Eh-pH図アトラス

熱力学データベースの相互比較

地質調査総合センター研究資料集 No.419

独立行政法人 産業技術総合研究所深部地質環境研究センター竹野 直人

2005年5月

目 次

1	はじめに	8
2	データベースについて	8
3	作成法	9
	3.1 FACT/FACTSAGE	10
	3.2 SUPCRT/FLASK-AQ	10
	3.3 LLNL/GWB	10
	3.4 JNC-TDB/GWB	10
	3.5 HATCHES/FLASK-AQ	10
	3.6 OECD/NEA	10
	3.7 OECD-NEAupdate	11
4	図表の説明	11
5	信頼性と精度について	12
6	使用ソフトウェアとその実行環境	12

表目次

1	使用ソフトウェア一覧1	12
2	List of Ac species	15
3	List of Ag species	19
4	List of Al species	23
5	List of Am species	27
6	List of As species	31
7	List of Au species	34
8	List of B species	37
9	List of Ba species	11
10	List of Be species	15
11	List of Bi species	18
12	List of Br species	50
13	List of C species (1)	52
14	List of C species (2)	53
15	List of Ca species	57
16	List of Cd species	31
17	List of Ce species	35
18	List of Cl species	38
19	List of Cm species	71
20	List of Co species	75
21	List of Cr species	79
22	List of Cs species	33
23	List of Cu species	37
24	List of Dy species	<i>)</i> 0
25	List of Er species	<i>)</i> 2
26	List of Eu species)5
27	List of F species)9
28	List of Fe species)3
29	List of Fr species)6
30	List of Ga species)8
31	List of Gd species	10
32	List of Ge species	12
33	List of Hf species	4
34	List of Hg species	17
35	List of Ho species	20
36	List of I species	23
37	List of In species	26
38	List of K species	29
39	List of La species	33
40	List of Li species	37
41	List of Lu species	10
42	List of Mg species	13
43	List of Mn species 14	17
44	List of Mo species	51
45	List of N species	<i></i> 55

46	List of Na species	9
47	List of Nb species	3
48	List of Nd species	7
49	List of Ni species	1
50	List of Np species	5
51	List of Os species	8
52	List of P species	1
53	List of Pa species	5
54	List of Pb species	9
55	List of Pd species	2
56	List of Pm species	4
57	List of Po species	6
58	List of Pr species	8
59	List of Pt species	0
60	List of Pu species	3
61	List of Ra species	7
62	List of Rb species	0
63	List of Re species	2
64	List of Rh species	4
65	List of Ru species	7
66	List of S species	1
67	List of Sb species	5
68	List of Sc species	8
69	List of Se species	1
70	List of Si species	5
71	List of Sm species	9
72	List of Sn species	3
73	List of Sr species	7
74	List of Tb species	0
75	List of Tc species	3
76	List of Te species	6
77	List of Th species	9
78	List of Tl species	2
79	List of Tm species	4
80	List of U species	7
81	List of V species	1
82	List of W species	4
83	List of Y species	6
84	List of Yb species	8
85	List of Zn species	1
86	List of Zr species	5

図目次

1	本報告の作成フロー図	9
2	Eh-pH ダイアグラムの 凡例1	1
3	Eh-pH diagrams of the system Ac-O-H (1)	6
4	Eh-pH diagrams of the system Ac-O-H (2)	7
5	Eh-pH diagrams of the system Ag-O-H (1)	0
6	Eh-pH diagrams of the system Ag-O-H (2)	1
7	Eh-pH diagrams of the system Al-O-H (1)	4
8	Eh-pH diagrams of the system Al-O-H (2)	5
9	Eh-pH diagrams of the system Am-O-H (1)	8
10	Eh-pH diagrams of the system Am-O-H (2) 29	9
11	Eh-pH diagrams of the system As-O-H (1)	2
12	Eh-pH diagrams of the system As-O-H (2)	3
13	Eh-pH diagrams of the system Au-O-H	5
14	Eh-pH diagrams of the system B-O-H (1) 38	8
15	Eh-pH diagrams of the system B-O-H (2) 39	9
16	Eh-pH diagrams of the system Ba-O-H (1)	2
17	Eh-pH diagrams of the system Ba-O-H (2)	3
18	Eh-pH diagrams of the system Be-O-H (1)	6
19	Eh-pH diagrams of the system Be-O-H (2)	7
20	Eh-pH diagrams of the system Bi-O-H	9
21	Eh-pH diagrams of the system Br-O-H	1
22	Eh-pH diagrams of the system C-O-H (1)	4
23	Eh-pH diagrams of the system C-O-H (2)	5
24	Eh-pH diagrams of the system Ca-O-H (1)	8
25	Eh-pH diagrams of the system Ca-O-H (2)	9
26	Eh-pH diagrams of the system Cd-O-H (1) 62	2
27	Eh-pH diagrams of the system Cd-O-H (2)	3
28	Eh-pH diagrams of the system Ce-O-H (1)	6
29	Eh-pH diagrams of the system Ce-O-H (2)	7
30	Eh-pH diagrams of the system Cl-O-H	9
31	Eh-pH diagrams of the system Cm-O-H (1)	2
32	Eh-pH diagrams of the system Cm-O-H (2)	3
33	Eh-pH diagrams of the system Co-O-H (1)	6
34	Eh-pH diagrams of the system Co-O-H (2)	7
35	Eh-pH diagrams of the system Cr-O-H (1)	0
36	Eh-pH diagrams of the system Cr-O-H (2)	1
37	Eh-pH diagrams of the system Cs-O-H (1)	4
38	Eh-pH diagrams of the system Cs-O-H (2)	5
39	Eh-pH diagrams of the system Cu-O-H (1) 88	8
40	Eh-pH diagrams of the system Cu-O-H (2) 89	9
41	Eh-pH diagrams of the system Dy-O-H	1
42	Eh-pH diagrams of the system Er-O-H	3
43	Eh-pH diagrams of the system Eu-O-H (1)	6
44	Eh-pH diagrams of the system Eu-O-H (2)	7
45	Eh-pH diagrams of the system F-O-H (1) 100	0

46	Eh-pH diagrams of the system $F-O-H$ (2)	101
40	Eh-pH diagrams of the system Fe Ω -H (1)	101
48	Eh-pH diagrams of the system $Fe_{\Omega}-H(2)$	101
49	Eh-pH diagrams of the system Fr-O-H	107
50	Eh-pH diagrams of the system Ga-O-H	100
51	Eh pH diagrams of the system Cd O-H	111
52	Eh-pH diagrams of the system Co-O-H	112
52	Eh-pH diagrams of the system Hf-O H	115
54	Eh pH diagrams of the system Hg O H (1)	110
55	Eh-pH diagrams of the system Hg-O-H (2)	110
56	Eh-pH diagrams of the system H_0-O-H	191
57	Eh pH diagrams of the system I O H (1)	121
58	Eh pH diagrams of the system I O H (2)	124
50	Eh-pH diagrams of the system In-O-H	$120 \\ 197$
60 60	Eh-pH diagrams of the system $K_{O-H}(1)$	121
61	Eh-pH diagrams of the system K-O-H (2)	130
62	Eh-pH diagrams of the system La- Ω H (1)	131
62 63	Eh pH diagrams of the system La O H (2)	134
64	Eh pH diagrams of the system Li O H (1)	138
65	Eh pH diagrams of the system Li O H (2)	130
66	Eh pH diagrams of the system Lu O H	139
67	Eh-pH diagrams of the system Mg O H (1)	141
68	Eh-pH diagrams of the system Mg-O-H (1)	144
60	Eh-pH diagrams of the system Mp O H (1)	140
09 70	Eh-pH diagrams of the system Mn-O-H (1)	140
70	Eh-pH diagrams of the system Mn-O-H (2)	149
71 72	Eh-pH diagrams of the system Mo-O-H (1)	152
14	Eh-pH diagrams of the system NO-U (1)	156
73	Eh-pH diagrams of the system N-O-H (1)	150
(4 75	Eh-pH diagrams of the system N-O-H (2)	107
75 76	Eh-pH diagrams of the system Na-O-H (1)	161
70	Eh-pH diagrams of the system Na-O-H (2)	164
11 70	Eh-pH diagrams of the system Nb-O-H (1)	165
70 70	Eh-pH diagrams of the system Nd-O-H (2)	169
79 80	Eh-pH diagrams of the system Nd-O-H (1)	160
00 91	Eh-pH diagrams of the system Ni O H (1)	109
80 80	Eh pH diagrams of the system Ni O H (2)	172
04 83	Eh pH diagrams of the system Np O H (1)	175
84	Eh pH diagrams of the system Np O H (2)	170
04 95	Eh-pH diagrams of the system Np-O-H (2)	170
86	Eh-pH diagrams of the system $P \cap H$ (1)	189
87	Eh-pH diagrams of the system $P \cap H(2)$	102
88	Eh-pH diagrams of the system $P_2 \cap H(1)$	100 186
80	Eh-pH diagrams of the system $P_2 \cap H(2)$	187
0 <i>9</i> 00	Eh-pH diagrams of the system Ph- Ω_{-} H (1)	100
90 Q1	Eh-pH diagrams of the system Ph_O_H (2)	101
υı	$\square \mu \nu \mu \nu \mu \nu \mu \nu \mu \nu $	T O T

92	Eh-pH diagrams of the system Pd-O-H	193
93	Eh-pH diagrams of the system Pm-O-H	195
94	Eh-pH diagrams of the system Po-O-H	197
95	Eh-pH diagrams of the system Pr-O-H	199
96	Eh-pH diagrams of the system Pt-O-H	201
97	Eh-pH diagrams of the system Pu-O-H (1)	204
98	Eh-pH diagrams of the system Pu-O-H (2)	205
99	Eh-pH diagrams of the system Ra-O-H (1)	208
100	Eh-pH diagrams of the system Ra-O-H (2)	209
101	Eh-pH diagrams of the system Rb-O-H	211
102	Eh-pH diagrams of the system Re-O-H	213
103	Eh-pH diagrams of the system Rh-O-H	215
104	Eh-pH diagrams of the system Ru-O-H (1)	218
105	Eh-pH diagrams of the system Ru-O-H (2)	219
106	Eh-pH diagrams of the system S-O-H (1)	222
107	Eh-pH diagrams of the system S-O-H (2)	223
108	Eh-pH diagrams of the system Sb-O-H (1)	226
109	Eh-pH diagrams of the system Sb-O-H (2)	227
110	Eh-pH diagrams of the system Sc-O-H	229
111	Eh-pH diagrams of the system Se-O-H (1)	232
112	Eh-pH diagrams of the system Se-O-H (2)	233
113	Eh-pH diagrams of the system Si-O-H (1)	236
114	Eh-pH diagrams of the system Si-O-H (2)	237
115	Eh-pH diagrams of the system Sm-O-H (1)	240
116	Eh-pH diagrams of the system Sm-O-H (2)	241
117	Eh-pH diagrams of the system Sn-O-H (1)	244
118	Eh-pH diagrams of the system Sn-O-H (2)	245
119	Eh-pH diagrams of the system Sr-O-H (1)	248
120	Eh-pH diagrams of the system Sr-O-H (2)	249
121	Eh-pH diagrams of the system Tb-O-H	251
122	Eh-pH diagrams of the system Tc-O-H (1)	254
123	Eh-pH diagrams of the system Tc-O-H (2)	255
124	Eh-pH diagrams of the system Te-O-H	257
125	Eh-pH diagrams of the system Th-O-H (1)	260
126	Eh-pH diagrams of the system Th-O-H (2)	261
127	Eh-pH diagrams of the system Tl-O-H	263
128	Eh-pH diagrams of the system Tm-O-H	265
129	Eh-pH diagrams of the system U-O-H (1)	268
130	Eh-pH diagrams of the system U-O-H (2)	269
131	Eh-pH diagrams of the system V-O-H (1)	272
132	Eh-pH diagrams of the system V-O-H (2)	273
133	Eh-pH diagrams of the system W-O-H	275
134	Eh-pH diagrams of the system Y-O-H	277
135	Eh-pH diagrams of the system Yb-O-H	279
136	Eh-pH diagrams of the system Zn-O-H (1)	282
137	Eh-pH diagrams of the system Zn-O-H (2)	283

138	Eh-pH diagrams of the system Zr-O-H (1)	286
139	Eh-pH diagrams of the system Zr-O-H (2)	287

1 はじめに

この研究資料は,熱力学データベース間のデータの相互比較を実用的で便利な Eh-pH 図を用いて示す ことを試みたものである.Eh-pH 図は,Eh,pH をそれぞれ縦軸,横軸にとり,化学組成を与えた水溶 液の溶存卓越化学種と固相種の変化を,Eh および pH の関数として図示するものである.固相の出現す る条件は,溶解度と関係し,溶存卓越化学種は,吸着やコロイドなどの物質表面の現象の理解に基本的 な情報となるので,Eh-pH 図は,地下水中の放射性核種などの溶質の移動にとって本質的なデータを提 供する.

Eh-pH 図を集成したものとして,材料の腐食・不動態などの耐性を論じた Pourbaix (1966)¹,放射性 廃棄物の地層処分での地球化学を論じた Brookins (1988) がよく知られているが,その後も熱力学デー タは増大し,さまざまな評価を経た複数の熱力学データセットがデータベースとして供給されるように なっている.これには,計算機の性能の向上と利用の普及にともなって,さまざまな地球化学コードを 用いた複雑な化学平衡計算が行なわれるようになり,熱力学データが実用上からも重要になったことも あずかっている.

地球化学コードの中には,簡便に Eh-pH 図を作成するものもある.そこで,この機能を利用して熱力 学データベース間のデータを比較する素材として Eh-pH 図を利用すれば,データベースの現状 (stateof-the-arts) とそれらの差異を視覚的に把握しやすくするとともに,実用上も便利ではないかと考え,こ の資料をまとめた.

基本的にこの資料では,データからの作図結果をありのままに,すなわち"as is"で提示することにして,判断は利用者にゆだねた.データベース利用の際の参考となれば幸である.なお,Eh-pH図によって示される内容は,熱力学データベースの一面にすぎないこと,かつデータベースはたえず更新されるのが常であり,この資料もデータベースのある時期のスナップショットであることに留意いただきたい.

2 データベースについて

比較に使用した熱力学データベースは下に示す7つである.1は無機化学工学向けの汎用データベー ス,2と3は地球化学向けの汎用データベースである.4と5は放射性廃棄物の地層処分向けのデータ ベースであるが,汎用といっても差し支えないほどデータが網羅されている.一方,6と7は放射性元 素を主としていて,他の元素についてはデータが十分ではない.したがって本資料では,6と7につい ては放射性元素に限定して図を載せた.

- 1. GTT-Technologies 製ソフトウェア FactSage 5.2 (FACTSAGE と略称, Bale et al., 2002) に添付 される FACT データベース (FACT と略称).
- 2. Johnson et al. (1992) の SUPCRT92 に Everette Shock によりインターネット上で公開された 98 アップデートを適用したもの (SUPCRT と略称).
- 3. イリノイ大学 C.M.Bethke の Geochemist's Workbench Release 4.0 (GWB と略称) に therm.dat として標準的に添付される Laurence Rivermore National Lab. Data 0.3245r46 (LLNL と略称).
- 4. 核燃料サイクル機構によって、インターネット上で公開されている、JNC-TDB 011213g0 および 011213g2 (JNC-TDB と略称).
- 5. NEA Computer Program Services にて配布されている ZZ-HATCHES-15 (HATCHES と略称).
- 6. OECD/NEAの Chemical Thermodynamicsの第1-4巻のデータベース (Grenthe et al., 1992; Silva et al., 1995; Rard et al., 1999; Lemire et al., 2001, 一括して OECD-NEA と略称).

