊勢湾南部沿岸の段丘. 第四紀研究, **4**, 69–81.
- 西岡芳晴・中江 訓・竹内圭史・坂野靖行・水野清秀・ 尾崎正紀・中島 礼・実松健造・名和一成・駒澤 正夫(2010)20万分の1地質図「伊勢」. 産業技術 総合研究所地質調査総合センター.
- 森 一郎 (1970) 奄芸層群基底礫層 (とくに供給経路). 名古屋地学, no. 26–27, 49–60.
- 鈴木好一・日吉 直(1962)第2章 伊勢湾南部臨海 地帯の地質構造.建設省計画局・三重県編「伊勢 湾南部臨海地帯の地盤(都市地盤調査報告書第2 巻)」大蔵省印刷局.4-7.
- 山田 純 (1953) 南勢の新生界. 三重大学学芸学部研 究紀要, 10, 69–71.
- 吉田史郎(1990)東海層群の層序と東海湖盆の古地理 変遷.地質調査所月報,41,303-340.
知多半島の段丘の地表調査 Field Survey on the Terraces in Chita Peninsula, central Japan

小松原 琢^{1*}

KOMATSUBARA Taku^{1*}

Abstract: There are several continuous Pleistocene marine and fluvial terraces in Chita Peninsula, Aichi Prefecture, central Japan. The Pleistocene terraces are subdivided into Higher 1 terrace (river terrace), Higher 2 terrace (marine terrace), Higher 3 terrace (marine and river mouth terrace), Middle 1 terrace (marine terrace), Middle 1' terrace (river mouth terrace), Middle 2 terrace (marine terrace) Middle 3 terrace (marine terrace) and Middle fluvial terrace from higher to lower order.

The Higher 1 terrace forms a dividing ridge between Kinuura (Chita) and Ise bays. The deposits contain rhyolitic welded tuff gravels and yields a pollen assemblage including warm and temperate plants such as *Quercus* Subgen, *Cyclobalanopsis* and *Castanopsis / Pasania*. The Higher 2 terrace is characterized by bioturbated fine deposits and reddish soil, and yields a pollen assemblage including warm and temperate plants such as *Lagerstroemia*. The Higher 3 terrace has thick (up to 20m) deposits including two marine layers and reddish soil (2.5 YR to 5 YR in Munsell color chart). The gravels in the Higher 3 terrace are generally hard-weathered, most of the chert gravels are bleached. The Middle 1 and 1' terraces have one or two marine layers and they are characterized by un-bleached chert gravels and reddish brownish soil (5 YR to 7.5 YR in Munsell color chart). These terraces are widely developed along the coast, and their directions show the former shoreline angle. The Middle 2, 3 terraces and the Middle fluvial terrace are partially distributed. These terraces are tectonically uplifted and deformed by active faults and are tilted eastward.

Keywords: marine terrace, river terrace, river mouth terrace, Pleistocene, tectonic movement, Chita Peninsula

要 旨

知多半島には数段の連続性の良い海成・河成段丘が 発達する. 更新世段丘は, 高位から順に高位1段丘(河 成),高位2段丘(海成),高位3段丘(海成および河口成), 中位1段丘(海成),中位1'段丘(河口成),中位2段 丘(海成),中位3段丘(海成)および河成中位段丘に 区分できる. 高位1段丘は、衣浦(知多)湾と伊勢湾 の分水界をなし、流紋岩質溶結凝灰岩礫を含み、アカ ガシ亜属やシイノキ属・マテバシイ属のような暖温帯 植物を含む花粉組成を示す. 高位2段丘は, 生物擾乱 を受けた細粒堆積物と赤色土壌で特徴づけられ、サル スベリ属のような暖温帯植物花粉を産する. 高位3段 丘は、場所により20mに達する厚い、2層の海成層を 挟む堆積物と、マンセル色表示で 2.5 YR ~ 5 YR の色 相を占めす赤色土壌で特徴づけられる.この堆積物中 の礫は一般に強く風化しており、チャート礫は漂白さ れている. 中位1および1'段丘は,1層ないし2層の 海成層をもち,漂白されていないチャート礫と5YR~ 7.5YR の赤褐色土壌で特徴づけられる. これらは海岸 沿いに知多半島全域に広く分布し、明瞭な旧汀線アン

グルをもつ.中位2・3段丘及び河成中位段丘は,狭く 局所的にしか分布しない段丘である.これらの段丘は, 地殻変動に伴って隆起し,活断層による変位と東傾動 を受けている.

1. はじめに

知多半島には数段の比較的連続性の良い段丘面が発 達する.これらの段丘面と堆積物に関しては,国土地 理院(1968),松田(1969)の地形学的研究,牧野内 (1975,1980,1985など)の地質学的研究と,愛知県 (1978,1988),近藤・木村(1987)などの地質図・地 形分類図作成に関連する調査報告,および小池・町田 (2001)の全国の海成段丘調査成果の取りまとめに関連 したものなど,多くの研究がなされてきた.この地域は, 1960年代~80年代前後の高度成長期に多くの大規模 な人工露頭が出現し,貴重な知見が記載されたが,主 として中軸部に分布する最高位の段丘に関しては好露 頭が少なかったためか,さまざまな見解が示されてい た(たとえば牧野内,1975,1985).近年,人工露頭の 多くは被覆されたり削り取られたりして消滅した一方,

*Correspondence

¹ 産業技術総合研究所 地質調査総合センター 地質情報研究部門 (AIST, Geological Survey of Japan, Research Institute of Geology and Geoinformation)

第1図 丸多千島の主要段工区分図. Fig. 1 Major terrace classification in the Chita Peninsula.

露出が限られていた半島中軸部で土砂採取や電源開発 に伴って大規模な露頭が出現し,これまで十分でなかっ た最高位段丘堆積物に関して,新しい資料が得られる ようになっている.

筆者は、知多半島の段丘面とその堆積物を空中写真 判読と地表地質踏査によって調査し、いくつかの新知 見を得た.知多半島の主要段丘面区分図を第1図に示す. 2. 調査方法

知多半島では高度成長期の開発によって自然地形が 広範囲で失われてしまっている.このため、1947年米 軍撮影の縮尺約1/10,000空中写真と1970年代国土地理 作成の1/25,000旧版地形図を用いて写真判読図を作成 し、それを現在の地形図に重ね合わせて踏査に供した.

知多半島の段丘の地表調査

第1表 既往研究と本研究の対比概要. Та

abl	le 1	(Compari	ison of	terraces	in	the	Chita	Penins	ula.
-----	------	---	---------	---------	----------	----	-----	-------	--------	------

松田	牧野内	愛知県	Makin	ouchi		њtт	堅内	(1090)		吉田・尾崎	近藤 , 大村 (1007)	愛知県	未起生	_
(1969)	(1975)	(1978)	(19	79)		12	51' P 1	(1900)		(1986)	辺藤・木竹(1907)	(1988)	イモロ	
絵川面		神戸川面								緒川段丘堆		神戸川面		
小日/ 11 JEU		緒川面								積物		緒川面		
半過西		常滑面								岩滑段丘堆		新 無 乙 而		
石川凹		新舞子面								積物		机舛」凹		
											中位段丘堆積物		中位3段丘	河
	中位段丘		Middle								(新田層・矢梨層)		中位2段丘	成
半田面	堆積物		terrace	Sinde	多屋		矢梨			半田段丘堆	中位段丘堆積物	半田面	中位1'段丘	位
	FE IC ID	半田面	d.	n F	宏層	野問層	圐圙	浦戸累層		積物	(野問層・浦戸層)	野間面	中位1段丘	段
					2107E	201001	XX/1	107 XK/E		IR IN			1 12 17 24	ш
亀崎面	高位段丘 堆積物	亀崎面	Higher t d	errace.	高位	2段丘堆	債物	時志累層	富貴 累層	亀崎段丘堆 積物	高位段丘堆積物 (時志層)	亀崎面	高位3段	fi
武豊石	司申问	横須賀面	Takot	NVO E			世史	A		武豊国	国事法	武豊而	高位2段	丘
싸호비	此 显 信	武豊面	Takett	Jy01.			싸묘	./=		此豆眉	此豆盾	その臣	高位1段	Е

第2表 段丘面・堆積物の特徴.

