非常に古い地下水年代測定のための日本列島の帯水層岩石を対象にした ヘリウム同位体生成速度および放射性塩素同位体放射平衡値データ集

森川徳敏^{*}•戸崎裕貴^{*}

Noritoshi Morikawa and Yuki Tosaki (2013) Data set of the helium isotope production ratios and the secular equilibrium values of chlorine-36 isotopic ratios (³⁶Cl/Cl) for the aquifer rocks in the Japanese islands: Towards the improvement of the dating methods for old groundwaters. *Open-File Report of the Geological Survey of Japan, AIST,* no. 582, p.1-21, 7 figs, 3 tables.

*地質情報研究部門(AIST, Geological Survey of Japan, Institute of Geology and Geoinformation)

Abstract: Both helium concentration and chlorine-36 isotopic ratios (³⁶Cl/Cl) in groundwater offer useful dating methods for old groundwaters over one hundred thousand years old. Further improvement in the accuracy and reliability of these methods requires a precise knowledge of the helium isotopic production rates and secular equilibrium ³⁶Cl/Cl ratios for individual aquifer rock samples. We conducted whole-rock major and trace element analyses for various types of rocks around the Japanese islands. Based on these results, this report presents the calculated helium isotopic production ratios and secular equilibrium ³⁶Cl/Cl ratios for 136 rock samples. We also attempted to evaluate the applicability and limitations of the groundwater dating methods using helium concentration and ³⁶Cl/Cl ratio. The calculated secular equilibrium ³⁶Cl/Cl ratios, mostly ranging from 5×10^{-15} to 40×10^{-15} , positively correlate with SiO₂ content for igneous rock samples, while particularly high-SiO₂ sedimentary rocks tend to show lower secular equilibrium ³⁶Cl/Cl ratios. In the case of dating groundwaters of seawater origin, the calculated age largely depends on the secular equilibrium ³⁶Cl/Cl ratio in groundwater itself. Accordingly, relatively small errors in age estimates can be expected for aquifer rocks with high secular equilibrium ³⁶Cl/Cl ratios, such as granitic rocks. In contrast, the calculated ³He/⁴He production ratios were almost in the range of $0.3-3 \times 10^{-8}$, which positively correlate with the lithium content in rocks. If a typical crustal He flux value is adopted, the flux from the deeper crust into groundwater is always dominant over the in-situ produced He in aquifer rocks.

Keywords: groundwater age, helium, chlorine-36, production rate, secular equilibrium value

1. はじめに

数万年あるいは数十万年にもおよぶと思われる深層地 下水の年代推定手法として、地下水中のヘリウム同位体 (⁴He 濃度、³He/⁴He)や放射性塩素同位体比(³⁶Cl/Cl)の 利用が挙げられる(Phillips and Castro, 2003; Kazemi et al., 2006 など)。両者とも地下水涵養時に微少量含まれるが、 地下水流動・滞留時間の増加とともにその濃度・同位体組 成は変動する。

地下水流動中に加わるヘリウム同位体は、帯水層ある いは地下深部において岩石中の U、Th 等の放射壊変に より生成されたもの、およびマントル起源ガスが溶解したも のである。また、地下水流動中に加わる放射性塩素同位 体(³⁶Cl)は、岩石あるいは地下水中の安定塩素同位体 (³⁵Cl)の中性子捕獲反応により生成されたものである。 ³⁶Cl は半減期 301,000 年の放射性核種であるため、 ³⁶Cl/Cl は約 200 万年程度で岩石の化学組成に依存した 放射平衡値に達する(馬原ほか,2006)。従って、ヘリウム、 放射性塩素同位体による地下水年代を定量的に取り扱う ためには、帯水層を構成する岩石からの各々の同位体の 生成量を見積もる必要がある。いずれの同位体生成量も、 岩石の主要・微量元素存在度に依存するため、地下水年 代の研究対象となる帯水層の地質ごとに評価する必要が ある。

岩石の主要元素組成に基づいた³He^AHe 生成比、 ³⁶Cl/Cl 放射平衡値の経験式は、Andrews and Kay (1982)、 Andrews (1985)、および Lehmann and Loosli (1991)などに 示されているが、より正確な見積もりのためには、ウラン (U)、トリウム(Th)濃度に加え、リチウム(Li)、中性子吸収 断面積の大きなホウ素(B)や、サマリウム(Sm)・ガドリニウ ム(Gd)などの希土類元素のデータが不可欠となり、これら のデータがすべて揃っているデータセットを基に計算する ことが望ましい。

本報告では、大阪平野、瀬戸内海地域の深層地下水

など、現在我々が地下水年代の研究を行っている地域を 中心に、様々な岩石について主要・微量元素存在度の測 定を行い、岩石ごとにヘリウム同位体生成速度及び放射 性塩素同位体比の放射平衡値の計算を行った結果を報 告する。また、帯水層岩石の違いによるこれら手法の地下 水年代精度・適用性についてもふれる。

2. ヘリウム、放射性塩素同位体を用いた地下水年 代測定法

ヘリウムによる地下水年代の推定は,非大気起源 (non-atmospheric)の⁴He が地下水流動・滞留中に蓄積さ れる量を年代の指標として応用したものである。第一近似 的には、⁴He 濃度と蓄積時間が比例関係にあるため、非常 に古い地下水(トリチウム、¹⁴C が壊変し尽くされているよう な10万年を超えるような地下水)に対しての適用が有効で ある。

⁴Heを生ずる反応としては、²³⁸U・²³⁵U・²³²Th 及びその娘 核種の α 壊変が挙げられる。U・Th の壊変定数より、空隙 率 p の帯水層において単位時間あたりに生成される ⁴He 量($P(^{4}He)$; cm³STP/cm³/yr)は以下の式で表される。

$$P(^{4}He) = (1-p) \ \rho_{R} \ \{1.19 \times 10^{-13} \ [\text{U}] + 2.88 \times 10^{-14} \ [\text{Th}]\} \ (\text{cm}^{3}\text{STP/cm}^{3}/\text{yr}) \ (1)$$

ここで、 ρ_{R} は岩石の密度 (g/cm³)、[U]および[Th]は岩石中 の U および Th 濃度 (μ g/g)を表す。地下水中のヘリウムの 起源は、帯水層岩石由来のみとみなすことができる場合と、 帯水層のみならず全地殻からのフラックス、あるいは地域 によってはマントル起源へリウムのフラックスが顕著な場合 とがある。

ヘリウムの起源が帯水層のみの場合、地下水年代(*Tr*)は、

$$Tr = C(^{4}He) \cdot \frac{p \cdot \rho_{w}}{P(^{4}He)}$$
(2)

で表される。地殻およびマントル起源へリウムフラックスがある場合は、

$$Tr = C({}^{4}He) \ (1 - \frac{R_{\circ}}{R_{m}}) \frac{p\rho_{w}}{\left(P({}^{4}He) + \frac{F({}^{4}He)}{h}\right)}$$
(3)

で表され、ヘリウム同位体比や帯水層の厚さなどの情報が 必要である(Morikawa et al., 2005)。

ここで $C({}^{4}He)$ は地下水中の非大気起源の ${}^{4}He$ 濃度 (cm³STP/gH₂O)、 $F({}^{4}He)$ は地殻起源のヘリウムフラックス (cm³STP/cm²/yr)、 R_{o} および R_{m} は地下水およびマントル の ${}^{3}He/{}^{4}He$ 、 $p \cdot \rho_{w} \cdot h$ はそれぞれ空隙率・水の密度 (g/cm³)・帯水層の厚さ(cm)を示す。

³⁶Cl は半減期が 301,000 年の放射性核種である。地下

水に含まれる³⁶Clの起源は、大気上層で宇宙線によって 生成される成分、および帯水層中で中性子によって生成 される成分の二つに大別できる。天水起源の地下水の場 合、宇宙線起源の³⁶Clは帯水層中で放射壊変によって減 少し、帯水層中で生成される³⁶Clの放射平衡のレベルに 近づく。同時に、帯水層中で放射平衡に達した Cl⁻が難透 水層から付加される場合がある。これらを考慮すると、地 下水中の³⁶Clの質量収支は以下の式で表される(Phillips et al., 1986)。

$$RC = R_{i}C_{i}e^{-\lambda t} + R_{e}C_{i}(1 - e^{-\lambda t}) + R_{e}(C - C_{i})$$
(4)

ここでRは³⁶Cl/Cl、C は Cl⁻濃度、 R_i および C_i はそれぞれ 地下水涵養時の³⁶Cl/Cl 比と Cl⁻濃度、 R_e は帯水層におけ る³⁶Cl/Clの放射平衡値、 λ は³⁶Clの壊変定数(2.30×10^{-6} yr⁻¹)、tは地下水年代である。(4)式の右辺第一項は宇宙 線起源の³⁶Cl の壊変、第二項は帯水層中での³⁶Cl の生 成、第三項は帯水層中での Cl⁻の付加を表している.これ をtについて解くと、以下の式により地下水年代が推定で きる。

$$t = \frac{-1}{\lambda} \ln \frac{C(R - R_e)}{C_i(R_i - R_e)}$$
(5)

ー方、ここで海水を起源とする塩水の年代について考 えてみる。海水の³⁶Cl/Cl は非常に小さいため((0.71 ± 0.08) × 10⁻¹⁵; Fifield et al., 2013)、この場合は帯水層中で 生成される³⁶Cl が主要な起源となり、150~200万年程度 で放射平衡に達する。天水による希釈の影響が比較的小 さく、対象とする塩水が概ね高CI~濃度を保っている場合、 次式で表されるように³⁶Cl/Cl のみから年代を推定すること ができる。

$$t = \frac{-1}{\lambda} \ln \frac{R - R_{\rm e}}{R_{\rm i} - R_{\rm e}}$$
(6)

ここでは、 R_i は海水の³⁶Cl/Clとなる。

3. ³He, ⁴He 生成速度、および ³⁶Cl/Cl 放射平衡値

3.1 ³He/⁴He, ⁴He 生成速度

³He は、岩石に含まれる ⁶Li と U・Th などの α 壊変によって発生した熱中性子との反応による 3 重水素 (トリチウム;³H)の生成と、それに続く β 壊変によって生成される。

⁶Li
$$(n,\alpha)^{3}$$
H \rightarrow ³He (7)

また、⁴He は U、Th 系列核種の α 壊変により生成される。

$$^{238}\text{U} \rightarrow ^{206}\text{Pb} + 8 \,^{4}\text{He}$$
 (8)

$$^{235}\text{Th} \rightarrow ^{207}\text{Pb} + 7 \,^{4}\text{He}$$
 (9)

$$^{232}\text{Th} \rightarrow ^{208}\text{Pb} + 6 \,^{4}\text{He}$$
 (10)

したがって、単位重量あたりの岩石から生成される ⁴He の 生成速度 (P_{4He}) は以下の式で表される。

 $P_{4\text{He}} = 3.21 \times 10^6 \, [\text{U}] + 7.76 \times 10^5 \, [\text{Th}]$ (atom/g/yr) (11)

=
$$1.19 \times 10^{-13}$$
 [U] + 2.88×10^{-14} [Th]
(cm³STP/g/yr) (12)

また、³He の生成速度は、以下のように岩石内での中性 子発生量及び熱中性子が⁶Li と反応する比率により得ら れる(Andrews, 1985)。

$$P_{\rm 3He} = P_{\rm n} F_{\rm Li} \,(\text{atom/g/yr}) \tag{13}$$

$$=3.72 \times 10^{-20} P_{\rm n} F_{\rm Li}$$
 (cm³STP/g/yr) (14)

ここで、 P_n は中性子発生量(n/g/yr)、 F_{Li} は熱中性子が⁶Li と反応する比率を示す。 P_n は²³⁸Uの自発核分裂により発 生する中性子量と、Uおよび Thの(α ,n)反応により発生す る中性子量の和であり、以下の式で表される(Andrews et al., 1989)。

 $P_{\rm n} = {}^{238} N \lambda_{\rm sf} \nu + {\rm a} \, [{\rm U}] + {\rm b} \, [{\rm Th}] \tag{15}$

$$= 0.43 [U] + a [U] + b [Th] (n/g/yr)$$
(16)

ここで、²³⁸N、[U]、[Th]は岩石中の²³⁸U 原子数(atom/g)、 U および Th 濃度 (μ g/g)、 λ _{sf} は²³⁸U の自発核分裂の崩壊 定数(8.57×10⁻⁷ yr⁻¹)、 ν は²³⁸U の自発核分裂あたりの平 均中性子放出量(2 個)を示す。a とb は、U、Th それぞれ の中性子収率係数(neutron yield factor)であり、対象とする岩石の化学組成の関数である(第1表参照)。

FLiは以下の式で表される。

$$F_{Li} = \frac{\sigma_{Li} N_{Li}}{\Sigma \sigma_i N_i} \tag{17}$$

ここで、*σ*_iは元素 i の中性子吸収断面積、*N*_iは元素 i の存 在度を示す。³He 生成速度および、後述の³⁶Cl/Cl 放射平 衡値計算のための中性子吸収断面積、中性子収率係数 及びそれを導き出すための係数は第 1 表の通りである。

3.2 ³⁶CI/CI 放射平衡值

帯水層中で生成される³⁶Cl は、岩石中での中性子フラ ックスによる³⁵Cl の中性子捕獲反応によるものである。中 性子フラックスは、中性子発生量と岩石中の元素による熱 中性子吸収量のバランスによって決定され、下記のように 表される(Fabryka-Martin, 1988)。

$$\phi = \frac{P_{\rm n}}{\sigma_{\rm T}} \tag{18}$$

ここで、 ϕ は中性子フラックス($n/cm^2/yr$)、 P_n は前述の(16)

式によって表される中性子発生量(n/g/yr)、 σ_T は岩石の熱 中性子マクロ吸収断面積 $(cm^2/g \ rock)$ である(第 1 表参 照)。

これを用い、³⁶Cl/Cl 放射平衡値(*R*_e)は次式によって計 算できる(Andrews et al., 1986)。

第1図 ⁴He 原位置生成量と岩石中のウラン(a)、トリウム(b)、SiO₂(c)含有量の関係。

Fig. 1. Correlation between calculated ⁴He production rates and (a) U, (b) Th, and (c) SiO₂ contents in the rock samples.

$$R_{\rm e} = \frac{\phi \sigma_{\rm 35Cl}}{\lambda} N \tag{19}$$

ここで、 σ_{35Cl} は³⁵Clの熱中性子捕獲断面積(43.6 × 10⁻²⁴ cm²)、 λ は³⁶Clの壊変定数(2.3 × 10⁻⁶ yr⁻¹)、Nは³⁵Clの同位体存在度(0.7577)である。

4. ³He/⁴He, ⁴He 生成速度、および ³⁶Cl/Cl 放射平衡 値計算結果と地下水年代測定への意義

岩石種の違いによる³He/⁴He、⁴He 生成速度、および ³⁶Cl/Cl 放射平衡値の変動幅を見るため、大阪平野、瀬戸 内海地域の深層地下水など、現在我々が地下水年代の 研究を行っている地域を中心に、地質標本試料などから 岩石試料 136 試料を選んだ。岩石の分析は Activation Laboratories Ltd. (Canada)において行い、主要元素は ICP 発光分析法(ICP-AES)、微量元素はICP 質量分析法 (ICP-MS)を用いた。また、B 分析には即発ガンマ線中性 子放射化分析(PGNAA)、酸化第一鉄(FeO)分析には滴 定法を用いた。第 2 表に岩石の分析結果を示す。また、 ³He/⁴He、⁴He 生成速度、および ³⁶Cl/Cl 放射平衡値の計 算結果も記した。

4.1 帯水層岩石の違いによる⁴He 原位置生成量及びヘリ ウム同位体比、³⁶CI/CI 放射平衡値の特徴の違いについ て

⁴He 原位置生成量は、(1)式を見てもわかるように、岩石 中のU、Th 濃度に依存する(第1図-a, b)。火成岩におい てはSiO2濃度の高い岩石ほど⁴He 生成量は多く、塩基性 岩からの⁴He 生成量は非常に低い傾向が見られる。砂岩・ 泥岩など堆積岩では、同様の傾向が見られるものと、⁴He 生成量がSiO2濃度から考えられる傾向に比べると低い傾 向が目立つ(第1図-c)。これは、地下水へのU・Thの溶脱、 風化・続成作用などの2次的な影響により変化したことが 要因と思われる。

一方、ヘリウム同位体生成比(3 He/ 4 He 生成比)は、SiO₂ 濃度による系統的な変化は見られない(第 2 図)。 3 He/ 4 He は 0.3–3 × 10⁻⁸ 程度の間に集中しており、この数値は一般 的にいわれている crustal He 値にほぼ等しい(Ballentine and Burnard, 2002)。 3 He/ 4 He 生成比は、リチウム濃度と非 常によい正の相関が見られる(第 3 図)。

³⁶Cl は、地層中で ³⁵Cl と熱中性子との反応によって生成される。従って、³⁶Cl/Cl 放射平衡値を決定づける重要な元素は、地層中で熱中性子の生成に寄与する U や Th といった元素であり、それらの濃度と正の相関が見られる(第4図-a, b)。しかし、いくつかの試料ではその傾向から外れるものがあり、U・Th 濃度のみでは放射平衡値を正確には見積もることができない。³⁶Cl/Cl の相関から外れるものとして注意が必要であるのは、B 濃度の高い試料である

第2図³He/⁴He 生成比と岩石中の SiO₂ 含有量の関係。図中には大気および上部マントルの³He/⁴He (それぞれ、1.4 × 10⁻⁶, 1.1 × 10⁻⁵)も示した。石灰 岩のデータは除く。

Fig. 2. Correlation between calculated ³He/⁴He production ratios and SiO₂ contents in the rock samples.The ³He/⁴He ratio in the upper mantle and that in the air are also plotted for comparison. The data of limestone were omitted.

(第4図-c)。これは、Bが中性子吸収断面積の大きい元素 であることに起因する。第5図は、³⁶Cl/Cl 放射平衡値と岩

第4図 ³⁶CI/CI 放射平衡値と岩石中のウラン(a)、トリウム(b)、ホウ素(c)濃度の関係。 Fig. 4. Correlation between calculated secular equilibrium values of ³⁶CI/CI and (a) U, (b) Th, and (c) B contents in the rock samples.

