地質調査総合センター研究資料集 No. 687 (2019)

高シリカ岩、高アルミナ岩を対象とした蛍光 X 線分析

高木 哲一・宮腰 久美子1

# X-ray fluorescence analysis for high-SiO $_2$ and high-Al $_2O_3$ rocks. by Tetsuichi Takagi and Kumiko Miyakoshi

#### 1. はじめに

ガラス、セメント等の原料として必須な珪石・珪砂は、一般に SiO<sub>2</sub>(シリカ)が 80 wt.%を 超える組成を持ち、シリカ含有量の増加に従って用途や単価が大きく変化する。そのため、珪 石・珪砂資源の評価にはシリカの正確な定量分析が重要である。一方、陶磁器、タイル、耐火 物の原料として重要なカオリン質岩やろう石は、一般に Al<sub>2</sub>O<sub>3</sub>(アルミナ)が 20 wt.%を超える 組成を持ち、アルミナ含有量が高いほど耐火度が高い。また、少量のチタンや鉄が製品の着色 の原因となる。そのため、カオリン質岩やろう石の評価にはアルミナおよび他の金属元素の正 確な定量分析が重要である。

蛍光X線法によってこれらの試料の定量分析を行う場合、従来の地質調査総合センター地球 化学標準試料を用いて作成した検量線(例えば、Morita et al., 2016)では組成範囲を十分にカ バーできず、外挿による分析値とならざるを得なかった。高純度の試薬を標準物質として用い る方法もあるが、一般にシリカやアルミナは極めて微細な粉末で供されるため、分析試料作成 時に、静電気による飛散、メノウ乳鉢表面への選択的付着などの問題を生じることがある。そ こで、本資料では、地質調査総合センター地球化学標準試料に加えて日本セラミックス協会が 発行する認証標準物質およびブラジル産高純度石英を使用し、高シリカ岩と高アルミナ岩を対 象とした検量線を作成したので、その結果を報告する。

#### 2. 設定条件

蛍光 X 線分析の設定条件は以下の通りである。

<sup>1</sup> 地圈資源環境研究部門

| 項目    | 条件                    | 付記                  |
|-------|-----------------------|---------------------|
| 装置    | リガク ZSX Primus III+   | 波長分散型、オートサンプラー付き    |
| 管球    | Rh 管球                 | 斜め上方照射式             |
| 電流・電圧 | 50 kV, 50 mA          | 全測定で同じ条件            |
| 試料室   | 真空、試料回転               |                     |
| 試料マスク | アルミ製、口径 20 mm         |                     |
| 分析試料  | ガラスビード (径3cm)         | ビードサンプラーにて、1150℃で溶融 |
| 融剤    | Merck Spectromelt A10 | 臭化リチウムを剥離剤として添加     |
| 試料:融剤 | 1:10(重量比)             |                     |

# 表1 蛍光X線分析の設定条件

## 3. 高シリカ岩用検量線

#### 3.1. 標準試料の概要

高シリカ岩用検量線の作成に使用した標準試料の化学組成(推奨値)は表2の通りである。

| 試料名                              | 石英粉 No.1 | けい石 No.2 | けい石 No.3 | 高純度石英        | JCh-1  | JG-2   | JG-1a |
|----------------------------------|----------|----------|----------|--------------|--------|--------|-------|
|                                  | インド      | 瀬戸       | 宇久須      | Lasca 2 級    |        |        |       |
| 入手元                              | CSJ      | CSJ      | CSJ      | Santa Rosa 社 | GSJ    | GSJ    | GSJ   |
| 略称                               | HS-10    | HS-11    | HS-12    | HS-1         | HS-4   | HS-8   | HS-9  |
| SiO <sub>2</sub>                 | >99.99   | 97.78    | 96.71    | >99.99       | 97.81  | 76.83  | 72.30 |
| TiO <sub>2</sub>                 | 0.000    | 0.022    | 0.565    | 0.000        | 0.0316 | 0.044  | 0.25  |
| Al <sub>2</sub> O <sub>3</sub>   | 0.000    | 1.070    | 1.310    | 0.002        | 0.734  | 12.470 | 14.30 |
| Fe <sub>2</sub> O <sub>3</sub> t | 0.001    | 0.053    | 0.102    | 0.000        | 0.356  | 0.97   | 2.00  |
| MnO                              | 0.000    | 0.002    | 0.002    | 0.000        | 0.0173 | 0.016  | 0.057 |
| MgO                              | 0.000    | 0.023    | 0.005    | 0.000        | 0.0754 | 0.037  | 0.69  |
| CaO                              | 0.000    | 0.029    | 0.016    | 0.000        | 0.0449 | 0.70   | 2.13  |
| Na <sub>2</sub> O                | 0.000    | 0.060    | 0.029    | 0.000        | 0.0305 | 3.54   | 3.39  |
| K <sub>2</sub> O                 | 0.000    | 0.710    | 0.130    | 0.000        | 0.221  | 4.71   | 3.96  |
| $P_2O_5$                         | -        | -        | -        | -            | 0.0167 | 0.002  | 0.083 |
| LOI                              | -        | 0.13     | 0.97     | -            | 0.56   | 0.39   | 0.57  |
| Total                            | 100.00   | 99.88    | 99.84    | 100.00       | 99.90  | 99.71  | 99.72 |
|                                  |          |          |          |              |        |        |       |