Table 2 Characteristics of terrace surfaces and their deposits in the Chita Peninsula.

段丘名	堆積・形成場	特徴	特徴的な花粉化石	半島中部 における 段丘面の 高度
高位1段丘	河成	厚さ10~20mの礫層を主体とする堆積段 丘 他の段丘堆積物より径の大きな礫が多い	Quercus (Subgen. Cyclobalanopsis)(コナラ属アカ ガシ亜属)、Castanopsis/Pasania (シイノキ属/マ テバシイ属)を産する	80 m前後
高位2段丘	海成	顕著な海成堆積物を伴う 漂白されたチャート礫を伴う	Lagerstroemia (サルスベリ属)を産する	65 m前後
高位3段丘	河口~海成	2.5~5 YRの表土を伴う 2層の海成堆積物を伴う,厚さ20 m以上の 堆積物からなる.チャート礫は割れてい る.中部に古土壌層を挟有する	下部の海成層はQuercus.(Subgen. Cyclobalanopsis), Castanopsis / Pasania などを産 する 上部の海成層はRhamnaceae (クロウメモドキ科) が優勢で、Podocarpus (イヌマキ属)を伴う	45∼50 m
中位1段丘	海成	7.5~5YRの表土を伴う.クサリ礫を含ま ない. 間にチャネル状の砂礫を挟む2層の海成 堆積物からなる.	Quercus (Subgen. Cyclobalanopsis) がわずかに産 出	40 m前後 (西岸)
中位1'段丘	河口成	海成堆積物を厚さ10~15 mの礫層が覆 う. 段丘面は海に向かって緩く傾斜する.	Podocarpus がわずかに産出	20 m前後 (東岸)
中位2段丘	海成	半島南端部でのみ識別できる. 薄い段丘堆積物を伴う.		
中位3段丘	海成	半島南端部でのみ識別できる.		
河成中位段丘	河成	厚さ10 m以上の礫層を主体とする.		
低位段丘面群	河成	地形・地質が大きく改変されている.本 調査の対象外とする.		

踏査にあたっては、自治体発行の1/2,500都市計画図 (等高線間隔2m)で露頭の標高を読み取りつつ, 縮尺 1/100~1/20の柱状図を作成した.

3. 段丘堆積物の記載

知多半島には全域を通じて4段の連続性の良い河成・ 海成の中~高位段丘が分布するほか、場所によっては 中位段丘が2~3段に段化している.また、これらの

段丘面を開析して2~3面の河成低位段丘面が分布す る.低位段丘面の大部分は圃場整備などによって改変 され露頭も少ないため,現在地表踏査による地質調査 は困難である.本調査では、中位・高位段丘を対象と して踏査を主とする調査を行った.

段丘面区分を第1図に,段丘面・堆積物の概要を第1 表,第2表に記す.

以下,各段丘面と堆積物について記載する.

第2図 高位1段丘堆積物の柱状図.柱状図の位置は第13図を参照. Fig. 2 Columnar sections of the Higher 1 terrace deposits Locations of sections are shown in Fig. 13.

3.1 高位1段丘

高位1段丘面は、最高位に位置する、開析された尾 根状の標高70m~90mの段丘面であり、多くの場所 で知多半島の分水界をなす.この段丘面は、松田(1969) の武豊面のうち、比高10m~15mの段丘崖によって 2段に区分できる場所では高位のものに相当する.

高位1段丘堆積物は牧野内(1975,1985)の武豊層 に相当するが、本調査で確認された露頭より、牧野内 (1975,1985)の記載とは異なり、海成層を挟まず河成 の堆積物だけによって構成される段丘堆積物であるこ とが明らかになった(第3図,第4図).なお、知多半 島中部を対象とする、牧野内(1975,1985)や吉田・ 尾崎(1986)、近藤・木村(1987)の先行研究において、 海成層(相)を含む地層が記載された露頭は、すべて 次に述べる高位2段丘堆積物の分布域にあり、高位2 段丘堆積物の露頭と考えられる.

3.1.1 堆積物の層相

高位1段丘堆積物は、厚さ10m~20mの成層した 礫層および砂層を主体とし、シルト層を挟有する.礫 層には、漂白されて割れ目の入ったチャート礫が多く、 流紋岩礫が10~20%、そのほか花崗岩、粘板岩・砂 岩など堆積岩の礫など多種のものが含まれる.チャー ト以外の礫の多くはクサリ礫ないし半クサリ礫となっ ている.礫層は、最大径30cm程度の、円~亜円礫を 主とし、基質は不淘汰な泥まじり砂~砂まじり泥から なる.大径の礫は、堆積岩礫に多く、チャート礫は径 数 cm以下のものが多い.砂層は、しばしば細礫を含み、 トラフ状ないし波状~平行状の層理をもつ、アルコー ス質のものを主体とする.シルト層は砂層中にレンズ

第3図 武豊町別曽池付近の大露頭(H2-3)で認められた高位1段丘面・堆積物と、高位2段丘面・堆積物の関係.

Fig. 3 A large outcrop in where the relationship between the Higher terrace 1 and Higher terrace 2 can be observed near Besso-ike, Taketoyo town

状に挟在するほか,最上部に層状に分布する.

なお、今回の調査では、生物擾乱など海成堆積物で あることを示唆する特徴は認められなかった.

3.1.2 花粉化石

知多半島中部中軸部の武豊町別曽池西方の大露頭 (H1-4)において、本層中部の礫層に挟在するレンズ状 シルト層より少量の、同じく中軸部の武豊町油脂工場 西方の尾根上部の露頭(H1-3)において本層上部の層 状砂質シルトから多量の花粉化石が得られた.

H1-4の本層中下部からは、温帯常緑針葉樹の Pinus (マ ツ属)が、温帯落葉広葉樹の Sciadopitys (コウヤマキ 属)、Cryptomeria (スギ属)、温帯落葉広葉樹の Betula (カバノキ属)、Alnus (ハンノキ属)、Quercus (Subgen. Lepidobalanus) (コナラ属コナラ亜属)および冷温帯落 葉広葉樹の Fagus (ブナ属) を伴う花粉群集が認められ た.

H1-3 の本層上部からは、温帯落葉広葉樹の Clathra (リョウブ属) が極めて優勢で、温帯落葉広葉樹の Quercus (Subgen. Lepidobalanus), Alnus, Cryptomeria が随伴し、暖温帯常緑広葉樹の Q. Subgen. Cyclobalanopsis (コナラ属アカガシ亜属) や Castanopsis / Pasania (シイノキ属/マテバシイ属) を低率に伴う.一方、冷 温帯落葉広葉樹の Fagus はほとんど産出しない.また, 草本およびシダ・コケ植物の胞子の占める割合が高い.

3.2 高位 2 段丘

高位2段丘は、高位1段丘面を10m~15m下刻し て尾根脇に段丘面(高位2段丘面)を構成する.従来 の研究(松田,1969;牧野内,1975,1985など)では、 高位2段丘堆積物は、武豊層として高位1段丘堆積物 と一括されていた.しかし、知多半島中部の武豊町別 曽池西方(H2-3)に出現した第2図の大露頭や、その ほか多くの露頭や地形面に関するデータから、高位1 段丘面を構成する堆積物(武豊層)とは異なる、主と して海成堆積物からなる段丘堆積物を高位2段丘堆積 物として区別する.

なお、従来の研究において高位2段丘が上位の高位1 段丘と区分されていなかった背景には、両者ともに開 析が進み段丘崖と段丘面の識別が困難な場所が多く、 かつ両者の関係を明確に観察できる大露頭がなかった ことに加え、武豊層模式地(知多カントリークラブ北東) 付近では地殻変動によって第四系・堆積面が傾動して いるために段丘崖が特に認めにくくなっていることが 挙げられる.

高位2段丘面は、知多半島のほぼ全域に分布し、一部

第4図 高位2段丘堆積物の柱状図.柱状図の位置は第13図を参照. Fig. 4 Columnar sections of the Higher 2 terrace deposits Locations of sections are shown in Fig. 13.

第5図 高位2段丘堆積物上部にしばしば認められる生物 擾乱.