石の SiO₂ 含有量との関係を示したものである。火成岩に おいては、酸性岩の方が³⁶Cl/Cl 放射平衡値が高い傾向 が見られる。堆積岩においては、同様の傾向が見えるとと もに、SiO₂ 含有量が高いにもかかわらず³⁶Cl/Cl 放射平衡 値が低いものが数多く見られる。これは⁴He 発生量と同じ 傾向で、地下水へのU・Thの溶脱、風化・続成作用などの 2 次的な影響による変化が要因と思われる。

4.2. 帯水層岩石の違いによる年代精度・適用性について

4.2.1 ⁴He による地下水年代測定

ヘリウム蓄積速度は、地下水の胚胎状態(帯水層を形成しているものか、あるいは亀裂に充填されたものか)によって、見積り方法が異なってくる。帯水層を形成するような堆積層、グリーンタフ層あるいは火山岩地域における⁴Heを用いた地下水年代の適用性や精度は、原位置生成量が主たる起源となるか、ヘリウムフラックスの影響が大きいか、フラックスの見積もり誤差などが非常に重要な要因となってくる。

原位置生成量のみを考慮に入れた場合の地下水への ⁴He 蓄積速度は、(2)式を変形した次式により得られる。

$$\frac{C(^{4}He)}{Tr} = \frac{P(^{4}He)}{p \cdot \rho_{w}}$$
(20)

地殻起源ヘリウムフラックスのみを考えた場合の地下水 への⁴He 蓄積速度は Stute et al. (1992)の(24)式において 原位置生成起源ヘリウムの項を省いた変形式:

$$\frac{C(^{4}He)}{Tr} = \frac{F(^{4}He)}{p \cdot h \cdot \rho_{w}}$$
(21)

第5図³⁶CI/CI 放射平衡値と岩石中の SiO₂含有量の関係
 (石灰岩のデータは除く)。

Fig. 5. Correlation between calculated secular equilibrium values of ³⁶Cl/Cl and SiO₂ contents in the rock samples. The data of limestone were omitted.

より得られる。地殻起源ヘリウムフラックス値は、さまざまな 手法により得られている(例えば、Sano, 1986; Torgersen, 1989)。ここでは、関東平野において得られた Sano (1986) の数値(1×10⁻⁶ cm³STP/cm²/yr)を使った。第6図に、原 位置生成量のみを考慮に入れた場合と、フラックス起源へ リウムも考慮に入れた場合の地下水への⁴He 蓄積速度を それぞれ計算した結果を示した。蓄積速度は、帯水層の 空隙率、帯水層の厚さにも依存するため、これらのパラメ ータを数段階に変えて計算しているが、いずれもフラック

- 第6図 原位置生成⁴He、および地殻フラックス起源⁴Heによる地下水への⁴He 蓄積速度。原位置生成⁴Heによる蓄積速度は、 ⁴He 原位置発生量(第1図)より、(20)式を用いて岩石ごとに計算した。地殻フラックス起源⁴Heによる蓄積速度は、フラック ス値が1×10⁻⁶ cm³STP/cm²/yr (Sano, 1986)である場合の計算値を示した。
- Fig.6. Accumulation rate of ⁴He into the aquifer derived from calculated ⁴He production rates and crustal He flux for various hydrogeological conditions such as porosity and aquifer thickness. The ⁴He accumulation rates by in-situ produced ⁴He from the aquifer rocks were calculated from the ⁴He production rates (Fig. 1) using equation (20). The ⁴He accumulation rates by crustal He flux were calculated from equation (21) using a typical value for crustal ⁴He flux (1 × 10⁻⁶ cm³STP/cm²/yr; Sano, 1986).

- 第7図 海水起源地下水の滞留時間と³⁶Cl/Clの進化の関 係。図中の3本の曲線はそれぞれ瀬戸内地域の花崗 岩(赤色:放射平衡値が3.2 × 10⁻¹⁴)、大阪層群の砂 岩(緑色:1.2 × 10⁻¹⁴)、放射平衡値が5 × 10⁻¹⁵ (青色)の場合の³⁶Cl/Cl 進化曲線を示す。図中の数値 は地下水の³⁶Cl/Cl が4 × 10⁻¹⁵、および1.5 × 10⁻¹⁵である場合の年代値を示す。年代値の幅は ³⁶Cl/Cl の分析誤差を20%としたときに取り得る年代の 幅を示す。
- Fig. 7. Change in ³⁶Cl/Cl in groundwater of seawater origin with increasing groundwater age. The three solid lines indicate ³⁶Cl/Cl evolution lines for the granitic rock in the Setouchi area (red), for the Osaka Group (green), and for a representative rock with a secular equilibrium³⁶Cl/Cl ratio of 5×10^{-15} (blue). Numbers in the figure show ranges in calculated groundwater ages. Error bars correspond to typical analytical errors in ³⁶Cl/Cl analyses (±20%).

ス起源へリウムの蓄積速度の方が原位置生成 ⁴He による 蓄積速度よりも卓越していることがわかる(第6図)。ただし、 帯水層が多重構造をなしているときは、下部に位置する帯 水層にフラックス起源へリウムは溶解されるため、上部の 帯水層へのヘリウムフラックスは阻害されることが考えられ る。ヘリウムによる地下水年代測定を行う場合、帯水層ごと に蓄積フラックス値は異なり、最大で地殻へリウムフラック ス値、最少で0となりうる。下位に帯水層がある場合、上位 に位置する帯水層の地下水年代値は、原位置生成へリウ ムのみを考慮に入れた場合は上限値を与え、下部からの ヘリウムフラックス量の有無で大きく変わる。へリウムによる 年代測定の精度向上には、当該地域の水理地質構造を 考慮に入れた上でへリウム蓄積モデルを立てる必要があ る。

4.2.2 ³⁶CI/CI による地下水年代測定

帯水層岩石の違いによる³⁶Cl/Cl 放射平衡値の違いは、 そのまま地下水年代値の違い、誤差範囲の違いにつなが る。第7図に、任意の³⁶Cl/Clを持つ地下水が示す年代値 を放射平衡値ごとに計算した結果を示す。地下水の ³⁶Cl/Cl 分析値には分析誤差として約 20%を付し、それに 伴う年代計算値の変動幅も記した。その結果を見ると、た とえば、塩水の³⁶Cl/Clが1.5×10⁻¹⁵であった場合、花崗 岩地域(瀬戸内海周辺の領家花崗岩・広島花崗岩の放射 平衡値は3.1×10⁻¹⁴)の塩水の年代は7.000~16.000年と 計算される。一方、同じ³⁶Cl/Cl でも大阪層群(堆積岩:放 射平衡値は 1.1 × 10⁻¹⁴)では、年代値は 20,000~47,000 年と大きく異なる。放射平衡値が 5 × 10⁻¹⁵程度の岩石に なると、地下水年代値は 5.3~13 万年程度に計算される。 また、地下水の³⁶Cl/Cl 分析値が 4 × 10⁻¹⁵ になると、3.7~ 6.1 万、11~21 万、37~130 万年と計算される。放射平衡 値が低いほど地下水年代値の幅が大きくなり、地下水の ³⁶Cl/Cl が放射平衡値に近い値まで近づいたときは年代の 下限値しか与えられなくなる。なお、三波川帯の緑色片岩 などの放射平衡値は、7 × 10⁻¹⁶ と現海水の値とほぼ等し い数値に計算される。この場合は、滞留時間の増加に伴う 海水起源地下水の³⁶Cl/Clの変動がほとんど見られず、年 代値の計算は不可能であると思われる。

このように、放射平衡値がより高い数値をもつ花崗岩地 域の方が年代とともに変化する³⁶Cl/Cl の幅が広いため、 海水起源地下水成分の年代を求める際には有効であると 思われる。放射平衡値は岩石の種類により異なり、それに 伴って地下水の³⁶Cl/Cl が同じであっても地下水年代は異 なって計算される。また、同一岩種においても主要元素組 成、B、U、Th などの微量元素濃度により放射平衡値は異 なってくるため、地下水年代測定の精度向上には当該地 域の岩石データを使った議論をする必要がある。

謝辞

本研究では、主に地質標本館に収蔵されている地質標 本試料、東南海・南海地震予知のための地下水等総合観 測設備のための観測井掘削試料を用いて行った。前者は 地質標本館・角井朝昭氏、後者は活断層研究センター・ 小泉尚嗣、松本則夫、北川有一、板場智史各氏および、 地質情報研究部門・関陽児、佐藤努各氏に便宜を図って いただいた。大阪平野の掘削試料(OD-1, OD-2 孔)は大 阪市立大学・三田村宗樹氏より提供いただいた。阿武隈 花崗岩のコア試料(AGB-1, -2, -3)は地質情報研究部門・ 塚本斉氏より提供いただいた。また、地質情報研究部門・ 柳沢幸夫氏にはいわき地域の岩石試料採取に同行して いただいた。地質情報研究部門・風早康平、伊藤順一、 宮城磯治、斎藤元治、内藤一樹各氏、活断層研究センタ ー・重松紀生氏には、それぞれ幌満かんらん岩、岩手火 山の火山岩、北海道・東北地方の火山岩類、薩摩硫黄島 溶岩、市房花崗閃緑岩類、紀伊半島の領家花崗岩類な ど貴重な試料を提供していただいた。本研究は原子力安 全•保安院(現 原子力規制委員会原子力規制庁)「平成 23 年度地層処分に係る地質評価手法等の整備」として実 施した。

引用文献

- 板場智史,高橋誠,小泉尚嗣,千葉昭彦,村瀬昭彦,明 石孝行(2009) GSJ コア本宮三越観測点資料.地 質調査総合センター研究資料集,509, CD-ROM 1 枚,産業技術総合研究所地質調査総合センター.
- 伊藤順一, 土井宣夫(2005) 岩手火山地質図. 火山地 質図 no.13, 産業技術総合研究所地質調査総合セ ンター, 8pp (1:25,000 地質図).
- 岩生周一,松井寛(1961)5万分の1地質図幅「平・川 前(付井出)」及び同説明書.地質調査所,103pp.
- 北川有一, 佐藤努, 小泉尚嗣, 中山伸朗, 伊藤健二, 鈴 木悠爾(2009a) GSJ コア豊田下山観測点資料. 地 質調査総合センター研究資料集, 513, CD-ROM 1 枚, 産業技術総合研究所地質調査総合センター.
- 北川有一,高橋誠,小泉尚嗣,水落幸広,村瀬昭彦,川 西繁 (2009b) GSJ コア井内浦観測点資料. 地質調 査総合センター研究資料集,510, CD-ROM 1 枚,産 業技術総合研究所地質調査総合センター.
- 久保和也,柳沢幸夫,山元孝広,中江訓,高橋浩,利光 誠一,坂野靖行,宮地良典,高橋雅紀,大野哲二, 駒澤正夫(2007)20万分の1地質図幅「白河」.産 業技術総合研究所地質調査総合センター.
- 佐藤努,北川有一,小泉尚嗣,名取二郎,西村義章,芳 賀政蔵,廣岡知,谷川晋一(2009) GSJ コア松山

観測点資料.地質調査総合センター研究資料集, 504, CD-ROM 1 枚, 産業技術総合研究所地質調査 総合センター.

- 産業技術総合研究所地質調査総合センター(2013) 地 質 標 本 デ ー タ ベ ー ス . http://riodb02.ibase. aist.go.jp/dform/
- 関陽児,松本則夫,小泉尚嗣,大島雅浩,元松直幸 (2009) GSJコア高知市観測点資料.地質調査総合 センター研究資料集,505, CD-ROM 1 枚,産業技術 総合研究所地質調査総合センター.
- 松延廣幸, 奥岳史, 飯島俊吾, 内藤俶孝, 増川史洋, 中 嶋龍三(1992) (α,n)反応と自発核分裂による中性 子収率を計算するためのデータブック. JAERI 1324, 260 pp.
- 馬原保典,中田英二,大山隆弘,宮川公雄,五十嵐敏文, 市原義久,松本裕之 (2006) 化石海水の同定法の 提案 -太平洋炭鉱における地下水水質・同位体分 布と地下水年代評価-,地下水学会誌,48,17-33.
- 三田村宗樹,吉川周作,石井陽子,貝戸俊一,長橋良隆 (1998) 大阪平野 OD ボーリングコアの岩相,大阪市 立自然史博研報,52,1-20.
- Andrews, J. N. (1985) The isotopic composition of radiogenic helium and its use to study groundwater movement in confined aquifers. *Chem. Geol.*, 49, 339–351.
- Andrews, J. N., Davis, S. N., Fabryka-Martin, J., Fontes, J. -Ch., Lehmann, B. E., Loosli, H. H., Michelot, J. -L., Moser, H., Smith, B. and Wolf, M. (1989) The in situ production of radioisotopes in rock matrices with particular reference to the Stripa granite. *Geochim. Cosmochim. Acta*, 53, 1803–1815.
- Andrews, J. N., Fontes, J. -Ch., Michelot, J. -L. and Elmore, D. (1986) In-situ neutron flux, ³⁶Cl production and groundwater evolution in crystalline rocks at Stripa, Sweden. *Earth Planet. Sci. Lett.*, 77, 49–58.
- Andrews, J. N. and Kay, R. L. F. (1982) Natural production of tritium in permeable rocks. *Nature*, 298, 361–363.
- Ballentine, C. J. and Burnard, P. G. (2002) Production, Release and Transport of Noble Gases in the Continental Crust. *Rev. Mineral. Geochem.*, 47, 481– 538.
- Fabryka-Martin, J. T. (1988) Production of radionuclides in the earth and their hydrogeologic significance, with emphasis on chlorine-36 and iodine-129. Ph.D. Thesis, University of Arizona, 400 pp.
- Fifield, L. K., Tims, S. G., Stone, J. O., Argento, D. C. and

De Cesare, M. (2013) Ultra-sensitive measurements of Cl-36 and U-236 at the Australian National University. *Nucl. Instrum. Meth. B*, 294, 126–131.

- Kazemi, G. A., Lehr, J. H. and Perrochet, P. (2006) *Groundwater Age*. John Wiley and Sons, Inc., 325 pp.
- Lehmann, B. E. and Loosli, H. H. (1991) Isotope formed by underground production. In Applied Isotope Hydrology, A case study in northern Switzerland (eds. Pearson Jr., et al.), Elsevier, 239–296.
- Morikawa, N., Kazahaya, K., Yasuhara, M., Inamura, A., Nagao, K., Sumino, H. and Ohwada, M. (2005) Estimation of groundwater residence time in a geologically active region, by coupling ⁴Heconcentration with helium isotopic ratios. *Geophys. Res. Lett.*, 32, L02406, doi:10.1029/ 2004GL021501.
- Phillips, F. M., Bentley, H. W., Davis, S. N., Elmore, D. and Swanick, G. B. (1986) Chlorine 36 dating of very old groundwater 2. Milk River aquifer, Alberta, Canada. *Water Resour. Res.*, 22, 2003–2016.
- Phillips, F. M. and Castro, M. C. (2003) Groundwater dating and residence-time measurements. *Surface and Groundwater, Weathering, and Soils, Treatise on Geochemistry Vol. 5* (eds. Holland, H. D. and Turekian, K. K), Elsevier, 451–497.
- Sano, Y. (1986) Helium flux from the solid Earth. *Geochem. J.*, 20, 227–232.
- Shibata, K., Iwamoto, O., Nakagawa, T., Iwamoto, N., Ichihara, A., Kunieda, S., Chiba, S., Furutaka, K., Otuka, N., Ohsawa, T., Murata, T., Matsunobu, H., Zukeran, A., Kamada, S. and Katakura, J. (2011) JENDL-4.0: A New Library for Nuclear Science and Engineering, J. Nucl. Sci. Technol., 48, 1–30.
- Stute, M., Sonntag, C., Deak, J. and Schlosser, P. (1992) Helium in deep circulating groundwater in the Great Hungarian Plain – Flow dynamics and crustal and mantle helium fluxes. *Geochim. Cosmochim. Acta*, 56, 2051-2067.
- Torgersen, T. (1989) Terrestrial helium degassing fluxes and the atmospheric helium budget: implications with respect to the degassing processes of the continental crust. *Chem Geol.*, 79, 1–14.
- Ziegler, J. F. (1977) Helium: Stopping Powers and Ranges in All Elemental Matter. The Stopping and Ranges of Ions in Matter, Vol. 4, Ziegler, J. F. (ed.), Pergamon Press, New York, 367 pp.

