1. 地質総合検討

室戸観測点は,高知県室戸市室戸岬町6811番地 室戸市中央公園臨時駐車場の敷地 内に位置する。

孔名	掘削長 (m)	緯度	経度	標高 (m)
孔 1	600.0	33° 17' 08.141	134° 09' 22.531	61.392
孔 2	200.0	33° 17' 07.609	134° 09' 22.703	61.39
孔 3	40.0	$33^{\circ}\ 17'\ 07.828$	134° 09' 22.632	61.378

表1. 室戸観測点各孔の位置

1.1 地形·地質

室戸岬北西域を含む土佐湾北西岸には,海岸段丘が発達している。特に,完新世に形成さ れた低位面は,土佐湾の東岸に沿ってよく連続している。低位面には国道55号線とそれに 沿った集落が発達し,人工的に地形が改変されているところが多い。低位面から陸側には, 比高数十mを超える海食崖が発達し,その奥には海食台が分布している。海食台には最終間 氷期(12~13万年前)に形成された中位面とそれより古い高位面(更新世中期,13~70万 年前)が発達している。

本工事箇所周辺では、相撲場から体育館を右に見ながら室戸スカイラインへ向かう市道の 左手側に立つアンテナ付近が中位面に相当し、本工事箇所はそれよりも標高が数十m低いこ とから最終間氷期以降に形成された海食台と考えられ、周辺は風化や浸食によりなだらかな 地形面を形成している。

各面の標高は多少の高低はあるものの,北に向かって低くなる傾向が認められる。平均的 な値として,低位面では室戸岬の約10mから安芸市の約5mへ,中位面では前者の190mか ら後者の70mへ,高位面では約300mから150m前後へと低下する。つまり,室戸岬から北 西に40km離れると標高が半減する。

このような標高の低下とともに、段丘面の幅も減少し、低位面についていえば海食台は安 芸と高知の間で無くなり、高知市内では沖積平野が分布するだけとなり、中位面、高位面の 段丘に相当する平坦面は認められない。間氷期にできたはずの海食台は高知平野の地下に沈 んでいる。つまり、室戸半島における海岸段丘の高度分布は、半島の地盤があたかも1枚の 板を北に傾けたように傾動してきたことを示している。室戸半島の特色ある海岸地形を生じ たこの傾動の要因は、地震に伴う地盤変動であるものと考えられている。

図 1.1.1 行当岬から羽根崎間の海岸段丘の分布

等値線で M₁面(最終間氷期)の旧汀線高度を10 m ごとに示す.南海トラフに近い紀伊半島南端,室戸岬,足摺岬付近の段丘はいずれも歴史時代の大地震のときの変動と同じむきに内陸に向かって傾動している.細い線は地形のあらましを示す接峰面等高線(200 m ごと).(太田陽子, 1968 の図に加筆)

(図 1.1.1~図 1.1.3 はいずれも『日本の平野と海岸,岩波書店(貝塚ほか,1995)』から抜粋)

高知県四万十帯の地質は、平ほか(1980b)によれば表 1.1.1,図 1.1.4 および図 1.1.5 のように示されている。また、図 1.1.6(1)~(2)には土地分類基本調査「奈半利・室戸岬」(高知県、1981)から表層地質図を抜粋して示した。

平ほか(1980b)によれば、工事箇所周辺は上部漸新統~下部中新統菜生層群日沖複合層 に位置している。日沖複合層は後期漸新世~前期中新世の泥岩マトリックス中に、ほぼ同年 代の含貝化石砂岩ブロックや始新世の灰色頁岩ブロックおよび年代不詳の緑色岩が含まれ る各種異地性岩塊の集合体である。泥岩マトリックスは剪断が強く、鱗片状を示すものが多 い。

本工事においても,深度 600mまで数m~数十m間隔で剪断され,剪断面に沿って鱗片状 を呈する岩礫泥岩を確認している。

工事箇所周辺の地質構造は、図 1.1.4 によれば上位不明の層理面の走向/傾斜が N70° E/70°NW,葉片構造の走向/傾斜が,N50°E/SE,あるいは N70°E/70°NW である。図 1.1.6(1)には、工事地点付近を南北に縦断する断面図を示したが、工事箇所が位置する日沖 複合層の傾斜はほぼ鉛直あるいは高角度な北傾斜と考えられている。

本工事で実施した超音波式 BHTV 結果では,深度 252.7m コアリング後の計測では,一般 に NE-SW 走向で高角度の SE 傾斜を強く示し,弱い高角度の NW 傾斜も認められた。また 深度 580m コアリング後の計測では, NE-SW 走向で SE 傾斜を強く示した。しかし深度 411 ~412mに発達する亀裂は, NE-SW 走向で NW 落ちを示した。