表2 高シリカ岩用標準試料の化学組成

CSJ: 日本セラミックス協会 (http://www.ceramic.or.jp/csj/standard/hyoujunbusshitsu.html)

ブラジル・Santa Rosa 社 (http://www.mineracaosantarosa.com.br/eng/zeta.htm)

GSJ: 地質調査総合センター地球化学標準試料

これら標準試料に加えて、SiO<sub>2</sub>含有量の変化幅をなるべく等間隔にするために、標準試料同士 を一定の割合で混合したものを5つ作成し、検量線作成時に標準試料として加えた。それらの 組成を表3に示す。

| 試料名                              | Lasca : JCh-1 | Lasca : JCh-1 | JCh-1 : JG-2 | JCh-1 : JG-2 | JCh-1 : JG-2 |  |
|----------------------------------|---------------|---------------|--------------|--------------|--------------|--|
|                                  | (2:1)         | (1:2)         | (2:1)        | (1:1)        | (1:2)        |  |
| 略称                               | HS-2          | HS-3          | HS-5         | HS-6         | HS-7         |  |
| SiO <sub>2</sub>                 | 99.27         | 98.54         | 90.82        | 87.32        | 83.82        |  |
| TiO <sub>2</sub>                 | 0.011         | 0.021         | 0.0357       | 0.038        | 0.040        |  |
| Al <sub>2</sub> O <sub>3</sub>   | 0.245         | 0.489         | 4.646        | 6.602        | 8.558        |  |
| Fe <sub>2</sub> O <sub>3</sub> t | 0.119         | 0.237         | 0.561        | 0.663        | 0.765        |  |
| MnO                              | 0.006         | 0.012         | 0.017        | 0.017        | 0.016        |  |
| MgO                              | 0.025         | 0.050         | 0.063        | 0.056        | 0.050        |  |
| CaO                              | 0.015         | 0.030         | 0.263        | 0.373        | 0.482        |  |
| Na <sub>2</sub> O                | 0.010         | 0.020         | 1.200        | 1.785        | 2.370        |  |
| K <sub>2</sub> O                 | 0.074         | 0.147         | 1.717        | 2.466        | 3.214        |  |
| P <sub>2</sub> O <sub>5</sub>    | 0.006         | 0.011         | 0.012        | 0.009        | 0.007        |  |
| Total                            | 99.78         | 99.56         | 99.33        | 99.33        | 99.32        |  |

表3 高シリカ岩用標準試料(混合試料)の化学組成

(2:1)などの表記は、各試料の混合割合を示す。

標準試料測定時の各種設定を表4に示す。リン(P)は、珪石・珪砂では一般に微量にしか含ま れず、有効な定量分析を行うには3分以上の測定時間が必要であることから、本ルーチンでは 測定元素から除外した。ピーク位置は定期的に調整することから、表からは省略した。