第1表 (α ,n)反応による中性子発生量, 熱中性子マクロ吸収断面積, およびその計算に用いたパラメータ値(R056試料の例) Table 1 Calculated neutron production rate from (α ,n) reactions, macro-absorption thermal neutron cross section, and parameter values used in the calculation (an example of R056)

	Atomic weight	Thermal neutron absorption cross section ^a	Mass stopping power ^b	Element yi	al neutron eld ^c	Sample data (R056)	Weight factor ^d	Neutron yield	Macro- absorption thermal neutron cross section ^f	
		10 ²⁴ cm ²	MeV/(g/cm ²)	n/yr/g i per	n/yr/g i per	ppm		n/yr/g rock	n/yr/g rock	10 ⁶ cm ² /g
Н	1.008	0.332		ppino	ppin m	203		per ppin o	per ppin m	40.3
Li	6.941	71.4	548	23.64	10.35	26	0.014	0.34	0.15	161.1
Be	9.012	0.00849	529	263.71	90.85	2	0.001	0.28	0.10	< 0.1
C B	12.01	0.00386	528	0 45	0.18	16.1	0.008	0.53	0.17	684.9
Ň	14.01	2.00	550	1.90	2.36					
0	16.00	0.000189	527	0.23	0.08	490000	258.625	60.43	21.43	3.5
F Na	19.00	0.00957	472	40.87	16.18	24600	11 226	138.67	65.80	342.8
Ma	24.31	0.0630	461	5.76	2.53	1200	0.556	3.20	1.41	1.9
AĬ	26.98	0.230	444	5.04	2.55	66700	29.617	149.38	75.56	342.8
Si	28.09	0.165	455	0.68	0.33	355000	161.367	109.47	53.82	1255.2
Р 9	30.97	0.166	434	4.58	2.48	218	0.095	0.43	0.23	0.7
CI	35.45	33.5	416	1.54	0.86					
K	39.10	2.06	414	0.16	0.10	35900	14.893	2.45	1.47	1142.2
Ca	40.08	0.429	428	0.08	0.04	8290	3.550	0.27	0.16	53.4
SC Ti	44.96	6.42	388	1.21	0.89	3 725	0.001	0.00	0.00	1.1
V	50.94	5.02	362	1.17	0.88	7	0.272	0.00	0.00	0.4
Cr	52.00	3.14	358	0.88	0.67	<20	<0.007	0.00	0.00	<0.1
Mn	54.94	13.3	347	0.46	0.41	426	0.148	0.07	0.06	62.0
Fe	58.03	2.57	352	0.18	0.20	14700	5.156	0.93	1.05	405.7
Ni	58.69	4.47	345	0.10	0.01	<20	< 0.007	0.00	0.00	<0.1
Cu	63.55	3.79	325	0.01	0.24	<10	< 0.003	0.00	0.00	<0.1
Zn	65.39	1.06	327	0.02	0.04	<30	<0.010	0.00	0.00	<0.1
Ga	69.72 72.61	2.80				14				0.3
As	74.92	4.15				<5				<0.1
Rb	85.47	0.380				137				0.4
Sr	87.62	1.31				84				0.8
Y Zr	88.91	1.28	285	0.00	0.00	21.9	0.020	0.00	0.00	0.2
Nb	92.91	1.14	283	0.00	0.00	6.4	0.023	0.00	0.00	<0.1
Мо	95.94	2.57	276	0.00	0.00	<2	<0.001	0.00	0.00	<0.1
Ag	107.9	63.0	262	0.00	0.00	< 0.5	< 0.001	0.00	0.00	< 0.1
In Sn	114.8	0.608	250	0.00	0.00	<0.1	<0.001	0.00	0.00	<0.1
Sb	121.8	5.22				<0.2				<0.1
Cs	132.9	28.9				2.3				0.3
Ba	137.3	1.18				610				3.2
Ce	140.1	0.98				20.9				0.1
Pr	140.9	11.5				5.43				0.3
Nd	144.2	50.2				18.8				3.9
Sm	150.4	5676 4547				3.73				84.8
Gd	157.3	48630				3.15		1		586.6
Tb	158.9	23.1				0.52				<0.1
Dy	162.5	942				3.20				11.2
H0 Fr	164.9	156				0.69				12
Tm	168.9	105				0.366				0.1
Yb	173.0	34.9				2.64				0.3
	175.0	104				0.455				10
Та	1/8.5	20.7				3.3 0.99				1.2 <0.1
Ŵ	183.8	18.2				<0.5				<0.1
TI	204.4	A 17-				0.68				
Pb Pi	207.2	0.153	185	0.00	0.00	24	0.004	0.00	0.00	<0.1
Th	232.0	7.34				16.7		1		0.3
U	238.0	7.59				3.19				<0.1
Total						999173	486	467	222	5261

*(16)式中の係数alは、岩石の単位重量(g)、単位U濃度(ppm)当たりの中性子収率との総和と、加重係数の総和との比として計算される

(Andrews et al., 1989). 係数bもThについて同様に計算され,表中の試料の場合, a = 467/486 = 0.96, b = 222/486 = 0.46となる.

^a JENDL-4.0による各元素の熱中性子吸収断面積(Shibata et al., 2011).

^b初期エネルギー8.0 MeVのa粒子に対する各元素の質量阻止能(Ziegler, 1977).

[°](α,n)反応による各元素の中性子収率(松延ほか., 1992).

^d 各元素の質量阻止能と元素の割合 ($ppm \times 10^{-6}$)の積で表される加重係数.

⁸岩石の単位重量(g),単位U濃度(ppm)当たりの中性子収率は、元素毎の単位U濃度(ppm)当たりの中性子収率と加重係数との積で計算される(Thについても同様).

^f 岩石の熱中性子マクロ吸収断面積は、各元素のモル比率と熱中性子吸収断面積の積の総和として計算される。

第2表 岩石試料の全岩組成 Table 2 Major and trace element compositions of rock samples.

Rock Type	pe Sedimentary rocks													
							sands	tone						
Sample No.	R001	R002	R003	R004	R005	R006	R007	R008	R009	R010	R011	R012	R013	R014
Major element comp	ositions (wt%)		=4.00		57 (0								= / = /	
SiO ₂	75.66	77.01	71.98	41.01	57.62	73.68	73.39	86.89	87.49	74.68	76.61	81.28	56.94	56.6
TiO ₂	0.29	0.40	0.37	0.28	0.52	0.40	0.49	0.29	0.16	0.19	0.35	0.19	0.55	0.5
Al ₂ O ₃	11.60	11.89	12.03	8.51	13.09	13.11	11.68	7.31	6.40	12.36	11.97	10.19	13.67	15.8
Fe ₂ O ₃	<0.01	0.33	0.85	1.31	2.83	0.78	1.43	<0.01	<0.01	0.21	0.37	<0.01	1.88	1.9
FeO	2.50	2.59	2.50	1.96	3.65	2.20	2.15	0.70	1.00	1.00	1.60	1.57	3.65	4.1
MnO MaQ	0.04	0.03	0.05	0.18	0.10	0.05	0.08	0.01	0.01	0.02	0.03	0.02	0.08	0.0
MgO	0.61	0.84	1.21	1.83	2.80 5.01	0.99	0.73	0.17	0.17	0.32	0.53	0.30	2.44	2.5
CaO No O	0.01	0.44	1.23	21.90	0.01 1.51	1.00	3.20	0.06	0.13	2.10	0.67	0.92	0.09	0.0 1 (
	3.40 2.4E	2.00	3.01	1.41	1.01	4.09	2.21	0.20	0.04	2.00	2.20	0.70	1.00	1.0
κ ₂ υ	2.40	2.20	2./3	1.UZ	1.39	1.70	2.32	3.14 1.01	2.79	2.14	2.10	0.70	1.1Z	0.5
L.U.I. Total	1.14	2.03	1./1	20.35	9.23	1.41	1.31	1.01	1.00	3.09	2.33	100.0	9.12	8.4 00
	90.0	100.7	90.0	100.1	90.3	100.5	99.5	99.9	100.5	90.9	99.3	100.0	90.7	99
I race element comp	ositions (ppm)	10	20	10	22	22	24	-	0	-	10	0	1/	,
LI	24	43	29	12	22	23	24	/	8	/	12	8	10	3
Ве	2	2 ۲ مر	1 21.1	10.2	100	3 12/	25	< 10.7	< 17.6	1 21 2	3 21 2	17 /	ן 27 ה	EO
Sc	21.7	40.7	21.1	40.2 Q	40.0	12.4	5.5	17.7	17.0	J1.2	21.3	17.4	18	J0 1
V	26	41	46	49	99	53	61	15	13	26	29	17	129	13
Cr	<20	30	40	30	<20	70	60	20	30	20	30	<20	40	
Со	4	6	7	10	12	6	7	<1	<1	3	3	2	13	1
Ni	<20	<20	20	<20	<20	30	<20	<20	<20	<20	<20	<20	<20	<2
Cu	10	20	<10	20	<10	<10	20	<10	<10	<10	<10	<10	30	2
Zn	30	60	50	40	90	40	70	<30	<30	<30	40	<30	80	7
Ga	14	15	14	9	16	14	20	8	7	13	14	11	15	1
Ge	1.6	1.3	1.8	0.7	2.1	1.7	3.0	1.3	1.4	1.8	1.6	1.2	1.4	1
As	<5	<5	7	<5	<5	6	6	<5	<5	<5	5	<5	<5	
Rb	/8	92	91	34	43	53	/6	87	/3	65	/9	29	35	2
Sr	202	98 10 4	150	327	205	232	237	44	42	0.4	/9 20.0	14/	2/5	21
ř 7r	10.0	10.4	10.7	13.4	17.0	1/./	17.5	120	4.0	0.0 76	29.0	10.2	21.7 7Ω	23
Nh	56	81	5.8	34	48	65	20J 5.4	62	35	37	66	4.6	4.6	5
Mo	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<
Aa	< 0.5	0.5	0.5	< 0.5	< 0.5	0.7	1.0	< 0.5	0.6	< 0.5	< 0.5	< 0.5	< 0.5	<0
In	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0
Sn	1	4	2	3	<1	1	4	<1	<1	<1	1	1	<1	
Sb	0.3	0.8	0.5	<0.2	0.4	0.6	3.6	<0.2	<0.2	0.6	1.0	<0.2	<0.2	<0
Cs	2.6	4.3	2.1	1.9	2.3	1.8	1.1	1.4	0.9	1.9	1.9	0.6	1.9	1
Ba	724	358	519	244	317	456	415	592	534	412	359	243	224	21
La	25.9	23.5	20.8	14./	10.5	23.8	26.8	25.0	39.2	22.4	58.7	36.3	12.7	15
Ce	43.3	48.7	43.4	25.5	23.0	40.3	46.9	47.6	69.0	40.1	/6.3	68.0	25.8	33
PI	5.53 10.1	5.20 10.2	4.43	3.18 11.4	2.73	4.08	5.0Z	4.94	0.23	3.90 12 7	11.1	7.11	3.10 12.2	4.
Sm	3 61	3 67	2 27	2 50	2.65	3 / 7	3 0/	207	19.0	2 /5	40.3 7 / 8	22.9	2.2	10
Fu	0.824	0.679	0 715	0.641	0.842	0.867	1.08	0.375	0.321	0.671	1.40	0.637	0.819	4.0
Gd	3.04	3.16	2.68	2.20	2.68	2.73	3.35	1.86	1.22	1.65	6.18	2.74	3.01	4.0
Tb	0.47	0.51	0.50	0.36	0.49	0.48	0.56	0.26	0.16	0.25	0.90	0.36	0.55	0.7
Dy	2.72	3.07	2.82	2.11	2.87	2.67	3.20	1.25	0.76	1.39	4.74	1.86	3.29	4.2
Ho	0.53	0.63	0.57	0.42	0.62	0.55	0.61	0.23	0.14	0.28	0.88	0.35	0.68	0.8
Er	1.48	1.82	1.63	1.23	1.82	1.55	1.71	0.64	0.40	0.82	2.21	1.03	2.01	2.5
Tm	0.213	0.272	0.257	0.172	0.262	0.241	0.250	0.094	0.058	0.122	0.277	0.141	0.296	0.3
Yb	1.48	1.85	1.81	1.17	1.92	1.65	1.69	0.64	0.39	0.83	1.68	0.94	2.02	2.5
Lu	0.252	0.311	0.287	0.193	0.339	0.271	0.280	0.105	0.075	0.145	0.262	0.157	0.333	0.42
Hf	3.1	3.5	2.8	1.5	2.4	3.2	5.9	3.5	3.9	1.9	2.7	2.6	2.0	2
18	0.55	U.//	0.49	0.28	0.36	0.38	0.46	0.59	0.91	0.40	0.63	0.60	0.33	0.3
VV Ti	۱.۱ ۲۵ م	1./	0.U	<0.5	<0.5	0.8 0.00	1.2	1.3	<0.5	1.9	0.7	<0.5	<0.5 0.07	<0
11 Dh	U.37 16	U.40 14	0.40	U.10	0.08	U.23 p	U.3/ 21	0.30	0.39	0.30	0.40 วว	U.I 10	0.27 7	U.
Ri	10 201	-0 1	10 -01	د> 1 ^	-7 -∩1	0 0 م-	21 0.1	12 1 مے	10 -01	19 0 1	23 201	۲۲ 1 م-	/ _01	~∩
Th	7.66	9.45	9.00	2 63	2 80	6 20	6 97	14 9	11 4	7 11	15.2	12.8	2 80	32
11	1 79	2 31	1 78	1.16	1.10	1.53	1.68	1.34	1.18	1 74	1.69	2.08	1 19	11

(cm ³ STP/g/yr)	4.34E-13 5.47E-13 4.71E-13 2.14E-13 2.14E-13 3.61E-13 4.01E-13 5.89E-13 4.69E-13 4.12E-13 6.39E-1	3 6.16E-13 2.25E-13 2.41E-13
³ He/ ⁴ He		
production ratio	1.33E-08 1.91E-08 1.49E-08 4.42E-09 6.91E-09 1.64E-08 1.33E-08 3.46E-09 4.22E-09 3.66E-09 5.88E-0	9 5.93E-09 5.32E-09 1.01E-08
³⁶ CI/CI secular		
equilibrium value	1.51E-14 1.52E-14 1.53E-14 5.38E-15 4.33E-15 1.61E-14 1.40E-14 1.81E-14 1.54E-14 1.36E-14 1.97E-1	4 2.87E-14 4.81E-15 5.03E-15

Pock Type							Sedimenta	ary rocks						
коск туре							sands	tone						
Sample No.	R015	R016	R017	R018	R019	R020	R021	R022	R023	R024	R025	R026	R027	R028
Major alamant compo	citions (ut0/)													
Najur element compo	5///ULIS (WL70)	70 10	00 17	70 50	02.00	61 12	70.02	00 40	77 26	60 70	45 07	62 12	45 00	45.00
510 ₂	0.47	0.27	00.17	0.30	03.00	04.42	0.55	00.00	0.45	07.70	03.07	02.43	03.00	0.60
	12.04	10.27	0.14	10.20	0.21	12 07	12 21	0.10	11 20	11 02	0.00	0.90	15 55	15 52
	13.94	0.10	9.04	0.25	9.12	12.07	1 10	0.39	11.30	0.01	14.00	14.13	10.00	1.10
Fe ₂ O ₃	1.0/	0.19	0.25	0.25	0.45	1.95	1.42	0.00	1.10	0.91	2.08	1.97	1.70	1.49
FeO	3.04	1.89	0.84	1.44	0.83	1.50	1.58	1.22	1.39	2.97	2.10	3.50	3.10	2.90
MaO	0.00	0.03	0.02	0.00	0.02	1.03	0.05	0.07	0.05	0.11	2.49	0.09 4 11	1.23	1.88
CaO	4.63	0.50	0.20	1 46	0.23	1.03	1.08	0.52	0.75	1 21	3 55	3.08	1.23	3.67
Na ₂ O	1.05	3 17	1 71	2 14	1.69	1.37	1.00	1 22	1.61	1.21	2.88	2.68	2 25	2.89
K.O	1.70	2.34	2.76	2.11	2.68	2 38	2.76	2.52	2.63	2.58	2.00	2.00	2.20	2.07
	10.31	1.28	1.68	1.57	1.53	0.87	5 22	2.52	2.00	6.26	2.50	1 25	5.03	3 10
Total	QQ Q	100.7	97.9	99.7	100.9	98.1	90.8	98.2	100.8	0.20 99 5	100.8	100 5	100.6	100.6
Trace cloment commo	oitiono (nnm)	100.7	//./	//./	100.7	70.1	77.0	70.2	100.0	77.5	100.0	100.5	100.0	100.0
Trace element compo	sitions (ppm) 1 A	21	14	10	17	20	22	21	20	24	20	22	40	20
LI Bo	14	31 1	10	10	1/	29	აა ე	21	30 2	34 2	29	აა 1	49 2	39 2
B	45.7	16 5	10 6	13.7	21.2	37.0	20.2	12.2	22 1	2	16.0	86	21 /	2
Sc	20	10.5	17.0	13.7	21.2	10	0.5 0	13.2	55.1	22.2	10.0	18	15	12
V	132	24	13	22	16	62	59	21	49	67	104	120	104	90
Cr	20	110	<20	<20	<20	40	30	<20	50	40	50	90	60	40
Со	13	4	4	8	5	10	6	6	9	12	11	15	13	9
Ni	<20	<20	<20	<20	<20	20	<20	<20	<20	20	<20	<20	<20	<20
Cu	20	10	260	30	60	60	10	< 10	10	20	<10	10	10	<10
Zn	70	40	560	90	120	70	60	30	180	380	70	80	80	60
Ga	14	13	10	11	10	15	16	10	14	15	16	16	18	17
Ge	1.7	1.5	1.6	1.5	1.6	1.7	1.9	1.6	1.8	2.5	1.2	0.8	1.2	1.5
As	8	<5	<5	<5	<5	<5	<5	<5	<5	5	<5	<5	<5	5
RD	44	104	8/	86	120	86	114	84	101	109	/5	94	98 107	/1
SI	205	104	122	199	139	140	135	83 11.0	100	130	1130	929	197	492
1 7r	20.0	17.4	9.7	106	10.0	21.2	27.3	50	205	20.1	13.4	14.7	20.7	160
Nh	4.4	69	25	3.0	33	270 9.2	10.3	29	275	10.6	55	67	101	6.8
Mo	4.4	<2	<2.5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Aa	< 0.5	< 0.5	< 0.5	< 0.5	0.5	1.0	1.0	< 0.5	1.2	1.4	< 0.5	< 0.5	0.6	0.5
In	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Sn	<1	3	4	2	1	3	3	1	2	3	1	1	1	1
Sb	0.6	0.9	0.3	<0.2	<0.2	0.5	0.5	0.4	0.4	0.5	<0.2	<0.2	<0.2	0.3
Cs	2.1	2.3	1.9	2.0	1.9	4.4	5.3	2.4	4.2	5.4	4.9	3.4	5.9	5.2
Ba	326	463	562	601	608	549	637	540	577	555	509	518	396	394
La	16.2	31.2	10.8	14.6	12.5	29.7	34.2	14.1	26.3	32.3	18.0	20.3	23.5	20.5
Ce	31.0	63.0	23.4	30.4	26.3	64.5	69.3	27.7	54.1	63.8	36.9	42.1	45.4	42.5
Pr	3.62	0.55	2.45	3.27	2.71	0.37	7.39	3.34 11.0	5.72	1.22	4.10	4.82	5.30	4.80
inu Sm	13.0	22.2	0./	11.0	9.5	24.0	20.0 5.20	11.0	20.2	Z0.7 5 12	10.1	10.1	2 00	2 50
Fii	0.823	4.04 0.604	1.03 0 559	2.55	0 576	4.90 0 820	0.20	0.630	4.00 0 720	0.13	2.90 0 784	0.00 0.887	3.00 0 995	0 937
Gd	3 34	3 15	1 54	1 99	1 56	3.92	4 60	2 11	3 30	4 38	2 64	3 08	3.84	3 21
Th	0.60	0.52	0.26	0.32	0.29	0.67	0.75	0.37	0.56	0.73	0.40	0.48	0.62	0.53
Dv	3.76	2.93	1.62	1.91	1.65	3.55	4.27	2.04	3.20	4.14	2.20	2.63	3.36	2.92
Ho	0.78	0.59	0.33	0.39	0.34	0.71	0.90	0.41	0.65	0.89	0.43	0.51	0.68	0.57
Er	2.25	1.85	0.99	1.14	0.99	2.04	2.72	1.18	1.97	2.66	1.23	1.47	2.01	1.70
Tm	0.333	0.283	0.151	0.173	0.149	0.303	0.395	0.179	0.302	0.401	0.184	0.214	0.307	0.250
Yb	2.25	1.90	1.00	1.15	1.03	1.98	2.74	1.17	2.03	2.61	1.24	1.42	2.01	1.72
Lu	0.390	0.313	0.163	0.184	0.178	0.327	0.464	0.196	0.331	0.441	0.213	0.242	0.332	0.298
Hf	2.0	3.2	1.5	2.5	2.8	6.3	6.3	1.5	6.8	5.7	2.8	3.7	4.6	4.1
la	0.38	0./1	0.28	0.35	0.32	0.79	0.92	0.31	0.70	0.96	0.37	0.49	0.92	0.54
W TI	<0.5	1.3	12	2.0	9.6	3.2	1.0	0.6	1.3	1.1	2.0	2.8	3.1	2.7
 	0.2	U.5 1E	0.5	U.40	U.44	U.54	U.05	0.53	U.58	U./1 1E	U.21	0.44	0.39	U.23
PU Ri	0 _01	10	19	10 _01	-01	01	10 _01	10	10	10 _01	-01	9	7 1 م_	14 _0 1
DI Th	<0.1 2 07	0.2 12 פ	<0.1 3.0∄	<0.1 1 21	<0.1 3 QA	0.2 11 ג	<0.1 13.6	0.1 1 82	0.1 0.77	<0.1 10.2	<0.1 1 14	0.1 1.26	<0.1 6.61	5 57
IJ	6.04	2.50	1.04	1.12	1.14	2.21	2.82	1.12	2.32	2.63	0.90	0.93	1.83	1.37
	0.0 .					!	2.02	2	2.02		5.75	5.75		
⁴ He production rate	0.22E 12 4	505 10	2 27F 12	1 EEE 12	2 EUE 12	E 00F 12	7 07E 10	2 72F 12	E E 7 E 10	4 07E 12	2 24 F 12	ງງງ⊏ 1ງ	4 OOF 12	2 22 1 2