Fig. 5 Bioturbation in the upper part of the Higher 2 terrace deposits.

は谷の中に入り込むような形で分布する.段丘面は開 析され,樹枝状の小さな谷が入り込んでいる.高位1 段丘面や背後斜面との間の汀線アングル(旧汀線)の 高度は,知多半島中部で約65mである.

3.2.1 堆積物の層相

高位2段丘堆積物は、下部がチャート、粘板岩、砂 岩、花崗岩などの礫を主体とする砂礫層および砂礫層 中に挟在するシルト層からなり、上部は淘汰の良い砂 層と砂質シルト〜シルト層からなる.表層にマンセル 色表示で2.5YRの色相(赤褐色)を呈する表土を伴う. 下部の礫層中の花崗岩や砂岩の礫はクサリ礫が多く、 チャート礫は漂白された状態にあり、割れ目が認めら れる.上部の砂層、シルト層にはしばしば直径10mm 〜20mm程度の巣穴化石や球状生痕化石などの生物擾 乱が認められる(第4図,第5図).高位2面が丘陵に 谷状に入り込んだ場所(たとえば常滑市本宮山南:第3 図のH2-2)では径60mm以下の礫をレンズ状に伴い、 不淘汰で礫や砂を伴うシルト層およびクラックの入っ た埋没土壌状のシルト層が認められた.また、所によ り「ロース斑」を伴う赤色土壌が挟在する.

3.2.2 珪藻および花粉化石

今回の調査時点では既に露頭は失われていたが,知 多半島中部の武豊町桜ケ丘のシルト層における珪藻 化石分析の結果,沿岸域・汽水性の Cyclotella striata,

知多半島の段丘の地表調査

第6図 高位3段丘堆積物の柱状図.柱状図の位置は第13図を参照.

Fig. 6 Columnar sections of the Higher 3 terrace deposits Locations of sections are shown in Fig. 13.

小松原 琢

第7図 中位1段丘堆積物の柱状図.柱状図の位置は第13図を参照. Fig. 7 Columnar sections of the Middle 1 terrace deposits Locations of sections are shown in Fig. 13.

Melosira sulcata が最上部層中から,および Achnanthes, Caloneis, Eunotia, Rhopaplodia が中部シルト層から報告 されている(森, 1980).また,同じ層準の花粉分析では, Fagus (ブナ属), Quercus (コナラ属), Alnus (ハンノ キ属), Ulmus-Zelkova (ケヤキ属), Corylus (ハシバミ 属), Carpinus (シデ属), Lagerstroemia (サルスベリ属), Pinus (マツ属), Tsuga (ツガ属), Picea (トウヒ属), Sciadopitys (コウヤマキ属) が最上部層から, Quercus, Alnus, Ulmus-Zelkova, Corylus が中部シルト層から得られ ている (吉野・丹羽, 1976).

3.3 高位3段丘

高位3段丘面は、「亀崎面(松田,1969)」と呼ばれ、 知多半島全域に分布する、開析途上の平坦な段丘面を なしている.段丘面は、知多半島の中軸部を取り巻い て海岸に平行して分布するほか、丘陵を開析する谷の 中に入り込むように分布する.このような分布上の特 徴から、地形的には高海面期に形成された海成段丘面 としての特徴をもつが、少なくとも三河湾沿いの地域 では海成堆積物の上位を陸成堆積物が覆っており、後 述する「河口段丘」の特徴をもつ.段丘面の高さは30 m~50m程度である.高位3段丘堆積物は、マンセ ル色表示で2.5YR~5YRの色相を示す表土を伴うこ と、漂白され割れ目の入ったチャート礫を多く含むこ と、で特徴づけられる.本層は、知多半島南部東海岸 の「浦戸累層(牧野内、1980)」「富貴累層(Makinouchi、 1979)」「時志累層(牧野内、1980)」に相当する.

3.3.1 堆積物の層相

高位3段丘堆積物は、場所によってかなり異なった 層相をもつが、場所により厚さ20m以上に達する厚い 堆積物を有すること、クサリ礫は多くないが割れ目を もつチャート礫が多いことなどの特徴から、中位段丘 堆積物とは確実に識別できる.また,堆積物の中部に 2.5 YR ないし 5 YR の色相を呈し、ロース斑が発達する 古土壌が認められる. 堆積物の下部と上部に生物擾乱 を受けたシルト層や淘汰の良い細粒~中粒砂層が認め られる.このうち特に上位のシルト~砂層の一部では, 生物擾乱とともに直立した植物根跡が認められる.こ れらの生物擾乱をもつシルト層ないし砂層を、厚さ10 m程度のチャート礫を多く含む亜円礫主体の礫層が覆 う. 知多半島中軸部の美浜パーキングエリア南の丘陵 尾根の露頭(H3-5)では、土石流性とみられる礫・マッ ドクラストまじりの有機質土層が基底に挟在する.知 多半島南部西岸の美浜町野間柿並(H3-12)では,段丘 面は削剥されているが、チャネル状の堆積構造をもち クサリ礫を含む砂礫層上を、直立根を伴うシルト層と クラックをもつ土壌質のシルト層が覆い、この上位に 最大径 40 mm 程度の巣穴状生痕化石を伴うシルト層が 認められた.この露頭の南側の尾根上には高位3段丘 が分布することから、本シルト層は高位3段丘堆積物 下部の海成層と考えられる.柿並の巣穴状生痕化石を 伴うシルト層からは暖温帯性の花粉組成が得られた(後 述).

3.3.2 花粉化石

下位の海成層に相当すると考えられる野間柿並(H3-12)の,段丘面を直接構成していない(上位が削剥され ている)シルト層から,温帯常緑針葉樹の Cryptomeria が優勢で, Pinus および暖温帯常緑広葉樹の Quercus. (Subgen. Cyclobalanopsis), Castanopsis / Pasania,暖温 帯常緑針葉樹の Podocarpus を伴う花粉群集が得られた.

上位の海成層に相当する美浜パーキングエリア南の 露頭(H3-5)において,段丘堆積物下部の土石流性有 機質土層から,暖温帯常緑広葉樹のRhamnaceae(クロ ウメモドキ科)が極めて優勢であり,温帯常緑針葉樹 のSciadopitysおよび温帯落葉広葉樹のQuercus(Subgen. Lepidobalanus)がこれに次ぐ花粉組成が得られた.また, 段丘堆積物最上部の砂まじりシルト層からは,温帯常 緑針葉樹のPinusが極めて優勢であり,Cryptomeria お よび温帯落葉広葉樹のBetula を低率に,暖温帯常緑針 葉樹のPodocarpus(イヌマキ属)をごくわずかに伴う 花粉組成が得られた.

3.4 中位1段丘

中位1段丘と中位1'段丘は,知多半島中~南部全域 の海岸を縁取って広く分布する.両者は地形的に連続 し,地形のみで識別することは難しい.また,これら に連続して丘陵を開析する谷に沿いに,両面に連続す る河成段丘面(河成中位面)が分布する.

本稿では、マンセル色表示で5YR~7.5YR(赤褐色) の色相を呈する表土を伴い、海成堆積物を有する段丘 堆積物のうち、海成堆積物が直接堆積面を構成する地 形面・堆積物を中位1段丘面・堆積物とし、海成堆積 物を河成堆積物が覆い、それが堆積面を構成する地形 面・堆積物を中位1、段丘面・堆積物として別々に記載 する.

中位1段丘は,知多半島東岸では先端部の南知多町 大井以南に,西岸では常滑市小鈴谷以南に分布する. 段丘面の高さは20m~45mである.

3.4.1 堆積物の層相

中位1段丘堆積物は、基底部に砂礫を伴い、2層の生物擾乱を受けたシルトないし粘土からなる部分を主とし、2層の細粒層の間にマッドクラストや細礫を伴う チャネル状の砂層を挟有する.半島先端部では薄い礫

第8図 中位1、段丘堆積物の柱状図.柱状図の位置は第13図を参照. Fig. 8 Columnar sections of the Middle 1' terrace deposits Locations of sections are shown in Fig. 13.

層や砂層からなる.