超層群	*・帯・亜帯	の区分			層群・層の区分	Groups	and Format	ions		地質時代
Supergroups, Belts and Subbelts		西部地域		Western District	東	部地	域	Eastern District	Geologic Age	
四万十超屬群(南帯) Shimanto Supergroup	Upper Shima (Southern Sh 山田四万十)	Nabae Subbelt 菜 生 亜 帯	三崎層	舒群 Misaki Grou	p (Miocene)	Nabae Group 菜 生 層 群		層層層	(Tsuro Formation) (Shijujiyama Formation) (Hioki Complex)	Late Oligocene - Early Miocene
	nto Supergroup limanto Belt or manto Belt) 超層群(南帯)	Murotohanto Subbelt 室戸半島亜帯	Hata Group 幡 多 層 群	(清水層 来抵野層 弘見複合層 龍ヶ追層 田/口層 平田層	(Shimizu Formation) (Kurusuno Formation) (Hiromi Complex) (Tatsugasako Formation) (Tanokuchi Formation) (Hirata Formation)	Murotohanto Group 室戸半島層群	室 戸 佐喜浜メランジ 奈 奈<半<利川	層ュ層層	(Muroto Formation) (Sakihama Melango) (Naharigawa Formation) (Ohyamamisaki Formation)	Eocene - Early Oligocene
(Shimanto Belt) (四万十	Lower Shiman (Northern Shi Lower Shin 下部四万十韶	Taisho Subbelt 大 正 亜 帯	Taisho Group 开 匠 層 群	有 岡 層 中 村 層 大用メランジュ 野 々 川 野 々 川 層 八礼メランジュ 下 津 井 横浪メランジュ	(Arioka Formation) (Nakamura Formation) (Ohyu Melange) (Nonokawa Formation) (Kure Melange) (Shimotsui Formation) (Yokonami Melange)	Aki Group 安芸層群		1層 シュ ジュ	(Undivided Cretaceous Rocks) (Tei Melange) (Tsukimiyama Melange)	Coniacian - Maastrichitian
ianto Belt/) 層群(北帯) 帯)	to Supergroup manto Belt or nanto Belt) 層群(北帮)	Shinjogawa Subbelt 新 荘 川 亜 帯	Shinjogawa Group 新 荘 川 層 群	須 崎 層 半 山 層 新 土 居 層 堂 ヶ 奈 路 層	(Susaki Formation) (Hayama Formation) (Shindoi Formation) (Doganaro Formation)	Shinjogawa Group 新 荘 川 層 群	須 崎 半 山 堂 ヶ 奈 路 上 組	層層 層層	(Susaki Formation) (Hayama Formation) (Doganaro Formation) (Uwagumi Formation)	Neocomian - Turonian

表 1.1.1 高知県四万十帯の層序一覧表(平ほか, 1980b)

図 1.1.4 室戸半島地質図(平ほか, 1980b)

図 1.1.5 室戸半島地質図(平ほか, 1980b) 拡大版 (〇は工事箇所)

図 1.1.6(1) 工事箇所周辺の地質図・断面図
(表層地質図「奈半利・室戸岬」から抜粋)
(〇は工事箇所)

図 1.1.6(2) 表層地質図「奈半利·室戸岬」凡例一覧

1.2 地質特性

連続して深度 600mまでコアボーリングを実施した孔1の地質構成は,2.75mまでは砕石 を含む泥岩・砂岩礫混じりシルトの盛土,それ以深は深度 600mまで含礫泥岩が分布してい た。含礫泥岩中に含まれる礫は,一般に長径数 mm から数 cm であるが,深度 109.85~113.55 m, 520.10~521.21m, 573.00~575.55m区間には砂岩の巨礫が分布していた。

表 1.2.1 と図 1.2.1 には,孔1 で確認した含礫泥岩の岩盤等級構成割合を示した(砂岩の 巨礫,表層部盛土,深度 38.75~65.20mまでのノンコア掘削箇所を除く)。

それによれば全体の約4割は CM 級岩盤から構成され,残りの6割がほぼ等しく B 級, CH 級, CL 級, D 級から構成されていた。本地区岩盤は,浅深度から深深度部へむかって 岩盤状況が良好になることはなく,常に高角度の剪断面(薄い粘土を伴い,その周辺は鱗片 状劈開が発達)が数m~数+m間隔で分布しており,その剪断を免れた良好部分との繰り返 しで構成されていた。したがって,このような岩相を反映して,岩盤等級も中庸な CM 級を 中心に良好な岩盤と不良な岩盤がほぼ同等に分布していたものと考えられる。

岩盤等級区分	孔1総m数	構成割合(%)
А	0	0.0%
В	82.12	14.6%
СН	89.2	15.8%
СМ	231.13	41.0%
CL	98.18	17.4%
D	62.81	11.1%
合計	563.44	100.0%