(cm°STP/g/yr)	8.33E-13 6.52E-13 2.37E-13 2.55E-13 2.50E-13 5.88E-13 7.27E-13 2.72E-13 5.57E-13 6.07E-13 2.36E-13 2.33E-13 4.08E-13 3.23E	E-13
³ He/ ⁴ He		
production ratio	4.16E-09 1.93E-08 8.11E-09 1.05E-08 9.70E-09 9.41E-09 1.33E-08 9.94E-09 1.32E-08 1.27E-08 1.64E-08 1.73E-08 2.03E-08 2.03E	E-08
³⁶ CI/CI secular		
equilibrium value	1.59E-14 2.53E-14 7.57E-15 9.34E-15 8.88E-15 1.23E-14 1.85E-14 8.14E-15 1.53E-14 1.44E-14 8.39E-15 7.79E-15 1.07E-14 1.07E	Ē-14

Pock Typo						Sec	dimentary r	ocks					
коск туре	sands	stone			mudstone			sha	le	pebble		tuff	
Sample No.	R029	R030	R031	R032	R033	R034	R035	R036	R037	R038	R039	R040	R041
Major clament commo	altiona (ud0	()											
Major element compo	SILIONS (WI%	70 50	47 14	6161	47 44	40.27	60.00	45.04	04 00	02.00	47.40	42.20	72.07
3IU ₂	00.12	/0.50	07.10	04.01	03.00	09.27	09.20	00.04	00.09	03.09	07.09	03.30	13.91
TIO ₂	0.45	0.23	0.38	0.89	0.51	0.60	0.39	0.53	0.09	0.11	0.16	0.65	0.14
AI_2O_3	14.63	14.48	15.81	16.45	14.90	13.76	13.61	15.31	6.09	9.04	11.80	15.94	11.78
Fe ₂ O ₃	1.12	<0.01	0.96	1.08	1.49	2.49	0.65	1.35	0.15	0.08	1.02	1.33	1.61
FeO	2.60	2.29	2.26	3.30	2.20	<0.1	2.78	10.40	1.51	0.72	0.41	2.52	0.80
MnO	0.04	0.05	0.05	0.06	0.04	0.01	0.05	0.17	0.08	0.03	0.03	0.08	0.01
MgO	1.31	0.52	1.05	1.65	2.05	0.99	1.05	1.82	0.46	0.15	0.55	1.32	0.09
CaO	2.39	1.4/	0.98	0.51	2.46	0.51	2.34	0.45	1./1	0.70	1.64	3.88	0.09
Na ₂ O	2.32	3.52	1.07	1.52	2.16	0.78	2.00	2.67	2.48	1.58	1.92	3.73	3.24
K ₂ O	2.70	2.88	5.12	3.25	2.10	1.77	2.71	2.48	0.33	3.44	3.23	2.34	5.20
L.O.I.	6.74	2.30	3.94	5.39	7.05	9.52	5.02	3.18	1.59	0.83	11.42	4.74	0.87
Total	99.8	98.5	99.1	99.2	99.0	99.9	100.3	98.8	100.8	99.9	99.9	100.3	97.9
Trace element compo	sitions (ppn	n)											
Li	46	28	23	73	78	23	44	61	32	15	4	8	11
Be	2	3	4	2	2	2	2	2	1	<1	2	2	3
В	27.2	80.6	177	74.2	20.3	43.3	60.6	60.2	10.5	11.2	11.6	22.7	15.1
Sc	10	6	9	16	10	12	10	11	2	2	4	10	4
V	58	17	49	118	70	113	47	77	13	14	< 5	45	8
Cr	50	<20	20	90	40	70	30	40	<20	<20	<20	<20	<20
Co	6	3	4	18	9	4	6	15	3	3	<1	6	<1
NI	<20	<20	<20	40	<20	20	<20	30	<20	<20	<20	<20	<20
CU Zn	10	<10	10	40	<10	30	20	10	<10	10	< 10	20	<10
Zn	50	/0	/0	100	100	90	80	/0	<30	40	/0	60	<30
Ga	10	19	21	21	1/	10	1/	1.6	0	9	10	20	21
Ge	0.7	1.7	1.7	1.4	1.2	1.0	1.Z	1.0 Q	1.0	-5	1.4	1.0	Z.Z
Rh	111	111	254	140	79	80	132	96	13	111	126	85	151
Sr	175	346	180	78	588	103	132	152	163	114	333	416	23
Y	19.0	36.4	34.0	27.8	21.7	21.3	26.7	19.7	5.8	91	28.7	27.6	40.8
7r	154	184	146	171	194	116	152	223	43	71	209	27.0	374
Nb	8.5	13.6	13.1	14.0	8.3	8.0	10.8	10.4	1.7	2.2	13.2	10.6	10.6
Mo	<2	<2	<2	<2	3	2	<2	<2	<2	<2	<2	<2	<2
Aq	< 0.5	0.6	0.6	0.5	0.5	< 0.5	0.6	0.8	< 0.5	< 0.5	0.9	1.0	1.3
In	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Sn	2	7	8	3	2	2	3	2	<1	1	2	5	3
Sb	<0.2	0.8	0.7	0.9	0.4	0.5	0.6	1.3	<0.2	<0.2	<0.2	<0.2	0.3
Cs	7.0	2.8	18.7	18.8	10.5	7.3	16.9	4.4	0.4	2.0	2.9	2.3	2.3
Ba	376	700	1100	434	425	303	414	585	151	672	929	750	219
La	22.5	31.2	45.0	36.7	21.8	26.3	28.3	29.9	7.3	9.9	43.4	37.1	73.5
Ce	47.8	68.6	94.1	79.5	45.3	48.4	65.2	66.1	16.6	20.8	83.0	74.5	134.0
Pr	5.11	7.71	10.00	8.50	5.21	6.51	6.74	6.93	1.76	2.10	10.30	8.54	16.50
Nd	18.3	27.5	35.2	30.8	19.1	23.9	24.6	24.5	6.3	7.7	36.1	30.3	56.0
Sm	3.83	6.51	/.11	6.04	3.82	4.96	5.15	4.84	1.39	1.60	1.27	5.78	10.30
EU	0.736	0.719	0.736	1.30	0.847	1.08	0.86	0.865	0.318	0.503	0.468	I.43	0.519
Gu	3.33	0.01	0.07	0.40	3.00	4.42	4.40	4.03	0.21	0.25	0.06	0.01	1.73
Dv	2 27	6.24	5.97	0.00	2.24	2.09	1.20	2.52	1.05	0.25	5.26	0.01	6.02
Ho	3.37 0.62	1 24	0.07 1 15	4.01 0 05	0.04 0.62	0.00 0.72	4.30 0 80	0.00	0.00	1.44 0.21	1 00	4.01	0.70 1⊿0
Fr	2 02	3 51	3 25	2 70	2 NR	2 0/	2 61	2 0.70	0.20	0.31	2 8/	2 65	4 28
Tm	0 307	0 538	0.453	0 401	0 316	0 308	0 412	0 319	0.075	0.00	0 419	0 385	0.649
Yh	2 15	3 58	2 93	2 71	2 13	2 00	2 65	2 27	0.50	0.88	2 79	2 61	4.34
Lu	0.374	0.562	0.472	0.452	0.352	0.325	0.436	0.394	0.086	0.150	0.455	0.416	0.696
Hf	4.4	5.6	4.4	4.4	4.6	2.9	4.0	5.6	1.0	1.8	5.9	6.1	7.9
Та	0.94	1.53	1.39	1.10	0.70	0.68	0.95	0.97	0.20	0.24	1.03	0.74	0.90
W	3.2	0.8	2.0	4.7	4.7	3.5	1.8	0.8	<0.5	<0.5	<0.5	0.6	1.2
TI	0.43	0.68	1.27	0.51	0.37	0.27	0.72	0.5	< 0.05	0.59	0.7	0.83	0.68
Pb	8	36	33	22	11	14	18	20	7	18	33	16	14
Bi	<0.1	0.3	0.1	1.0	<0.1	1.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.1
Th	11.3	25.0	24.3	12.0	6.82	8.20	13.4	12.2	2.75	3.22	15.0	10.9	16.0
U	3.10	6.54	5.96	3.08	2.12	2.65	2.90	2.81	0.55	0.96	3.46	2.15	3.07
⁴ He production rate													
(cm ³ STP/g/yr)	6.94E-13	1.50E-12	1.41E-12	7.12E-13	4.49E-13	5.52E-13	7.31E-13	6.86E-13	1.45E-13	2.07E-13	8.44E-13	5.70E-13	8.26E-13
³ He/ ⁴ He													
production ratio	1.88F-08	1.01F-08	4.82F-09	2.18F-08	3.19F-08	7.39F-09	1.54F-08	2.31F-08	2.28E-08	9.15F-09	1.46F-09	4.03F-09	4.93E-09
³⁶ CI/CI secular									00				
equilibrium value	1 81F-14	3 39F-14	1 82F-14	1 34F-14	1 18F-14	1 13F-14	1 62F-14	156F-14	6 44F-15	7 89F-15	1 99F-14	1 82F-14	2.33E-14
equilibrium vulue	1.016 14	J.J.L 14	1.026 14					1.000 14	5. I I E I J	1.07E IJ	11776 14		

Rock Type	Sedimentary rocks Igneous rocks								S					
Sample No	R042	R043	R044	R045	f R046	R047	R048	limst R049	one R050	R051	gi R052	anitic rock R053	R054	R055
Major alamont comp	none (wt%)	1045	1044	11045	11040	1047	11040	1047	1000	1(051	11052	1000	1004	10000
SiO ₂	75.38	72.18	67.31	56.63	70.98	71.98	73.86	0.09	0.14	66.54	64.39	74.99	76.21	75.72
TiO ₂	0.12	0.62	0.08	1.13	0.20	0.17	0.20	<0.001	<0.001	0.52	0.71	0.19	0.13	0.12
AI_2O_3	11.80	12.50	11.18	16.32	14.02	13.00	12.83	0.02	0.03	15.80	15.91	12.99	12.62	13.16
Fe ₂ O ₃	0.88	2.18	0.56	4.46	0.04	0.67	0.19	<0.01	<0.01	1.21	1.83	0.07	0.02	0.30
FeO MpO	1.17	0.60	< 0.1	2.90	2.93	1.71	1.69	0.07	0.17	2.41	3.21	2.21	1.69	1.48
MgO	0.03	0.02	0.05	2.77	0.00	0.00	0.03	0.00	0.00	1.22	1.78	0.00	0.04	0.03
CaO	0.35	2.50	0.92	5.12	0.48	1.70	0.80	57.62	56.58	4.94	5.89	1.79	1.26	1.31
Na ₂ O	3.04	3.17	2.03	3.99	3.06	3.40	3.93	0.01	0.01	3.95	3.78	3.39	3.20	3.29
K ₂ O	4.44	2.28	3.47	0.32	4.21	3.73	3.30	< 0.01	< 0.01	1.83	1.68	3.86	4.70	4.28
L.U.I. Total	0.93 98.6	1.49 98.1	12.58 98.8	4.69 99.0	1.20 97.9	0.94 97.9	1.08 98.5	30.50 94.7	39.20 96.3	-0.03 98.9	0.03 99.9	-0.07	100.4	100.4
Trace element compo	ositions (nnm)	7011	,010	,,,,,,	,,,,,	,,,,,	,010	,	7010	,,		10010	10011	10011
Li	19	21	2	12	17	25	47	<1	<1	17	12	71	73	25
Be	3	1	1	1	_ 3	2	2	<1	2	1	1	3	3	2
B	11.4	13.2	11.1	10.2	1.1	<0.5	13.4	1.6 _1	1.5 ~1	9.7	/.6 10	7.3	9.9	15.8
V	10	49	<5	154	7	12	, 11	8	6	75	105	11	9	9
Cr	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Со	2	-20	<1	13	2	-20	2	<1	<1	9 -20	13	2	-20	2
Cu	<20 <10	<20 <10	<20 <10	<20 20	<20 <10	<20 10	<20 <10	<20 <10	<20 <10	<20 <10	<20 20	<20 <10	<20 <10	<20 <10
Zn	60	40	<30	90	60	50	70	<30	<30	50	60	70	60	<30
Ga	20	14	10	20	22	18	19	<1	<1	19	19	17	16	15
Ge As	2.7	1.3 <5	1.5 <5	2.3	1.6 <5	1.6 <5	1.7 <5	<0.5 <5	<0.5 <5	1.4 <5	1.6 <5	2.2 <5	2.0	2.0
Rb	153	62	103	8	159	135	140	<1	<1	51	41	199	217	139
Sr	93	232	85	501	132	166	153	138	136	615	608	109	76	93
Y 7r	48.7	21.1	14.1	23.3	40.2	28.1	37.3	5.8	6.3	8.4	14.0	38.2	41.1	15.1
Nb	10.5	6.5	5.7	3.6	9.1	6.9	190	0.2	2.8	5.3	8.1	108	90 9.0	6.3
Mo	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Ag	0.8	0.9	< 0.5	< 0.5	0.6	< 0.5	0.6	< 0.5	< 0.5	< 0.5	< 0.5	0.6	< 0.5	< 0.5
IN Sn	<0.1 3	<0.1	<0.1	<0.1 1	<0.1 3	<0.1 ع	<0.1 4	<0.1	<0.1	<0.1	<0.1 1	<0.1 10	<0.1 7	<0.1 2
Sb	0.7	<0.2	<0.2	<0.2	0.4	1.1	0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cs	2.4	1.7	4.4	0.7	6.2	1.7	1.0	<0.1	<0.1	2.2	0.7	8.6	6.4	2.9
Ba	225	511	893	260	789	641	1363	4	3	651	471	407	321	470
Ce	80.1	35.0	42.0	26.2	40.3 79.4	53.2 67.5	109	0.5	3.1	37.9	20.0 53.5	35.6	44.2	38.0
Pr	8.73	3.94	4.03	3.26	8.91	7.23	11.3	0.17	0.48	4.13	5.98	4.57	5.70	3.15
Nd	30.4	16.3	13.7	14.9	31.6	25.0	38.8	0.7	1.7	14.4	21.4	18.2	21.7	11.0
Sm Fu	6.76 0.312	3.83	2.53	3.57 1.22	6.73 0.924	4.99	7.48 0.898	0.19	0.68	2.51	3.86 1.06	4.75	5.48 0.444	2.42
Gd	6.73	3.39	1.86	3.71	6.23	4.33	6.43	0.29	0.79	1.93	3.05	5.07	5.46	1.92
Tb	1.23	0.60	0.34	0.62	1.06	0.74	1.08	0.05	0.19	0.27	0.44	0.98	0.98	0.36
Dy Ho	7.48 1.58	3.84	2.09	3.81	6.15 1.25	4.32	6.16 1.24	0.35	1.20	1.40	2.37	6.03 1.25	6.08 1.20	2.19
Er	4.70	2.38	1.37	2.43	3.75	2.69	3.60	0.08	0.24	0.27	1.32	3.80	3.96	1.54
Tm	0.721	0.366	0.234	0.352	0.552	0.414	0.545	0.036	0.077	0.119	0.191	0.607	0.650	0.263
Yb	4.67	2.42	1.73	2.41	3.70	2.78	3.67	0.16	0.33	0.84	1.33	4.17	4.51	1.95
LU Hf	0.771	0.458	0.329	0.383	0.576	0.462	0.573 54	0.021	0.039	0.149	0.222	0.678	0.707	0.316
Та	1.19	0.47	0.56	0.18	0.90	0.81	0.97	< 0.01	0.07	0.43	0.76	1.76	1.43	0.88
W	1.6	< 0.5	<0.5	<0.5	1.4	0.7	1.3	<0.5	1.2	<0.5	<0.5	<0.5	<0.5	<0.5
TI Dh	0.55	0.17 14	0.05	<0.05 o	0.82	0.75	0.82	< 0.05	<0.05	0.18	0.13	1.14	1.18	0.73
Bi	<0.1	14 <0.1	<0 (0.1)	ة <0.1	23 <0.1	0.2	23 0.3	<5 <0.1	<0 <0.1	ہ <0.1	ہ <0.1	20 2.4	∠3 0.8	25 <0.1
Th	17.6	5.72	15.0	2.53	14.1	13.8	16.6	0.10	1.02	5.90	7.21	15.6	15.1	14.2
U	3.79	1.54	2.56	0.57	2.55	2.98	3.39	0.09	0.25	1.47	1.84	5.69	5.46	2.70
⁴ He production rate														
(cm ³ STP/a/vr)	9.58F-13	8.48F-13	7.37F-13	1.41F-13	7.10F-13	7.52F-13	8.81F-13	1.36F-14	5.91F-14	3.45F-13	4.27F-13	1.13F-12	1.08F-12	7.30F-13
³ He/ ⁴ He														
production ratio	9.38E-09 1	.14E-08	7.93E-10	6.31E-09	8.52E-09	1.48E-08	2.51E-08	<3E-10	<3E-10	1.21E-08	8.03E-09	3.97E-08	3.87E-08	1.66E-08