知多半島中部西岸の美浜町・日本福祉大学南(M1-4 および5)と奥田東(M1-9)では、東海層群の谷を埋 めて堆積した本段丘堆積物全体が観察できた. そこで は,基底にマッドクラストを多量に含む礫層(基底礫層: 0m~2m)を伴い、下部から生物擾乱を受けたシルト ~粘土層(下部粘土層:3m~5m),木片を含むチャネ ル状砂層(中部砂層:0m~5m),淘汰の良い砂層(中 部砂層:3m),生物擾乱を受けた砂質シルト~シルト層 (上部シルト層:3m~5m),および生物擾乱を伴わな いシルト質砂層(最上部砂層:3m~4m)からなる. このうち下部粘土層は基底の形態と調和して標高10m ~25 mの様々な高度に出現するが、上部シルト層は 標高 25 m ~ 30 m の一定の高度に出現する. 中部砂層 は厚さが場所によって大きく変化し、下部粘土層と側 方に層相が変化する. 中部砂層の情半部には上野間北 (M1-11)など所によってくさび状ラミナが発達する.上 部シルト層と最上部砂層は漸移することが多い. 最上 部砂層には、ところによってレンズ状に有機質シルト 層やマッドクラスト密集層が挟在する.

なお,牧野内(1988,1995),牧野内ほか(1991,1992)は, 野間層下部粘土層についてクリプトテフラの分析を行 い,Ata-Thに対比される可能性を持つ火山ガラス粒子 を見出している(牧野内,1995).しかし,濃尾平野地 下の最終間氷期相当層(熱田層下部)からも,類似し たテフラが得られており(牧野内ほか,1999,2001), 本堆積物中のクリプトテフラの同定については今後の 課題とする.

3.4.2 花粉化石

常滑市小鈴谷(M1-13)の下部粘土層1層準と上部シ ルト層の2層準,および美浜町鵜の池西方の最上部砂 層中に挟在する有機質シルト層の1層準について花粉 分析を行った.しかし,小鈴谷の露頭の下部粘土層と 上部シルト層下部の2層準からは,Pericardium(ダク リディウム属),Sequoia(セコイア属),Metasequoia(メ

第9図 中位2段丘堆積物の柱状図.柱状図の位置は第13図を参照.

Fig. 9 Columnar sections of the Middle 2 terrace deposits Locations of sections are shown in Fig. 13.

- 第10図 河成中位段丘堆積物の柱状図.柱状図の位置は第 13 図を参照.
- Fig. 10 Columnar sections of the fluvial Middle terrace deposits Locations of sections are shown in Fig. 13.

タセコイア属), Carya (ペカン属), Liquidambar (フ ウ属) および Nyssa (ヌマミズキ属) という,現在の日 本列島には自生しない植物群が多く産出したことから, 理由は明らかでないが,周囲に分布している東海層群 から多量に二次堆積物が混入したと考えられる.また, 小鈴谷の上部シルト層上部からは,木本花粉の量は少 ないが,温帯常緑針葉樹の Pinus, Cryptomeria および 温帯落葉広葉樹の Alnus, Quercus (Subgen. Lepidobalanus)を産し,暖温帯常緑広葉樹の Q. (Subgen. Cyclobalanopsis) および冷温帯落葉広葉樹の Fagus がこれらに 伴って産出した.鵜の池西方の段丘堆積物最上部から 得られた花粉は,栽培植物である Rutaceae (ミカン科) を除くと木本植物の花粉は極めて少なく,暖温帯常緑 針葉樹の Podocarpus および温帯常緑針葉樹の Pinus, Cryptomeria が極めてわずかに産出するのみであった.

3.5 中位1'段丘

中位1'段丘は,中位1段丘と同じく,5YR ~ 7.5YR(赤 褐色)の色相を呈する表土を伴う.海側に向かって緩 く傾斜する段丘面をなす.中位1'段丘堆積物は,従来「半 田層」「多屋累層(牧野内,1980)」「新田累層(Makinouchi, 1979)」「矢梨累層(牧野内,1980)」と呼ばれていた地 層を含む.段丘面の高度は10m ~ 36m である.

3.5.1 堆積物の層相

中位1'段丘堆積物が基底から最上部まで全体を観察できる露頭は、今回の調査では確認できなかった. しかし、知多半島東岸の美浜町布土(M1'-1)や河和 (M1'-2)・南河和(M1'-3)では、生物擾乱を受けたシ ルト質堆積物を、厚さ3m~10mの細礫~亜円礫を主 体とする礫層が覆う.シルト質堆積物の一部は有機質 で直立した植物根を伴う.礫層は砂まじり泥ないし泥 まじり砂を基質とする.南知多町豊浜(M1'-4)では、 上部の礫層が生物擾乱を伴うシルト質層を削って堆積 するが、礫層中にレンズ状に灰色シルト層が挟在する.

3.5.2 花粉群集

南知多町豊浜の礫層中に挟在するシルト層より,暖 温帯常緑針葉樹の Podocarpus および温帯常緑針葉樹の Pinus, Cryptomeria が極めてわずかに産出した.

3.6 中位2段丘

中位2段丘面は、知多半島先端の南知多町師崎周辺 にのみ認められる.この段丘面は中位1面の1段低位 に狭い浸食段丘面をなす.旧汀線高度20m~24mで ある.

堆積物は、厚さ数m以下の、背後斜面起源とみられ る泥岩の礫を主とし花崗岩や砂岩・粘板岩などの礫を 伴う円礫層ないし砂層からなる.最上部にマンセル色 表示で7.5 YR ~ 5 YR の色相の表土を伴う.

3.7 中位3段丘

中位3段丘面は, 師崎周辺で中位2段丘よりも1段 低位の, 旧汀線高度10m~15mの段丘面をなす. 固

第11図 段丘面と旧汀線の高度(全更新世段丘).

Fig. 11 Elevation of terraces and their former shorelines (All Pleistocene terraces).

有の堆積物は今回の調査では確認されなかった.

3.8 河成中位段丘

河成中位段丘面は、中位1面ないし中位1'面に連続

し、丘陵を開析する川に沿って分布する. 堆積物は, 弱風化した亜円~亜角礫を主体とする径 60 mm 以下の 礫層と,それを覆う砂まじりシルト層からなる堆積物 が確認された. 堆積物上部の砂まじりシルト層は,マ ンセル色表示で 5 YR ~ 7.5YR の色相を示し, クラック を伴う.

3.9 そのほかの段丘面・堆積物

知多半島南部・南知多町大井集落西方では,標高50 m付近に亜円〜亜角礫を多く含む礫層と,直立植物根 を伴うシルト層などからなる陸生の段丘堆積物が認め られた.また,知多半島南部の南知多町師崎から山海 に至る海岸沿いでは標高70m~80mの尾根上に小規 模な段丘上の地形が認められるが,堆積物は確認でき なかった.これらの段丘面・堆積物については,今後 さらに綿密な調査が必要と考えられる.

低位段丘面に相当すると考えられる岩滑面・新舞子 面および緒川面は、人工改変に伴って露頭が大部分消 失している.

4. 考察

4.1 中位1段丘と中位1'段丘について

ここでは、知多半島の段丘のうち、地殻変動を議論 する上で重要な、中位1段丘と中位1、段丘について形 成過程を考察する.

従来の研究では、この2つの段丘は、従来「中位段 丘」と一括され、海成層を挟有することや、海岸線に 沿って分布することから、「海成(中位)段丘」として 記載されてきた(たとえば小池・町田,2001).しかし、 M1'段丘面・堆積物は、海成層を覆って、泥分を含む 亜円礫主体の礫層や直立根を伴うシルト層を含む地層 に覆われており、少なくとも最終的に離水した段階で は陸水の影響を受けた堆積段丘とみなされる.ここで、 堆積物の特徴や周辺の段丘面や段丘堆積物との対比を 通じて、M1'段丘の形成過程について検討する.

M1'段丘面堆積物の表層には7.5 YR ~ 5YR の色相を 呈する表土が認められるが、この特徴はM1 段丘面や M2 段丘面のような海成段丘面の特徴と同様で、西三 河の碧海層や濃尾平野東部の熱田層と共通することか ら、これらは最終間氷期に離水した段丘であることが 示唆される.知多半島の段丘からは、未だに形成年代 を特定できる資料は得られていないが、M1,M2 およ び M1' 段丘面は最終間氷期に離水した可能性が高い.