¹本資料の表題にあるアトラスという語はこの種の図表集の嚆矢ともいえる Pourbaix (1966) にならったものである.

図 1: 本報告の作成フロー図 斜体はソフトウェア名.ドット名は拡張子の意味するファイルを示す.

7. OECD/NEAの Chemical Thermodynamicsの第5巻 (Guillaumont et al., 2003, OECD-NEAupdate と略称). これは Chemical Thermodynamics 第1-4巻のデータを改訂したものである.

3 作成法

この Eh-pH 図集で扱う系は,地下水中の化学反応を扱う上で最も基本的と考えられる X-H-O 系とした.Xには元素名が入る.放射性廃棄物の地層処分で重要な役割を果す天然バリアの地球化学的ふるまいを理解するために作図対象とする元素種を放射性元素に限定せず,データベースで利用できる全元素とした.ただし,OECD-NEA データベースのみ先に記した理由で特定の放射性元素のみ示した.全濃度は,10⁻¹⁰ mole/kg とした.これは希薄溶液として,活動度係数を1と置くためと,できるだけひろい Eh-pH 領域で沈殿固相の影響を受けずに溶存卓越種を比較するためである.温度,圧力はそれぞれ298.15K,10⁵ Pa である.

データのコンバージョンにともなう,誤りの発生を防ぐため,商用ソフトウェア同梱のデータベースおよび特定ソフトウェア向けのフォーマットで提供されるデータベースでは,それぞれ同梱ソフト,対象ソフトウェアを使用して作図した.これに該当するのは,FACTSAGEに同梱されるFACTとGWBに同梱されるLLNLとGWBフォーマットのJNC-TDBである.これに該当しない,SUPCRT,HATCHES,OECD-NEA,OECD-NEAupdateは深部地質環境研究センターのインハウスソフトウェアであるFLASK-AQフォーマットのファイルを作成して,FLASK-AQとそのコンパニオンソフトウェアEhpHdrawを用いて作図した.

Eh-pH 図の作図については,化学熱力学に詳しい地球化学の教科書(例えば Garrels and Christ (1965) など)を参照されたい.商用ソフトウェアである FACTSAGE と GWB の Eh-pH 図の作図アルゴリズム は特に文書化されていない.FLASK-AQ は Eh -0.8 から 1.2 まで,および pH 0 から 14 までの領域をそれぞれ 0.005 および 0.04 に分割した計 140000 グリッドの Eh-pH 値に対して,溶存卓越種または沈殿固 相を化学平衡計算により求めて Eh-pH 図を作成する.この方法は Anderko et al. (1997)を先例とする ものと思われる.この方法では原理的に図中の領域の境界線の位置の精度が刻みに依存するので,今回 の場合 Eh で ± 0.0025 , pH で ± 0.02 の誤差を含む.次にデータから作図までの詳細をデータベースごと に記す.なお"/"の前にデータベース略称を"/"の後に使用ソフトウェア略称を示した(図 1).

3.1 FACT/FACTSAGE

FACTSAGEの EpHを用いて作成した Eh-pH 図を bmp ファイルで保存し,これを Adobe Illustrator (以下 Illustrator)のテンプレートとして,製図したのち,共通の縦・横の辺長になるように拡大・縮小した.

3.2 SUPCRT/FLASK-AQ

FLASK-AQ用のデータを作成したのち,FLASK-AQにより中間ファイルを作成し,EhpHdrawを用いて,Eh-pH図を作成する.このEh-pH図のウィンドウイメージをxwdを用いて取得したのち,ImageMagicのconvertを用いてbmpファイルとした.これをIllustratorのテンプレートとして,製図したのち,共通の縦・横の辺長になるように拡大・縮小した.膨大な数の有機化学種は全て,C,H,Oの反応で表現したので常温の水の安定領域ではほとんどが分解してしまっている.

3.3 LLNL/GWB

GWB の Act2 を用いて作成した Eh-pH 図をポストスクリプトファイルで保存し, Adobe Acrobat Distiller (以下 Acrobat Distiller) を用いて pdf ファイル (ポータブルドキュメントファイル) に変換して, Illustrator で開き,共通の縦・横の辺長になるように拡大・縮小した.こうしたのは, GWB で eps ファイルで保存した Eh-pH 図を直接 Illustrator で開けなかったためである.

3.4 JNC-TDB/GWB

GWBのAct2を用いて作成した Eh-pH 図をポストスクリプトファイルで保存し, Acrobat Distiller を用いて pdf ファイルに変換して, Illustrator で開き,共通の縦・横の辺長になるように拡大・縮小した.このようにしたのは, GWBで eps ファイルで保存した Eh-pH 図を直接 Illustrator で開けなかったためである.図は 011213g0 を用いて作成したが,その後, Sと Uのデータを修正した 011213g2 が公開されたので, Sと Uの図をこれを用いて入れ換えた.その他の図は 011213g0 と 011213g2 の間で相違が無いことを目視により確認したので,そのままとした.

3.5 HATCHES/FLASK-AQ

HATCHESに添付される複数の EQ3/6 用データファイルを1つのファイルにつなげたのち, aux 種でありながら,キーワードがbasisとなっているものを aux に直して,インハウスソフトウェア tdbconvertを用いて FLASK-AQ 用ファイルを作成した.FLASK-AQ により Eh-pH 計算結果を収めた中間ファイルを作成し,EhpHdrawを用いて,Eh-pH 図を作成した.cの Eh-pH 図のウィンドウイメージを xwdを用いて取得したのち,ImageMagicの convertを用いて bmp ファイルとした.cれを Illustratorのテンプレートとして,製図したのち,共通の縦・横の辺長になるように拡大・縮小した.有機化学種は基を basis 種としているので,SUPCRT/FLASK-AQ とは取り扱い方が異なることに注意してほしい.しかし X-H-O 系では成分として扱われていないので,結果的に図にはあらわれず,違いがほとんどない.

3.6 OECD/NEA

OECD-NEA の Chemical Thermodynamics の第1巻から第4巻までの熱力学データの表のうちギブス 自由生成エネルギーが掲載されている表のデータを PC 上のスプレッドシートに入力し,テキストファイ ルに保存したのち当センター作成のソフトを用いて FLASK-AQ 用のファイルを作成した.FLASK-AQ

図 2: Eh-pHダイアグラムの凡例

により Eh-pH 計算結果を収めた中間ファイルを作成し, EhpHdrawを用いて, Eh-pH 図を作成した.この Eh-pH 図のウィンドウイメージを xwdを用いて取得したのち, ImageMagic の convertを用いて bmp ファイルとした.これを Illustrator のテンプレートとして, 製図したのち, 共通の縦・横の辺長になるように拡大・縮小した.

3.7 OECD-NEAupdate

OECD-NEA の Chemical Thermodynamics の第5巻を用いた以外は,上記 OECD/NEA と同じ手順である.

4 図表の説明

図表は,元素記号のアルファベット順に並べ,各元素ごとに表,図の順に並べてある.表にはデータ ベース名を,図には"/"の前にデータベース名を"/"の後に使用ソフトウェア名をいずれも略称で記し た(図2).表で空欄および図でNODATAと記したものには,その元素のデータが全く無い場合と固相 やガスのデータはあっても,溶存化学種のデータが無い場合の両方が含まれる.図および表に用いた化 学式の表示は原則として出典のデータベースそのまま,すなわち"as is"である.特に水和にかかわる表 示を統一していないことに注意されたい.ただし,電荷の表示法は[]使用に統一した.固相の表示法も 統一せず,"as is"である.固相にかかわる次の用法はデータベースに依存する.am は非晶質,cまたは cr は結晶質,sまたは無指定は区別が明示されていないことを示し,鉱物名を示したものもある.FACT では,同質多形固相をs1,s2,s3等のように区別して表示しているが,これもそのままである.表も図 も固相名はボールド体になっている.図を左上から右下に横切る2本の平行な破線の間が298.15K 10⁵ Pa での水の安定領域である.表は,計算で考慮することのできた化学種をデータベースごとに示した. 図の中に表示されていない化学種があるときは,それが,実際に安定でないことを意味する場合とデー

Software	Version	OS	Description
Acrobat Distiller	4.0	Windows 2000 Professional	conversion from PS to pdf
convert	5.3.8	Linux (SuSE 7.3)	conversion from xwd to bmp
EhpHdraw	1.0	Linux (SuSE 7.3)	X window software for Eh-pH drawing
FactSage	5.2	Windows 2000 Server	Eh-pH calculation and drawing
FLASK-AQ	1.1	Linux (SuSE 7.3)	Eh-pH calculation
GWB	4.0	Windows 2000 Server	Eh-pH calculation and drawing
Illustrator	8.0	Windows 2000 Professional	final drawing of Eh-pH diagrams
Intel C++ compiler	7.0	Linux (SuSE 7.3)	compiling FLASK-AQ and EhpHdraw
pdvips	$5.92b \ p1.6$	Linux (Fedra CORE 2)	conversion from dvi to PS and printing
pLaTeX	tetex $2.0.2$	Linux (Fedra CORE 2)	document processing of this report
ps2epsi	5.2.1	Linux (Fedra CORE 2)	conversion from PS to epsi
StarSuite	6.0	Linux (RedHat 9.0)	writing tables of species
tdbconvert	1.0	Linux (RedHat 9.0)	database file convert
xwd	X11R6.5	Linux (SuSE 7.3)	X window dump software

表 1: 使用ソフトウェア一覧

タベースにデータが収録されていないことに起因する場合があるので,図と表をかならず対応して見る ことが大切である.

5 信頼性と精度について

最終的な図の精度は次の3つに依存する.1) データベースのデータの精度,2) 計算ソフトの精度,3) 製図の精度.データベースの精度については,OECD-NEAのChemical Thermodynamicsのシリーズ を除くと記載されていない.計算ソフトの精度については,FLASK-AQについて示したが,商用ソフ トウェアは記載されていない.製図の精度は,FLASQ-AQのEh-pHグリッド間隔未満であることを目 視で確認した.したがって,データベースおよび商用ソフトウェアに起因する誤差を別にして,誤差は 最大でEhが±0.0025およびpHが±0.02と考えてよい.

6 使用ソフトウェアとその実行環境

作図に使用したソフトウェアは,商用ソフトウェアであるGTT-Technologies製FactSage 5.2,イリノ イ大学 C.M.Bethke の Geochemist's Workbench 4.0 および深部地質環境研究センター作成のインハウス ソフトウェア FLASK-AQ 1.1 である.FactSage 5.2 と Geochemist's Workbench 4.0 は Dell PowerEdge 2600 (Xeon 2.4GHz x2 SMP, 4GB メモリー) 上の Microsoft Windows 2000 Server にて使用した.Flask-AQ 1.1 は HIT 製 PC (Pentium4 2.8GHz, 1GB メモリー) 上の SuSE Linux 7.3 (kernel 2.4.20) にて Intel C++ 7.0 コンパイラでコンパイルした実行可能ソフトを Platform 製バッチスケジューリングソフトウェ ア LSF 4.2 環境下でバッチ実行した.FLASK-AQ 1.1 は中間ファイルを生成するのみなので,Eh-pH 図を得るために深部地質環境研究センター作成のインハウスソフトウェア EhpHdraw を使用した.ZZ-HATCHES-15 データから FLASK-AQ 1.1 用フォーマットへの変換には,深部地質環境研究センターが 日本 sgi に依頼して作成したインハウスソフトウェア tdbconvert を使用した.cnらのインハウスソフ トウェアはいずれ公開する予定である.

EhpHdrawの描く Eh-pH 図のスナップショットを得るのに X Window dump ソフトウェア xwd を使用した.xwd から bmp フォーマットへのコンバージョンに ImageMagic の convert を使用した.この過

程では, IA32PC (インテルの Pentium 等の 32 ビットアーキテクチャを持った CPU を使用した PC) 上の Red Hat Linux ver.9 または Fedra Core 2 を実行環境とした.

ポストスクリプトファイルから pdfへのコンバージョンには, Adobe Acrobat Distiller 4.0 を使用し, 図のサイズおよび形式を揃えた最終出力図作成には, Adobe Illustrator 8.0 を使用した.この過程では, IA32PC 上の Microsoft Windows 2000 Professional を実行環境とした.

化学種リストの作成には Sun StarSuite 6.0 を使用し,ポストスクリプトファイルにしたのち, ps2epsi により eps ファイルとした.最終的な資料の作成には ASCII pLaTeX を使用し, pdvips を使用してレー ザープリンタに出力した.この実行環境は IA32PC 上の Fedra Core 2 である (表 1).

なお,特に断わらないが,ソフトウェア名,フォーマット名等の固有名詞には,登録商標または商標 が含まれており,その所有者に所有権が属す.

参考文献

- Anderko, A. and Shuler, P.J. (1998) A computational approach to predicting the formation of iron sulfide species using stability diagrams, Computers & Geosciences, 23, 647-658.
- Bale, C.W., Chartrand, P., Degtrev, S.A., Eriksson, G., Hack, K., Ben Mahfoud, R., Melancon, J., Pelton, A.D., and Petersen, S. (2002) FactSage thermochemical software and databases, Calphad, 26, 189-228.
- Brookins, D.G. (1988) Eh-pH diagrams for geochemistry, Springer-Verlag New York, 176p.
- Garrels, R.M. and Christ, C.L. (1965) Solution, minerals and equilibria, Freeman, Cooper & company, San Francisco, 450p.
- Johnson, J.W., Oelkers, E.H., and Helgeson, H.C. (1992) SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C, Computers & Geosciences, 18, 899-947.
- Grenthe, I., Fuger, J., Konings, R.J.M., Lemire, R.J., Muller, A.B., Nguyen-Trung, C., and Wanner, H. (1992) Chemical Thermodynamics of Uranium (Wanner, H., Forest, I., Nuclear Energy Agency, Organisation for Economic Co-operation, Development eds.), vol. 1, Chemical Thermodynamics, North Holland Elsevier Science Publishers B.V., Amsterdam, 715p.
- Guillaumont, R., Fanghanel, T., Neck, V., Fuger, J. , Palmer, D.A., Grenthe, I., and Rand, M.H. (2003) Updete on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium (Mompean, F.J., Illemassene, M., Domenech-Orti, C., and Ben-Said K., Nuclear Energy Agency Data Bank, Organisation for Economic Co-operation, Development eds.), vol. 5 Chemical Thermodynamics, North Holland Elsevier Science Publishers B.V., Amsterdam, 964p.
- Lemire, R.J., Fuger, J., Nitsche, H., Potter, P.E., Rand, M.H., Rydberg, J., Spahiu, K., Sullivan, J.C., Ullman, W.J., Vitorge, P., and Wanner, H.(2001) Chemical Thermodynamics of Neptunium and Plutonium (Nuclear Energy Agency Data Bank, Organisation for Economic Co-operation, Development ed.), vol. 4, Chemical Thermodynamics, North Holland Elsevier Science Publishers B.V., Amsterdam. 845p.
- Pourbaix, M. (1966) Atlas of electrochemical equilibria in aqueous solutions (English edition), Pergamon press, Oxford, 644p.