Rock Type							Igneous	rocks						
Converte Nie	D05/	0057	DOEO	DOFO	D0/0	D0/1	graniti	c rock	DO(1	DO	DALL	D0/7	D0/0	D0/0
Sample No.	R056	R057	R058	R059	R060	R061	R062	R063	R064	R065	R066	R067	R068	R069
Major element comp	ositions (wt%)	72.10	// 17	(7 (4	(5.00	(754	(1.45	// A/		(()7	(5.24	(7.00		((00
SIO ₂	/5.94	/3.19	66.17	67.64	65.98	67.54	61.45	66.46	66.46	66.27	65.34	67.38	65.50	66.09
	0.12	0.21	0.81	0.75	0.78	0.77	0.87	0.79	0.78	0.79	0.79	0.73	0.80	0.79
Al ₂ O ₃	12.60	13.47	15.26	14.82	15.41	15.28	15.51	15.51	15.33	16.19	15.46	15.13	15.28	15.69
Fe ₂ O ₃	0.33	0.68	0.34	0.53	0.07	0.31	0.32	0.29	0.49	0.48	0.41	< 0.01	0.38	0.53
FeO	1.59	2.07	4.60	4.00	4.60	4.20	5.10	4.40	4.40	4.30	4.60	4.50	4.30	4.50
MaQ	0.00	0.00	2.10	2.04	0.11	2.07	2 94	2.10	2 32	2.25	2.52	0.09	0.09	0.12
CaO	1.16	2.00	3.71	3.33	3.54	3.34	4.40	3.53	3.49	3.27	3.64	2.30	3.01	3.63
Na ₂ O	3.32	3.66	2.71	2.68	2.61	2.57	2.34	2.67	2.63	2.89	2.37	2.74	2.60	2.83
K₂O	4.33	3.49	2.99	3.18	3.08	3.33	2.79	3.03	3.12	2.71	3.10	3.43	3.10	2.80
L.O.I.	0.09	-0.01	-0.19	0.05	0.98	0.23	2.12	0.23	-0.04	0.03	1.10	0.87	1.10	-0.03
Total	100.0	99.5	99.5	99.7	100.1	100.4	98.7	99.9	99.7	99.9	100.1	99.7	99.0	100.0
Trace element comp	ositions (ppm))												
Li	26	36	35	40	40	41	37	38	40	38	40	105	43	40
Be	2	2	2	2	2	2	2	2	2	2	2	2	2	2
В	16.1	7.3	39	21.5	11.6	13.4	15.7	16.8	12.2	16.7	3.4	17.6	9.5	32.6
Sc	3	6	14	13	14	13	18	14	15	14	16	13	13	14
V	.20	12	102	94	98 40	92	130	101	101	98	110	94	95	104
C	<20 2	<20 2	50 12	50 11	0U 12	50 11	80 17	/0	5U 12	/U 12	0U 14	0U 11	40	5U 12
Ni	<20	< 20	<20	< 20	<20	< 20	20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Cu	<10	<10	20	20	20	20	20	20	20	20	20	20	30	20
Zn	<30	50	70	60	80	60	80	70	80	80	70	60	60	80
Ga	14	18	19	18	18	17	18	18	18	19	18	17	18	19
Ge	1.9	1.9	2.0	1.6	1.8	1.8	2.0	1.7	1.8	1.8	1.9	2.0	1.9	1.7
As	<5	<5	<5	<5	25	<5	<5	<5	<5	<5	6	<5	<5	<5
RD	137	114	121	133	124	134	114	122	126	103	118	133	118	110
SI V	04 21 0	25.3	223	207	215	202	209	210	209	229	205	194 21 /	210	224
7r	101	149	184	170	204	190	174	190	192	23.0	157	183	196	198
Nb	6.4	9.5	20.4	23.3	21.0	22.3	17.4	18.8	20.2	16.7	14.1	17.3	20.4	17.4
Мо	<2	<2	<2	<2	2	<2	<2	<2	<2	2	<2	<2	<2	<2
Ag	<0.5	0.5	0.6	<0.5	0.6	0.6	0.5	0.6	0.5	0.7	<0.5	0.6	0.6	0.6
In	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Sn	.0.2	3	3	5	3	3	2	.0.2	3	.0.2	3	3	3	.0.2
SU	<0.2 2.3	<0.2 3 3	<0.2 7.4	<0.2 7 0	3.7 5.1	<0.2 7 3	0.0	<0.2 6.7	<0.2	<0.2 5.2	0.0 5.8	0.9	<0.2 5.8	<0.2 5 0
Ba	610	670	621	610	596	651	508	598	592	511	600	586	600	522
La	26.9	30.8	37.3	35.3	35.5	35.7	28.9	34.7	34.4	35.8	32.4	35.1	37.5	31.7
Ce	57.0	66.6	74.6	70.8	72.0	72.2	59.2	70.2	69.2	71.7	66.9	71.1	76.4	63.8
Pr	5.43	6.47	7.96	7.38	7.90	7.71	6.42	7.60	7.33	7.71	7.31	7.62	8.17	6.82
Nd	18.8	24.1	28.7	25.6	27.5	27.4	23.5	27.2	26.1	27.7	26.3	26.6	28.2	24.4
Sm	3.73	4.82	5.37	4.72	5.32	5.14	4.43	5.22	5.08	5.33	4.97	5.14	5.59	4.69
Eu	0.417	0.870	1.13	1.09	1.13	0.999	1.03	1.05	1.03	1.14	1.09	1.03	1.09	1.10
Th	0.52	4.07	0.72	4.50	4.77	4.55	0.63	0.70	4.52	4.03	4.57	4.05	0.74	4.27
Dv	3.20	3.91	4.09	3.82	4.17	4.10	3.66	3.94	3.98	4.23	4.05	4.16	4.33	3.83
Ho	0.69	0.81	0.77	0.73	0.82	0.77	0.72	0.80	0.79	0.82	0.78	0.81	0.81	0.75
Er	2.12	2.35	2.20	2.07	2.36	2.27	2.13	2.26	2.33	2.34	2.25	2.35	2.37	2.16
Tm	0.366	0.352	0.351	0.321	0.356	0.331	0.324	0.343	0.355	0.353	0.340	0.356	0.360	0.320
Yb	2.64	2.28	2.23	2.24	2.38	2.27	2.21	2.29	2.32	2.42	2.27	2.43	2.41	2.24
Lu	0.455	0.374	0.375	0.350	0.394	0.374	0.353	0.380	0.388	0.376	0.380	0.394	0.402	0.359
HI Ta	3.3 0.00	3.8 0.75	4.4 1 5 5	4.1 1 Q 2	5.0 1 50	4.6 1.6F	4.2	4.6 1.24	4.6 1.50	5.U 1.24	3.8 1 1 F	4./ 1./4	4.8 1 55	4.8
N/	0.99 -0 5	0.75 <05	1.00	1.03	1.09	1.03	1.19	1.30	27	1.20	1.10	1.40 11 5	1.00	1.27
TI	0.68	0.65	0.45	0.49	0.43	0.49	0.38	0.48	0.49	0.42	0.46	0.53	0.49	0.42
Pb	24	19	17	15	27	15	17	15	18	15	18	16	14	15
Bi	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Th	16.7	11.7	10.5	9.95	10.1	10.5	7.71	9.47	9.77	9.20	9.15	9.90	9.81	8.39
U	3.19	2.74	2.20	4.40	2.15	2.38	1.78	2.11	2.03	1.96	2.01	1.74	1.78	1.88
⁴ He production rate	3.19	2.74	2.20	4.40	2.13	2.30	1.78	Z.11	2.03	1.90	2.01	1.74	1.70	1.00

(cm ³ STP/g/yr)	8.61E-13 6.6	3E-13 5.64E-13	8.10E-13	5.47E-13	5.86E-13	4.34E-13	5.24E-13	5.23E-13	4.98E-13	5.03E-13	4.92E-13	4.94E-13	4.65E-13
³ He/ ⁴ He													
production ratio	1.59E-08 2.2	4E-08 1.59E-08	1.92E-08	2.10E-08	2.20E-08	1.73E-08	1.99E-08	2.16E-08	2.08E-08	2.18E-08	5.09E-08	2.21E-08	1.97E-08
³⁶ CI/CI secular													
equilibrium value	3.29E-14 2.5	9E-14 1.61E-14	2.44E-14	1.80E-14	1.97E-14	1.29E-14	1.72E-14	1.77E-14	1.71E-14	1.73E-14	1.50E-14	1.61E-14	1.44E-14

第2表 🗅	つづき.
Table 2	Continued.

Rock Type							Igneous	rocks						
Sample No.	R070	R071	R072	R073	R074	R075	granitic R076	rock R077	R078	R079	R080	R081	R082	R083
Major element compo	sitions (wt%)													
SiO ₂	66.50	66.82	68.70	68.78	68.52	68.68	68.42	66.64	69.51	65.57	62.63	55.69	57.74	66.00
TiO ₂	0.76	0.50	0.47	0.46	0.44	0.38	0.68	0.62	0.58	0.67	0.71	1.21	1.34	0.63
AI_2O_3	15.64	14.65	14.08	13.43	14.84	14.60	13.70	13.71	13.69	16.25	16.35	16.95	17.45	16.22
Fe ₂ O ₃	0.35	<0.01	0.26	<0.01	0.66	<0.01	0.27	<0.01	0.41	0.50	0.57	0.66	0.97	0.44
FeO	4.30	3.45	2.90	3.62	3.14	2.86	2.73	3.83	3.92	3.88	4.22	5.83	6.36	4.11
IVINO MaQ	0.11	0.07	0.06	0.08	0.07	0.05	0.06	0.08	0.10	0.08	0.09	0.13	0.15	0.09
CaO	3.44	2.57	1.55	1.62	2.17	2.63	2.24	2.38	1.99	4.76	4.51	6.60	6.10	4.21
Na ₂ O	2.73	3.39	3.92	3.70	3.32	3.25	2.58	2.34	2.38	3.65	3.67	2.67	3.55	3.52
K ₂ O	2.94	3.98	3.65	3.33	3.90	3.61	1.19	2.22	2.91	1.79	2.30	1.50	2.28	2.74
L.O.I.	0.64	1.71	1.83	1.93	0.99	0.96	6.72	4.72	2.50	0.11	2.57	5.15	-0.16	0.08
Total	100.2	98.3	98.6	98.2	99.2	98.0	100.5	98.2	99.5	99.5	100.1	100.3	99.5	100.4
Trace element compo	sitions (ppm)	1												
Li	37	47	53	58	51	39	25	30	32	39	36	39	43	39
Be	2 152	10.0	2	2 ج م	3 10 ຄ	3 20	3 10 /	2	2 14 0	10 /	ا 10 1	2 122	ا ۵۷	 67
Sc.	152	10.9	7.4	o.7 7	10.9	0.9 7	10.4	9.9 10	14.2	10.4	7	12.3	0.0 13	0.7
V	99	28	22	, 21	20	23	56	45	40	63	68	87	97	70
Cr	50	<20	50	<20	60	<20	30	20	60	<20	<20	<20	<20	<20
Co	12	7	7	6	7	5	5	6	7	8	9	14	15	9
NI	<20	<20 10	<20	<20 20	<20 110	<20	<20	<20	<20	<20	<20	<20	<20 10	<20 <10
Zn	70	60	50	60	70	20 50	30	40	60	80	80	100	110	70
Ga	18	18	18	17	19	19	16	17	17	19	19	21	22	18
Ge	1.7	2.0	1.2	1.4	2.0	1.9	1.7	1.6	1.6	1.3	1.2	1.0	1.6	1.7
As	9	<5	<5	7	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Rb	114	1/5	156	154	1/5	161	36	/9 121	113	48	58	35	62 504	64 255
Y	212	209	18.9	29.0	210	24.3	26.7	28.6	29.5	440 8 0	403	12.8	14 1	8.6
Zr	199	144	144	142	147	162	240	224	228	103	111	141	103	91
Nb	16.6	13.3	13.1	13.0	13.5	11.3	12.2	11.0	11.9	7.1	7.2	13.5	15.2	7.2
Mo	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Ag	0.6	0.5	0.5	0.6	0.5	0.6	0.8	0.8	0.8	0.6	<0.5	0.8	< 0.5	<0.5
III Sn	<0.1	<0.1 16	<0.1	<0.1 5	<0.1	<0.1 4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 1
Sb	0.6	0.6	0.5	0.9	0.7	0.6	0.3	<0.2	0.4	<0.2	0.4	0.3	0.4	0.3
Cs	5.1	5.9	8.6	6.4	7.9	8.1	5.3	6.2	7.8	2.8	3.0	4.1	3.3	3.6
Ba	550	551	506	427	516	439	549	548	611	365	487	286	406	399
La	36.6	35.6	25.1	45.6	29.7	35.3	123	36.9	36.9	11.3	7.6	13.1	14.7	8.3
Dr	/5.3	7 26	53.9	95.7	02.7 6.81	75.3 8.06	229	81.7	82.8	23.7	17.0	31.4	38.5	18.9
Nd	28.2	26.4	21.0	34.2	24.5	28.6	73.2	31.1	32.2	11.1	8.6	16.8	19.6	9.6
Sm	5.30	5.23	4.46	6.48	5.33	5.93	10.4	6.45	6.67	2.36	2.13	3.83	4.29	2.21
Eu	1.12	0.959	0.916	0.827	0.967	0.865	1.60	0.981	0.910	0.892	0.787	1.21	1.22	0.702
Gd Th	4.94	3.98	3.71	5.35 A 99	4.64 0.79	4.95	6.89 0 99	5.68 0.00	5.69 0.02	1.84	1.84	3.33	3.60 0.55	1.82
Dv	4 45	3 30	3 29	0.00 4 77	4 53	4.08	0.00 4 52	4 92	0.92 5.18	1.36	1 38	2 52	2.69	0.27
Ho	0.88	0.63	0.66	0.95	0.89	0.79	0.87	0.98	1.00	0.25	0.24	0.48	0.50	0.29
Er	2.50	1.76	1.80	2.71	2.61	2.28	2.57	2.77	2.89	0.65	0.65	1.17	1.44	0.81
Tm	0.369	0.253	0.260	0.396	0.390	0.337	0.377	0.416	0.415	0.100	0.093	0.163	0.194	0.127
Yb	2.51	1.74	1.79	2.60	2.62	2.26	2.36	2.62	2.76	0.59	0.64	1.08	1.24	0.88
LU Hf	0.425 1 Q	0.279 3.0	∪.∠ö3 3,7	0.417 20	0.421 A1	U.370 11	U.385 5 0	0.429 5.4	0.440 5 5	0.103 21	0.104 2 0	ט. 180 ג ג	0.208 21	0.139 2.6
Та	1.35	1.19	1.30	1.50	1.86	1.38	0.93	0.99	1.01	0.68	0.56	0.96	1.43	0.79
W	1.5	2.7	1.7	1.7	1.3	0.8	2.3	1.2	1.6	<0.5	<0.5	0.7	<0.5	1.1
TI	0.48	1.08	0.8	0.93	1.03	0.96	0.21	0.46	0.61	0.28	0.38	0.32	0.4	0.38
Pb	19	17	15	16	28	19	14	17	19	14	11	10	14	17
BI Th	<u. i<br="">10.3</u.>	0.2 1/1 2	<u.1 12 2</u.1 	3.1 19.9	2.1 16.2	0.2 10 5	<u.i 1/10</u.i 	U.I 17.6	U.I 15 /	<u.1 176</u.1 	<u.1 2.04</u.1 	U.1 3 70	U.1 5.47	<0.1 7 27
U	2.28	2.79	3.53	4.20	5.35	4.60	2.69	2.63	2.88	1.53	1.17	2.80	3.02	3.09
⁴ He production rate	5.68E-12	7 //F_12	7 7/F-12	1 0/E 12	1 11E 12	1 11E 12	7 /0E 12	7 33F-12	7 96E 12	2 10E 12	1 00E 12	1 ADE 12	5 17E 12	5 90E 12

(cm ⁻ STP/g/yr)	5.68E-13 /.44E-13 /.74E-13 1.04E-12 1.11E-12 1.11E-12 7.49E-13 7.33E-13 7.86E-13 3.19E-13 1.99E-13 4.42E-13 5.17E-13 5.8	0E-13
³ He/ ⁴ He		
production ratio	1.06E-08 2.41E-08 2.83E-08 2.86E-08 2.46E-08 2.05E-08 1.14E-08 1.31E-08 1.46E-08 2.55E-08 1.92E-08 1.67E-08 2.18E-08 2.55E-08 1.92E-08 1.67E-08 2.55E-08 1.92E-08 1.67E-08 2.55E-08 1.92E-08 1.57E-08 2.55E-08 2.55	6E-08
³⁶ CI/CI secular		
equilibrium value	9.97E-15 2.42E-14 2.62E-14 3.26E-14 3.37E-14 3.68E-14 2.20E-14 2.06E-14 2.28E-14 1.32E-14 6.71E-15 1.22E-14 1.67E-14 2.39	9E-14