ところで碧海層下部層〜中部層と熱田層下部はとも に海成の粘土層を主体とし、その上位の碧海層上部層 と熱田層上部は、砂泥互層ないし砂を主体とする(た とえば森山、1994:桑原、1968).碧海層の上部は硫化 鉄含有量が少なく、海棲珪藻を産しないこと(森山、 1994;森山ほか、1996)、熱田層上部からは淡水棲珪藻 化石群集が得られること(森、1972)などから、両者 は基本的に陸水成の地層と考えられる.また、碧海層 上部層からは K-Tz が(森山ほか,1996),熱田層の上 部からは On-Pm1 が(桑原,1968)得られており,こ れらは下位の海成層を堆積盆地上流側で若干削剥する (濃尾平野第四紀研究グループ,1977)ものの,基本的 には整合的に累重する.このことから,この2つの地 層は最終間氷期極相期(MIS 5e)に内湾で堆積した海 成層を,その後の海面低下期(MIS 5後半)に堆積した, デルタフロント〜デルタ頂置層と陸水デルタの堆積物 とみなすことができる.知多半島の M1'段丘について も,同様の形成過程で説明できる.特に,知多湾を隔 てて碧海面に向き合う知多半島東岸では,半島の南部 まで M1'面が分布する一方,海域の幅が広い西岸では 知多半島の中部以南に海浜堆積物が堆積面を直接構成 している M1 面が発達することとも矛盾しない.

従来の段丘発達過程に関する研究では, M1'段丘面 のような海成層上に陸成層が整合的に累重して堆積面 を構成する段丘は、間氷期中の最高海面期に形成され た海成段丘面として扱われてきた(たとえば小池・町 田, 2001). しかし, 厳密にいえばこれらは陸水成の段 丘面であり,海成段丘とも典型的な河成段丘とも異なっ た範疇の段丘として認識したほうが実態に即している のではないだろうか.本稿では、このタイプの段丘に 対して「河口段丘」という名称を用いる.河口段丘は, 堆積物供給量が多く,隆起速度が比較的遅い地域で普 遍的に認められる可能性が高い. たとえば石狩川下流 部の「石狩段(小松原・安斎, 1998)」, 雄物川下流~ 男鹿半島付け根の「潟西層(たとえば潟西層団体研究 グループ,1977)」関東平野の「常総層(たとえば秋山 ほか、2015)」、淀川下流部の「上町段丘(たとえば吉川・ 樽野, 1992)」が、それに該当すると考えられる.

4.2 段丘面高度および旧汀線高度と地殻変動について

先述したように知多半島では人工地形改変が激しく, 特に半島中部地域については広範囲に自然地形が失わ れている.このため,本調査では1947年撮影空中写真 時の残されている汀線アングルが現在も大きく改変さ れずに残されている場所を抽出して,1/2,500都市計画 図の等高線や標高点からその高度を読み取った(第11 図,第12図).

特に中位段丘とその旧汀線高度(第12図)について, 若干考察する.

第12 図には海成の中位1段丘面だけでなく、河口成 の中位1'段丘面の高度と陸側の段丘崖基部高度も記載 している.既に述べたように、これは陸成面であるた め、地殻変動の基準としては不適切である.また、そ の離水時期も明らかではない.しかし、以下の考えから、 おおむね最終間氷期極相期の旧汀線高度に近い地殻変 動の指標として参考とすることが可能性はないだろう

第12図 中位1および中位1'段丘面の高度と活構造. Fig. 12 Elevation of the Middle 1 and Middle 1' terraces and active structures.

か.

①濃尾平野と矢作川下流の沖積低地において MIS 1 の海進堆積物が分布する範囲は、地下水くみ上げによ

る地盤沈下を除いた標高0m~10m以下の範囲にあり、 河口域における最終間氷期とその後の海面低下期の陸 水成堆積物の分布標高も最終間氷期極相期の海面高度

第13図 露頭位置図. Fig. 13 Location map of outcrops.

と大きく異なるものではない可能性が高い. ②知多半島東岸(武豊町~美浜町の知多湾沿岸の露 頭)における海成層上面高度から,段丘面の陸側崖基 部までの比高はおおむね 10 m ~ 15 m 程度であり,現 在の伊勢湾奥におけるデルタ前面(デルタ底置面とデ ルタ前置面の境界)の深度(10 m ~ 20 m:国土地理院, 1973) と大きく異ならない.

中位1'段丘面の陸側段丘崖基部の高度を最終間氷期 極相期の旧汀線高度と同様に地殻変動の指標とするこ とができるとするなら、知多半島中部の東岸(武豊町 〜美浜町付近)の陸側段丘崖基部の高度は20m~25 m前後,西岸(常滑市南部〜美浜町野間付近)の中位 1段丘面の旧汀線高度は35m~40m前後であり、東 岸は西岸と比較して隆起量が小さい.すなわち知多半 島は東傾動しつつ隆起してきた可能性が高いと言える. さらに、知多半島中部東岸の高位3段丘面高度(35m ~40m)は、西岸の中位1段丘の旧汀線高度と同程度 であることを考慮すると、この東傾動は確実といえる.

以上は,段丘面の対比に違いがあるものの,牧野内 (1979)が明らかにした地殻変動像を追認したものであ る. 広域的テクトニクスの観点からは,濃尾傾動地塊 運動(桑原,1968)や中部傾動地塊運動(桑原,1968; 須貝,2001)のように西傾動が卓越する伊勢湾周辺地 域にあって,知多半島が東傾動していることは,興味 深い.

4.3 高位3段丘堆積物に認められる2層の海成層について

先に述べたように高位3段丘堆積物は、厚さ20m以 上に達する厚い堆積物からなり、その中に少なくとも2 層の海成層と考えられる生物擾乱を受けた細粒堆積物 が挟在する.段丘面を確認することはできないものの、 段丘礫の風化程度からみて半島南部西岸・美浜町野間 柿並(H3-12)のチャネル状堆積構造を持つ礫層と巣穴 状生痕化石を伴うシルト層も高位3段丘堆積物のもの である可能性が高い.

このことは,高位3段丘堆積物の対比・編年上有用 な情報と考えられる.

町田ほか(2003)によると、深海底コアの酸素同位 体比変動曲線からみて、MIS 5 と MIS 7 では1間氷期 ステージ内に複数の高温期が明確に認められるが、MIS 11 では1つの極高温期しか認められない.また MIS 9 では1つのピークしか認められないコアと、複数のピー クが認められるコアがある.また、濃尾平野の層序コ ア(須貝ほか、1999)では MIS 7 と考えられる層準中に 礫層が挟在することを示している.このような古海洋学 的なデータおよび濃尾平野の層序ボーリング資料から みて、高位3段丘堆積物は、MIS 7 (ないし MIS 5?)に 相当する可能性が高い.

知多半島の段丘面・堆積物の編年・対比については, 中位1段丘堆積物中のクリプトテフラ分析や花粉分析 結果などを総合して今後さらに検討していきたい.

謝辞:花粉は有限会社アルプス調査所の本郷美佐緒博

士に分析していただいた.記して謝意を表します.