- Rard, J.A., Rand, M.H., Anderegg, G., and Wanner, H. (1999) Chemical Thermodynamics of Technetium (Sandino, M.C.A., Osthols, E., Nuclear Energy Agency Data Bank, Organisation for Economic Co-operation, Development eds.), vol. 3, Chemical Thermodynamics, North Holland Elsevier Science Publishers B.V., Amsterdam, 544p.
- Silva, R.J., Bidoglio, G., Rand, M.H., Robouch, P.B., Wanner, H., and Puigdomenech, I. (1995) Chemical Thermodynamics of Americium (Nuclear Energy Agency, Organisation for Economic Co-operation, Development ed.), vol. 2, Chemical Thermodynamics, North Holland Elsevier Science Publishers B.V., Amsterdam, 374p.

表 2: List of Ac species

FACT	SUPCRT	LLNL	JNC-TDB
			Ac[3+], AcOH[2+], Ac(OH) ₂ [+], Ac(OH) ₃ (aq), Ac(OH) ₃ (am), Ac(OH) ₃ (c)

HATCHES		
Ac[3+], AcOH[2+], Ac(OH) ₃		

 \boxtimes 3: Eh-pH diagrams of the system Ac-O-H (1). $\sum {\rm Ac} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

 \boxtimes 4: Eh-pH diagrams of the system Ac-O-H (2). $\sum {\rm Ac} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

表 3: List of Ag species

FACT	SUPCRT	LLNL	JNC-TDB
Ag[+], AgOH(aq), Ag(OH) ₂ [-],Ag ₂ O(s), Ag ₂ O ₂ (s), Ag ₂ O ₃ (s), Ag(Native silver)	Ag[2+], Ag[+], AgOH(aq), AgO[-], Ag(Native silver)	Ag[+], Silver	Ag[+]

HATCHES		
Ag[+], Ag(OH) ₂ [-], AgOH(aq), Ag, Ag ₂ O, Ag ₂ O ₂ , Ag ₂ O ₃		

 \boxtimes 5: Eh-pH diagrams of the system Ag-O-H (1). $\sum {\rm Ag} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

 \boxtimes 6: Eh-pH diagrams of the system Ag-O-H (2). $\sum {\rm Ag} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

表 4: List of Al species

	- ·	1	
FACT	SUPCRT	LLNL	JNC-TDB
Al[3+], AlO ₂ [-], AlOH[2+], Al(s), AlH ₃ (s), Al ₂ O ₃ (s), Al ₂ O ₃ (s2), Al ₂ O ₃ (s3), Al ₂ O ₃ (s4), Al(OH) ₃ (s), Al ₂ O ₃ (H ₂ O)(s), Al ₂ O ₃ (H ₂ O)(s2), Al ₂ O ₃ (H ₂ O) ₃ (s)	AlO[+], HAlO ₂ (aq), Al[3+], AlO ₂ [-], AlOH[2+], Al ₂ O ₃ (Corundum), AlO(OH)(Diaspore), AlO(OH)(Boehmite), Al(OH) ₃ (Gibbsite), AlO[+], HAlO ₂ (aq)	Al[3+], Al(OH) ₂ [+], Al(OH) ₃ (aq), Al(OH) ₄ [-] Al ₁₃ O ₄ (OH) ₂₄ [7+], Al ₂ (OH) ₂ [4+], Al ₃ (OH) ₄ [5+], AlOH[2+], Boehmite, Corundum, Diaspore, Gibbsite	Al[3+], AlOH[2+], Al(OH) ₂ [+], Al(OH) ₃ (aq), Al(OH) ₄ [-], Gibbsite
1			1

HATCHES		
Al[3+], Al(OH)[2+], Al(OH) ₂ [+], Al(OH) ₃ (aq), Al(OH) ₄ [-], Boehmite, Corundum, Diaspore, Gibbsite		

 \boxtimes 7: Eh-pH diagrams of the system Al-O-H (1). $\sum {\rm Al} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

 \boxtimes 8: Eh-pH diagrams of the system Al-O-H (2). $\sum {\rm Al} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

表 5: List of Am species

FACT	SUPCRT	LLNL	JNC-TDB
Am(s), Am(s2), Am (s3), AmO ₂ (s), Am ₂ O ₃ (s)		Am[3+], Am[4+], AmO 2[+], AmO 2[2+], Am(OH)2[+], Am(OH)3(aq), AmOH[2 +], Am(OH) 3(am), Am(OH)3(c)	Am[3+], AmOH[2+], Am(OH) ₂ [+], Am(OH) ₃ (aq), Am(OH) ₃ (am), Am(OH) ₃ (c)

HATCHES	OECD-NEA	OECD-NEA update	
<pre>Am[3+], Am[4+], AmO 2[+], AmO₂[2+], Am (OH)₂[+], Am(OH)₃(a q), AmOH[2+], Am, A m(OH)₃, Am₂O₃, AmH₂, AmO₂, Am(OH)₃(cr)</pre>	Am[4+], Am[2+], Am [3+], AmO ₂ [+], AmO ₂ [2+], AmOH[2+], Am (OH) ₂ [+], Am(OH) ₃ (a q), Am(c), AmO ₂ (c), Am ₂ O ₃ (c), AmH ₂ (c), A m(OH) ₃ (am), Am(OH) ₃ (c)	$ \begin{array}{l} \text{Am}[4+], \text{Am}[2+], \text{Am}\\ [3+], \text{AmO}_2[+], \text{AmO}_2\\ [2+], \text{AmOH}[2+], \text{Am}\\ (\text{OH})_2[+], \text{Am}(\text{OH})_3(\text{a}\\ q), \text{Am}(\text{cr}), \text{AmO}_2(\text{c}\\ \textbf{r}), \text{Am}_2\text{O}_3(\text{cr}), \text{AmH}_2\\ (\text{cr}), \text{Am}(\text{OH})_3(\text{cr}) \end{array} $	

 \boxtimes 9: Eh-pH diagrams of the system Am-O-H (1). $\sum {\rm Am} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

 \boxtimes 10: Eh-pH diagrams of the system Am-O-H (2). $\sum {\rm Am} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

表 6: List of As species

$\begin{array}{ c c c c c c } \hline FACT & SUPCRT & LLNL & JNC-TDB \\ \hline AsO_2[-], AsO_4[3-], & AsO_2[-], AsO_4[3-], & As(OH)_4[-], & AsH_3(aq), AsO_4[3-], & AsH_3(aq), AsO_4[3-], & As(OH)_4[-], & AsH_3(aq), AsO_4[2-], & AsH_3(aq), AsO_4[3-], & As(OH)_3(aq), & AsO_4(aq), & AsO_4(aq), & AsO_4(aq), & AsO_4(aq), & AsO_4(aq), & AsO_2OH[2-], & As(OH)_3(aq), & AsO_4(aq), & AsO$			1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	FACT	SUPCRT	LLNL	JNC-TDB
	$ \begin{array}{l} AsO_2[-], AsO_4[3-], \\ HAsO_2(aq), H_2AsO_3[-], \\ H_2AsO_4[2-], \\ H_2AsO_4[-], \\ H_3AsO_4(aq), AsO[+], \\ As(s), As_2O_3(s), \\ As_2O_3(s2), As_2O_5(s), \end{array} $	AsO ₂ [-], AsO ₄ [3-], HAsO ₂ (aq), H ₂ AsO ₃ [-], HAsO ₄ [2-], H ₂ AsO ₄ [-], H ₃ AsO ₄ (aq)	As(OH) ₄ [-], AsH ₃ (aq), AsO ₄ [3-], As(OH) ₃ (aq), AsO ₂ OH[2-], H ₂ AsO ₄ [-], H ₃ AsO ₄ (aq), HAsO ₄ [2-] Arsenolite, As ₂ O ₅ (c), Claudetite	

HATCHES		
As(OH) ₄ [-], H ₂ AsO ₄ [-], As(OH) ₃ (aq), AsO[+], AsO ₄ [3-], H ₃ AsO ₄ (aq), HAsO ₂ (aq), HAsO ₄ [2-], Arsenolite, As ₂ O ₅ (c), As ₄ O ₆ , Claudetite		

 \boxtimes 11: Eh-pH diagrams of the system As-O-H (1). $\sum \mathrm{As} = 10^{-10},\,298.15\mathrm{K},\,10^5$ Pa.

 \boxtimes 12: Eh-pH diagrams of the system As-O-H (2). $\sum \mathrm{As} = 10^{-10},\,298.15\mathrm{K},\,10^5$ Pa.

表 7: List of Au species

FACT	SUPCRT	LLNL	JNC-TDB
AuO ₃ [3-], HAuO ₃ [2-], H ₂ AuO ₃ [-], Au(OH) ₃ (aq), Au ₂ O ₃ (s), Au(OH) ₃ (s), Au(s)	Au[3+], Au[+], Au(Native gold)	Au[+], Au[3+], Gold	

 \boxtimes 13: Eh-pH diagrams of the system Au-O-H. $\sum {\rm Au} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

表 8: List of B species

FACT	SUPCRT	LLNL	JNC-TDB
$\begin{array}{l} BH_4[-], & BO_2[-], \\ B_4O_7[2-], & H_2BO_3[-], \\ H_3BO_3(aq), \\ H_2BO_3(H_2O_2)[-], \\ HB_4O_7[-], & H_2B_4O_7(aq), \\ H_5(BO_3)_2(H_2O_2)_2[-], \\ B(s), & B_{10}H_{14}(s), \\ B_2O_3(s), & HBO_2(s), \\ HBO_2(s2), & HBO_2(s3), \\ H_3BO_3(s), & B_3H_3O_3(s), \\ B_2(OH)_4(s) \end{array}$	BO2[-], B(OH)3(aq)	B(OH) ₃ (aq), B(OH) ₄ [-], B ₂ O(OH) ₅ [-], B ₃ O ₃ (OH) ₄ [-], B ₄ O ₅ (OH) ₄ [2-], BH ₄ [-], B(OH) ₃ (c,Boric acid)	B(OH) ₃ (aq), H ₂ BO ₃ [-], B(C), B₂O₃(C), B(OH) ₃ (C), B(g)

HATCHES		
B(OH) ₃ (aq), B ₄ O ₇ [2-], BH[4-], H ₂ B ₄ O ₇ (aq), H ₂ BO ₃ [-], HB ₄ O ₇ [-], B ₂ O ₃ , Boric Acid, H ₃ BO ₃ (c), HBO ₂		

 \boxtimes 14: Eh-pH diagrams of the system B-O-H (1). $\sum {\rm B} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

 \boxtimes 15: Eh-pH diagrams of the system B-O-H (2). $\sum {\rm B} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

 FACT
 SUPCRT
 LLNL
 JNC-TDB

 Ba[2+], BaOH[+],
 Ba[2+], BaOH[+]
 Ba[2+], BaOH[+],
 Ba[2+], BaOH[+],
 Ba[2+], BaOH[+],
 Ba[2+], BaOH[+],
 Ba[2+], BaOH[+],
 Ba(OH)₂*8H₂O(C),
 Ba(C), BaO(C)
 Ba(C), BaO(C)

表 9: List of Ba species

HATCHES		
Ba[2+], Ba(OH)[+], Ba(OH) ₂ *8H ₂ O, BaO(C)		

 \boxtimes 16: Eh-pH diagrams of the system Ba-O-H (1). $\sum \mathrm{Ba} = 10^{-10},\,298.15\mathrm{K},\,10^5$ Pa.

 \boxtimes 17: Eh-pH diagrams of the system Ba-O-H (2). $\sum \mathrm{Ba} = 10^{-10},\,298.15\mathrm{K},\,10^5$ Pa.

表 10: List of Be species

FACT	SUPCRT	LLNL	JNC-TDB
<pre>Be[2+], BeO₂[2-], Be₃(OH)₃[3+], Be(s), Be(s2), BeO(s), BeO(s2), Be(OH)₂(s), Be(OH)₂(s2)</pre>	Be[2+], BeO ₂ [2-], BeOH[+], BeO(aq), HBeO ₂ [-]		

HATCHES		
<pre>Be[2+], BeOH[+], Be(OH)₂(aq), Be(OH)₃[-], Be(OH)₄[2-], Be₂(OH)[3+], Be₃(OH)3[3+], Be₅(OH)₆[4+], Be₆(OH)₈[4+], Be(OH)₂(alpha), Be(OH) (beta)</pre>		

 \boxtimes 18: Eh-pH diagrams of the system Be-O-H (1). $\sum \mathrm{Be} = 10^{-10},\,298.15\mathrm{K},\,10^5$ Pa.

 \boxtimes 19: Eh-pH diagrams of the system Be-O-H (2). $\sum \mathrm{Be} = 10^{-10},\,298.15\mathrm{K},\,10^5$ Pa.

表 11: List of Bi species

FACT	SUPCRT	LLNL	JNC-TDB
<pre>Bi[3+], BiO[+], BiOH[2+], Bi₆O₆[6+], Bi₉(OH)₂₀[7+], Bi₉(OH)₂₁[6+], Bi₉(OH)₂₂[5+], Bi(s), Bi₂O₃(s), Bi₂O₃(s2), BiOOH(s)</pre>	Bi[3+], BiO[+], BiOH[2+], HBiO ₂ (aq), BiO ₂ [-]		<pre>Bi[3+], BiOH[2+], Bi(OH)₂[+], Bi(OH)₃(aq), Bi(OH)₄[-], Bi₆(OH)₁₂[6+], Bi₉(OH)₂₀[7+], Bi₉(OH)₂₁[6+], Bi₉(OH)₂₂[5+], Bi₃(OH)₄[5+] Bi(C), Bi₂O₃(S)</pre>

 \boxtimes 20: Eh-pH diagrams of the system Bi-O-H. $\sum {\rm Bi} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

表 12: List of Br species

FACT	SUPCRT	LLNL	JNC-TDB
Br[-], Br ₂ (aq), Br ₃ [-], Br ₅ [-], BrO[-], BrO ₃ [-], HBrO(aq)	Br[-], Br ₃ [-], BrO[-], BrO ₃ [-], HBrO(aq), BrO ₄ [-]	Br[-]	$Br[-], Br_2(aq), Br_2(1), BrO[-], BrO_3[-], HBrO(aq), Br(g), Br_2(g), HBr(g)$

 \boxtimes 21: Eh-pH diagrams of the system Br-O-H. $\sum {\rm Br} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

表 13: List of C species (1)

