Implications of Coseismic Groundwater Level Changes in Taiwan

Yeeping Chia	Department of Geosciences, NTU			
<u>Jessie J. Chiu</u>	Atomic Energy Council			
Chen-Wuing Liu	Department of Bioenvironment Systems Engineering, NTU			
Ming-Jame Horng	Water Resources Agency			

Pore Pressure Induced by
Stress Change due to Fault MovementBased on Biot's Consolidation theory $\frac{\partial P}{\partial t} = \frac{K}{\rho_W g (\beta_P + n \beta_W)} \nabla^2 P + \frac{\beta_P}{\beta_P + n \beta_W} \frac{\partial \sigma}{\partial t}$ where β_P is pore compressibility
 β_W is water compressibilityCoseismic: $\nabla^2 P \approx 0$ (no flow) \rightarrow loadingPostseismic: $\frac{\partial \sigma}{\partial t} = 0$ (no loading) \rightarrow flow

Spatial Distribution of Coseismic Changes (2003 M_L6.6 earthquake)

- Coseismic rises were observed in central and southern coastal plains.
- Coseismic falls appeared primarily in southwestern coastal plain and the area near the mountains.
- Distribution reflects the complexity of stress redistribution distant from the earthquake epicenter.

1999 M_w 7.6 Chi-Chi Earthquake

- Local time: 1:47 a.m. September 21, 1999
- Epicenter: near Chi-Chi in central Taiwan
- Surface rupture due to thrust faulting extends 100 km
- Displacement is up to 10.1 m laterally & 8 m vertically

Spatial Distribution of Coseismic Changes (1999 M_w7.6 Earthquake)

- Coseismic rises prevailed away from ruptured segment.
- Coseismic falls appeared near the ruptured fault.
- Similar but less distinct distribution pattern near unruptured segment

Coseismic changes in the study area A						
Well no.	Screen depth (m)	Coseismic change (m)	Well no.	Screen depth (m)	Coseismic change (m)	
KS1	8-14, 24-30	0.38	WC1	5-17	0.13	
KS2	120-126	5.21	WC2	18-60	2.76	
KS3	185-197	1.05	WC3	108-120	4.09	
DF1	101-125	3.38	WC4	186-204	3.38	
DF2	162-174	3.73	HT1	8-20	1.25	
LJ1	25-34	0.62	HT2	44-56, 59-65	1.31	
LJ2	108-120	5.22	HT3	112-130	3.98	
LJ3	180-198	3.47	HT4	264-276,288-294	-0.26	
SS1	10-16, 22-28	0.23	HS1	48-54, 60-66	3.51	
SS2	105-117	4.20	HS2	102-108, 114-120	5.28	
SS3	55-71	4.28	HS3	174-186, 192-204	3.72	
SS4	158-170, 182-194	2.75	HS4	254-278	3.24	
CS1	8-17	0.19	HB1	59-71	2.56	
CS2	102-120	4.66	HB2	103-115	3.23	
CS3	183-192	3.86	HB3	173-197	2.12	
CS4	240-252	2.70	HB4	266-284	1.25	

Largest Rises in the Study Area A

- Coseismic change in a gravel layer is greater than that in a sand layer.
- The largest rise was observed between 100 m and 130 m; correlating well with a gravel aquifer.
- Gravel is less compressible → Skempton coeff. B is smaller → stress change in gravel must be greater.

Conclusions

- Fault displacement has a strong impact on coseismic groundwater level changes.
- The magnitude of coseismic change is associated with characteristics, insteadd of depth, of aquifers.
- Simple dislocation model not suitable for predicting the magnitude or direction of pore pressure change at a specific site.