| X 線   | スリット | 分光結晶 | 検出器 | 検出器 PHA 測定時間 ピーク(秒) |     | BG1 | BG2 |  |  |
|-------|------|------|-----|---------------------|-----|-----|-----|--|--|
| Si-Ka | S4   | PET  | PC  | 125-310             | 40  | 10  | 10  |  |  |
| Τί-Κα | S2   | LiF1 | SC  | 85-320              | 40  | 10  | 10  |  |  |
| Al-Ka | S4   | PET  | PC  | 120-305             | 60  | 10  | 10  |  |  |
| Fe-Ka | S2   | LiF1 | SC  | 85-330              | 20  | 10  | 10  |  |  |
| Mn-Ka | S2   | LiF1 | SC  | 100-315             | 20  | 10  | 10  |  |  |
| Mg-Ka | S4   | RX25 | PC  | 110-305             | 80  | 10  | 10  |  |  |
| Ca-Kα | S4   | LiF1 | PC  | 130-260             | 40  | 10  | 10  |  |  |
| Na-Kα | S4   | RX25 | PC  | 100-330             | 100 | 10  | 10  |  |  |
| Κ-Κα  | S4   | LiF1 | PC  | 130-270             | 30  | 10  | 10  |  |  |

表4 標準試料測定時の各種設定

#### 3.2. 検量線の作成

前項で記述した条件により、検量線を作成した。その結果を図1から図9に示す。



図1 高シリカ岩用検量線(SiO<sub>2</sub>)



図2 高シリカ岩用検量線(TiO<sub>2</sub>)



図3 高シリカ岩用検量線(Al<sub>2</sub>O<sub>3</sub>)



図4 高シリカ岩用検量線(Fe<sub>2</sub>O<sub>3</sub>)



図5 高シリカ岩用検量線(MnO)



図6 高シリカ岩用検量線(MgO)



図7 高シリカ岩用検量線(CaO)



図8 高シリカ岩用検量線(Na<sub>2</sub>O)



図9 高シリカ岩用検量線(K2O)

**3.4.** 検量線作成の結果

検量線は、リガク製ソフトウェア ZSX ver. 6.54 を用いて計算・図示(図1~9)した。分析 対象を高シリカ岩に限定していることから、重み付けなどの処理を実施しなくても良好な直線 性が得られており、重元素を高濃度で含まない限り、特に補正を行う必要はないと判断され る。本報告で示した条件による1試料あたりの測定時間は約11分である。

SiO<sub>2</sub>は73-100 wt.%が検量線の範囲であり、高シリカ岩を精度良く定量分析することが可能 である。TiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, MnO, CaO, Na<sub>2</sub>O, K<sub>2</sub>O も良い直線性が得られており、表5に示す検 出限界以上の値であれば信頼できる定量分析が可能である。一方、MgO は、HS-9 の含有量 (0.69%)を検出限界以上とするように測定時間を調整したため、低濃度側の測定値で十分な直 線性が得られなかった。そこで、比較的直線上に並ぶ HS-9, HS-4, HS-5 を用いた原点を通る仮 の検量線を作成するに留めた。したがって、MgO の分析結果は、検出限界以上であっても半 定量分析の値として扱う。MgO が多く含まれる高シリカ岩を精度良く分析したい場合は、通 常岩石用の検量線を用いた分析を併用する必要がある。

表6 高シリカ岩測定条件における検出限界(理学電機工業,1982の式による)

|                | TiO <sub>2</sub> | $Al_2O_3$ | Fe <sub>2</sub> O <sub>3</sub> | MnO  | MgO  | CaO  | Na <sub>2</sub> O | K <sub>2</sub> O |
|----------------|------------------|-----------|--------------------------------|------|------|------|-------------------|------------------|
| 検出限界<br>(wt %) | 0.18             | 0.11      | 0.06                           | 0.06 | 0.63 | 0.08 | 0.93              | 0.06             |

今回の測定条件および作成した検量線を用いる高シリカ岩測定ルーチンの適用条件は以下の通 りである。

- · SiO<sub>2</sub>が73 wt.%以上の岩石
- · Cr, Ni, Pb などの重元素を高濃度で含まないこと(目安として 10 ppm 以下)
- · Na<sub>2</sub>O は、約 1.0 wt.%が検出限界
- · MgO は、約 0.7 wt.% が検出限界で、より高濃度の場合でも半定量分析となる。
- SiO<sub>2</sub>が99 wt.%を超える高純度珪石は、光学ガラス、半導体、ルツボなどの用途に重要であるが、蛍光 X 線分析の精度では適用性の厳密な評価が難しい。LA-ICPMS 法などと併用して組成を確認することが望ましい。