FACT	SUPCRT	LLNL	JNC-TDB
CH4(aq), C ₂ H ₂ (aq), C ₂ H ₄ (aq), C ₂ H ₆ (aq), CO ₃ [2-], C ₂ O ₄ [2-], CH ₃ OH(aq), C ₂ H ₅ O[-], CH ₃ CH ₂ OH(aq), HCOOH(aq), CH ₃ COO[-], CH ₃ COOH(aq), HCO ₃ [-], HC ₂ O ₄ [-], C(s), C(s2)	CH4(aq,Methan), C ₂ H ₂ (aq,Ethyne), C ₂ H ₄ (aq,Ethylene), C ₂ H ₆ (aq,Ethane), CO(aq), CO ₂ (aq), CO ₃ [2-], C ₂ O ₄ [2-] (Oxalate), CH ₃ OH(aq,Methanol), C ₂ H ₅ OH(aq,Ethanol), HCO ₂ [-](Formate), H ₂ CO ₂ (aq,Formic- acid), C ₂ H ₃ O ₂ [-] (Acetate), C ₂ H ₄ O ₂ (aq,Acetic- acid), HCO ₃ [-], C ₂ HO ₄ [-](H- Oxalate), C ₄ H ₉ OH (aq,1-Butanol), C ₄ H ₆ (aq,1-Butene), C ₄ H ₆ (aq,1-Butene), C ₄ H ₆ (aq,1-Butene), C ₄ H ₆ (aq,1-Heptene), C ₇ H ₁₅ OH (aq,1-Heptanol), C ₇ H ₁₂ (aq,1-Heptene), C ₇ H ₁₂ (aq,1-Heptene), C ₇ H ₁₃ OH(aq,1- Hexanol), C ₆ H ₁₂ (aq, 1-Hexyne), C ₆ H ₁₇ OH(aq,1- Octanol), C ₆ H ₁₆ (aq, 1-Octene), C ₆ H ₁₀ (aq, 1-Pentene), C ₅ H ₁₀ (aq, 1-Pentene), C ₅ H ₁₀ (aq, 1-Pentene), C ₅ H ₁₀ (aq, 1-Propene), C ₃ H ₄ (aq, 1-Propene), C ₃ H ₄ (aq, 1-Propene), C ₄ H ₄ (aq, 1-Propyne), C ₄ H ₈ O(aq,2- Hydroxybutanoate), C ₁₀ H ₁₉ O ₃ [-] (2- Hydroxyheptanoic), C ₁₀ H ₁₀ O ₃ (aq,2- Hydroxyheptanoic), C ₅ H ₁₁ O ₃ [-](2- Hydroxyheptanoic), C ₆ H ₁₁ O ₃ [-](2- Hydroxyheptanoic), C ₆ H ₁₁ O ₃ [-](2- Hydroxyheptanoic), C ₆ H ₁₀ O ₃ (aq,2- Hydroxyheptanoic), C ₆ H ₁₀ O ₃ [-](2- Hydroxyheptanoic), C ₆ H ₁₀ O ₃ [-](2- Hydroxyhept	HCO ₃ [-], (O- phth)[2-], CH ₃ COO[-], CH ₄ (aq), CO ₂ (aq), CO ₃ [2-], H(O-phth)[-], H ₂ (O- phth), HCH ₃ COO, Graphite , O-phth acid(c), CH ₄ (g), CO ₂ (g)	CO ₃ [2-], CH ₄ (aq), HCO ₃ [-], CO ₂ (aq), C(c) , CH ₄ (g), C(g), CO(g), CO ₂ (g)

表 14: List of C species (2)

C (CONTINUED)

FACT	SUPCRT	LLNL	JNC-TDB
	$\begin{aligned} & \left[\begin{array}{c} \operatorname{Call}_{1} \left[\operatorname{Call}_{2} \right] \left[\begin{array}{c} \operatorname{Call}_{1} \left[\operatorname{Call}_{2} \right] \left[\begin{array}{c} \operatorname{Call}_{1} \left[\operatorname{Call}_{2} \right] \left[\operatorname{Call}_{2} \right] \\ & \operatorname{Hydroxypentanoate} \right], \\ & \operatorname{CsH_{10}O_3(aq, 2-} \\ & \operatorname{Hydroxypentanoic} \right], \\ & \operatorname{CsH_{10}O(aq, 2-} \\ & \operatorname{Pentanone} \right), \\ & \operatorname{CsH_{10}O(aq, 2-} \\ & \operatorname{Pentanone} \right), \\ & \operatorname{CsH_{10}O(aq, 2-} \\ & \operatorname{Pentanone} \right), \\ & \operatorname{CsH_{10}O_4(aq, Acetone), \\ & \operatorname{Call}_{2} \\ \\ & \operatorname{Call}_{2$		

 \boxtimes 22: Eh-pH diagrams of the system C-O-H (1). $\sum {\rm C} = 10^{-10},$ 298.15K, 10^5 Pa.

 \boxtimes 23: Eh-pH diagrams of the system C-O-H (2). $\sum {\rm C} = 10^{-10},$ 298.15K, 10^5 Pa.

表 15: List of Ca species

FACT	SUPCRT	LLNL	JNC-TDB
$Ca[2+], CaOH[+], Ca(s), Ca(s2), Ca(s2), CaH_2(s), CaO_2(s), CaO_2(s), Ca(OH)_2(s), CaO(s)$	Ca[2+], CaOH[+], CaO(Lime)	Ca[2+], CaOH[+], Ca(OH)2(C), Lime, Portlandite	Ca[2+], CaOH[+], CaO(s, Lime_qu), Ca(c), CaO(c), Ca(g)

HATCHES		
Ca[2+], Ca(OH)[+], Ca(OH) ₂ , CaO		

<u>Remarks</u> JNC-TDB: Detailed description of Lime_qu is not given, it may be lime quenched?

 \boxtimes 24: Eh-pH diagrams of the system Ca-O-H (1). $\sum {\rm Ca} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

 \boxtimes 25: Eh-pH diagrams of the system Ca-O-H (2). $\sum {\rm Ca} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

表 16: List of Cd species

FACT	SUPCRT	LLNL	JNC-TDB
$\begin{array}{l} Cd[2+], CdO_{2}[2-], \\ CdOH[+], HCdO_{2}[-], \\ Cd(OH)_{2}(aq), Cd(s), \\ CdO(s), Cd(OH)_{2}(s) \end{array}$	Cd[2+], CdO ₂ [2-], CdOH[+], HCdO ₂ [-], CdO(aq)		

HATCHES		
Cd[2+], Cd(OH) ₂ (aq), Cd(OH) ₃ [-], Cd(OH) ₄ [2-], Cd ₂ OH[3+], Cd ₄ (OH) ₄ [4+], CdOH[+], Cd(OH) ₂		

 \boxtimes 26: Eh-pH diagrams of the system Cd-O-H (1). $\sum {\rm Cd} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

 \boxtimes 27: Eh-pH diagrams of the system Cd-O-H (2). $\sum {\rm Cd} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

表 17: List of Ce species

FACT	SUPCRT	LLNL	JNC-TDB
$\begin{array}{l} \texttt{Ce[3+], Ce[4+],} \\ \texttt{Ce(s), Ce(s2),} \\ \texttt{CeH}_2(s), \texttt{CeO}_2(s), \\ \texttt{Ce}_2\texttt{O}_3(s), \texttt{Ce}_6\texttt{O}_{11}(s), \\ \texttt{Ce}_{16}\texttt{O}_{31}(s) \end{array}$	Ce[3+], Ce[4+], Ce[2+], CeOH[2+], CeO[+], CeO ₂ H (aq), CeO ₂ [-]		

HATCHES		
Ce[3+], Ce ₂ (OH) ₂ [4+], Ce ₃ (OH) ₅ [4+], CeOH[2+], Ce(OH) ₃ , Ce ₂ O ₃		

 \boxtimes 28: Eh-pH diagrams of the system Ce-O-H (1). $\sum {\rm Ce} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

 \boxtimes 29: Eh-pH diagrams of the system Ce-O-H (2). $\sum {\rm Ce} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

表 18: List of Cl species

FACT	SUPCRT	LLNL	JNC-TDB
Cl ₂ (aq), Cl ₃ [-], ClO ₂ (aq), Cl[-], ClO[-], ClO ₂ [-], ClO ₃ [-], ClO ₄ [-], HOCl(aq), HClO ₂ (aq)	Cl[-], ClO[-], ClO ₂ [-], ClO ₃ [-], ClO ₄ [-], HClO(aq), HClO ₂ (aq), HCl(aq)	Cl[-], ClO₄[-], HCl(aq)	Cl[-], ClO[-], ClO ₂ [-], ClO ₃ [-], ClO ₄ [-], HClO(aq), HClO ₂ (aq), Cl(g), Cl ₂ (g), HCl(g)

 \boxtimes 30: Eh-pH diagrams of the system Cl-O-H. $\sum {\rm Cl} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.
表 19: List of Cm species

FACT	SUPCRT	LLNL	JNC-TDB
			Cm[3+], CmOH[2+], Cm(OH) ₂ [+], Cm(OH) ₃ (aq), Cm(OH) ₃ (am), Cm(OH) ₃ (c)

HATCHES		
Cm[3+], Cm[4+], Cm(OH)[2+], Cm(OH) ₂ [+], Cm(OH) ₃ , Cm ₂ O ₃ , CmO ₂		

 \boxtimes 31: Eh-pH diagrams of the system Cm-O-H (1). $\sum {\rm Cm} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

 \boxtimes 32: Eh-pH diagrams of the system Cm-O-H (2). $\sum {\rm Cm} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

表 20: List of Co species

FACT	SUPCRT	LLNL	JNC-TDB
Co[2+], Co[3+], HCoO ₂ [-], Co(OH) ₂ (aq), Co(s), Co(s2), CoO(s), Co ₃ O ₄ (s), Co(OH) ₂ (s)	Co[2+], Co[3+], HCoO ₂ [-], CoO(aq), CoOH[+], CoO2[2-], CoOH[2+]	Co[2+], Co[3+], Co(OH) ₂ (aq), Co(OH) ₃ [-], Co(OH) ₄ [2-], Co ₂ (OH) ₃ [+], Co ₄ (OH) ₄ [4+], CoOH[+], HCoO ₂ [-], Co(OH) ₂ (s,pink), Co ₃ O ₄ , CoO	Co[2+], CoO(s, COBALTO2)

HATCHES		
Co[2+], Co[3+], Co(OH) ₂ (aq), Co(OH) ₃ [-], Co(OH) ₄ [2-], Co ₂ OH[3+], Co ₄ (OH) ₄ [4+], CoOH[+], Co(OH) ₂ , Co ₃ O ₄ , CoO		

 \boxtimes 33: Eh-pH diagrams of the system Co-O-H (1). $\sum {\rm Co} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

 \boxtimes 34: Eh-pH diagrams of the system Co-O-H (2). $\sum {\rm Co} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

表 21: List of Cr species

FACT	SUPCRT	LLNL	JNC-TDB
Cr[2+], Cr[3+], $CrO_4[2-], Cr_2O_7[2-],$ $CrOH[2+], HCrO_4[-],$ $Cr(s), CrO_2(s),$ $CrO_3(s), Cr_2O_3(s),$ $Cr_3O_4(s), Cr_5O_{12}(s),$ $Cr_8O_{21}(s)$	Cr[2+], Cr[3+], CrO ₄ [2-], Cr ₂ O ₇ [2-], CrOH[2+], HCrO ₄ [-], HCrO ₂ (aq), CrO ₂ [-], CrO[+]	Cr[3+], Cr[2+], CrO ₄ [2-], CrO ₄ [3-], Cr(OH) ₂ [+], Cr(OH) ₃ (aq), Cr(OH) ₄ [-], Cr ₂ (OH) ₂ [4+], Cr ₂ O ₇ [2-], Cr ₃ (OH) ₄ [5+], CrOH[2+], H ₂ CrO ₄ (aq), HCrO ₄ [-], Cr ₂ O ₃ (s), CrO ₂ (s), CrO ₃ (s)	

HATCHES		
HATCHES Cr[3+], Cr[2+], $CrO_4[2-],$ $Cr(OH)_2[+],$ $Cr(OH)_3(aq),$ $Cr(OH)_4[-],$ $Cr_2(OH)_2[4+],$ $Cr_2O_7[2-],$		
$Cr_{3}(OH)_{4}[4+],$		
$H_2CrO_4(aq)$, $HCrO_4[-]$, $Cr(OH)_3$, Cr_2O_3 ,		
CrO ₂		

 \boxtimes 35: Eh-pH diagrams of the system Cr-O-H (1). $\sum {\rm Cr} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

 \boxtimes 36: Eh-pH diagrams of the system Cr-O-H (2). $\sum {\rm Cr} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

表 22: List of Cs species

FACT	SUPCRT	LLNL	JNC-TDB
Cs[+], $Cs(s)$, $CsO_2(s)$, $Cs_2O(s)$, $Cs_2O_3(s)$, $CsOH(s)$, CsOH(s2), $CsOH(s3)$	Cs[+], CsOH(aq)	Cs[+]	Cs[+], Cs(c), Cs₂O(s), CsOH(s) , Cs(g)

HATCHES		
Cs[+], CsO, CsOH		

 \boxtimes 37: Eh-pH diagrams of the system Cs-O-H (1). $\sum {\rm Cs} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

 \boxtimes 38: Eh-pH diagrams of the system Cs-O-H (2). \sum Cs = 10^{-10}, 298.15K, 10^5 Pa.

表 23: List of Cu species

		1	
FACT	SUPCRT	LLNL	JNC-TDB
Cu[+], Cu[2+], CuO ₂ [2-], HCuO ₂ [-], Cu(OH) ₂ (s), Cu (s), CuO(s), Cu ₂ O(s)	Cu[+], Cu[2+], CuO ₂ [2-], HCuO ₂ [-], CuOH[+], CuO(aq), Cu(Native Copper), CuO(Tenorite), Cu ₂ O (Cuprite)	Cu[+], Cu[2+], CuOH[+], Copper, Cuprite, Tenorite	

HATCHES		
Cu[2+], Cu[+], Cu(OH) ₄ [2-], Cu ₂ (OH) ₂ [2+], Copper, Cuprite, Tenorite		

 \boxtimes 39: Eh-pH diagrams of the system Cu-O-H (1). $\sum {\rm Cu} = 10^{-10},$ 298.15K, 10^5 Pa.

 \boxtimes 40: Eh-pH diagrams of the system Cu-O-H (2). $\sum {\rm Cu} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

表 24: List of Dy species

FACT	SUPCRT	LLNL	JNC-TDB
Dy[3+], Dy(s), Dy(s2), Dy ₂ O ₃ (s)	Dy[3+], Dy[2+], Dy[4+], DyOH[2+], DyO[+], DyO ₂ H(aq), DyO ₂ [-]		

 \boxtimes 41: Eh-pH diagrams of the system Dy-O-H. $\sum \mathrm{Dy} = 10^{-10},\,298.15\mathrm{K},\,10^5$ Pa.