文 献

- 愛知県(1978)土地分類基本調查「半田」.愛知県, 75p.
- 愛知県(1988)土地分類基本調査「師崎・蒲郡」. 愛知 県, 109p.
- 秋山大地・須貝俊彦・岡崎浩子・中里裕臣・大井信三 (2015)関東平野猿島・筑波台地に分布する上部更 新統下総層群常総層にみられる MIS 5c の指標テフ ラ含有層.地学雑誌, 128, 905–920.
- 潟西層団体研究グループ(1977)潟西層の海生軟体動物化石と堆積環境.地球科学,31,83-86.
- 小池一之・町田 洋(2001)日本の海成段丘アトラス. 東京大学出版会, CD3 枚, 説明書 105p.
- 国土地理院(1968)土地条件図「中京地域」土地条件 図および報告書.建設省国土地理院,166p.
- 国土地理院 (1973) 1:25,000 沿岸海域土地条件図四日市. 建設省国土地理院.
- 小松原 琢・安斎正人(1998)石狩丘陵の更新世地殻 変動.東北地理, **50**, 311–328.
- 近藤善教・木村一朗(1987)師崎地域の地質.地域地 質研究報告(5万分の1地質図幅).地質調査所, 93p.
- 桑原 徹 (1968) 濃尾盆地と傾動地塊運動. 第四紀研究,7, 235-247.
- Makinouchi, Takeshi (1979) Chita Movements, the Tectonic Movements Preceding the Quaternary Rokko and Sanage Movements. *Memoirs of Science of the Kyoto University. Serise of geology and mineralogy*, **46**, 61–106.
- 町田 洋・大場忠道・小野 昭・山崎晴雄・河村善也・ 百原 新・成瀬敏郎・福沢仁之・増田耕一 (2003) 第四紀学.朝倉書店, 323p.
- 牧野内 猛 (1975) 知多半島南部の武豊層.地質学雑誌, 81, 185–196.
- 牧野内 猛(1979)知多半島南部の地質構造と伊勢湾 周辺地域の構造運動.地質学雑誌,82,311-325.
- 牧野内 猛(1980)知多半島中・南部の第四系. 軽石 学雑誌, 6, 27-40.
- 牧野内 猛(1985) 知多半島武豊丘陵の中部最新統武 豊層-層序・地質構造の改訂と高位段丘層の再検 討一. 地質学雑誌, 91, 141-153.
- 牧野内 猛(1988) 知多半島野間層における下部海成 粘土中の火山ガラス屈折率(予報).日本地質学会 第95年学術大会講演要旨集,113.
- 牧野内 猛 (1995) 知多半島 野間層の層序と堆積年代. 日本地質学会第 102 年学術大会講演要旨集, 106.

- 牧野内 猛・壇原 徹・山下 透・古澤 明(1991) 知多半島野間層における海成粘土層中の火山ガラ ス.日本地質学会第98年学術大会講演要旨集, 217.
- 牧野内 猛・吉野道彦・壇原 徹・山下 透・古澤 明(1992)知多半島野間層における海成粘土層中 の火山ガラスー泥質堆積物から検出した火山ガラ スの屈折率・形状に基づく地層の対比-. 瑞浪市 化石博物館研究報告, 19, 483-494.
- 牧野内 猛・森 忍・竹村恵二・壇原 徹・坪田邦治・ 松澤 宏・濃尾地盤研究委員会(1999)最新地盤 情報からみた濃尾平野臨海部の地下地質(3)テフ ラ・珪藻分析に基づく成果.日本地質学会第106 年学術大会講演要旨,316.
- 牧野内 猛・森 忍・竹村恵二・壇原 徹・濃尾地盤 研究委員会断面 WG (2001) 濃尾平野における沖 積層基底礫層 (BG) および熱田層下部海成粘土層 の年代-臨海部-ボーリング・コアのテフラ分析 に基づく成果-. 地質学雑誌, 107, 283-295.
- 松田博幸(1969)知多半島の地形発達. 東北地理, 21, 5-16.
- 森 忍(1972)熱田層中の淡水成泥層について.地質 学会第72年学術大会講演要旨集,223.
- 森 忍(1980) 濃尾平野中部更新統のケイソウ群集. 第四紀研究, 19, 173–183.
- 森山昭雄(1994) 西三河平野碧海層の堆積構造と海水 準変動. 地理学評論, **67**, 723–744.
- 森山昭雄・渡辺県・鈴木毅彦(1996)西三河平野碧海 層中の鬼界-葛原テフラ(K-Tz)の発見とその意 義.日本第四紀学会講演要旨集,26,84-85.
- 濃尾平野第四紀研究グループ(1977)濃尾平野第四系の層序と微化石分析.地質学論集, No. 14, 161-183.
- 須貝俊彦(2001)中期更新世テフラによる濃尾平野の 地下層序編年と中部傾動地塊運動.山崎晴雄「山 地形成史の研究-第四紀火山噴出物を手掛かりに して-平成10~12年度科学研究費補助金(基盤 研究(B)(1)研究成果報告書)」,58-64.
- 須貝俊彦・杉山雄一・水野清秀(1999)深度600mボー リング(GS-NB-1)の分析に基づく過去90万年間 の濃尾平野の地下層序.平成10年度活断層・古地 震研究調査概要報告書,69-76.
- 吉田史郎・尾崎正紀(1986)半田地域の地質.地域地 質研究報告(5万分の1地質図幅).地質調査所, 98p.
- 吉川周作・樽野博幸(1992)大阪平野の中位段丘層と 火山灰層.第四紀, 24, 61-67.
- 吉野道彦・丹羽俊二(1976)愛知県知多半島及びその

関連層の花粉分析について.日本地質学会第83年 大会講演要旨,112.

三重県四日市市垂坂断層の反射法地震探査速報

Preliminary report on seismic reflection survey across the "Tarusaka Fault" (uncertain active fault), in Yokkaichi City, Mie Prefecture, central Japan

小松原 琢^{1*}•秋永康彦²•澤田基貴²•末廣匡基²•寺田龍矢³ KOMATSUBARA Taku^{1*}, AKINAGA Yasuhiko², SAWADA Motoki², SUEHIROMasaki² and TERADA Tatsuya³

Abstract: The Tarusaka Fault is an estimated active fault in a densely populated urban area just north of the center of Yokkaichi City. A seismic reflection survey was conducted across this fault to clarify whether it is an actual active fault or not. The result shows that the fault scarp-like slope is not an active fault scarp but a terrace scarp, that this slope is located in a broad active tilting, and that this active tilting has developed since late Quaternary. However, it is still unresolved whether this active tilting is seismogenic or not. We hope to continue studying this subject by interpreting the drilling data.

Keywords: uncertain active fault, active fault in urban area, seismic reflection survey, Yokkaichi City, active tilting

要 旨

四日市市中心街北側に分布する垂坂断層が,活断層 であるかどうかを明確にするため,推定断層を横切る 測線で反射法地震探査を実施した.その結果,1)断層 崖とみられていた斜面は活断層崖ではなく,段丘崖で あること,2)この斜面はブロードな活傾動帯の中に生 じたものであること,3)活傾動は第四紀後期以来活動 しているものであること,が明らかになった.しかし, この活傾動が地震を引き起こすものか否かはいまだ解 明できていない.この点について,ボーリングデータ の解析により,さらに研究を進めたいと希望する.

1. はじめに

桑名断層と四日市断層は、四日市市中心市街地の北 で右雁行配列する.鈴木ほか(1996a)は、両断層の接 合部に北西-南東走向の「垂坂断層」を記載した(第1 図).岡田・東郷(2000)は、この見解を踏襲して、垂 坂断層を長さ2.5 km、確実度 I、平均変位速度 0.2 mm /年の確実な活断層として記載した.しかし、池田ほ か(2002)、鈴木ほか(2010)、今泉ほか(2018)には 「垂坂断層」は記載されていない.また、三重県が地震 防災のために整備した活断層図(三重県、2005b)にも 「垂坂断層」は記載されていない.しかし、現状ではそ の存在を否定する根拠もまた示されていない.「垂坂断 層」は、四日市市中心市街地北側の人口密集地を通る 推定断層である.仮にこの推定断層が活断層であるな ら、大地震を発生させるリスクや地震規模などの評価, ならびにこの活断層の社会的な認知が必要である.

筆者らは、「垂坂断層」の存否を明らかにするために、 四日市市西阿倉川町においてボーリングとP波反射法 地震探査を実施した.

2. 探查測線

「垂坂断層」は、ほぼ全体が市街地に位置しており(第2図)、断層推定地点を横断する道路は交通量のわりに 幅員の狭いものが多く、かつ多くの道路で埋設管が敷 設されているため、反射法探査測線は、慎重に決めな ければならなかった.

探査前には,厚さ最大1,900 mの堆積層(東海層群~ 沖積層)が高角の断層を中心として幅200 m程度(第 2 図に「垂坂断層」と記した撓曲崖状の傾斜地形の幅と 同じ)の南西傾斜の引きずり構造を伴って変形してい る可能性があると想定していた.このため,断層想定 位置よりも南側にやや長めに,長さ1 km以上の測線長 をとることができ,推定断層に直交する北東-南西方 向に伸びる測線候補を求めた.