表 1.2.1 岩盤等級構成割合一覧表

図 1.2.1 岩盤等級構成割合

図 1.2.2~9.2.4 に地質柱状図,岩級区分図とともに孔内検層結果を示した。 コア観察結果から

- 1) 地質柱状図
- 2) 岩盤等級区分

孔内検層結果から

- 1) 自然電位(SP)
- 2) 電気検層:ショートノルマル (SN)
- 3) 電気検層: ロングノルマル(LN)
- γ線検層:γ線(γ)
- 5) PS 検層: P波, S 波速度(Vp, Vs)
- 6) キャリパー検層: 孔径変化(Xcal, Ycal)
- 7) 温度検層:温度(T)
- 8) 示差温度:前後1mの差
- 9) 電気伝導度:比電気伝導率(電気抵抗の逆数)(EC)

を示す。

本図から以下のように考察される。

- 【孔1】
- 1) 電気検層は電極間隔 16 インチのショートノルマル(SN)と、64 インチのロングノルマル(LN)で測定しており、両者の傾向は大局的にはほぼ同様の変動を示した。詳細に見れば、SNの値は短周期で岩盤細部の変化と良く対応しており、一般に砂岩層あるいは含礫泥岩中の B~CH 級岩盤で大きく、破砕帯部分では小さな値を示した。ただし、コア観察で鱗片状劈開が発達して RQD の小さな箇所において、CM 級岩盤と評価した箇所(例えば、深度 430~440mなど)でも SN が大きな値を示す箇所もある。これはコア観察段階で、地中からコア採取して解放された状態で観察したため、地上でのコア評価と地下深部での原位置での評価が異なった事によるものと考えられる。

LNは、深度110m付近を除き、長周期で岩盤状態を反映している。その理由として、本岩体が70°から鉛直方向の剪断を被っており、孔壁自体が平滑(コアは棒状)であってもその裏側には剪断面が連続して分布していることから、広範囲にわたって岩盤状態を均質化させて、岩盤の変化を捉えている結果が現れているものと考えられる。

- γ線は、地質の変化によく対応している。砂岩岩塊深度では小さく、含礫泥岩中ではそれより大きく、短周期の変動を示している。剪断を被った箇所では小さく、岩相と良く対応しているものの、一般的にはほぼ一定の値を示した。
- 3) P波, S波速度は, SN およびγ線同様に岩盤状況,特に CL 級から破砕帯の分布と良く 対応している。しかし、Vpは CL 級岩盤以上では概ね4km/sec 以上を示しており、岩盤 状態が良好であるほど岩盤等級区分とVpとの関係は敏感でなくなった。Vpのみで岩盤 物性を区分することは難しいものと考えられる。
- 4) キャリパー検層結果では、破砕帯深度と孔径の広がり具合が良く対応している。
- 5) 温度検層では、コア採取後の深度 95.0~105.0m区間で局所的に温度が低下する傾向を確認した。また、深度 140~150mで温度が局所的に変化することを確認した。深度 250.0

~345.0m区間では局所的に温度が上昇する傾向を確認した。拡孔後では,深度 365.0~ 455.0m区間で温度が低下する傾向を確認した。しかし,いずれも地質構造に起因する有 意な情報は得られなかった。

【孔2】

- 1) 電気検層の結果, SN と LN はほぼ同様の変動を示した。また、キャリパーや自然放射能の値と調和的に値が変化することなく、ほぼ一定の値を示した。その理由として、孔2検層時の孔内環境は、トリコンビットによるノンコア掘削を実施し、濃泥水を使用した後の検層であったため、岩相の違いが比抵抗に現れず、泥壁の影響が大きいものと考えられる。
- 2) γ線は深度 135~140m, 163~172m付近で自然放射能が小さくなることを確認した。温度検層での水温の局所的変化と良い対応を示す。
- 3) P波速度は、孔径状況と良く対応している。すなわち、孔径の大きな箇所では速度は遅く、 孔径の小さな深度では速度は速い。したがって、岩盤状況、特に CL 級から破砕帯の分布 が予想できる。上記した孔1との相関結果により、Vpは CL 級岩盤以上では概ね4km/sec 以上を示すことから、深度130m~175mまで CL 級主体の岩盤状況であることが推察で きる。
- 4) キャリパー検層結果では,掘削孔径が約270mmに対して300mm以上を示している。部 分的に330mm以上を示す箇所も確認したが,孔1でおこなったコアとの対比,およびP 波速度との良い相関から考えると,破砕帯の存在が推察される。
- 5)温度検層では、ノンコアボーリング終了後の深度 125~135m区間で局所的に温度が低下 する領域を確認した。拡孔後では、深度 125~130m区間で局所的に温度が低下する領域 を確認した。したがって、この領域において、孔内水流動に起因する温度変化が考えられ る。