Pock Type				Igneous	s rocks									
коск туре	(granitic rock	(gabbro	ic rock		dunite			tona	alite		
Sample No.	R084	R085	R086	R087	R088	R089	R090	R091	R092	R093	R094	R095	R096	R097
Maior element compo	sitions (wt%	6)												
SiO ₂	64.38	75.79	67.97	45.26	49.32	44.63	40.84	40.28	57.95	65.57	59.49	64.35	69.52	72.72
TiO ₂	0.71	0.12	0.46	0.32	0.45	1.50	1.80	0.01	0.94	0.51	0.82	0.66	0.36	0.26
Al ₂ O ₃	16.74	13.02	14.68	15.76	18.03	19.53	19.11	1.13	16.84	16.25	15.87	15.17	14.76	13.27
Fe ₂ O ₃	1.04	0.93	0.28	0.45	0.06	4.85	5.61	1.97	1.24	0.74	0.77	<0.01	0.74	0.21
FeO	3.94	0.80	3.50	9.74	5.53	5.74	7.55	5.60	6.00	3.60	5.64	5.34	3.12	2.69
MnO	0.09	0.04	0.09	0.19	0.10	0.26	0.27	0.12	0.15	0.07	0.12	0.09	0.07	0.06
MgO	1.76	0.24	1.60	14.08	9.88	2.78	3.82	40.96	2.63	1.11	3.66	2.83	0.87	0.62
CaO	4.55	2.90	3.70	7.76	12.48	4.54	4.79	1.00	6.45	4.65	5.80	4.81	1.09	1.64
Na ₂ O	3.74	3.19	2.95	0.69	2.48	1.26	0.57	0.03	2.89	3.83	2.95	3.03	3.23	3.13
K ₂ O	1.73	0.67	3.25	0.59	0.11	0.36	0.70	<0.01	1.41	1.52	2.03	2.34	3.36	3.50
L.U.I.	1.18	1./5	-0.01	2.47	0.72	12.04	11.6/	6.36	1.41	0.10	0.38	0.08	1.6/	1.//
lotai	100.5	99.6	99.0	98.4	99.8	98.7	98.2	98.1	98.8	98.5	98.3	99.2	99.2	100.3
Trace element compo	sitions (ppr	n)												
LI	42	8	36	14	4	1/	20	1	19	15	40	33	25	18
Be	20.6	< ا ۵ ۵	2 15 /	< I 5.4	<1	0.1	<1 5.2	< 1	22 5	00	11 O	2 9.1	2 10 1	2 20 2
B Sc	20.0	0.0	10.4	0.4 17	<0.5	9.1 24	36	<0.5 Q	23.3	0.0 10	11.0	0.1	19.1	20.2
V	62	5	71	80	132	226	160	43	102	42	134	104	41	23
Cr	<20	<20	30	30	840	<20	<20	2290	30	<20	110	70	70	130
Со	10	2	8	63	39	21	28	103	15	6	20	16	6	4
Ni	<20	<20	<20	60	60	<20	<20	1780	<20	<20	30	20	<20	<20
Cu	<10	<10	<10	20	80	20	20	<10	10	<10	30	20	<10	<10
Zn	90	1420	50	100	30	170	170	50	100	70	80	60	70	40
Ga	20	15	15	12	15	22	23	1	21	22	19	1 [/	10	18
Δs	-5	1.5	-5	1.3	1.5	2.5	2.3	0.9	2.2	1.0	-5	1.5	-5	-5
Rb	53	22	104	25	2	8	17	<1	×0 50	51	75	95	98	76
Sr	478	355	218	380	218	219	105	<2	304	427	306	255	256	249
Y	7.7	4.3	11.8	6.0	9.7	32.0	43.5	<0.5	36.5	18.3	21.0	17.2	30.5	22.9
Zr	118	158	103	20	30	269	289	1	203	223	147	155	147	125
Nb	7.4	1.6	7.4	0.8	0.4	14.9	16.3	<0.2	12.8	7.8	11.3	10.8	9.0	8.6
Mo	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Ag	<0.5	0.5	<0.5	<0.5	<0.5	0.9	0.9	<0.5	0.9	0.9	0.6	0.6	0.5	<0.5
lii Sn	<0.1	<0.1	<0.1 2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Sb	0.3	<0.2	< 0.2	0.2	<0.2	< 0.2	<0.2	<0.2	< 0.2	<0.2	< 0.2	< 0.2	0.4	0.2
Cs	4.3	0.6	4.5	1.4	0.1	0.3	0.3	<0.1	2.3	1.3	3.5	4.0	4.9	2.6
Ba	469	473	387	119	23	200	242	<3	369	659	449	327	867	804
La	25.7	12.2	20.2	2.4	1.8	20.1	19.5	< 0.05	15.7	25.5	20.2	23.7	32.3	26.3
Ce	49.3	20.4	37.8	5.2	4.5	46.9	55.5	0.1	44.4	51.1	44.5	47.9	67.0	53.7
Pr	4.92	1.83	3.71	0.74	0.71	5.96	7.46	< 0.01	5.80	5.15	5.09	5.11	7.15	5.15
Nd	17.2	5.9	12.4	3.3	3.5	25.6	34.3	< 0.05	25.5	19.7	19.8	18.6	25.6	18.5
SIII Fu	2.00	1.01	2.41	0.00	0.578	0.60 2.21	0.04 2.00	<0.01	0.43	4.05	4.3Z 1.16	3.09 0.025	0.20	0.657
Gd	2 15	0.80	2 26	0.431	1.37	5.68	2.07	0.003	6.18	3.38	3.81	3.37	4 81	3 42
Tb	0.29	0.11	0.36	0.16	0.28	0.93	1.34	< 0.01	1.11	0.59	0.65	0.53	0.82	0.56
Dy	1.37	0.60	2.05	0.98	1.71	5.28	7.62	0.03	6.46	3.38	3.59	3.03	4.78	3.34
Ho	0.25	0.13	0.39	0.20	0.35	1.07	1.57	<0.01	1.28	0.68	0.72	0.61	0.96	0.68
Er	0.64	0.50	1.17	0.59	1.00	3.08	4.34	0.02	3.61	1.89	2.04	1.66	2.86	2.04
Im	0.094	0.091	0.186	0.084	0.137	0.431	0.605	< 0.005	0.541	0.276	0.299	0.242	0.429	0.331
YD	0.60	0.82	1.31	0.60	0.89	2.80	3.91	0.04	3.77	0.210	0.205	1.50	3.06	2.33
Lu Hf	0.101	0.147	0.222	0.101	0.150	0.449	0.023	0.007 <0.1	0.027	0.310	0.305	0.237	0.460 3 Q	0.376
Та	0.58	0.14	1.09	0.04	0.03	0.82	0.78	< 0.01	0.71	0.38	0.86	0.97	0.97	0.92
W	< 0.5	< 0.5	1.8	1.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.4	3.2
TI	0.29	0.12	0.4	0.08	< 0.05	0.05	0.09	< 0.05	0.27	0.25	0.4	0.45	0.51	0.41
Pb	13	9	15	<5	<5	6	6	<5	13	11	10	9	39	32
Bi	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.1	<0.1
Th	9.19	6.67	11.5	0.16	0.17	1.78	1.00	< 0.05	2.66	4.98	5.49	11.0	13.5	16.5
U	2.15	2.09	4.82	0.05	0.04	1.27	0.64	<0.01	1.66	0.85	1.27	1.68	3.01	2.96
⁴ Ho production rate														
(cm ³ CTD/~/~)	5 01 F 10	1 11 1 10	0.055 10	1045 14	0 645 15	2 025 12	1 OFF 10	.)E 1E) 7/F 10	2 /55 12	2 005 12	5 17F 10	7 475 10	0 77 17
	0.∠1E-13	4.41⊑-13	7.UDE-13	1.UOE-14	7.00E-15	2.02E-13	1.U3E-13	<2E-15	2./4E-13	∠.45E-13	3.U7E-13	0.17E-13	1.4/E-13	0.27E-13
"He/"He		(175 00	2.005.00	0.425.02	2 505 02	4 005 00		15.0		1 005 00	2 125 02	2 025 00	1 075 00	1 005 00
production ratio	2.5/E-08	6.4/E-09	2.00E-08	8.42E-09	3.59E-09	4.98E-09	5.14E-09	~ IE-9	7.86E-09	1.00E-08	2.13E-08	2.03E-08	1.2/E-08	1.UUE-08
CI/CI Secular		2 2/1 = 1/	3 16E 14	1 03E 14	5 / / E 14	3 075 15	1 70F 15	<2F 16	7 105 15	1 03E 14	1045 14		2 /0F 1/	201F 1/
Equilibriul II value	2.00E-14	2.24E-14	J. IUE-14	4.UJE-10	J.44E-10	J.72E-10	1./76-10	NZL-10	1.175-13	1.UJE-14	1.04E-14	∠.UUE-14	2.4UE-14	∠.71∟=14

Rock Type	onlit-					Ign	eous rocks						
Sample No.	apiite R098	R099	R100	R101	R102	R103	R104	R105	R106	R107	R108	R109	R110
Maior element comm	nositions (wt%)												
SiO ₂	72.33	48.94	53.95	50.42	50.20	54.72	51.46	51.64	51.80	51.54	53.12	51.01	51.73
TiO	0.21	1.00	1 30	1.08	1 09	0.99	0.83	1 67	0.75	0.64	0.88	0.76	0.79
Al ₂ O ₂	14.86	14 78	16.24	18 45	17 73	17 71	17.35	15.04	18.05	18 16	16.31	19.20	19.34
Fe ₂ O ₂	<0.01	2.06	4 69	2.86	3 5 3	2.28	2 14	1 14	2 59	3 51	2.57	1 41	3.16
FeQ	2.06	7 21	4 30	6 70	4 74	5 19	5.80	7 16	7.05	7 14	9.23	11 90	5 51
MnO	0.03	0.17	0.23	0.19	0.15	0.14	0.15	0.16	0.17	0.19	0.23	0.15	0.15
MgO	0.80	10.45	2.85	5.21	5.45	4.24	5.92	6.04	5.17	5.80	4.53	4.25	4.34
CãO	2.55	8.91	6.30	10.11	8.68	7.44	8.50	5.00	11.23	10.04	10.11	11.34	11.51
Na ₂ O	2.73	2.54	4.23	2.84	2.98	3.27	2.92	4.35	1.78	1.53	2.19	2.19	2.12
K ₂ O	4.59	1.26	1.66	1.24	1.44	1.99	1.67	2.71	0.22	0.13	0.19	0.17	0.14
L.O.I.	0.23	0.32	1.76	-0.73	2.78	0.38	1.79	2.74	-0.20	0.65	-0.85	-1.25	-0.32
Total	100.5	98.7	98.6	99.3	99.7	99.3	99.4	98.9	99.5	100.2	99.6	97.5	99.2
Trace element comp	positions (ppm))											
Li	15	12	5	6	25	21	27	49	5	5	4	5	5
Be	3	1	1	<1	2	2	2	1	1	1	1	<1	<1
В	13.4	13.4	14.0	10.5	8.6	18.5	28.3	21.9	7.6	5.8	6.7	20.0	25.4
Sc	5	28	20	29	22	20	29	11	39	44	51	31	32
V	33	234	165	280	1/8	153	208	118	284	324	3/9	257	273
	20 F	580	<20 10	50 25	5U 27	40 24	180	200 27	50	3U 20	<20 24	/0	150
Ni	ت ۵۰/	47 240	13	25 20	21 ~20	24 ~20	3Z 50	رد 120		39 20~	30 _20	29	44 60
Cu	20	240 90	<20 30	20 40	< <u>∠</u> 0 30	< <u>∠</u> 0 30	50	50	< <u>2</u> 0 70	<20 5∩	20 80	30 40	60
Zn	<30	90	90	70	80	80	70	100	70	90	100	80	30
Ga	16	18	17	18	21	21	19	24	17	16	17	17	16
Ge	2.0	1.7	2.3	2.0	1.6	1.8	1.6	1.5	1.8	2.0	2.0	1.8	1.5
As	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Rb	95	43	33	30	51	72	78	52	3	2	2	3	2
Sr	231	273	548	578	763	731	317	445	248	201	227	316	322
Y	16.4	19.9	40.9	25.3	17.9	21.8	18.3	16.2	16.9	14.6	20.2	13.6	12.0
Zr	66	91	188	89	133	143	68	140	33	25	40	27	20
Nb	6.3	4.3	4.5	2.4	7.6	8.2	2.5	38.2	1.3	0.8	0.7	1.5	0.9
Mo	<2	<2	<2	<2	<2	<2	<2	2	<2	<2	<2	<2	<2
Ag	< 0.5	< 0.5	0.9	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5	<0.5
líi Sn	<0.1 1	<0.1	<0.1	<0.1	<0.1	<0.1 2	<0.1	<0.1 າ	<0.1	<0.1	<0.1	<0.1	<0.1
Sh	-02	-02	<0.2	<0.2	0.4	03	03	<02	<0.2	<0.2	<0.2	<1 0.4	<0.2
Cs	2.9	18	0.2	0.2	23	3.0	3.8	0.2	0.2	0.2	0.2	0.4	<0.2 0.4
Ba	822	218	563	377	217	290	161	1518	103	87	115	75	69
La	22.1	11.5	28.7	13.8	28.4	31.1	7.9	30.3	4.5	2.8	3.4	3.5	2.5
Ce	47.4	26.6	63.4	29.1	60.3	66.3	18.1	57.6	8.4	6.0	8.6	8.5	6.5
Pr	5.06	3.38	7.69	3.62	6.57	7.39	2.27	6.59	1.41	0.92	1.28	1.20	0.96
Nd	17.8	14.2	32.5	15.7	23.7	25.8	9.5	26.0	6.4	4.3	6.1	5.7	5.1
Sm	3.90	3.59	7.79	4.02	4.60	4.99	2.61	5.84	1.95	1.48	2.04	1.82	1.58
Eu	0.831	1.12	2.37	1.23	1.39	1.27	0.857	1.84	0.6/9	0.563	0.792	0./14	0.648
G0 Th	3.39	3.58	1.27	3.91	4.01	4.26	2.80	5.19	2.33	1.93	2.73	2.10	1.83
u Dv	0.5Z	U.62	1.21	U.69	U.6U 2 20	U.0/ 2 04	0.50	U./3 2 E4	0.44 2.74	0.38	U.55 2 20	U.39 ว.วา	0.35
Но	2.70 0.53	3.01 0.71	1 20	4.01 0 Q1	3.20 0.62	3.04 0.7 <i>1</i>	3.00 0.62	3.04 0.59	2.74 0.57	2.4U 0.51	3.30 N 72	2.33 0.17	2.00 0.40
Fr	1 44	2 01	4 05	2 35	1 81	2 16	1 89	1 37	1 65	1 51	2 15	1 30	1 22
Tm	0.212	0.285	0.638	0.363	0.262	0.308	0.275	0.164	0.244	0.222	0.313	0.202	0,175
Yb	1.39	1.78	4.50	2.50	1.71	1.98	1.83	0.92	1.58	1.48	2.10	1.37	1.17
Lu	0.221	0.294	0.765	0.427	0.283	0.331	0.302	0.131	0.262	0.244	0.354	0.229	0.192
Hf	2.0	2.3	4.4	2.1	3.1	3.3	1.7	3.0	0.9	0.7	1.1	0.8	0.6
Та	1.51	0.31	0.17	0.09	0.50	0.68	0.18	2.40	0.09	0.05	0.06	0.07	0.05
W	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	241
	0.47	0.19	< 0.05	0.07	0.21	0.35	0.39	0.23	<0.05	<0.05	<0.05	<0.05	<0.05
Pb	31	9	8	<5	15	19	13	<5	<5	<5	<5	<5	<5
Ы Тh	<u.1< td=""><td><u. i<="" td=""><td><u. i<="" td=""><td><u.i< td=""><td><u. i<="" td=""><td><u.i< td=""><td>U.I</td><td><u. i<="" td=""><td><u.i< td=""><td><u. i<="" td=""><td><u. i<="" td=""><td><u.i< td=""><td><0.1</td></u.i<></td></u.></td></u.></td></u.i<></td></u.></td></u.i<></td></u.></td></u.i<></td></u.></td></u.></td></u.1<>	<u. i<="" td=""><td><u. i<="" td=""><td><u.i< td=""><td><u. i<="" td=""><td><u.i< td=""><td>U.I</td><td><u. i<="" td=""><td><u.i< td=""><td><u. i<="" td=""><td><u. i<="" td=""><td><u.i< td=""><td><0.1</td></u.i<></td></u.></td></u.></td></u.i<></td></u.></td></u.i<></td></u.></td></u.i<></td></u.></td></u.>	<u. i<="" td=""><td><u.i< td=""><td><u. i<="" td=""><td><u.i< td=""><td>U.I</td><td><u. i<="" td=""><td><u.i< td=""><td><u. i<="" td=""><td><u. i<="" td=""><td><u.i< td=""><td><0.1</td></u.i<></td></u.></td></u.></td></u.i<></td></u.></td></u.i<></td></u.></td></u.i<></td></u.>	<u.i< td=""><td><u. i<="" td=""><td><u.i< td=""><td>U.I</td><td><u. i<="" td=""><td><u.i< td=""><td><u. i<="" td=""><td><u. i<="" td=""><td><u.i< td=""><td><0.1</td></u.i<></td></u.></td></u.></td></u.i<></td></u.></td></u.i<></td></u.></td></u.i<>	<u. i<="" td=""><td><u.i< td=""><td>U.I</td><td><u. i<="" td=""><td><u.i< td=""><td><u. i<="" td=""><td><u. i<="" td=""><td><u.i< td=""><td><0.1</td></u.i<></td></u.></td></u.></td></u.i<></td></u.></td></u.i<></td></u.>	<u.i< td=""><td>U.I</td><td><u. i<="" td=""><td><u.i< td=""><td><u. i<="" td=""><td><u. i<="" td=""><td><u.i< td=""><td><0.1</td></u.i<></td></u.></td></u.></td></u.i<></td></u.></td></u.i<>	U.I	<u. i<="" td=""><td><u.i< td=""><td><u. i<="" td=""><td><u. i<="" td=""><td><u.i< td=""><td><0.1</td></u.i<></td></u.></td></u.></td></u.i<></td></u.>	<u.i< td=""><td><u. i<="" td=""><td><u. i<="" td=""><td><u.i< td=""><td><0.1</td></u.i<></td></u.></td></u.></td></u.i<>	<u. i<="" td=""><td><u. i<="" td=""><td><u.i< td=""><td><0.1</td></u.i<></td></u.></td></u.>	<u. i<="" td=""><td><u.i< td=""><td><0.1</td></u.i<></td></u.>	<u.i< td=""><td><0.1</td></u.i<>	<0.1
in II	ช.45 6 51	3.70 1.24	4.58 1 17	3.33 N 92	7.10 1.55	9.85 2.29	3.01 1.47	4.44 0.87	0.76	0.52	0.03 0.18	0.35 0.09	0.21 በ በፍ
0	0.01	1.24	1.17	0.72	1.55	2.27	1.47	0.07	0.20	0.10	0.10	0.07	0.03
⁴ He production rate	j												
(cm ³ STP/g/yr)	1.02E-12	2.54E-13	2.71E-13	2.05E-13	3.89E-13	5.56E-13	2.62E-13	2.31E-13	4.57E-14	2.69E-14	3.96E-14	2.08E-14	1.20E-14
³ He/ ⁴ He													
production ratio	8.60E-09	6.50E-09	2.23E-09	3.34E-09	1.33E-08	1.12E-08	1.29E-08	2.23E-08	2.96E-09	3.08E-09	2.15E-09	2.86E-09	2.84E-09
³⁶ CI/CI secular													
equilibrium value	3.59E-14	8 73E-15	7.83F-15	7.23F-15	1.33F-14	1.88F-14	7.87E-15	6.77E-15	1.70F-15	1.04F-15	1.33E-15	6 77E-16	4 26F-16

第2表 つづき.	
Table 2 Continued.	