実際の探査にあたって最初,片側1車線で歩道があ るものの大口径の工業用水道が敷設されているA測線 で探査を試みたが,良い記録が得られないと判断され

^{*}Correspondence

¹ 産業技術総合研究所 地質調査総合センター 地質情報研究部門 (AIST, Geological Survey of Japan, Research Institute of Geology and Geoinformation)

²株式会社阪神コンサルタンツ (Hanshin Consultants Co., LTD.)

³ 東京大学新領域創成科学研究科(Graduate School of Frontier Sciences, the University of Tokyo)

第1図 「垂坂断層」とその周辺の活断層.活断層は鈴木ほか(1996a,b,2010)による.背景地図は地理院地図による. Fig. 1 Location map of the Tarusaka Fault and its surrounding active faults Active faults are after Suzuki *et al*, (1996 a, b, 2010). Base map is after the "Chiriin-Chizu (GSI Maps)"

たため、その北西に隣接平行する B 測線(最も狭い部 分では幅員約2mと狭く、断層推定位置を含む約550 m 区間に径40 cm の上水道が敷設されている)で探査 を実施した. B 測線は、ボーリング調査地点(寺田ほ か、2020)の約60m南東を通る.またこの測線の南西 端(CMP番号1:海蔵川左岸堤防)は、三重県が実施 した地下構造調査(三重県、2004)の探査測線と接する.

3. 探査の概要

3.1 探查仕様

探査にあたっては、堆積層中~下部(深度数100m ~1,000m程度)以浅の構造を明確に求めることを目的 とし、住宅地内という測線の条件を考慮して、第1表 に示す機材を用い、第2表に示す仕様でP波による探 査を行った.データ取得測線(B測線)における探査は、 2020 年1月8日から12日にかけて行った. なお探査仕様の詳細は、A測線で行った予察探査の結果に基づいて決定した.

3.2 データの質

測線北東部の約550 mの区間 (CMP No. 250 ~ 487) には直径 40 cmの上水管が埋設されており,かつ住家 が密集しているため大出力の発震ができないという条 件があり,この区間では S/N 比が低く,浅部の分解能 は低い.測線南西部の約330 mの区間 (CMP No. 1 ~ 125)では交通量が多かったものの,周囲に住家がなく 大出力の発震が可能であったため,結果的には比較的 良好なデータが得られた(第3図).

第2図 探査測線位置図. Fig. 2 Location of seismic survey line.

4. データ処理

一般に多用される共通中間点(CMP)重合法により S/N比を高めた時間断面(第7図)を作成し,次いで 重合速度構造(第6図)に基づきマイグレーション処 理を施し時間断面中の反射面を正しい位置に戻した上 で,さらに,深度変換によりマイグレーション処理後 の時間断面(第8図)を深度断面(第9図,第10図) に変換した.データ処理及び解析は,株式会社阪神コ ンサルタンツで開発したプログラムを用いて行った. データ解析長は2秒とした.また,速度構造が複雑な 表層付近の影響を取り除くため表層静補正を行った. なお,表層静補正のために,受振距離約200mまでの 初動走時について,表層を小さなセルに分割しトモグ ラフィ解析により個々のセルの弾性波速度を求め,表 層の速度構造図(第4図)を作成し,同時に静補正量(第 5図)を求めた.

第3表にデータ処理に用いたパラメータを示す.

5. 探査結果

第6回に重合速度構造を,第7回に重合後時間断面

を,第8図にマイグレーション処理後時間断面を,第9 図に深度断面を示す.

6. 考察

6.1 地質構造

深度断面図(第9図)では、「垂坂断層」推定地点(CMP No.330~400付近)の周辺に急傾斜する反射面は認められず、測線のほぼ全体を通じて6°~15°南西に傾斜する反射面が認められる.浅部の速度構造と深度断面の図(第10図)からは、「垂坂断層」が想定される比高10mの傾斜地形を境に北東側(段丘上)で低速度層が厚く、南西側(沖積低地側)で低速度層が薄いことが読み取られる.

これらから,鈴木ほか(1996a)および岡田・東郷(2000) で「垂坂断層」と記載された傾斜地形は,構造性のも の(断層崖・撓曲崖)ではなく,幅1kmないしそれ以 上の南西傾動帯の一部に形成された浸食性の崖(段丘 崖)であると判断される.

深度断面に示された南西傾斜構造は, 測線中央(CMP No. 260 地点付近)において深度 1,500 m 付近を通る反射面を境に下位では傾斜 15°程度,上位では傾斜 10°程

種類	形式	製品名	製造社	主な仕様
		EnviroVibe	IVI	実用周波数範囲:8Hz~200Hz
				最大ストローク: 6.99 cm
	山田バノブ			ホールドダウン重量:約7.5トン
震源	中型ハイノ			リアクションマス重量:約0.8トン
	• /			ベースプレート設置面積:約1.1 m ²
				総重量:8.4トン
				寸法:(L)6.1 m×(H)2.4 m×(W)1.9 m
	ジオフォン	OMNI-2400	Geospace	速度型地震計(1成分)
受振器				固有周波数:15 Hz
				グルーピング:3個
				A/D分解能:24ビット
		GSR (GSX)	Geospace	サンプリング間隔:
	如今刊し、			0.25, 0.5, 1.0, 2.0, 4.0 msec
探鉱機	独立堂レ			保存データ形式:SEG-D,SEG-2
	- /			周波数特性:3 kHz~1.6 kHz
				プリアンプゲイン:
1				0, 6, 12, 18, 24, 36 dB

第1表 探査機材一覧. Table 1 Field acquisition systems.

第2表 探查仕様一覧.

Table 2 Specifications of the acquisition system.

項目		内容	備考
探查手法		P波反射法地震探查	
測線名		GS-YTRS測線	第2図のB測線
測線長	上段:測定	1,224 m	A測線で行った予察探査結果を基に決定
例例以	下段:解析 1,215 m		(他の仕様も同様)
探査目	漂深度	500 m以上	東海層群中部ないし下部以上の層準
標準発震点間隔		5 m	交差点は発震をカット、隣接家屋等の状況に応じ調整
標準受振点間隔		5 m	障害物がある場合は受振器設置位置をずらして設置
標準収録チャンネル数		240(固定展開)	
収録記録長		2 秒	
サンプリング間隔		1 msec	
収録様式		SEG-D	
標準垂直重合数		標準10回	状況に応じ発震回数を5回に変更
標準ス	イープ長	16秒	
スウィープ周波数		10 Hz~100 Hz	

度の傾斜不整合面が認められるが、この面より上位に 関していえば、若干上部ほど傾斜が緩くなる傾向が認 められるものの、明瞭な傾斜不整合は認められず、測 線中央において深度約 100 m の反射面の傾斜と深度約 500 m の反射面の傾斜はともに 6° 程度であり、両者間 に違いは認めがたい.ただし、浅部に関して言えば、 第 10 図の CMP No.100 の標高 -40 m 付近において緩い (不明瞭な)傾斜不整合を認めることができる.

6.2 地層と反射面の対比

調査地点周辺では,三重県(2004,2005a)の反射法 地震探査や微動アレー調査による地下構造調査や,吉 田(1984),吉田ほか(1991)の地質調査が行われており, それらと本調査測線で得られた速度層を対比する.

既存のボーリング情報としては、測線南端から約3.5 km 南の四日市市街地に位置する四日市温泉(第1図) の深度800mまで掘削したボーリング情報が公表され ている.吉田(1984)によれば、このボーリングの深 度468m以浅の砂礫を挟む上部は東海層群中部の泊累 層(最上部鮮新統~最下部更新統)、砂泥互層からなる 下部は同下部の八王子(あるいは亀山)累層(上部鮮 新統)に対比可能であるとされている.

また、測線北端の約1km北西の垂坂山周辺では、砂 泥互層を主とする東海層群中部・大泉累層(泊累層に 対比される)を傾斜不整合に覆って泥礫互層からなる 見当山累層(中部更新統)が分布する(吉田, 1984).