#### 4. 高アルミナ岩用検量線

4.1. 標準試料の概要

高アルミナ岩用検量線の作成に使用した標準試料および化学組成(推奨値)は表7の通りで ある。

| 試料名                              | 焼成ボーキサイト | ムライト  | シリマナイト | カオリン     | 蛙目粘土  | 陶石     |  |  |  |  |
|----------------------------------|----------|-------|--------|----------|-------|--------|--|--|--|--|
|                                  | ギアナ      |       | 南アフリカ  | ニュージーランド | 日本    | 日本     |  |  |  |  |
| 入手元                              | CSJ      | CSJ   | CSJ    | CSJ      | CSJ   | CSJ    |  |  |  |  |
| 略称                               | HAl-1    | HAl-2 | HA1-3  | HAl-6    | HAl-7 | HAl-11 |  |  |  |  |
| SiO <sub>2</sub>                 | 5.55     | 28.11 | 35.90  | 49.77    | 47.88 | 79.32  |  |  |  |  |
| TiO <sub>2</sub>                 | 2.93     | 0.185 | 1.33   | 0.068    | 0.865 | 0.010  |  |  |  |  |
| Al <sub>2</sub> O <sub>3</sub>   | 89.49    | 70.18 | 55.94  | 35.64    | 35.37 | 14.15  |  |  |  |  |
| Fe <sub>2</sub> O <sub>3</sub> t | 1.51     | 0.598 | 0.585  | 0.283    | 1.357 | 0.340  |  |  |  |  |
| MnO                              | 0.007    | 0.004 | 0.007  | -        | 0.006 | 0.003  |  |  |  |  |
| MgO                              | 0.006    | 0.190 | 0.451  | 0.004    | 0.251 | 0.049  |  |  |  |  |
| CaO                              | 0.012    | 0.059 | 0.427  | 0.004    | 0.216 | 0.033  |  |  |  |  |
| Na <sub>2</sub> O                | -        | 0.197 | 0.273  | 0.032    | 0.083 | 0.121  |  |  |  |  |
| K <sub>2</sub> O                 | -        | 0.174 | 0.329  | 0.008    | 0.468 | 3.00   |  |  |  |  |
| P <sub>2</sub> O <sub>5</sub>    | 0.064    | 0.136 | 0.072  | 0.105    | 0.020 | 0.009  |  |  |  |  |
| LOI                              | -        | -     | 4.26   | 13.90    | 13.37 | 2.73   |  |  |  |  |
| Total                            | 99.57    | 99.83 | 99.57  | 99.81    | 99.89 | 99.77  |  |  |  |  |

表7 高アルミナ岩用標準試料の化学組成

略号は表2に同じ。

表7(続き) 高アルミナ岩用標準試料の化学組成

| 試料名                              | JF-2  | JF-1  | JA-1a  | JR-1   | JR-2   | JG-2   | JR-3   |
|----------------------------------|-------|-------|--------|--------|--------|--------|--------|
| 入手元                              | GSJ   | GSJ   | GSJ    | GSJ    | GSJ    | GSJ    | GSJ    |
| 略称                               | HAl-8 | HA1-9 | HAl-10 | HAl-12 | HAI-13 | HAl-14 | HA1-15 |
| SiO <sub>2</sub>                 | 65.3  | 66.69 | 63.66  | 75.45  | 75.69  | 76.83  | 72.76  |
| TiO <sub>2</sub>                 | 0.005 | 0.005 | 0.87   | 0.11   | 0.07   | 0.044  | 0.21   |
| Al <sub>2</sub> O <sub>3</sub>   | 18.52 | 18.08 | 15.40  | 12.83  | 12.72  | 12.47  | 11.90  |
| Fe <sub>2</sub> O <sub>3</sub> t | 0.06  | 0.08  | 7.17   | 0.89   | 0.77   | 0.97   | 4.72   |
| MnO                              | 0.001 | 0.001 | 0.157  | 0.099  | 0.112  | 0.016  | 0.083  |
| MgO                              | 0.004 | 0.006 | 1.55   | 0.12   | 0.04   | 0.037  | 0.050  |
| CaO                              | 0.09  | 0.93  | 5.74   | 0.67   | 0.5    | 0.7    | 0.093  |
| Na <sub>2</sub> O                | 2.39  | 3.37  | 3.90   | 4.02   | 3.99   | 3.54   | 4.69   |
| K <sub>2</sub> O                 | 12.94 | 9.99  | 0.78   | 4.41   | 4.45   | 4.71   | 4.29   |
| P <sub>2</sub> O <sub>5</sub>    | 0.003 | 0.01  | 0.165  | 0021   | 0.012  | 0.002  | 0.017  |
| LOI                              | 0.42  | 0.36  | 0.62   | 1.31   | 1.35   | 0.39   | 0.77   |
| Total                            | 99.31 | 99.16 | 99.93  | 98.62  | 98.35  | 99.32  | 99.58  |