表 25: List of Er species

FACT	SUPCRT	LLNL	JNC-TDB
Er[3+], $Er(s)$, $Er_2O_3(s)$, $Er_2O_3(s2)$	<pre>Er[3+], Er[2+], Er[4+], ErOH[2+], ErO[+], ErO₂H(aq), ErO₂[-]</pre>		

 \boxtimes 42: Eh-pH diagrams of the system Er-O-H. $\sum {\rm Er} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

表 26: List of Eu species

Pr i i i Tri i					
FACT	SUPCRT	LLNL	JNC-TDB		
Eu[2+], Eu[3+], $Eu(s), EuH_2(s),$ $EuO(s), Eu_2O_3(s),$ $Eu_2O_3(s2), Eu_3O_4(s),$ $EuO_3H_3(s)$	Eu[2+], Eu[3+], Eu[4+], EuOH[2+], EuO[+], EuO ₂ H(aq), EuO ₂ [-]	<pre>Eu[3+], Eu[2+], Eu(OH)₂[+], EuOH[2+], Eu(s), Eu(OH)₃(s), Eu₂O₃(cubic), Eu₂O₃(monoclinic), Eu₃O₄(s), EuO(s)</pre>			

HATCHES		
<pre>Eu[3+], Eu(OH)[2+], Eu, Eu(OH)₃, Eu₂O₃(cubic), Eu₂O₃(monoclinic), Eu₃O₄, EuO</pre>		

 \boxtimes 43: Eh-pH diagrams of the system Eu-O-H (1). $\sum {\rm Eu} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

 \boxtimes 44: Eh-pH diagrams of the system Eu-O-H (2). $\sum {\rm Eu} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

表 27: List of F species

FACT	SUPCRT	LLNL	JNC-TDB
$F[-]$, $HF(aq)$, $HF_2[-]$	$F[-]$, $HF(aq)$, $HF_2[-]$	$F[-], H_2F_2, HF, HF_2[-]$	$F-, HF(aq), HF_2[-], F(g), F_2(g), HF(g)$

HATCHES		
$F[-]$, $HF(aq)$, $HF_2[-]$		

 \boxtimes 45: Eh-pH diagrams of the system F-O-H (1). $\sum {\rm F} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

 \boxtimes 46: Eh-pH diagrams of the system F-O-H (2). $\sum {\rm F} = 10^{-10},\,298.15{\rm K},\,10^5$ Pa.

FACT SUPCRT LLNL JNC-TDB HFeO₂(aq), FeO₂[-], FeO(aq), Fe[2+], Fe[3+], FeOH[+], FeOH[2+], HFeO₂[-], Fe[2+], Fe[3+], Fe[2+], Fe[3+], Fe[2+], Fe[3+], $Fe(OH)_2(aq)$, FeOH[+], FeOH[2+], FeOH[2+], $HFeO_2[-],$ $Fe(OH)_{2}[+]$, Fe(OH)₂[+] Fe(OH)₂[+],FeO₂[2-Fe(OH)₃(aq), Fe(OH)₃(aq), Fe(OH)₃[-],], $Fe(OH)_3(aq)$, FeO[+], **FeO** $FeOH_4[-]$, Fe₂(OH)₂[4+], (Ferrous-oxide), $Fe(OH)_{4}[-],$ Fe₂(OH)₂[4+], $Fe_2(OH)_2[4+]$, $Fe_3(OH)_4[5+]$, Fe(s), Fe(s2), Fe₂O₃(Hematite), Fe₂O₃(s2), FeOH[+], $Fe_3O_4(Magnetite)$ $Fe_3(OH)_4[5+]$, Fe(OH)₂(aq), FeOH[+], $Fe_2O_3(s3)$, FeOH[2+], $Fe_{3}O_{4}(s2)$, $Fe(OH)_{3}[-],$ Fe(OH)₂(ppd), $Fe(OH)_3(a)$ $Fe_3O_4(s3)$, Fe(OH)3(ppd), Hematite, $Fe_3O_4(s4)$, FeO(c) Magnetite, Fe(OH)₂(s), Goethite, Goethite Fe(OH)₃(s), Hematite, $Fe_2O_3(H_2O)(s)$, FeO Magnetite, Wustite $(s), Fe_2O_3(s),$ Fe₃O₄(s)