【孔3】

- 1) 電気検層の結果, SN と LN はほぼ同様の変動を示した。なお, 深度 20m以浅の値は, 後 述する P 波速度とともに解釈した結果, 地盤の不飽和が影響しているものと考えられる。
- 2) γ線は全区間にわたりほぼ一定の値を示し、岩相変化を想定できるほどの変動は認められ なかった。
- 3) P波速度は、深度 22m以深では孔径状態と比較的よく対応している。深度 17m以浅については地盤が不飽和であることが影響しているものと推察される。
- 4) キャリパー検層結果では、実際の掘削孔径は約270mm であったが、計測結果では300mm 以上、浅深度では約350mm を示している。孔1で行ったコアとの対比、γ線検層結果お よびP波速度との良い相関から考えると不良な岩盤状況の存在が考えられるが、部分的に 孔径が拡大している深度26mでは、局部的に礫部分の欠落が生じたことが推察される。
- 5)温度検層結果では、明瞭な温度変化は認められなかった。この理由として、孔2と同様に 検層時の孔内環境がトリコンビットによるノンコア掘削を実施し、濃泥水を使用した後の 検層であったことによるものと考えられる。

図 1.2.2 孔1総合柱状図(HQ および PQ コアリングデータより。縮尺任意)

図 1.2.3 孔 2 総合柱状図(ノンコアボーリングおよび拡孔ボーリングデータより。縮尺任意)

図 1.2.4 孔 3 総合柱状図(ノンコアボーリングデータより。縮尺任意)

1.3 総合検討

1.3.1 地質構造

本工事地点付近を通る横断してP波反射法地震探査が実施された(「東南海・ 南海地震予測のための地下水等総合観測施設整備地区における構造調査(高知 市地区、室戸市地区、阿南市地区)(2007)」参照)。

以下にそれから抜粋した測線位置図(図 1.3.1(1)~(2))と解析断面図(図 1.3.2) を示す。

図 1.3.1 (1) 反射法地震探査測線図 (測線長:2,500m) (国土地理院発行 1/25,000 地形図「剣山」を使用)

図 1.3.1 (2) 反射法地震探査測線図(測線長:2,500m)(表層地質図「奈半利・室戸岬」から抜粋)

←W

図 1.3.2 反射法地震探查 解析図

これによれば、工事地点の深度 400m付近に、NE-SW 走向で NW 方向に傾斜する反射面 が読み取れている。BHTV 結果では剪断面の多くが NE-SW 走向で高角度の SE 傾斜を示し たが、反射面としては現れていない。

現れない理由として,

1)ほぼ均質なコアが連続していること

2) P波速度結果で、Vp=4km/s 台前半であまり変化しないこと

3) 剪断面の傾斜が高角度であること

が考えられている。

今回,反射面として読み取れた箇所は,周辺深度に分布する剪断面の傾斜と逆方向のNW 方向に傾斜している。このことから,一般的に発達する剪断面の傾斜よりも,希有な構造を 有する粘土を挟在する多亀裂帯からの反射波をとらえたものと考えられる。

既往文献では、地表で計測した葉片構造の傾斜方向は SE 方向であり、これは今回工事で 観察した一般的な剪断面の傾斜と調和的である。コア観察では礫の伸長方向も剪断面の構造 と調和的であり、NW 傾斜を有する剪断面は 410m付近の他には深度 473~474mおよび 477 m付近に分布しているにすぎない。既往文献に記載されている NW 傾斜の構造とは、湾曲し ながら縦方向に発達する構造のうち、特に NW 傾斜の部分を露頭で観察したものと考えられ る。

したがって、本工事箇所における日沖複合層の一般的な地質構造は、NE-SW 走向を有し、 SE 方向に 70°~ほぼ鉛直方向に傾斜しているものと考えられる。

1.3.2 応力方向について

DSCA 法によるクラックパラメータの主値の方向における最大主値は ENE から NE 方向 に分布する結果であった。

瀬野(2005)は、日本列島の応力場の最大圧縮応力の方向を断層のタイプ毎に、図 1.3.3 に 示している。ここで、室戸周辺の最大圧縮方向はほぼ東西方向としており、今回の試験結果 と調和的な方向が示されている。

図 1.3.3 日本列島の応力場 最大圧縮方向 (Seno, 1999; Seno, 2005)

参考文献

貝塚爽平ほか:「新版日本の自然4 日本の平野と海岸」,岩波書店,1995, P.82-97. 平朝彦ほか:「高知県四万十帯の地質とその起源,四万十帯の地質学と古生物学 甲藤次 郎教授還暦記念論文集」,1980, P.319-389.

国土交通省 土地・水資源局 国土調査課:「表層地質図「奈半利・室戸岬」(5万分の1)」, 1974