これら標準試料に加えて、標準試料同士を一定の割合で混合したものを2つ作成し、検量線作 成時に標準試料として加えた。それらの組成を表8に示す。

| 試料名                              | JG-2: ムライト | JF-2: ムライト |
|----------------------------------|------------|------------|
|                                  | (1:1)      | (1:1)      |
| 略称                               | HAl-4      | HAI-5      |
| SiO <sub>2</sub>                 | 52.47      | 46.71      |
| TiO <sub>2</sub>                 | 0.11       | 0.10       |
| Al <sub>2</sub> O <sub>3</sub>   | 41.33      | 44.35      |
| Fe <sub>2</sub> O <sub>3</sub> t | 0.78       | 0.33       |
| MnO                              | 0.01       | 0.00       |
| MgO                              | 0.11       | 0.10       |
| CaO                              | 0.38       | 0.07       |
| Na <sub>2</sub> O                | 1.87       | 1.29       |
| K <sub>2</sub> O                 | 2.44       | 6.56       |
| P <sub>2</sub> O <sub>5</sub>    | 0.07       | 0.07       |
| Total                            | 99.58      | 99.57      |

表8 高アルミナ岩用標準試料(混合試料)の化学組成

(1:1)などの表記は、各試料の混合割合を示す。

標準試料測定時の各種設定を表9に示す。ピーク位置は定期的に調整することから、表からは 省略した。

| X 線   | スリット | 分光結晶 | 検出器 | РНА        | 測定時間 ピーク(秒) | BG1 | BG2 |
|-------|------|------|-----|------------|-------------|-----|-----|
| Si-Ka | S4   | PET  | PC  | 125-310    | 20          | 10  | 10  |
| Τί-Κα | S2   | LiF1 | SC  | 85-320     | 60          | 10  | 10  |
| Al-Ka | S4   | PET  | PC  | 120-305 30 |             | 10  | 10  |
| Fe-Ka | S2   | LiF1 | SC  | 85-330     | 20          | 10  | 10  |
| Mn-Ka | S2   | LiF1 | SC  | 100-315    | 0-315 20    |     | 10  |
| Mg-Ka | S4   | RX25 | PC  | 100-400    | 120         | 10  | 10  |
| Са-Ка | S4   | LiF1 | PC  | 120-270    | 40          | 10  | 10  |
| Na-Kα | S4   | RX25 | PC  | 120-310    | 100         | 10  | 10  |
| Κ-Κα  | S4   | LiF1 | PC  | 130-280    | 30          | 10  | 10  |
| Ρ-Κα  | S4   | Ge   | PC  | 80-305     | 120         | 10  | 10  |

表9 標準試料測定時の各種設定

#### 4.2. 検量線の作成

前項で記述した条件により、検量線を作成した。その結果を図 10 から図 19 に示す。



2019-9-17 16:03

図 10 高アルミナ岩用検量線(SiO<sub>2</sub>)



図 11 高アルミナ岩用検量線(TiO<sub>2</sub>)



図 12 高アルミナ岩用検量線(Al<sub>2</sub>O<sub>3</sub>)



図13 高アルミナ岩用検量線(Fe<sub>2</sub>O<sub>3</sub>)



図 14 高アルミナ岩用検量線(MnO)



図 15 高アルミナ岩用検量線(MgO)



図 16 高アルミナ岩用検量線(CaO)



図 17 高アルミナ岩用検量線(Na<sub>2</sub>O)



図 18 高アルミナ岩用検量線(K<sub>2</sub>O)



図 19 高アルミナ岩用検量線(P2O5)

4.4. 検量線作成の結果

検量線は、リガク製ソフトウェア ZSX ver. 6.54 を用いて計算・図示した(図 10~19)。分析 対象の高アルミナ岩は、高シリカ岩と同様に重元素に乏しい組成の岩石が多いことから、重み 付けなどの処理を実施しなくても良好な直線性が得られており、特に補正を行う必要はないと 判断される。本報告で示した条件による1 試料あたりの測定時間は約 13 分である。