±	00	т •	c	T	•
₹	28.	List	ot	He.	species
~~~	<b>-·</b> ·	100	<b>U</b> 1	<b>-</b> U	opeeres

HATCHES		
Fe[2+], Fe[3+],		
$Fe(OH)_2(aq),$ $Fe(OH)_2(aq),$		
$Fe(OH)_2[+],$ $Fe(OH)_3(aq),$		
Fe(OH) ₃ [-], Fe(OH) ₄ [-],		
Fe(OH) ₄ [2-], Fe ₂ (OH) ₂ [4+],		
Fe ₃ (OH) ₄ [5+], FeOH[2+], <b>Fe(OH)</b> ₂ ,		
Fe(OH) ₃ , FeO(C),		
Goetnite, Hematite,		
Magnetite, Wustite		



 $\boxtimes$  47: Eh-pH diagrams of the system Fe-O-H (1).  $\sum {\rm Fe} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.



 $\boxtimes$  48: Eh-pH diagrams of the system Fe-O-H (2).  $\sum {\rm Fe} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.

## 表 29: List of Fr species

FACT	SUPCRT	LLNL	JNC-TDB
	Fr[+]		


 $\boxtimes$  49: Eh-pH diagrams of the system Fr-O-H.  $\sum {\rm Fr} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.

## 表 30: List of Ga species

FACT	SUPCRT	LLNL	JNC-TDB
Ga[3+], GaOH[2+], Ga(OH) ₂ [+], H ₂ GaO ₃ [- ],Ga[2+], GaO ₃ [3-], HGaO ₂ [2-], Ga(s), Ga ₂ O ₃ (s), Ga(OH) ₃ (s)	Ga[3+], GaOH[2+], GaO[+], GaO ₂ [-], HGaO ₂ (aq)		



 $\boxtimes$  50: Eh-pH diagrams of the system Ga-O-H.  $\sum$  Ga = 10^{-10}, 298.15 K, 10^5 Pa.

## 表 31: List of Gd species

FACT	SUPCRT	LLNL	JNC-TDB
Gd[3+], Gd(s), Gd(s2), Gd ₂ O ₃ (s)	Gd[3+], Gd[4+], Gd[2+], GdOH[2+], GdO[+], GdO ₂ H(aq), GdO ₂ [-]		



 $\boxtimes$  51: Eh-pH diagrams of the system Gd-O-H.  $\sum {\rm Gd} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.

## 表 32: List of Ge species

FACT	SUPCRT	LLNL	JNC-TDB
$HGeO_3[-], Ge(s), GeO(s), GeO(s), GeO(s2), GeO_2(s), GeO_2(s2)$			



 $\boxtimes$  52: Eh-pH diagrams of the system Ge-O-H.  $\sum {\rm Ge} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.

## 表 33: List of Hf species

FACT	SUPCRT	LLNL	JNC-TDB
Hf(s), $Hf(s2)$ , $HfO_2(s)$ , $HfO_2(s2)$	Hf[4+], HfOH[3+], HfO[2+], HHfO ₂ [+], HfO ₂ (aq), HHfO ₃ [-]		



 $\boxtimes$  53: Eh-pH diagrams of the system Hf-O-H.  $\sum {\rm Hf} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.

## 表 34: List of Hg species

FACT	SUPCRT	LLNL	JNC-TDB
Hg[2+], Hg ₂ [2+], HgOH[+], HHgO ₂ [-], Hg(OH) ₂ , Hg(aq), HgO(s)	Hg[2+], Hg ₂ [2+], HgOH[+], HHgO ₂ [-], HgO(aq), <b>Hg(Quicksilver)</b>	Hg[2+], Hg ₂ [2+], <b>Quicksilver</b>	

HATCHES		
Hg[2+], Hg(OH) ₂ (aq), Hg(OH) ₃ [-], Hg ₂ OH[3+], Hg ₃ (OH) ₃ [3+], HgOH[+], <b>HgO</b> ,		
Quicksilver		



 $\boxtimes$  54: Eh-pH diagrams of the system Hg-O-H (1).  $\sum {\rm Hg} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.



 $\boxtimes$  55: Eh-pH diagrams of the system Hg-O-H (2).  $\sum {\rm Hg} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.

## 表 35: List of Ho species

FACT	SUPCRT	LLNL	JNC-TDB
Ho[3+], $Ho(s)$ , $Ho(s2)$ , $Ho_2O_3(s)$ , $Ho_2O_3(s2)$	Ho[3+], Ho[4+], Ho[2+], HoOH[2+], HoO[+], HoO ₂ H(aq), HoO ₂ [-]		



 $\boxtimes$  56: Eh-pH diagrams of the system Ho-O-H.  $\sum {\rm Ho} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.

#### 表 36: List of I species

FACT	SUPCRT	LLNL	JNC-TDB
<pre>I[-], I₃[-], IO[-], IO₃[-], HIO(aq), HIO₃(aq), I₂ (aq), H₂OI[+], I₂OH[-], I₂(s)</pre>	I[-], I ₃ [-], IO[-], IO ₃ [-], HIO(aq), HIO ₃ (aq), IO ₄ [-]	Ι[-]	<pre>I[-], IO₃[-], HIO₃(aq), I₃[-], IO[-], IO₄[-], I₂O[2-], HIO(aq), I₂OH[-],I₂(aq), HI(aq), H₂OI[-], I₂(<b>s</b>), I₂(<b>c</b>), I(g), I₂(<b>g</b>), HI(<b>g</b>)</pre>

HATCHES		
$\begin{split} & \text{I[-], IO_3[-],} \\ & \text{H}_2\text{IO[+], HI(aq),} \\ & \text{HIO(aq), HIO_3(aq),} \\ & \text{I}_2(aq), I_2\text{O[2-],} \\ & \text{I}_2\text{OH[-], I_3[-],} \\ & \text{IO[-], IO_4[-], I_2} \end{split}$		

<u>Remarks</u> JNC-TDB:  $I_2(s)$  is originally given as  $I_2$  in the database file, but its detailed description is not given. Then (s) is appended to  $I_2$  to avoid confusion with  $I_2(C)$ .



 $\boxtimes$  57: Eh-pH diagrams of the system I-O-H (1).  $\sum I = 10^{-10},\,298.15\mathrm{K},\,10^5$  Pa.



 $\boxtimes$  58: Eh-pH diagrams of the system I-O-H (2).  $\sum I = 10^{-10},\,298.15\mathrm{K},\,10^5$  Pa.

## 表 37: List of In species

FACT	SUPCRT	LLNL	JNC-TDB
<pre>In[3+], InOH[2+], In(OH)₂[+], In[+], In[2+], In(s), In₂O₃(s), In₂O₃(s2)</pre>	<pre>In[3+], InOH[2+], InO[+], HInO₂(aq), InO₂[-]</pre>		



 $\boxtimes$  59: Eh-pH diagrams of the system In-O-H.  $\sum {\rm In} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.

# 表 38: List of K species

FACT	SUPCRT	LLNL	JNC-TDB
$K[+], K(s), KH(s), KO_2(s), K_2O(s), K_2O_2(s), KOH(s), KOH(s), KOH(s2)$	K[+], KOH(aq), <b>K₂O (Potassium-oxide)</b>	K[+], KOH(aq)	K[+], <b>K(c)</b> , K(g)

HATCHES		
K[+], <b>KOH</b>		



 $\boxtimes$  60: Eh-pH diagrams of the system K-O-H (1).  $\sum {\rm K} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.



 $\boxtimes$  61: Eh-pH diagrams of the system K-O-H (2).  $\sum {\rm K} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.

## 表 39: List of La species

FACT	SUPCRT	LLNL	JNC-TDB
La[3+], <b>La(s)</b> , La(s2), La(s3), LaH ₂ (s), La ₂ O ₃ (s)	La[3+], La[2+], LaOH[2+], LaO[+], LaO ₂ H(aq), LaO ₂ [-]		

HATCHES		
La[3+], La ₂ OH[5+], La ₅ (OH) ₉ [6+], LaOH[2+], <b>La(OH)</b> ₃		



 $\boxtimes$  62: Eh-pH diagrams of the system La-O-H (1).  $\sum {\rm La} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.



⊠ 63: Eh-pH diagrams of the system La-O-H (2).  $\sum La = 10^{-10}$ , 298.15K, 10⁵ Pa.

## 表 40: List of Li species

FACT	SUPCRT	LLNL	JNC-TDB
Li[+], LiOH(aq), Li(s), LiH(s), Li ₂ O(s), Li ₂ O ₂ (s), LiOH(s)	Li[+], LiOH(aq)	Li[+], LiOH(aq)	Li[+]

HATCHES		
Li[+]		



 $\boxtimes$  64: Eh-pH diagrams of the system Li-O-H (1).  $\sum {\rm Li} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.



 $\boxtimes$  65: Eh-pH diagrams of the system Li-O-H (2).  $\sum {\rm Li} = 10^{-10},$  298.15K,  $10^5$  Pa.

## 表 41: List of Lu species

FACT	SUPCRT	LLNL	JNC-TDB
Lu[3+], Lu(s), Lu ₂ O ₃ (s)	Lu[3+], Lu[4+], LuOH[2+], LuO[+], LuO ₂ H(aq), LuO ₂ [-]		



 $\boxtimes$  66: Eh-pH diagrams of the system Lu-O-H.  $\sum {\rm Lu} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.
# 表 42: List of Mg species

FACT	SUPCRT	LLNL	JNC-TDB
<pre>Mg[2+], MgOH[+], Mg(s), MgH₂(s), MgO(s), Mg(OH)₂(s)</pre>	Mg[2+], MgOH[+], MgO(Periclase), Mg(OH) ₂ (Brucite)	Mg[2+], Mg ₂ OH[3+], Mg ₄ (OH) ₄ [4+], MgOH[+], <b>Brucite</b>	Mg[2+], MgOH[+], <b>Periclase</b>

HATCHES		
Mg[2+], MgOH[+],		
Mg(OH) ₂		



 $\boxtimes$  67: Eh-pH diagrams of the system Mg-O-H (1).  $\sum {\rm Mg} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.



 $\boxtimes$  68: Eh-pH diagrams of the system Mg-O-H (2).  $\sum {\rm Mg} = 10^{-10},$  298.15K,  $10^5$  Pa.

表 43: List of Mn species

FACT	SUPCRT	LLNL	JNC-TDB
<pre>Mn[2+], Mn[3+], MnO4[2-], MnO4[-], MnOH[+], Mn(OH)3[-], Mn(s), Mn(s2), Mn(s3), Mn(s4), MnO2(s), Mn2O3(s), Mn3O4(s), Mn3O4(s2), MnO(s)</pre>	<pre>Mn[2+], Mn[3+], MnO₄[2-], MnO₄[-], MnOH[+], HMnO₂[-], MnO(aq), MnO₂[2-], MnO(Manganosite)</pre>	<pre>Mn[2+], MnO₄[-], MnO₄[2-], Mn(OH)₂(aq), Mn(OH)₃[-], Mn(OH)₄[2-], Mn₂OH[3+], Mn₂OH[3+], Birnessite, Bixbyite, Hausmannite, Manganite, Manganosite, Mn(OH)₂(am), Mn(OH)₃(c), Pyrolusite, Todorokite</pre>	<pre>Mn[2+], Mn[3+], MnO4[2-], MnO4[-], MnOH[+], Mn(OH)3[-], Birnesite, Manganite, Pyrolusite</pre>

HATCHES		
<pre>Mn[2+], Mn[3+], MnO4[2-], Mn(OH)2(aq), Mn(OH)3[-], Mn(OH)4[2-], Mn2(OH)3[+], Mn2OH[3+], MnO4[-], MnOH[+], MnOH[2+], Birnessite,</pre>		
Bixbyite,		
Hausmannite,		
Manganosite,		
$Mn(OH)_2$ , $Mn(OH)_3$ ,		
$Mn(OH)_3(c)$ , $Mn_3O_4$ ,		
MnOOH, Pyrolusite,		
TOTOTOKICE		



 $\boxtimes$  69: Eh-pH diagrams of the system Mn-O-H (1).  $\sum {\rm Mn} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.



 $\boxtimes$  70: Eh-pH diagrams of the system Mn-O-H (2).  $\sum {\rm Mn} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.

### 表 44: List of Mo species

FACT	SUPCRT	LLNL	JNC-TDB
$MoO_4[2-]$ , $Mo(s)$ , $MoO_2(s)$ , $MoO_3(s)$	MoO ₄ [2-], HMoO ₄ [-]		

HATCHES		
MoO ₄ [2-], Mo[3+], MoO ₂ [+], H ₂ MoO ₄ (aq), HMoO ₄ [-], Mo ₇ O ₂₁ (OH) ₃ [3-], Mo ₇ O ₂₂ (OH) ₂ [4-], Mo ₇ O ₂₃ OH[5-], Mo ₇ O ₂₄ [6-], MoO[3+],		
$MOO_2OH[+]$ , $H_2MOO_4$ , MOO, $MOO_2$ , $MOO_3$		



 $\boxtimes$  71: Eh-pH diagrams of the system Mo-O-H (1).  $\sum {\rm Mo} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.



 $\boxtimes$  72: Eh-pH diagrams of the system Mo-O-H (2).  $\sum {\rm Mo} = 10^{-10},$  298.15K,  $10^5$  Pa.

表 45: List of N species

		1	
FACT	SUPCRT	LLNL	JNC-TDB
$ \begin{array}{l} N_2(aq), & NH_3(aq), \\ NH_4[+], & N_2H_5[+], \\ ONO[-], & N_2O_2[2-], \\ NO_3[-], & HONO(aq), \\ N_3[-], & N_2H_4(aq), \\ HN_3(aq), & NH_4N_3(s), \\ N_2O_4(s), & N_2O_5(s), \\ NH_4NO_3(s) \end{array} $	$ \begin{array}{l} N_2(aq), & NH_3(aq), \\ NH_4[+], & N_2H_5[+], \\ NO_2[-], & N_2O_2[2-], \\ NO_3[-], & HNO_2(aq), \\ HNO_3(aq), \\ H_2N_2O_2(aq), & HN_2O_2[-], \\ N_2H_6[2+] \end{array} $	$NO_3[-], N_2(aq),$ $NH_4[+],$ $NO_2[-], HNO_2(aq),$ $NH_3(aq), N_2(g)$	$\begin{array}{l} NO_3[-], NH_3(aq), \\ NH_4[+], NO_2[-], \\ N_2(aq), N(g), \\ N_2(g), NH_3(g) \end{array}$

HATCHES		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		



 $\boxtimes$  73: Eh-pH diagrams of the system N-O-H (1).  $\sum {\rm N} = 10^{-10},$  298.15K,  $10^5$  Pa.



 $\boxtimes$  74: Eh-pH diagrams of the system N-O-H (2).  $\sum N = 10^{-10},\,298.15 {\rm K},\,10^5$  Pa.

# 表 46: List of Na species

FACT	SUPCRT	LLNL	JNC-TDB
Na[+], Na(s), $NaH(s), NaO_2(s),$ $Na_2O(s2), Na_2O(s3),$ $Na_2O_2(s), Na_2O_2(s2),$ NaOH(s), NaOH(s2), $Na_2O(s)$	Na[+], NaOH(aq), <b>Na₂O(Sodium-oxide)</b>	Na[+], NaOH(aq)	Na+, <b>Na(c)</b> , Na(g)

HATCHES		
Na[+]		



 $\boxtimes$  75: Eh-pH diagrams of the system Na-O-H (1).  $\sum {\rm Na} = 10^{-10},$  298.15K,  $10^5$  Pa.



 $\boxtimes$  76: Eh-pH diagrams of the system Na-O-H (2).  $\sum \mathrm{Na} = 10^{-10},\,298.15\mathrm{K},\,10^5$  Pa.

### 表 47: List of Nb species

FACT	SUPCRT	LLNL	JNC-TDB
$\begin{array}{l} NbO_{3}[-], \\ Nb(OH)_{5}(aq), \\ Nb(OH)_{4}[+], Nb(s), \\ NbO(s), NbO_{2}(s), \\ NbO_{2}(s2), NbO_{2}(s3), \\ Nb_{2}O_{5}(s) \end{array}$	NbO3[-], HNbO3(aq)		Nb(OH) ₅ (aq), Nb(OH) ₆ [-], <b>Nb₂O₅(s)</b>

HATCHES		
Nb(OH) ₅ (aq), Nb(OH) ₄ [+], Nb(OH) ₆ [-], Nb ₂ O ₅ (act)		



 $\boxtimes$  77: Eh-pH diagrams of the system Nb-O-H (1).  $\sum {\rm Nb} = 10^{-10},$  298.15K,  $10^5$  Pa.



 $\boxtimes$  78: Eh-pH diagrams of the system Nb-O-H (2).  $\sum {\rm Nb} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.

# 表 48: List of Nd species

FACT	SUPCRT	LLNL	JNC-TDB
Nd[3+], $Nd(s)$ , $Nd(s2)$ , $NdH_2(s)$ , $Nd_2O_3(s)$ , $Nd_2O_3(s2)$	Nd[3+], Nd[4+], Nd[2+], NdOH[2+], NdO[+], NdO ₂ H(aq), NdO ₂ [-]		Nd[3+]

HATCHES		
Nd[3+], Nd(OH) ₂ [+], Nd(OH) ₃ (aq), NdOH[2+], <b>Nd(OH)</b> ₃		



 $\boxtimes$  79: Eh-pH diagrams of the system Nd-O-H (1).  $\sum \mathrm{Nd} = 10^{-10},\,298.15\mathrm{K},\,10^5$  Pa.