三重県四日市市垂坂断層(推定断層)の反射法地震探査速報

第3図 発震記録の例. Fig. 3 Examples of shot gathers.

Fig. 4 Tomographic surface velocity model.

しかし, 測線近傍の YTRS-1 ボーリングでは深度 37 m ~ 40 m に半固結泥岩が認められている, これは露頭で 認められる見当山累層と比較して固結程度が高く, 東 海層群に相当する可能性が高い.

現段階では、今回の探査で得られた反射面と丘陵に 露出する地層を確実に対比することは困難であるが、 以上の知見から、先述した CMP No.100 において標高 -40 m 付近から深度 1,500 m 付近に至る層準は東海層群 に対比される可能性が高い.

7. 調査結果のまとめと今後の課題

本調査によって,一時「垂坂断層」と認定されてい た傾斜地形は活断層ではなく,幅広い南西傾斜構造の

第3表 データ処理に用いたパラメータ. Table 3 Examples of shot gathers.

処理名	パラメータ	設定値	備考	
		GS-YTRS測線		
プレフィルタ	ハンドハス	20 Hz∼120 Hz		
	ノイルダ帯域	インパルファ広協士スオペレータな乳斗」		
位相補正	—	インバルスに変換するオバレークを設計し 適用		
	ゲインカーブ			
振幅回復	算出用時間	25 msec		
	ウィンドウ幅			
デコンボリュー	自己相関演算用ゲート長	1,500 msec	タイムバリアント スペクトラル	
ション	フィルタ長	150 msec	ホワイトニング	
	ホワイトノイズ	1%		
	メッシュサイズ	1 m×1 m		
	初期速度モデル	深度と共に単調増加		
		$(100 \text{ m/s} \sim 1,200 \text{ m/s})$		
静補正	最大オフセット距離	200 m		
11 III	再構成速度範囲	100 m/s~3,500 m/s		
	トモグラフィ繰り返し回数	80回		
	置換速度	1,500 m/s		
	標高補正用速度	1,500 m/s		
	任地工	<tau-pフィルタン< td=""><td>-</td></tau-pフィルタン<>	-	
速度ノイルタ	裡類	ナューワワエーワノイスを抑制するため、 1,200 m/s以下の速度を除去するように適用		
	最大許容時間シフト量			
残差静補正	(1回当)	週用せず	補正量を自動算出	
	繰り返し算出回数	適用せず		
NMO補正	ストレッチミュート適用比 率	1.75		
		$0 \operatorname{msec} \sim 200 \operatorname{msec}$; 20 Hz $\sim 250 \operatorname{Hz}$	_ マイグレーション 処理後の時間断面 に適用	
帯域通過フイル タ	タイムバリアントフィルタ	200 msec~1,100 msec; 10 Hz~120 Hz		
		1,100 msec \sim ; 5 Hz \sim 90 Hz		
南西	-3-4-3-5-V007			
20	40 60 80	100 120 140 160 160	200 220	
R	*** 60 80	67Fm	200 220	
	0	THE STREET		
2-00	又加州の肥料	HI ALL ME	The second se	
Constants				
The second se	Can and a			
1				

中の段丘崖であることが明らかになった.

しかし、「幅広い南西傾斜構造」は、東海層群上部以 上の地層を一様に傾動させていることから、ごく最近 の地質時代(おそらく第四紀後半)になって活動を開 始した活傾動運動によるものであることも確かといえ る.

この「幅広い傾動運動」が、どのような運動様式に

よるものか(特に地震性地殻変動によるものか,非地 震性変動によるものか)を明らかにすることは,今後 に残された重要な課題である.

また,この反射法地震探査では,測線北東部を中心 として浅部の解像度は高くない.このため,既往ボー リング資料の検討などの調査を通じて,浅部の地質構 造その年代を解明することは,「幅広い傾動運動」の活

三重県四日市市垂坂断層(推定断層)の反射法地震探査速報

第6図 重合速度構造図.時間断面を作成した際に用いた重合 (RMS) 速度マップ. Fig. 6 RMS velocity model for processing time seismic section.

動性を評価する上でも大変重要な課題である.

以上の課題解決を通じて, さらに当地域の地震危険 性評価の精度を向上させていきたい.

謝辞:本調査にあたり,海蔵地区連合自治会の水谷重 信会長,西阿倉川連合自治会の羽場誓司会長,松が丘 地区自治会の小津誠会長には関係地域住民の皆様のご 理解・ご協力をいただくために大きなご助力をいただ いた.西阿倉川地区および松が丘地区の皆様には,調 査にご理解・ご協力をいただいた.四日市市危機管理 室の田中宏和主幹と中山宗行様・同海蔵地区市民セン ター田中良和館長と上杉達也副館長・同農水振興課の 山中詩織様・同道路管理課の小林孝行主幹・川村茂樹様, 三重県四日市建設事務所の井坂将太主事・下村沙耶主 事各位からは,地元交渉や道路使用にあたって大きな ご協力を賜った.四日市北警察署よりは道路使用許可 などの法令許可をいただいた.以上の地元各位のご協 力に心より感謝申し上げます.

文 献

- 池田安隆・今泉俊文・東郷正美・平川一臣・宮内崇裕・ 佐藤比呂志 (2002) 第四紀逆断層アトラス.東京 大学出版会, 254p.
- 今泉俊文・宮内崇裕・堤 浩之・中田 高(2018)活 断層詳細デジタルマップ[新編].東京大学出版会, フラッシュメモリ+説明書, 141p.

- 三重県(2004) 平成15年度伊勢平野に関する地下構造調査成果報告書. [https://www.hp1039.jishin.go.jp/kozo/Mie8frm.htm](2020年4月22日閲覧)
- 三重県(2005a)平成16年度伊勢平野に関する地下構
 造調査成果報告書. [https://www.hp1039.jishin.go.jp/kozo/Mie8frm.htm] (2020年4月22日閲覧)
- 三重県(2005b) 三重県内活断層図(北勢地域).防災みえjp.【www.bosaimie.jp/static/X_MIE_mhc00】
 (2020年4月23日閲覧)
- 岡田篤正・東郷正美(2000)近畿の逆断層.東京大学 出版会年,395p.
- 鈴木康弘・千田 昇・渡辺満久 (1996a) 1:25,000 都市 圏活断層図「四日市」. 国土地理院.
- 鈴木康弘・千田 昇・渡辺満久・岡田篤正 (1996b) 1:25,000 都市圏活断層図「桑名」. 国土地理院.
- 鈴木康弘・千田 昇・渡辺満久・岡田篤正・中田 高・ 熊原康博・後藤秀昭・杉戸信彦・廣内大助・八木浩司・ 池田安隆(2010)都市圏活断層図 伊勢平野の活 断層「四日市(第2版)」.国土地理院.
- 吉田史郎 (1984) 四日市地域の地質.地域地質研究報 (5 万分の1図幅),地質調査所,81p.
- 吉田史郎・栗本史雄・宮村 学(1991): 桑名地域の地質. 地域地質研究報告(5万分の1図幅),地質調査所, 154 p.

Fig. 7 Time stacked seismic section.

第8図 マイグレーション処理後時間断面図. Fig. 8 Time-migrated seismic section.

Fig. 9 Depth converted seismic section.No vertical exaggeration.

三重県四日市市垂坂断層(推定断層)の反射法地震探査速報

第10図 浅部の深度断面図にトモグラフィー解析から得られた速度構造を重ねた図.縦横比は1:1. Fig. 10 Depth converted seismic section of surface layer overlaid with tomographic velocity model. No vertical exaggeration.

地質調査総合センター速報 No.81 令和元年度沿岸域の地質・活断層調査研究報告 編 集 佐藤美子

- 発行日 令和2年9月3日
- 発 行 国立研究開発法人産業技術総合研究所 地質調査総合センター 〒305-8567 茨城県つくば市東1丁目1-1 中央第 7
- 印 刷 株式会社アイネクスト
- お問い合わせ 国立研究開発法人産業技術総合研究所 地質調査総合センター 〒 305-8567 茨城県つくば市東1丁目 1-1 中央第7

本誌掲載記事の無断転載を禁じます.