Rock Type	Igneous rocks												
riddir Type						an	desitic rocl	k					
Sample No.	R111	R112	R113	R114	R115	R116	R117	R118	R119	R120	R121	R122	R123
Major element compos	sitions (wt%)												
SIO ₂	57.80	54.78	58.41	59.02	57.99	55.18	58.63	52.91	53.51	63.85	54.30	49.00	63.32
TiO ₂	0.56	0.62	0.71	0.84	0.78	0.82	0.87	0.60	0.83	0.73	0.76	0.77	0.66
Al ₂ O ₃	18.39	14.86	18.18	16.66	16.17	14.10	16.72	17.07	15.96	15.06	18.66	21.15	15.52
Fe ₂ O ₃	2.70	2.02	1.5Z	2.83	4.05	0.29	<0.01 5.54	2.07	2.00	1.4Z	2.08	3.85	0.09
MnO	0.06	0.15	0.13	0.15	0.15	0.15	0.10	0.17	0.44	0.13	0.14	0.16	0.10
MgO	1.94	6.90	3.51	3.51	3.28	7.93	1.12	5.48	4.20	2.75	3.33	4.02	3.31
CaO	8.32	7.00	6.75	6.26	6.46	8.53	4.65	9.99	8.20	6.05	9.58	7.49	6.09
Na ₂ O	2.81	2.83	3.05	3.38	3.25	2.41	4.15	1.69	2.13	2.98	2.42	2.56	3.25
K ₂ O	0.98	2.01	2.07	2.05	2.11	1.30	2.51	0.24	0.31	1.36	0.53	0.84	1.48
L.U.I. Total	2.10	-0.24	0.21 100 /	0.06	0.46	-0.51 08.0	2.52 07 7	0.05	1.12	-0.06	-0.29	5.26 100.0	-0.30
Trace element compo	77.J	70.7	100.4	77.0	77.7	70.7	71.1	70.0	70.5	100.4	70.5	100.0	100.0
l i	נוווטא (ppiii) ד	35	25	10	10	19	23	4	6	12	8	8	14
Be	1	2	20	1	<1	1	3	1	1	<1	<1	1	<1
В	28.3	96.0	38.4	10.5	29.8	38.2	10.9	11.0	7.0	63.2	21.9	13.5	27.2
Sc	24	22	18	18	17	33	5	39	47	23	27	21	19
V	213	149	127	161	153	235	40	292	331	155	249	200	162
Co	<20 11	410	40 19	00 16	00 14	270	<20 11	40 34	<20 33	50 17	40 25	30 19	00 17
Ni	<20	160	<20	20	<20	70	<20	<20	<20	<20	<20	20	20
Cu	20	50	20	20	20	80	<10	70	80	30	40	20	30
Zn	50	<30	70	50	60	60	80	70	90	70	80	60	70
Ga	18	17	20	15	15	17	24	15	17	15	18	18	16
Ge	1.8	2.1	1.0	2.0	1.9	1.6	1.3	1.6	2.1	1.9	1.8	1.8	1.7
Rb	23	106	124	52	57	42	100	3	4	39	15	26	37
Sr	281	261	366	484	456	252	569	180	215	214	278	714	284
Y	14.9	16.0	16.3	25.5	26.8	19.4	14.5	16.4	23.4	30.3	18.6	22.3	19.5
Zr	70	66	113	144	152	87	177	34	50	143	62	112	105
Nb	8.8	/.3	5./	3.5	3.7	4.8	19.5	1.1	1.1	4.8	3.9	3.5	2.9
	<2	<2	<2	<2	07	<2	<2	<2	<2	<2 0.5	<2	<2	<2
In	<0.1	< 0.1	<0.3	<0.3	<0.1	<0.3	<0.1	<0.3	<0.3	<0.1	<0.3	<0.3	<0.0
Sn	<1	2	<1	<1	<1	1	2	<1	<1	2	<1	<1	1
Sb	0.4	<0.2	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	1.3	0.3	<0.2	0.4
Cs	0.7	12.4	3.5	1.1	2.0	2.4	3.6	0.1	< 0.1	2.1	0.5	1.2	2.1
Da	303 21 4	209	292	04Z 16 7	599 10 3	203	40.0	102	157	329 123	154 Q 4	30.6	320 10.2
Ce	36.9	21.1	31.4	34.3	40.8	29.0	76.0	7.9	9.7	29.6	19.8	42.0	23.9
Pr	3.63	2.49	3.51	3.93	4.66	3.39	7.78	1.34	1.57	3.64	2.65	6.40	3.00
Nd	12.2	10.0	13.1	16.9	18.9	13.6	25.6	6.1	7.3	15.4	11.1	23.6	12.6
Sm	2.51	2.44	2.78	3.91	4.49	3.27	4.47	1.79	2.44	4.15	2.90	4.93	3.08
Eu Gd	0.809	0.705	0.904	4.01	1.25	0.904	3 75	2 19	2 94	0.693	2.009	1.49	3.08
Tb	0.43	0.47	0.45	0.68	0.72	0.59	0.52	0.42	0.60	0.79	0.51	0.63	0.52
Dy	2.59	2.85	2.73	4.18	4.39	3.44	2.66	2.61	3.78	4.96	3.06	3.65	3.17
Ho	0.52	0.56	0.55	0.87	0.90	0.71	0.50	0.56	0.81	1.03	0.63	0.76	0.66
Er	1.49	1.56	1.55	2.59	2.66	2.03	1.43	1.67	2.42	3.00	1.88	2.24	1.92
I M Vb	0.218	0.224	0.225	0.397	0.423	0.290	0.198	0.250	0.374	0.439	0.278	0.333	0.291
TU Lu	0.246	0.246	0 251	0 481	0 519	0.305	0 203	0.281	0 421	2.00	0 299	0 393	0 321
Hf	1.5	1.9	2.6	3.5	3.8	2.2	3.9	1.0	1.4	3.8	1.6	2.8	2.8
Та	0.49	0.53	0.42	0.21	0.20	0.38	1.46	0.08	0.08	0.34	0.27	0.23	0.24
W	< 0.5	1.4	0.6	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.7	< 0.5	< 0.5	< 0.5
	< 0.05	0.37	0.34	0.06	0.06	0.13	0.49	< 0.05	< 0.05	0.11	0.08	0.15	0.23
PD Ri	ŏ ∩1	5> 1 0-2	12 201	0 -01	0 -01	لا _∩1	10 -01	5> 1 1-	5> 1 ∩~	۱۱ _01	5> 1 ∩~	ک 1 ا_	10 <0.1
Th	3.50	4.10	4.79	6.40	6.93	3.80	12.6	1.03	1.04	4.35	1.92	8.98	3.51
U	1.03	2.45	1.78	1.68	1.85	1.07	2.40	0.26	0.31	1.15	0.44	2.20	1.07
⁴ He production rate	2 23E-13 A	10F-13	3 50F-13	3 84F-13	4 20F-13	2 37E-13	6.48E-13	6 06F-14	6 68F-14	2.62F-13	1.08F-13	5 20F-13	2 28F-13

(cm [°] STP/g/yr)	2.23E-13	4.10E-13	3.50E-13	3.84E-13	4.20E-13	2.3/E-13	6.48E-13	6.06E-14	6.68E-14	2.62E-13	1.08E-13	5.20E-13	2.28E-13
³ He/ ⁴ He													
production ratio	3.72E-09	1.23E-08	1.27E-08	5.82E-09	4.77E-09	9.14E-09	1.19E-08	2.25E-09	2.92E-09	5.09E-09	4.32E-09	4.09E-09	7.95E-09
³⁶ CI/CI secular													
equilibrium value	7.49E-15	8.24E-15	1.12E-14	1.41E-14	1.27E-14	7.13E-15	2.15E-14	2.14E-15	2.05E-15	6.90E-15	3.66E-15	1.71E-14	8.11E-15

Pock Typo	Rock Type Igneous rocks								metamorphic rocks							
Коск туре		dacite		r	hyolitic rocl	<	-	green	schist		schist	gneiss				
Sample No.	R124	R125	R126	R127	R128	R129	R130	R131	R132	R133	R134	R135	R136			
Major alamant compo	citions (wt%)														
sin	0/ siliuiis (wi 40 م2	/ 61.26	65.32	72 71	71 22	71 00	19 51	10.78	16 20	11 72	00 00	65 60	15.90			
510 ₂	00.02	01.30	03.32	0.10	0.50	0.54	40.04	40.70	40.20	44.73	00.02	0.40	45.00			
	0.34	0.47	0.00	1/ 20	12 50	12 22	12 00	12 50	2.07	2.17 15.67	0.00	0.09	1.00			
	14.17	10.31	14.02	14.20	13.39	13.22	13.00	12.00	13.40	10.07	0.71	14.20	14.71			
Fe ₂ O ₃	0.18	1./1	1.28	1.80	1.07	0.71	5.27	3.32	3.60	3.29	4.39	0.02	2.90			
FeO	3.11	3.84	3.16	0.80	1.29	2.51	5.74	7.80	9.11	6.53	3.00	4.40	9.30			
MaO	0.09	0.17	0.12	0.05	0.10	0.10	0.22	0.17	0.24	0.23	0.12	0.11	0.19			
CaO	0.79	2.00 5.03	1.20	0.19	2.67	0.60	4.07	0.50	11 /5	4.01	0.17	1.70	0.01			
Na.O	2.06	3.73	4.07	2 21	2.J7 / 13	1 22	2.00	0.74	2.46	/ 18	0.08	1.40	2.01			
K O	1.55	1.51	4.07	3.51	2.10	7.22	0.17	0.74	0.14	4.10	0.00	6 55	0.17			
	2.20	1.01	1.75	1.01	2.40	2.40	2.01	1 04	2.01	5.06	0.05	0.00	0.17			
L.U.I. Total	2.79	08.6	07.0	00.0	00.6	0.00	3.04 00 5	4.00	2.91	08.0	100.0	0.90	0.03			
T	-141 (,,	/1./	//./	77.0	77.0	77.5	70.5	77.5	70.4	100.0	70.2	77.0			
Trace element compo	silions (ppn.	// 12	11	17	17	10	20	14	17	20	44	20	n			
LI	0 _1	12	-1	1/	1/	19	20	10	-1	20	00 -1	20	ں 1			
B	58.7	20.7	24.7	7 /	32.2	28.2	17.5	67	68	10.0	<0.5	<0.5	77			
Sc	13	20.7	24.7	7.4	JZ.Z 13	20.2	31	30	45	10.7	20.5	12	34			
V	33	90	60	< 5	24	42	272	261	459	111	129	91	375			
Cr	<20	20	<20	<20	20	<20	180	930	150	<20	50	60	150			
Co	6	9	6	2	2	4	50	72	46	20	9	11	49			
Ni	<20	<20	<20	<20	<20	<20	50	730	40	<20	<20	30	120			
Cu	<10	<10	<10	<10	<10	<10	80	130	80	20	120	20	110			
Zn	50	60	80	60	60	60	140	70	120	120	<30	70	80			
Ga	13	14	16	20	14	14	17	13	21	22	2	17	20			
Ge	1.9	2.0	2.1	1.9	2.1	2.2	2.2	1.9	2.7	2.0	2.1	1.9	2.0			
As	14	<5	6	<5	<5	6	<5	<5	<5	<5	17	<5	<5			
Rb	41	36	22	151	66	68	4	2	2	17	<1	172	<1			
Sr	201	365	263	123	1/6	162	206	93	183	291	/	208	3/8			
Y 7r	29.7	1/.6	34.8 104	3/./	32.9	33. I 144	37.4	10.3	5/.1	34.3 221	21.9	27.0	19.4			
Zí	20	20	104	149	109	100	20	20	1/1	231	22	191	82 6 5			
Mo	3.Z	3.Z	3.9 20	9.5	4.0	4.4	2.9	0.5	2.1	03.9 2	<0.2	11.9	0.0 ~2			
Δα	<0.5	<0.5	<0.5	<0.5	06	03	<0.5	<0.5	0.6	0.7	<05	0.9	<0.5			
n	<0.5	<0.3	<0.5	<0.5	<0.0	<0.1	<0.5	<0.5	<0.0	<0.1	<0.3	<0.7	<0.5			
Sn	1	<1	1	3	2	2	1	<1	2	2	1	<1	1			
Sb	2.1	<0.2	0.7	< 0.2	0.5	0.5	2.1	<0.2	0.3	0.4	2.7	<0.2	<0.2			
Cs	4.5	2.8	1.1	5.7	3.0	3.0	0.5	<0.1	0.1	0.6	0.3	2.8	<0.1			
Ba	463	512	337	732	390	394	54	11	19	152	24	1243	24			
La	10.3	13.8	12.0	54.7	17.7	17.9	6.2	0.5	5.9	51.0	12.4	48.1	6.4			
Ce	25.2	29.0	29.1	82.0	41.0	41.1	13.7	1.4	18.9	107.0	11.5	102.0	16.3			
Pr	3.03	3.18	3.72	11.7	4.84	4.91	2.51	0.28	3.21	11.0	3.18	10.1	2.13			
Nd	12.5	12.5	16.2	38.9	19.4	19.7	12.3	2.2	16.6	42.9	13.7	36.9	10.8			
Sm	3.52	2.93	4.57	/.40	4.81	4./5	4.06	1.13	5.82	8.39	3.46	1.25	3.15			
Eu	0.824	0.91	1.32	0.973	1.15	1.07	1.30 5.05	0.543	1.94	2.03	0.907	1.U3 5.40	1.10			
Th	0.70	2.71	4.07	0.27	4.70	4.42	1.00	2.00	1.09	1.10	4.00	0.40	0.62			
Dv	4.60	2.80	5.69	6.13	5 14	5 16	6.08	2 73	9.38	6.14	3 73	4 4 4	3.56			
Ho	0.98	0.59	1.19	1.21	1.09	1.12	1.29	0.57	1.96	1.15	0.75	0.92	0.69			
Er	2.95	1.78	3.43	3.44	3.28	3.34	3.71	1.59	5.79	3.20	2.05	2.79	1.86			
Tm	0.463	0.264	0.515	0.494	0.502	0.526	0.525	0.230	0.852	0.453	0.278	0.428	0.281			
Yb	3.30	1.84	3.48	3.33	3.51	3.50	3.44	1.48	5.60	2.85	1.65	2.93	1.84			
Lu	0.553	0.324	0.570	0.532	0.562	0.591	0.579	0.250	0.892	0.459	0.240	0.485	0.281			
Hf	3.2	2.1	2.8	4.2	4.3	4.2	2.7	0.9	4.3	4.8	0.4	5.0	2.2			
Та	0.27	0.28	0.30	0.91	0.41	0.38	0.17	<0.01	0.18	3.99	0.02	0.54	0.37			
W	2.3	<0.5	<0.5	1.1	0.8	2.5	0.5	<0.5	<0.5	<0.5	2.9	< 0.5	<0.5			
TI	0.23	0.23	0.17	0.6	0.15	0.39	<0.05	<0.05	<0.05	0.06	<0.05	0.79	<0.05			
Pb	21	15	14	23	15	18	<5	<5	<5	5	<5	42	<5			
LI L	0.2	0.1	0.2	<0.1	< 0.1	0.4	<0.1	<0.1	<0.1	< 0.1	U. I	<0.1	<0.1			
in II	4.48	4.72	3.04	14.8	0./3	0.00	0.24	<0.05	0.23	5.70	0.33	25.9	0.50			
U	1.40	1.03	0.02	2.72	1.00	1.00	0.10	<u>∖</u> 0.01	0.24	1.30	0.00	1.01	0.17			
⁴ He production rate																
(cm ³ STD/a/ur)	3 03E-12	3 18F-12	1.85F-12	7 74F-12	4 08F-12	4 17F-12	2 83F-1/	<3E-15	3 52F-14	3 10F-12	7.85F-1/	9.26F-12	3.46F-14			
311.411.	3.00L-13	0.102-13	1.000-10	1.146-13	1.006-13	r. i / Lº 1J	2.000-14	~JE-1J	J.JZL-14	J.17L*IJ	7.00L-14	7.20L-13	0.TUL-14			
He/ He	2 21 - 00	4 AOF 00			0.01 - 00	1.045.00	7 225 00	1 - 0		7.015.00	2 275 00	0.225.00	1 645 00			
	3.21E-09	0.40E-09	0.00E-09	7.10E-09	0.01E-U9	1.04E-08	1.22E-09	~ IE-ŏ	0.00E-09	1.01E-09	2.21E-Uŏ	7.33E-09	1.30E-UA			
CI/CI Secular	7 4 1 5 1 5	1 075 14	4 02F 1F	0 77E 14	1 22 - 14	1 /25 1/	4 515 1/	.1E 1/	7 22 - 1/	0.075.15	1 77 10	0 70F 14	1 1 / Γ 1 Γ			
equilibrium value	1.04E-15	1.U/E-14	0.U3E-15	2.11E-14	1.33E-14	1.43E-14	0.31E-16	<1E-10	1.32E-16	0.27E-15	I.//E-15	2./3E-14	1.14E-15			

第3表 岩石試料一覧 Table 3 List of rock samples.