 $\boxtimes$  80: Eh-pH diagrams of the system Nd-O-H (2).  $\sum \mathrm{Nd} = 10^{-10},\,298.15\mathrm{K},\,10^5$  Pa.

K 43. List of IN species			
FACT	SUPCRT	LLNL	JNC-TDB
<pre>Ni[2+], NiOH[+], HNiO₂[-], Ni₂H(s), NiOOH(s), Ni(OH)₂(s), NiO₂(H₂O)(s), Ni(s), NiO(s)</pre>	<pre>Ni[2+], NiOH[+], HNiO₂[-], NiO(aq), NiO₂[2-], Ni(Nickel), NiO(Bunsenite)</pre>	<pre>Ni[2+], Ni(OH)₂, Ni(OH)₃[-], Ni(OH)₄[2-], Ni₂OH[3+], Ni₄(OH)₄[4+], NiOH[+], Ni(OH)₂(s), NiO(s)</pre>	<pre>Ni[2+], Ni(OH)₂(aq), Ni(OH)₃[-], NiOH[+], Ni₂(OH)[+], Ni₄(OH)[+], Ni(OH)₂(s), NiO(c)</pre>

表 49: List of Ni species

HATCHES		
Ni[2+], Ni(OH)[+], Ni(OH) ₂ (aq), Ni(OH) ₃ [-],		
$Ni_2(OH)[3+],$ $Ni_2(OH)[4+]$		
Ni(OH) ₂ , NiO		



 $\boxtimes$  81: Eh-pH diagrams of the system Ni-O-H (1).  $\sum {\rm Ni} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.



 $\boxtimes$ 82: Eh-pH diagrams of the system Ni-O-H (2).  $\sum {\rm Ni} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.

FACT	SUPCRT	LLNL	JNC-TDB
Np(s), NpO2(s), NpO3(H2O)(s)		<pre>Np[4+], Np[3+], NpO 2[+], NpO 2[2+], (NpO₂)₂(OH)₂ [2+], (NpO₂)₃(OH)₅ [+], Np(OH)₂[2+], Np(OH)₃[+], Np(OH)₄ (aq), Np(OH)₄ (aq), Np(OH)₄ (aq), NpO₂OH(aq), NpO₂OH[+], NpOH[2+], NpOH[3+], Np(s), Np(OH)₄(s), NpO₂(OH)(am), NpO₂(O H)₂(s)</pre>	<pre>Np[4+], Np[3+], NpO 2[+] NpO2 OH(am), NpO2(OH)2[-] NpO2[2+], N pOH[3+], N p(OH)4(s), NpO2(am), NpO2OH(am)</pre>

表 50: List of Np species

HATCHES	OECD-NEA	OECD-NEA update	
<pre>Np[4+], Np[3+], NpO 2[+], NpO₂[2+], Np (OH)₂[+], Np(OH)₃(a q), Np(OH)₄(aq), Np (OH)₄[-], Np₂(OH)₂[4 +], NpO₂OH₂[2+], Np O₂₃OH₅[+], NpO₂OH(a q), NpO₂OH[+], NpO₂ OH₂[-], NpOH[2+], N pOH[3+], Np, Np(OH) 3, Np(OH)₄, Np₂O₅, N pO₂, NpO₂(am), NpO₂O H(am,aged), NpO₂OH (am,fresH), NpO₃*H₂ O(cr)</pre>	<pre>Np[4+], Np[3+], NpO 2[+], NpO2[2+], NpO H[2+], NpOH[3+], N pO2OH(aq), NpO2OH [+], NpO2(OH)2[-], Np(OH)4(aq), (NpO2)2 (OH)2[2+], (NpO2)3(O H)5[+], Np(c), NpO2 (am_hyd), NpO2(c), Np2O5(c), NpO2OH(am_ aged), NpO2OH(am_fr esh), NpO2(OH)2(c), NpO3H2O(c)</pre>	<pre>Np[4+], Np[3+], NpO 2[+], NpO2[2+], NpO H[2+], NpOH[3+], N p(OH)2[2+], NpO2OH (aq), NpO2OH[+], Np O2(OH)2[-], Np(OH)4 (aq), (NpO2)2(OH)2[2 +], (NpO2)3(OH)5[+], Np(cr), NpO2(Cr), N p2O5(cr), NpO2(OH)2 (cr), NpO3H2O(cr)</pre>	



 $\boxtimes$ 83: Eh-pH diagrams of the system Np-O-H (1).  $\sum {\rm Np} = 10^{-10},$  298.15K,  $10^5$  Pa.



 $\boxtimes$  84: Eh-pH diagrams of the system Np-O-H (2).  $\sum \mathrm{Np} = 10^{-10},\,298.15\mathrm{K},\,10^5$  Pa.

### 表 51: List of Os species

FACT	SUPCRT	LLNL	JNC-TDB
$\begin{array}{l} OsO_4(aq) , \ HOsO_5[-] , \\ H_2OsO_5[-] , \ Os(s) , \\ OsO_2(s) , \ OsO_4(s) , \\ OsO_4(s2) , \ Os(OH)_4(s) \end{array}$			


 $\boxtimes$  85: Eh-pH diagrams of the system Os-O-H.  $\sum {\rm Os} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.

表 52: List of P species

FACT	SUPCRT	LLNL	JNC-TDB
$\begin{array}{l} PO_4[3-], P_2O_7[4-], \\ HPO_3[2-], H_2PO_3[-], \\ HPO_4[2-], H_2PO_4[-], \\ H_3PO_4(aq), HP_2O_7[3-], \\ H_3P_2O_7[2-], \\ H_3P_2O_7[-], \\ H_4P_2O_7(aq), PH_3(aq), \\ PH_4[+], P(s), \\ P(s2), P(s3), \\ P(s4), (P_2O_5)_2(s), \\ H_3PO_4(s), \\ (H_3PO_4)_2(H_2O)(s) \end{array}$	PO ₄ [3-], P ₂ O ₇ [4-], HPO ₃ [2-], HPO ₄ [2-], H ₂ PO ₄ [-], H ₃ PO ₄ (aq), HP ₂ O ₇ [3-], H ₃ PO ₂ (aq), H ₄ P ₂ O ₇ (aq), H ₃ PO ₂ (aq), H ₂ PO ₂ [-], H ₃ PO ₃ (aq), H ₂ P ₂ O ₇ [2-], H ₂ PO ₃ [-]	HPO ₄ [2-], H ₂ P ₂ O ₇ [2-], H ₂ PO ₄ [-], H ₃ P ₂ O ₇ [-] H ₃ PO ₄ (aq), H ₄ P ₂ O ₇ (aq), HP ₂ O ₇ [3-], P ₂ O ₇ [4-], PO ₄ [3-]	PO ₄ [3-], P ₂ O ₇ [4-], HPO ₄ [2-], H ₂ PO ₄ [-], H ₃ PO ₄ (aq), HP ₂ O ₇ [3-], H ₃ P ₂ O ₇ [2-], H ₃ P ₂ O ₇ [-], H ₄ P ₂ O ₇ (am), P(am) P(c), P(g), P ₂ (g), P ₄ (g)

HATCHES		
PO4[3-], H ₂ PO4[-], HPO4[2-], H ₂ P ₂ O ₇ [2- ], H ₃ P ₂ O ₇ [-], H ₃ PO4(aq), H ₄ P ₂ O ₇ (aq), HP ₂ O ₇ [3- ], P ₂ O ₇ [3-]		



 $\boxtimes$  86: Eh-pH diagrams of the system P-O-H (1).  $\sum {\rm P}=10^{-10},\,298.15{\rm K},\,10^5$  Pa.



 $\boxtimes$  87: Eh-pH diagrams of the system P-O-H (2).  $\sum {\rm P} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.

#### 表 53: List of Pa species

FACT	SUPCRT	LLNL	JNC-TDB
			<pre>Pa[4+], PaO(OH)₃(aq) PaO(OH)₂(aq), PaOOH[2+], Pa(OH)[3+], Pa(OH)₂[+], Pa(OH)₃[+], PaO₂(s), Pa₂O₅(s)</pre>

HATCHES		
Pa[4+], PaO ₂ [+], Pa(OH)[3+], Pa(OH) ₂ [2+], Pa(OH) ₃ [+], Pa(OH) ₄ (aq), PaO(OH)[2+], PaO ₂ (OH)(aq), <b>Pa₂O5, PaO</b> ₂		



 $\boxtimes$ 88: Eh-pH diagrams of the system Pa-O-H (1).  $\sum {\rm Pa} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.



 $\boxtimes$  89: Eh-pH diagrams of the system Pa-O-H (2).  $\sum {\rm Pa} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.

# 表 54: List of Pb species

FACT	SUPCRT	LLNL	JNC-TDB
<pre>Pb[2+], PbOH[+], HPbO₂[-], Pb₃(OH)₄[2+], Pb₄(OH)₄[4+], Pb₆(OH)₈[4+], Pb(s), PbO(s2), PbO₂(s), Pb₃O₄(s), PbO(H)₂(s), (PbO)₃(H₂O)(s), PbO(s)</pre>	Pb[2+], PbOH[+], HPbO ₂ [-], PbO(aq), <b>PbO(Litharge)</b>	Pb[2+]	<pre>Pb[2+], PbOH[+], Pb(OH)₂(aq), Pb(OH)₃[-], Pb₂(OH)[+], Pb₄(OH)₄[4+], Pb₃(OH)₄[2+], Pb₃(OH)₅[+] Pb₆(OH)₈[4+], Pb(c) PbO(red), PbO(red), PbO(yellow) Pb(OH)₂(s), PbO₂(s),</pre>

HATCHES		
Pb[2+], Pb(iv)[4+], Pb(OH)[+], Pb(OH) ₂ (aq), Pb(OH) ₃ [+], Pb(OH) ₃ [-], Pb(OH) ₄ (aq), Pb ₂ (OH)[3+],		
Pb ₃ (OH) ₄ [2+], Pb ₆ (OH) ₈ [4+], Pb, Pb(OH) ₂ , Pb ₃ O ₄ , PbO, PbO ₂		



 $\boxtimes$ 90: Eh-pH diagrams of the system Pb-O-H (1).  $\sum {\rm Pb} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.



 $\boxtimes$ 91: Eh-pH diagrams of the system Pb-O-H (2). <br/>  $\sum {\rm Pb} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.

# 表 55: List of Pd species

FACT	SUPCRT	LLNL	JNC-TDB
Pd[2+], <b>PdO₂(s),</b> <b>Pd(s), PdO(s)</b>	Pd[2+], PdOH[+], PdO(aq), <b>Pd(Palladium)</b> , <b>PdO(s), Pd(OH)₂(s)</b>		Pd[2+], <b>Pd(c)</b>



 $\boxtimes$ 92: Eh-pH diagrams of the system Pd-O-H.  $\sum {\rm Pd} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.

#### 表 56: List of Pm species

FACT	SUPCRT	LLNL	JNC-TDB
	Pm[4+], Pm[3+], Pm[2+]		



 $\boxtimes$ 93: Eh-pH diagrams of the system Pm-O-H.  $\sum {\rm Pm} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.

# 表 57: List of Po species

FACT	SUPCRT	LLNL	JNC-TDB
Po[2+], Po[4+], Po(OH) ₂ [4+], <b>Po(s)</b>			Po[4+], <b>Po(OH)₄(s)</b>



 $\boxtimes$ 94: Eh-pH diagrams of the system Po-O-H. <br/>  $\sum {\rm Po} = 10^{-10},$  298.15K,  $10^5$  Pa.

表 58: List of Pr species

FACT	SUPCRT	LLNL	JNC-TDB
<pre>Pr[3+], PrOH[2+], Pr(OH)₂[+], Pr(s), Pr(s2), PrH₂(s), PrO₂(s), Pr₂O₃(s), Pr₆O₁₁(s), Pr₇O₁₂(s), PrO₃H₃(s)</pre>	<pre>Pr[3+], PrOH[2+], PrO[+], Pr[4+], Pr[2+], PrO₂H(aq), PrO₂[-]</pre>		



 $\boxtimes$ 95: Eh-pH diagrams of the system Pr-O-H.  $\sum \mathrm{Pr} = 10^{-10},\,298.15\mathrm{K},\,10^5$  Pa.

#### 表 59: List of Pt species

FACT	SUPCRT	LLNL	JNC-TDB
Pt[2+], <b>Pt(s)</b>	Pt[2+], PtOH[+], PtO(aq), <b>Pt(Platinum)</b>		



 $\boxtimes$ 96: Eh-pH diagrams of the system Pt-O-H.  $\sum {\rm Pt}=10^{-10},\,298.15{\rm K},\,10^5$  Pa.

SUPCRT FACT LLNL JNC-TDB Pu[4+], Pu[3+], Pu OH[2+], PuOH₂[+], P u(OH)₃(aq), PuO₂[+], PuO₂OH(aq), PuO₂(0 H)₂[-], PuO₂[2+], P Pu[3+], Pu(s), Pu(s  $PuO_2[2+]$ , Pu[3+], Pu[4+], PuO₂[+], (PuO₂)₂(OH)₂[2+], 2), Pu(s3), Pu(s4), Pu(s5), Pu(s6), PuH  $_{2}(s)$ ,  $PuH_{3}(s)$ ,  $PuO_{2}$ (s),  $Pu_{2}O_{3}(s)$ ,  $Pu_{5}O_{8}$  $(PuO_2)_3(OH)_5[+],$ Ρ u(OH)₂[2+], Pu(OH)₃  $uO_2OH[+], PuO_2(OH)_2, PuO_2OH_3[-], Pu(OH)_4$ [+], (s) Pu(OH)₄(aq), Pu(OH) Pu(on,,, [5[-], PuO₂OH[+], (aq), PuO₂OH[+], PuOH[2+], PuOH[3+], Pu(OH)₃(a (aq), PuOH[3+], **Pu**  $(OH)_3(am)$ ,  $Pu(OH)_3$ (c),  $PuO_2(am)$ ,  $PuO_2$ OH(s) q), **Pu(OH)**₃(s),  $Pu(OH)_4(am)$ , Pu(OH) $_4(s)$ ,  $Pu_2O_3(c,beta)$ ,  $PuO_2(s)$ ,  $PuO_2(OH)_2$  $(s), PuO_2(c), PuO_2(c),$  $PuO_2(OH)$  $PuO_2OH(am)$ 

HATCHES	OECD-NEA	OECD-NEA update	
Pu[4+], Pu[3+], PuO 2[+], PuO ₂ [2+], Pu (OH)[2+], Pu(OH)[3 +], Pu(OH) ₂ [+], Pu (OH) ₂ [2+], Pu(OH) ₃ (aq), Pu(OH) ₃ [+], P u(OH) ₄ (aq), Pu(OH) ₄ [-], Pu ₂ (OH) ₂ [4+], Pu ₂ (OH) 3[5+], Pu ₂ (OH) ₄ [4+], Pu ₂ (OH) ₅ [3+], Pu ₃ (OH) 5[4+], PuO ₂ (OH) ₂ [-], (PuO 2) ₃ OH ₅ [+], PuO ₂ OH(a q), PuO ₂ OH ₂ [2+], (PuO 2) ₃ OH ₅ [+], PuO ₂ OH(a q), PuO ₂ OH[+], PuO ₂ OH(a q), PuO ₂ OH[+], PuO ₂ OH(a q), PuO ₂ OH ₃ [-], Pu(OH) ₃ , PuO ₂ (OH) ₂ *H ₂ O (c), PuO ₂ , PuO ₂ OH, P u(OH) ₃ (c)	<pre>Pu[4+], Pu[3+], PuO 2[+], PuO₂[2+], PuO H[2+], PuOH[3+], P uO₂OH[+], PuO₂(OH)₂ (aq), (PuO₂)₂(OH)₂[2 +], Pu(c), PuO_{1.61}(c _bcc), PuO₂(c), PuO 2(hyd_aged), Pu₂O₃ (c), PuO₂OH(am), Pu (OH)₃(c), PuO₂(OH)₂H ₂O(c)</pre>	<pre>Pu[4+], Pu[3+], Pu O2[+], PuO₂[2+], Pu OH[2+], PuOH[3+], Pu(OH)₂[2+], Pu(OH) 3[+], PuO₂OH(aq), P uO₂OH[+], PuO₂(OH)₂ (aq), Pu(OH)₄(aq), (PuO₂)₂(OH)₂[2+], Pu (cr), PuO_{1.61}(bcc), PuO₂(cr), Pu₂O₃(cr), Pu(OH)₃(cr), PuO₂(O H)₂H₂O(cr)</pre>	

表 60: List of Pu species



 $\boxtimes$ 97: Eh-pH diagrams of the system Pu-O-H (1).  $\sum {\rm Pu} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.



 $\boxtimes$ 98: Eh-pH diagrams of the system Pu-O-H (2). <br/>  $\sum {\rm Pu}=10^{-10},\,298.15{\rm K},\,10^5$  Pa.

# 表 61: List of Ra species

FACT	SUPCRT	LLNL	JNC-TDB
Ra[2+], <b>Ra(s)</b>	Ra[2+]		Ra[2+], RaOH[+]

HATCHES		
Ra[2+], RaOH[+], <b>Ra(c)</b>		



 $\boxtimes$ 99: Eh-pH diagrams of the system Ra-O-H (1). <br/>  $\sum {\rm Ra} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.



 $\boxtimes$  100: Eh-pH diagrams of the system Ra-O-H (2).  $\sum \mathrm{Ra} = 10^{-10},\,298.15\mathrm{K},\,10^5$  Pa.

# 表 62: List of Rb species

FACT	SUPCRT	LLNL	JNC-TDB
Rb[+], $Rb(s)$ , $Rb_2O(s)$ , $RbOH(s)$	Rb[+], RbOH(aq)	Rb[+]	



 $\boxtimes$  101: Eh-pH diagrams of the system Rb-O-H.  $\sum \mathrm{Rb} = 10^{-10},\,298.15\mathrm{K},\,10^5$  Pa.

#### 表 63: List of Re species

FACT	SUPCRT	LLNL	JNC-TDB
ReO ₄ [-], Re[-], Re[+], <b>Re(s)</b> , <b>ReO₂(s), ReO₃(s),</b> <b>Re₂O₇(s), HReO₄(s)</b>	ReO ₄ [-]		



 $\boxtimes$  102: Eh-pH diagrams of the system Re-O-H.  $\sum {\rm Re} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.

表 64: List of Rh species

FACT	SUPCRT	LLNL	JNC-TDB
$RhO(s)$ , $RhO_2(s)$ , $Rh(s)$ , $Rh_2O(s)$ , $Rh_2O_3(s)$	Rh[3+], RhOH[+], RhOH[2+], Rh[2+], RhO(aq), RhO[+], <b>Rh(Rhodium)</b> , <b>Rh₂O(s), Rh₂O₃(s)</b>		


 $\boxtimes$  103: Eh-pH diagrams of the system Rh-O-H.  $\sum {\rm Rh} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.

FACT	SUPCRT	LLNL	JNC-TDB
<pre>RuO₄[2-], RuO₄[-], RuO₄(aq), Ru(OH)₂[2+], RuO₄(s), Ru(s), RuO₂(s)</pre>	<pre>RuO₄[2-], Ru[3+], Ru[2+], RuOH[+], RuOH[2+], RuO(aq), RuO[+], Ru(Ruthenium), RuO₂(s)</pre>	<pre>Ru[3+], Ru(OH)₂[2+], Ru[2+], RuO₄(aq), RuO₄[-], RuO₄[2-], H₂RuO₅(aq), HRuO₅[-], Ru(OH)₂[+], Ru4(OH)₁₂[4+], RuOH[2+], Ru(OH)₃*H₂O(am), RuO₂(s), RuO₂(s), RuO₄(s), Ru(g), RuO₄(g)</pre>	

表 65: List of Ru species

HATCHES		
$Ru[3+],Ru[0H)_2[2+],Ru[2+], RuO_4[-],RuO_4[2-],H_2RuO_5(aq), HRuO_5[-],Ru(0H)[2+],Ru(0H)_2[+],Ru_4(0H)_2[4+].$		