Al<sub>2</sub>O<sub>3</sub>が 50 wt.%を超える岩石であっても検量線の範囲内であり、精度良く定量分析するこ とが可能である。TiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, MnO, Na<sub>2</sub>O, K<sub>2</sub>O も良い直線性が得られており、表 5 に示 す検出限界以上の値であれば信頼できる定量分析が可能である。CaO の検量線は、HAI-10 の 高い値に依存しているが全体に直線性は良好であり、定量分析は可能と判断される。一方、 MgO は HAI-10 以外は検出限界以下であり、全体にやや分散している。また、P<sub>2</sub>O<sub>5</sub> も HAI-2, HAI-6, HAI-10 以外は検出限界以下であり、全体にやや分散している。したがって、両元素共 検量線の精度は低く、分析結果は検出限界以上であっても半定量分析の値として扱う。MgO, P<sub>2</sub>O<sub>5</sub> が多く含まれる高アルミナ岩を精度良く分析したい場合は、通常岩石用の検量線を用い た分析を併用する必要がある。Mg, P は蛍光 X 線分析では一般に感度が低く、分析の難しい元 素であることから、本ルーチンでは測定時間を伸ばして精度をわずかに上げるより、半定量分 析と割り切って全体の分析時間を短縮する方がメリットが大きいと判断した。

|        | SiO2 | TiO <sub>2</sub> | Fe <sub>2</sub> O <sub>3</sub> | MnO  | MgO  | CaO  | Na <sub>2</sub> O | K <sub>2</sub> O | $P_2O_5$ |
|--------|------|------------------|--------------------------------|------|------|------|-------------------|------------------|----------|
| 検出限界   | 0.24 | 0.13             | 0.07                           | 0.07 | 0.66 | 0.07 | 0.80              | 0.06             | 0.09     |
| (wt.%) | 0.24 | 0.15             | 0.07                           | 0.07 | 0.00 | 0.07 | 0.00              | 0.00             | 0.07     |

表 10 高シリカ岩測定条件における検出限界(理学電機工業, 1982の式による)

今回の測定条件および作成した検量線を用いる高アルミナ岩測定ルーチンの適用条件は以下の 通りである。

- · Al<sub>2</sub>O<sub>3</sub>が12 wt.%以上、89 wt.%以下の岩石
- · Cr, Ni, Pb などの重元素を高濃度で含まないこと(目安として 10 ppm 以下)
- Na<sub>2</sub>Oは、約 0.8 wt.%が検出限界
- MgO は、約 0.7 wt.% が検出限界で、より高濃度の場合でも半定量分析となる。
- · P<sub>2</sub>O<sub>5</sub>は、約 0.1 wt.% が検出限界で、より高濃度の場合でも半定量分析となる。

4.5. 分析上の注意

検量線作成に用いた標準試料のガラスビードは、空気中の湿気により表面から徐々に劣化す る。再測定に際しては、表面をダイヤモンドペーストを染みこませたバフで研磨するなどのメ ンテナンスを行うことにより、ガラスビード作成時と同等な分析値を得られる場合が多い。し かし、ガラスビードが古くなり全体に失透している場合は、再作成が必要となる。

標準試料のガラスビード作成において、融剤と試料の混合比が 10 倍の条件下では、これまで 溶け残りの問題は発生していない。しかし、高アルミナ岩の1つであるろう石にはコランダム やダイアスポアなど極めて堅硬な鉱物が含まれていることがあり、それらが溶け残ることに注 意する必要がある。試料はメノウ乳鉢で十分に細かく粉砕しつつ、融剤と均質に混合すること が重要である。

#### 謝辞

本報告の作成にあたって、蛍光 X 線分析装置の運用・保守に尽力している荒岡大輔氏、綱 澤有輝氏、実松健造氏、昆慶明氏に感謝申し上げます。また、生田目千鶴氏、徳本明子氏、 Buenaventurada C. Segwaben 氏、藤井和美氏には技術的支援をいただきました。皆様に深く御 礼申し上げます。

### 文献

理学電機工業株式会社(1982) 蛍光 X 線分析の手引き. p.167.

Morita S., Takagi T., Kon Y., and Araoka D. (2016) The accuracy and determination limits of rock chemical analysis by X-ray fluorescence spectrometry at Mineral Resources Research Group, Geological Survey of Japan. Open File Report, Geological Survey of Japan, No. 624, p.36, 1 CD-ROM.