試料番号	試料名 ^{\$}	地層	岩相	産地ほか	試料番号	試料名	地層	岩相	備考			
堆積岩		<u>.</u>	<u>.</u>		堆積岩		<u>.</u>		•			
砂岩					 <i>礫岩</i>							
R001	GSJ R22548	秩父帯主部	砂岩	奈良県五條市富貴辻	R038	OD-1孔 346.4-346.7m	大阪層群	細~中礫礫岩	三田村ほか(1998):大阪市 港区田中元町			
R002	GSJ R27186	和泉層群(B1)	砂岩	大阪府泉南市金熊寺	凝灰岩							
R003	GSJ R27190	和泉層群(C1)	砂岩	大阪府阪南市山中渓南方	R039	GSJ R38876	北陸層群岩稲累層	流紋岩凝灰岩	富山県富山市上黒瀬			
R004	GSJ R35923	留崎層(目時貝殻砂 岩)	砂岩	青森県三戸郡三戸町留ヶ崎	R040	GSJ R38881	北陸層群岩稲累層	安山岩溶結凝灰岩	富山県富山市小井波			
R005	GSJ R35928	留崎層(目時貝殻砂 岩)	凝灰質砂岩	青森県三戸郡南部町古町	R041	GSJ R38956	臼中流紋岩	流紋岩溶結凝灰岩	富山県南砺市入谷			
R006	GSJ R54959	丹波層群	砂岩	大阪府豊能郡能勢町天王北 方	R042	GSJ R38966	岩稲累層	安山岩溶結凝灰岩	富山県南砺市小谷川			
R007	GSJ R54964	丹波層群	ワッケ(砂岩)	兵庫県篠山市福住南方	R043	GSJ R41381	台島層	酸性凝灰岩	秋田県男鹿市椿南東方			
R008	GSJ R63901	相馬中村層群中ノ沢 層	粗粒砂岩	福島県南相馬市小池	R044	GSJ R41385	船川層(上部七座凝 灰岩部層)	酸性凝灰岩	秋田県能代市切石			
R009	GSJ R63906	相馬中村層群中ノ沢 層	粗粒砂岩	福島県南相馬市小池	R045	GSJ R48232	鳥取層群	緑色凝灰質砂岩	鳥取県鳥取市高福, 千代川 右岸			
R010	GSJ R63917	相馬中村層群栃窪層	粗粒砂岩	福島県相馬市山上	R046	GSJ R62853	有馬層群武田尾層	黒雲母流紋岩溶結凝 灰岩	兵庫県神戸市北区生野東方			
R011	GSJ R63918	相馬中村層群栃窪層	中粒砂岩	福島県相馬市小山田	R047	GSJ R62916	有馬層群玉瀬層	黒雲母流紋岩溶結凝 灰岩	兵庫県西宮市塩瀬町名塩武 田尾温泉			
R012	GSJ R70116	岩泉層群関層	砂岩	岩手県九戸郡洋野町太田、 西	R048	松山南江戸孔1 110.85-110.90m	和泉層群	緑色凝灰岩	佐藤ほか(2009):愛媛県松 山市南江戸町			
R013	GSJ R75069	白鳥川層群 末の松 山層 五日町砂岩部 層	砂岩	岩手県二戸市石切所馬仙峡	石灰岩							
R014	GSJ R75087	三戸層群 留崎層 十 文字砂岩部層	砂岩	岩手県二戸市下斗米深持十 文字川河床	R049	GSJ R23014	秋吉石灰岩	石灰岩	山口県美祢市			
R015	GSJ R75100	三戸層群 留崎層 十 文字砂岩部層	砂岩	岩手県二戸市下斗米道路崖	R050	GSJ R23015	秋吉石灰岩	石灰岩	山口県美祢市住友セメント 鉱山			
R016	松山南江戸孔1 65.70-65.75m	和泉層群	細粒~粗粒砂岩	佐藤ほか(2009):愛媛県松 山市南江戸町	火成岩類((火山砕屑物含む)						
R017	OD-1孔 236.7-237.1m	大阪層群	砂岩(粗粒)	三田村ほか(1998):大阪市 港区田中元町	花崗岩類	T	ſ	Γ				
R018	0D-27L 62.60-63.85m	大阪層群	砂岩(中粒)	三田村はか(1998):大阪市 都島区都島南通り	R051	GSJ R25310	階上岩体	花崗岩	岩手県九戸郡洋野町高取山 東方			
R019	OD-2孔 87.70-87.90m	大阪層群	砂岩(中粒)	同上	R052	GSJ R25314	階上岩体	花崗岩	岩手県九戸郡洋野町城内南 方			
R020	OD-2孔 200.40-202.90m	大阪層群	砂岩(中粒)	同上	R053	GSJ R31442-6	広島花崗岩	花崗岩	広島県呉市倉橋石材㈱採掘 場			
R021	OD-2孔 278.40-279.00m	大阪層群	砂岩(中粒)	同上	R054	GSJ R31443	広島花崗岩	黒雲母花崗岩	広島県呉市納, 呉石材合資 会社			
R022	OD-2孔 428.30-429.00m	大阪層群	砂岩(粗粒)	同上	R055	GSJ R42552	広島花崗岩類	普通角閃石黒雲母花 崗岩	広島県東広島市岩崎			
R023	OD-2孔 469.60-470.40m	大阪層群	砂岩(中粒)	同上	R056	GSJ R42882	広島花崗岩類	黒雲母花崗岩	広島県三原市中河内			
R024	OD-2孔 614.00-614.60m	大阪層群	砂岩(中粒)	同上	R057	GSJ R45265	広島花崗岩類	普通角閃石黒雲母花 崗岩	岡山県倉敷市児島塩生			
R025	IWK_R01	白水層群石城層	極細粒~細粒砂岩	地層は岩生・松井(1961) を参照した。 いわき市湯本天神	R058	GSJ R63393	市房山花崗閃緑岩	粗粒黒雲母花崗閃緑 岩	熊本県球磨郡水上村矢立開 拓南東			
R026	IWK_R02	白水層群石城層	中粒~細粒砂岩	同上 : いわき市内郷白水 町入山	R059	GSJ R63394	市房山花崗閃緑岩	粗粒黒雲母花崗閃緑 岩	熊本県球磨郡水上村矢立開 拓南東			
R027	IWK_R07	湯長谷層群五安層	極細粒~細粒砂岩	同上 : いわき市上浅貝二 十一世紀の森	R060	GSJ R63395	市房山花崗閃緑岩	中-粗粒黒雲母花崗閃 緑岩	宮崎県東臼杵郡椎葉村朴の 木原			
R028	IWK_R08	白水層群浅貝層	極細粒砂岩	同上 : いわき市湯本町傾 城団地	R061	GSJ R63396	市房山花崗閃緑岩	中-粗粒黒雲母花崗閃 緑岩	宮崎県東臼杵郡椎葉村湯山 台西方			
R029	IWK_R11	双葉層群足沢層	極細粒砂岩	同上:いわき市大久町谷 地鉱泉	R062	GSJ R63397	市房山花崗閃緑岩	中粒黒雲母花崗閃緑 岩	宮崎県東臼杵郡椎葉村戸屋 野東方			
R30	高知五台山孔1 597.57-597.63m	秩父帯	細粒砂岩	関ほか(2009):高知県高知 市介良丙	R063	GSJ R63398	市房山花崗閃緑岩	中粒黒雲母花崗閃緑 岩	宮崎県東臼杵郡椎葉村朴の 木原東方			
泥岩					R064	GSJ R63399	市房山花崗閃緑岩	中粒黒雲母花崗閃緑 岩	宮崎県東臼杵郡椎葉村舟石			
R31	高知五台山孔1 592.35-592.40m	秩父帯	泥岩	関ほか(2009):高知県高知 市介良丙	R065	GSJ R63400	市房山花崗閃緑岩	中粒黒雲母花崗閃緑 岩	宮崎県東臼杵郡椎葉村湯山 峠			
R032	IWK_R03	白水層群石城層	泥岩砂岩互層	地層は岩生・松井(1961) を参照した。 いわき市内郷白水町川平	R066	GSJ R63401	市房山花崗閃緑岩	細-中粒黒雲母花崗閃 緑岩	宮崎県東臼杵郡椎葉村古屋 敷東方			
R033	IWK_R05	白水層群白坂層	砂質泥岩	同上:いわき市湯長谷町 別所	R067	GSJ R63402	市房山花崗閃緑岩	細粒はん状黒雲母花 崗閃緑岩	宮崎県東臼杵郡椎葉村江代 山			
R034	IWK_R06	白水層群白坂層	泥岩	同上:いわき市上浅貝二 十一世紀の森	R068	GSJ R63403	市房山花崗閃緑岩	細粒はん状黒雲母花 崗閃緑岩	宮崎県東臼杵郡椎葉村江代 山西方			
R035	松山南江戸孔1 167.50-167.60m	和泉層群	泥岩	佐藤ほか(2009):愛媛県松 山市南江戸町	R069	GSJ R87315	市房山花崗閃緑岩	粗粒黒雲母花崗閃緑 岩(Gdc)	熊本県球磨郡水上村湯山			
頁岩					R070	GSJ R87316	市房山花崗閃緑岩	中粒黒雲母花崗閃緑 岩	熊本県球磨郡水上村湯山			
R036	田辺本宮孔1 279.96-279.98m	四万十層群音無川層	頁岩勝ち砂岩頁岩互 層	板場ほか(2009):和歌山県 田辺市本宮町三越	R071	松山南江戸孔1 211.20-211.25m	領家花崗閃緑岩	花崗閃緑岩	佐藤ほか(2009):愛媛県松 山市南江戸町			
R037	田辺本宮孔1 319.90-319.95m	四万十層群音無川層	砂岩勝ち砂岩頁岩互 層	同上	R072	松山南江戸孔1 232.95-233.00m	領家花崗閃緑岩	花崗閃緑岩	同上			

第3表 つづき.

Table 3 Continued.

試料名	試料番号	地層	岩相	備考	試料名	試料番号	地層	岩相	備考
火成岩類(火山砕屑物含む)				火成岩類	(火山砕屑物含む)			
花崗岩類					花崗岩類				
R073	松山南江戸孔1 276.90-276.95m	領家花崗閃緑岩	花崗閃緑岩	佐藤ほか(2009):愛媛県松 山市南江戸町	R105	GSJ R70996	尻屋層群	玄武岩	青森県下北郡東通村尻労の 北岸
R074	松山南江戸孔1 448.95-449.00m	領家花崗閃緑岩	花崗閃緑岩	同上	R106	GSJ R79611	月日山火山岩類	かんらん石斜方輝石 単斜輝石玄武岩	青森県十和田市月日山
R075	松山南江戸孔1 599.00-599.02m	領家花崗閃緑岩	花崗閃緑岩	同上	玄武岩				
R076	熊野磯崎孔1 277.10-277.15m	熊野酸性岩	花崗斑岩	北川ほか(2009b): 三重県熊 野市礒崎町	R107	GSJ R79620	月日山火山岩類	斜方輝石かんらん石 玄武岩	青森県十和田市馬ノ神
R077	熊野磯崎孔1 317.95-318.00m	熊野酸性岩	花崗斑岩	同上	R108	GSJ R79657	法量北溶岩	かんらん石玄武岩	青森県十和田市小増沢支流 上流域
R078	熊野磯崎孔1 423.78-423.82m	熊野酸性岩	花崗斑岩	同上	R109	000910-07	薬師火山溶岩	玄武岩	岩手火山:地層は伊藤・土井 (2005)を参照した。
R079	AGB1孔 239.90-240.00m	阿武隈花崗岩類	花崗閃緑岩	福島県田村郡三春町富沢	R110	030827-03A (その 1)	鬼又火山溶岩	玄武岩	同上
R080	AGB1孔 305.45-305.55m	阿武隈花崗岩類	花崗閃緑岩	福島県田村郡三春町富沢	安山岩				
R081	AGB2孔 186.50-186.65m	阿武隈花崗岩類	花崗閃緑岩	福島県本宮市稲沢	R111	GSJ R35934	名久井岳安山岩	輝石安山岩	青森県三戸郡三戸町沼の沢
R082	AGB2孔 200.00-200.06m	阿武隈花崗岩類	花崗閃緑岩	福島県本宮市稲沢	R112	GSJ R55843	瀬戸内火山岩類	普通輝石かんらん石 安山岩	香川県小豆郡小豆島町蒲野
R083	AGB2孔 225.60-225.70m	阿武隈花崗岩類	花崗閃緑岩	福島県本宮市稲沢	R113	GSJ R55845	瀬戸内火山岩類	かんらん石含有角閃 石普通輝石しそ輝石 安山岩	香川県小豆郡土庄町銚子ノ 滝
R084	AGB3孔 127.88-127.95m	阿武隈花崗岩類	花崗閃緑岩	福島県田村郡三春町富沢	R114	GSJ R57196	鳥海火山噴出物法体 溶岩	普通角閃石かんらん 石複輝石安山岩	秋田県由利本荘市大清水山 荘東
R085	OD-2孔 667.10-667.50m	領家花崗岩類	花崗岩	三田村ほか(1998):大阪市 都島区都島南通り	R115	GSJ R57199	鳥海火山噴出物法体 溶岩	普通角閃石かんらん 石複輝石安山岩	秋田県由利本荘市赤沢川
R086	IWK_R10	阿武隈花崗岩類	花崗岩	地層は久保ほか(2007)を 参照した。 いわき市好間町篠登城	R116	GSJ R64632	瀬戸内火山岩	斜方輝石単斜輝石安 山岩	山口県岩国市柱島新宮鼻
斑れい岩					R117	GSJ R64693	瀬戸内火山岩、岩脈	角閃石安山岩	島県呉市宮尾北東方
R087	GSJ R23451	領家花崗岩類	普通角閃石斑れい岩	三重県津市丹生俣	R118	GSJ R79621	月日山火山岩類	斜方輝石単斜輝石安 山岩	青森県十和田市馬ノ神
R088	GSJ R58251	音調津閃緑岩体	黒雲母含有しそ輝石 普通角閃石普通輝石 かんらん石斑れい岩	北海道広尾郡広尾町音調津 川中流採石場	R119	GSJ R79649	法量北溶岩	単斜輝石斜方輝石安 山岩	青森県十和田市小増沢最上 流域
R089	OD-2孔 659.00-660.30m	領家花崗岩類	斑れい岩	三田村ほか(1998):大阪市 都島区都島南通り	R120	000804-03	御苗代火山溶岩	安山岩	岩手火山:地層は伊藤・土井 (2005)を参照した。
R090	OD-2孔 661.80-664.30m	領家帯	斑れい岩	同上	R121	010826-07	西岩手主火山体溶岩	安山岩	同上
かんらん若	4				R122	Ad2010 z-D	寒風火山 低発泡軽 石	安山岩	秋田県男鹿市脇本樽沢
R091		幌満かんらん岩	かんらん岩	北海道様似郡様似町幌満	R123	2007 0617-D	浅間火山 天明軽石	安山岩	群馬県吾妻郡長野原町北 軽井沢
トーナル岩	ŧ				デイサイト				·
R092	GSJ R38461	領家花崗岩類(父鬼 川トーナル岩)	片状普通角閃石黒雲 母トーナル岩	大阪府和泉市春木川町松尾 川	R124	1998 1016-K	俱多楽火山 KT-1軽 石	デイサイト	北海道白老郡白老町萩野
R093	GSJ R38466	領家花崗岩類(父鬼 川トーナル岩)	片状普通角閃石黒雲 母トーナル岩	大阪府和泉市国分町槙尾川	R125	Ng2006 c-J	濁川カルデラ 火砕 流堆積物の軽石	デイサイト	北海道茅部郡森町
R094	豊田神殿孔1 415.42-415.50m	領家花崗岩類	トーナル岩	北川ほか(2009a):愛知県豊 田市神殿町	R126	702V	十和田カルデラ,南 部軽石	デイサイト	秋田県鹿角市十和田大湯
R095	豊田神殿孔1 550.50-550.60m	領家花崗岩類	トーナル岩	同上	流紋岩				
R096	9112402	領家花崗岩類	トーナル岩*	三重県松阪市飯高町田引	R127	GSJ R62945	有馬層群玉瀬層	黒雲母流紋岩	兵庫県西宮市塩瀬町名塩高 座山
R097	9112403	領家花崗岩類	トーナル岩*	三重県松阪市飯高町田引	R128	95IW14	鬼界カルデラ(硫黄 岳火山溶岩)	流紋岩溶岩	鹿児島県鹿児島郡三島村 硫黄島硫黄岳
アプライト					R129	99IW03	鬼界カルデラ(新硫 黄島火山溶岩)	流紋岩溶岩	鹿児島県鹿児島郡三島村 新硫黄島
R098	豊田神殿孔1 444.77-444.80m	領家花崗岩類	アプライト	北川ほか(2009a):愛知県豊 田市神殿町	変成岩類				•
玄武岩				· · · · · · · · · · · · · · · · · · ·	R130	GSJ R11563	三波川変成岩	緑色片岩	愛媛県新居浜市中七番北東 方約1km
R099	GSJ R55844	瀬戸内火山岩類	普通輝石かんらん石 玄武岩	川県小豆郡小豆島町白浜山 の西の採石場	R131	GSJ R12172	三波川変成岩	緑色片岩	埼玉県秩父郡東秩父村
R100	GSJ R57177	鶯川玄武岩	かんらん石普通輝石 玄武岩	秋田県にかほ市飯ケ森北	R132	GSJ R49673	三波川変成岩	緑色片岩	奈良県吉野郡吉野町小名
R101	GSJ R57194	鳥海火山噴出物下玉 多川溶岩	しそ輝石かんらん石 普通輝石玄武岩	秋田県由利本荘市朱ノ又川 支流	R133	GSJ R59774	御荷鉾帯	緑色片岩	和歌山県有田郡有田川町楠 本
R102	GSJ R70583	瀬戸内火山岩類	かんらん石玄武岩	広島県呉市尾久比南東海岸	R134	IWK_R09	阿武隈変成岩類	角閃片岩	地層は久保ほか(2007)を 参照した。 いわき市内郷高野町板橋
R103	GSJ R70584	瀬戸内火山岩類	普通角閃石含有かん らん石玄武岩	広島県呉市尾久比南東海岸	R135	GSJ R38441	領家変成岩	黒雲母片麻岩	大阪府和泉市春木川町松尾 川
R104	GSJ R70596	瀬戸内火山岩類	かんらん石普通輝石 玄武岩	愛媛県今治市小大下島龍ヶ 鼻	R136	GSJ R12169	三波川変成岩	変斑れい岩	埼玉県秩父郡東秩父村

SCSJRで始まる試料は、『地質標本データベース』に登録されている試料を示す。地層・岩相名は『地質標本データベース』による。 いウルトラマイロナイト化した断層岩