$Ru(C)$ , $Ru_2O_5$ , $RuO_2(s)$ , $RuO_2*2H_2O$ , $RuO_4(s)$ , $Ru(OH)_2*H_2O$		



 $\boxtimes$  104: Eh-pH diagrams of the system Ru-O-H (1).  $\sum \mathrm{Ru} = 10^{-10},\,298.15\mathrm{K},\,10^5$  Pa.



 $\boxtimes$  105: Eh-pH diagrams of the system Ru-O-H (2).  $\sum \mathrm{Ru} = 10^{-10},\,298.15\mathrm{K},\,10^5$  Pa.

表 66: List of S species

FACT	SUPCRT	LLNL	JNC-TDB
$\begin{split} & S[2-], S_2[2-], \\ & S_3[2-], S_4[2-], \\ & S_5[2-], HS[-], \\ & H_2S(aq), SO_2(aq), \\ & SO_3[2-], SO_4[2-], \\ & S_2O_3[2-], S_2O_4[2-], \\ & S_2O_5[2-], S_2O_6[2-], \\ & S_2O_8[2-], S_3O_6[2-], \\ & S_4O_6[2-], S_5O_6[2-], \\ & HSO_3[-], HSO_4[-], \\ & HSO_3[-], HSO_4[-], \\ & HS_2O_4[-], H_2S_2O_4 \\ & (aq), S(s), S(s2), \\ & SO_3(s) \end{split}$	$\begin{array}{l} S_2[2-], \ S_3[2-], \\ S_4[2-], \ S_5[2-], \\ HS[-], \ H_2S(aq), \\ SO_2(aq), \ SO_3[2-], \\ SO_4[2-], \ S_2O_3[2-], \\ S_2O_4[2-], \ S_2O_5[2-], \\ S_2O_6[2-], \ S_2O_8[2-], \\ S_3O_6[2-], \ S_4O_6[2-], \\ S_5O_6[2-], \ HSO_3[-], \\ HSO_4[-], \ HS_2O_4[-], \\ HSO_4[-], \ HSO_5[-], \\ HS_2O_3(aq), \ S(sulfur) \end{array}$	$\begin{array}{l} \mathrm{SO}_4[2-], \ \mathrm{HS}[-], \\ \mathrm{H}_2\mathrm{S}(\mathrm{aq}), \\ \mathrm{H}_2\mathrm{SO}_4(\mathrm{aq}), \ \mathrm{HSO}_4[-], \\ \mathrm{S}[2-], \ \mathrm{S}_2[2-], \\ \mathrm{S}_3[2-], \ \mathrm{S}_4[2-], \\ \mathrm{S}_5[2-], \ \mathrm{S}_6[2-], \\ \mathbf{Sulfur(rhmb)}, \\ \mathrm{H}_2\mathrm{S}(\mathrm{g}), \ \mathrm{S}_2(\mathrm{g}) \end{array}$	$\begin{array}{l} SO_4[2-], \ S[2-], \\ SO_3[2-], \ S_2O_3[2-], \\ HS[-], \ H_2S(aq), \\ HSO_3[-], \ HS_2O_3[-], \\ H_2SO_3(aq), \ HSO_4[-], \\ \textbf{S(c)}, \ S(g), \ S_2(g), \\ SO_2(g), \ H_2S(g) \end{array}$

HATCHES		
$\begin{array}{c} SO_4[2-], \ HS[-], \\ S_2[2-], \ S_3[2-], \\ S_4[2-], \ S_5[2-], \\ SO_2(aq), \ H_2S(aq), \\ H_2S_2O_3(aq), \\ H_2S_2O_4(aq), \\ H_2SO_3(aq), \ HS_2O_3[-], \\ HS_2O_4[-], \ HSO_3[-], \\ HSO_4[-], \ S[2-], \\ S_2O_3[2-], \ S_2O_4[2-], \\ S_2O_5[2-], \ S_2O_6[2-], \\ S_2O_5[2-], \ S_3O_6[2-], \\ S_4O_6[2-], \ S_5O_6[2-], \\ \end{array}$		
SO ₃ [2-], S(c), Sulfur-rhmb		



 $\boxtimes$  106: Eh-pH diagrams of the system S-O-H (1).  $\sum S = 10^{-10},\,298.15 \mathrm{K},\,10^5$  Pa.



 $\boxtimes$  107: Eh-pH diagrams of the system S-O-H (2).  $\sum {\rm S}=10^{-10},\,298.15{\rm K},\,10^5$  Pa.

## 表 67: List of Sb species

FACT	SUPCRT	LLNL	JNC-TDB
<pre>SbO₂[-], HSbO₂(aq), SbO[+], Sb(s), SbO₂(s), Sb₂O₃(s), Sb₂O₃(s2), Sb₂O₄(s), Sb₂O₅(s)</pre>	SbO2[-], HSbO2(aq)		<pre>Sb(OH)₃(aq), Sb(OH)₅(aq) Sb(OH)₆[-], Sb₁₂(OH)₆₄(aq) Sb₁₂(OH)₆₅[5-], Sb₁₂(OH)₆₆[6-], Sb₁₂(OH)₆₆[6-], Sb₁₂(OH)₆₇[7-], Sb[3+], SbOH[2+], Sb(OH)₂[+] Sb(OH)₄[-], Sb₂(OH)₆(s) Sb(c), Valentinite, Sb₂O₅(s)</pre>

HATCHES		
<pre>Sb(OH)₃(aq), Sb[3+], Sb(OH)₂[+], Sb(OH)₄[-], <b>Sb₂O₃</b></pre>		



 $\boxtimes$  108: Eh-pH diagrams of the system Sb-O-H (1).  $\sum {\rm Sb} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.



 $\boxtimes$  109: Eh-pH diagrams of the system Sb-O-H (2).  $\sum {\rm Sb} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.

## 表 68: List of Sc species

FACT	SUPCRT	LLNL	JNC-TDB
Sc[3+], ScOH[2+], Sc(s), Sc(s2), Sc ₂ O ₃ (s), Sc(OH) ₃ (s)	Sc[3+], ScOH[2+], ScO[+], HScO ₂ (aq), ScO ₂ [-]		



 $\boxtimes$  110: Eh-pH diagrams of the system Sc-O-H.  $\sum {\rm Sc} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.

表 69: List of Se species

<u> </u>		1	
FACT	SUPCRT	LLNL	JNC-TDB
<pre>HSe[-], SeO₃[2-], SeO₄[2-], HSeO₃[-], H₂SeO₃(aq), HSeO₄[-], Se[2-], H₂Se(aq), Se(s), SeO₂(s), SeO₃(s), Se₂O₅(s)</pre>	HSe[-], SeO ₃ [2-], SeO ₄ [2-], HSeO ₃ [-], H ₂ SeO ₃ (aq), HSeO ₄ [-]	<pre>SeO₃[2-], Se[2-], SeO₄[2-], H₂Se(aq), H₂SeO₃(aq), HSe[-], HSeO₃[-], HSeO₄[-], Se(black), Se₂O₅(s), SeO₂(s), SeO₃(s)</pre>	<pre>SeO₄[2-], Se[2-], HSe[-], H₂Se(aq), SeO₃[2-], HSeO₃[-], H₂SeO₃(aq), HSeO₄[-], Se(s), SeO₂(s), Se₂O₅(s), SeO₃(s)</pre>

HATCHES		
<pre>SeO₄[2-], Se[2-], SeO₃[2-], H₂Se(aq), H₂SeO₃(aq), HSe[-], HSeO₃[-], HSeO₄[-], Se, Se₂O₅, SeO₂,</pre>		
SeO ₃		



 $\boxtimes$  111: Eh-pH diagrams of the system Se-O-H (1).  $\sum {\rm Se} = 10^{-10},$  298.15K,  $10^5$  Pa.



 $\boxtimes$  112: Eh-pH diagrams of the system Se-O-H (2).  $\sum \mathrm{Se} = 10^{-10},\,298.15\mathrm{K},\,10^5$  Pa.

表 70: List of Si species

FACT	SUPCRT	LLNL	JNC-TDB
H ₄ SiO ₄ (aq), HSi(OH) ₆ [-], H ₂ SiO ₃ (aq), Si(s), Si ₂ H ₅ (s), H ₂ SiO ₃ (s), H ₄ SiO ₄ (s), H ₂ Si ₂ O ₅ (s), H ₆ Si ₂ O ₇ (s), SiO ₂ (s), SiO ₂ (s2), SiO ₂ (s3), SiO ₂ (s4), SiO ₂ (s5), SiO ₂ (s6), SiO ₂ (s7), SiO ₂ (s8)	<pre>SiO₂(aq), HSiO₃[-], SiO₂(Amorpyous- silica), SiO₂(Chalcedony), SiO₂(Cristobalite, alpha), SiO₂(Cristobalite, beta), SiO₂(Coesite), SiO₂(Cristobalite), SiO₂(Quartz)</pre>	<pre>SiO₂(aq), H₂SiO₄[2- ], H₃SiO₄[-], H₄(H₂SiO₄)₄[4-], H₆(H₂SiO₄)₄[2-], Amrph_silica, Chalcedony, Cristobalite, Quartz, Tridymite</pre>	H ₄ SiO ₄ (aq), SiO ₂ (OH)[2-], SiO(OH) ₃ [-], Si ₂ O ₃ (OH) ₄ [2-], Si ₂ O ₂ (OH) ₅ [-], Si ₃ O ₆ (OH) ₃ [3-], Si ₃ O ₅ (OH) ₅ [3-], Si ₄ O ₈ (OH) ₄ [4-], Si ₄ O ₇ (OH) ₅ [3-], SiO ₂ (s,Sil_gel), H2SiO3(s, Sil_glass), Chalcedony, Quartz, HSiO ₂ (s, Silica_H), Sili(am), Si(c), SiO ₂ (qua), Si(g)

HATCHES		
H ₄ SiO ₄ (aq), H ₂ SiO ₄ [2-], H ₃ Si ₃ O ₉ [3-], H ₃ SiO ₄ [-], H ₄ Si ₂ O ₇ [2-], H ₄ Si ₄ O ₁₂ [4-], H ₅ Si ₂ O ₇ [-], H ₅ Si ₃ O ₁₀ [3-], H ₅ Si ₄ O ₁₂ [3-], <b>Amrph.silica</b> ,		
Chalcedony, Cristobalite, Crist.beta, Quartz		

<u>Remarks</u> JNC-TDB: SiO2(qua) is not Quartz in the database file, its log10K's are different from those of Quartz, but detailed description of SiO2(qua) is not given.



 $\boxtimes$  113: Eh-pH diagrams of the system Si-O-H (1).  $\sum {\rm Si}=10^{-10},$  298.15K,  $10^5$  Pa.



 $\boxtimes$  114: Eh-pH diagrams of the system Si-O-H (2).  $\sum {\rm Si}=10^{-10},\,298.15{\rm K},\,10^5$  Pa.

## 表 71: List of Sm species

		=	
FACT	SUPCRT	LLNL	JNC-TDB
$Sm[2+], Sm[3+], Sm(s), Sm(s), Sm(s2), Sm_2O_3(s), Sm_2O_3(s2)$	<pre>Sm[2+], Sm[3+], Sm[4+], SmOH[2+], SmO[+], SmO₂H(aq), SmO₂[-]</pre>		<pre>Sm[3+], SmOH[2+], Sm(OH)₂[+], Sm(OH)₃(aq), Sm(OH)₃(am), Sm(OH)₃(c)</pre>

HATCHES		
<pre>Sm[3+], Sm(OH)₂[+], Sm(OH)₃(aq), SmOH[2+], Sm(OH)₃</pre>		



 $\boxtimes$  115: Eh-pH diagrams of the system Sm-O-H (1).  $\sum {\rm Sm} = 10^{-10},$  298.15K,  $10^5$  Pa.



 $\boxtimes$  116: Eh-pH diagrams of the system Sm-O-H (2).  $\sum \mathrm{Sm} = 10^{-10},\,298.15\mathrm{K},\,10^5$  Pa.

表 72: List of Sn species

FACT	SUPCRT	LLNL	JNC-TDB
<pre>Sn[2+], SnOH[+], SnO(OH)[+], Sn(s2), Sn(s), SnO(s), SnO₂(s)</pre>	<pre>Sn[2+], SnOH[+], SnO(aq), HSnO₂[-], Sn(Native tin), SnO(Romarchite), SnO₂(Cassiterite)</pre>	<pre>Sn[4+], Sn[2+], Sn(OH)₂(aq), Sn(OH)₂[2+], Sn(OH)₃[+] Sn(OH)₃[-], Sn(OH)₄(aq), SnOH[+], SnOH[3+], Sn(OH)₂(s), SnO(s), SnO₂(s)</pre>	<pre>Sn(OH)₄(aq), SnOH[+], Sn(OH)₂(aq), Sn(OH)₃[-], Sn₃(OH)₄[2+], Sn[2+] Sn(OH)₅[-], Sn(OH)₆[-], Sn[4+], Sn(C), Sn(OH)₂(s), SnO(C), SnO₂(am) SnO₂(cassiterite)</pre>

HATCHES		
Sn[2+], Sn[4+],		
HSnO2[-],		
Sn(OH)[+],		
$Sn(OH)_2(aq)$ ,		
Sn(OH) ₂ [2+],		
$Sn(OH)_{3}[+],$		
Sn(OH)₃[−],		
$Sn(OH)_4(aq)$ ,		
Sn(OH)₅[-],		
Sn(OH) ₆ [2-],		
$Sn_2(OH)_2[2+]$ ,		
$Sn_3(OH)_4[2+],$		
SnOH[3+],		
$H_2Sn(OH)_6$ , $Sn(OH)_2$ ,		
$Sn(OH)_4$ , $Sn(w)$ ,		
$snO$ , $snO_2(am)$ ,		
$SnO_2(c)$ , $SnO_2(pptd)$		



 $\boxtimes$  117: Eh-pH diagrams of the system Sn-O-H (1).  $\sum \mathrm{Sn} = 10^{-10},\,298.15\mathrm{K},\,10^5$  Pa.



 $\boxtimes$  118: Eh-pH diagrams of the system Sn-O-H (2).  $\sum \mathrm{Sn} = 10^{-10},$  298.15K,  $10^5$  Pa.

表 73: List of Sr species

FACT	SUPCRT	LLNL	JNC-TDB
<pre>Sr[2+], SrOH[+], Sr(s), Sr(s2), SrH₂(s), SrO(s), SrO₂(s), Sr(OH)₂(s)</pre>	Sr[2+], SrOH[+]	Sr[2+], SrOH[+], Sr(OH) ₂ (c), SrO(c)	<pre>Sr[2+], SrOH[+], Sr(OH)₂(aq), Sr(OH)₂(s), Sr(C), SrO(C)</pre>

HATCHES		
<pre>Sr[2+], Sr(OH)₂(aq), SrOH[+], Sr(OH)₂, SrO(c)</pre>		



 $\boxtimes$  119: Eh-pH diagrams of the system Sr-O-H (1).  $\sum {\rm Sr} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.



 $\boxtimes$  120: Eh-pH diagrams of the system Sr-O-H (2).  $\sum \mathrm{Sr} = 10^{-10},\,298.15\mathrm{K},\,10^5$  Pa.

## 表 74: List of Tb species

FACT	SUPCRT	LLNL	JNC-TDB
Tb[3+], Tb(s), Tb(s2), TbO ₂ (s), Tb ₂ O ₃ (s), Tb ₆ O ₁₁ (s), Tb ₇ O ₁₂ (s)	Tb[3+], Tb[4+], Tb[2+], TbOH[2+], TbO[+], TbO ₂ H(aq), TbO ₂ [-]		


 $\boxtimes$  121: Eh-pH diagrams of the system Tb-O-H.  $\sum {\rm Tb} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.

FACT	SUPCRT	LLNL	JNC-TDB
Tc(s), TcO ₂ (s), TcO 3(s), Tc ₂ O ₇ (s)	TcO4[-]	TcO ₄ [-], Tc[3+], TcO[2+], TcO ₄ [2-], TcO ₄ [3-], TcO(OH) ₂ (aq), TcOOH [+], [TcO(OH) ₂ ] ₂ (a q), HTCO ₄ (s), Tc(OH) ₂ (s) Tc(OH) ₃ (s), T c(c) Tc ₂ O ₇ (s), Tc ₃ O ₄ (s) Tc ₄ O ₇ (s), TcO ₂ *2H ₂ O (am) TcO ₃ (s), TcOH(s)	TcO[2+], TcO ₄ [2-], TcO ₄ [-], TcO(OH)[+], TcO(OH) ₂ (aq), TcO(O H) ₃ [-], Tc(c), TcO ₂ (c), TcO ₂₁₆ H ₂ (s), Tc ₂ O ₇ (c), Tc ₂ O ₇ H ₂ O(s), Tc(g), TcO(g), Tc ₂ O 7(g)

表 75: List of Tc species

HATCHES	OECD-NEA	OECD-NEA update	
$\begin{array}{c} TcO[2+], \ Tc[3+], \ T\\ cO_4[-], \ TcO(OH)[+], \\ TcO(OH)_2(aq), \ TcO(O\\ H)_3[-], \ HTCO_4(s), \ T\\ c(c), \ Tc(OH)_2, \ Tc(O\\ H)_3, \ Tc_2O_7, \ Tc_2O_7 H_2O, \\ Tc_3O_4, \ Tc_4O_7, \ TcO_2am, \\ TcO_{21}*6H_2O, \ TcO_3, \ T\\ cOH \end{array}$	$\begin{array}{l} TcO_4[-], TcO_4[2-], \\ TcO_4[3-], TcO(OH) \\ [+], TcO(OH)_2(aq), \\ TcO(OH)_3[-], Tc(c), \\ TcO_2(c), Tc_2O_7(c), T \\ cO_2*1.6H_2O(s), Tc_2O_7 \\ H_2O(s) \end{array}$	$ \begin{array}{l} TcO_4[-], TcO[2+], T\\ cO_4[2-], TcO(OH)[+], \\ TcO(OH)_2(aq), TcO\\ (OH)_3[-], Tc(cr), T\\ cO_2(cr), Tc_2O_7(cr), \\ TcO_2*1.6H_2O(s), Tc_2O\\ {}_7H_2O(s) \end{array} $	

 $\frac{Remarks}{JNC-TDB}$ : Given reaction of  $TcO_{216}H_2$  in the database file suggests its formula as  $TcO_{3.6}H_{3.2}.$ 



 $\boxtimes$  122: Eh-pH diagrams of the system Tc-O-H (1).  $\sum {\rm Tc} = 10^{-10},$  298.15K,  $10^5$  Pa.



 $\boxtimes$  123: Eh-pH diagrams of the system Tc-O-H (2).  $\sum {\rm Tc} = 10^{-10},$  298.15K,  $10^5$  Pa.

## 表 76: List of Te species

FACT	SUPCRT	LLNL	JNC-TDB
$TeO_{3}[2-],$ $Te(OH)_{3}[+], Te(s),$ $TeO_{2}(s), H_{2}TeO_{4}(s)$			



 $\boxtimes$  124: Eh-pH diagrams of the system Te-O-H.  $\sum {\rm Te} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.

表 77: List of Th species

		-	
FACT	SUPCRT	LLNL	JNC-TDB
Th[4+], Th(s), Th(s2), ThH ₂ (s), ThO ₂ (s)	Th[4+]	Th[4+], Th(OH) ₂ [2+], Th(OH) ₃ [+], Th(OH) ₄ (aq), Th ₂ (OH) ₂ [6+], Th ₄ (OH) ₈ [8+], Th ₆ (OH) ₁₅ [9+], ThOH[3+] Th(OH) ₄ (c), ThO ₂ (s), Thorianite	Th[4+], Th(OH)4(aq), <b>ThO2(am), ThO2(c)</b>

HATCHES		
Th[4+], Th(OH)[3+], Th(OH) ₂ [2+], Th(OH) ₃ [+], Th(OH) ₄ (aq), Th ₂ (OH) ₂ [6+],		
$[Th_4(OH)_8[8+],$ $[Th(OH)_4, ThO_2, ThO_2(c)]$		



 $\boxtimes$  125: Eh-pH diagrams of the system Th-O-H (1).  $\sum {\rm Th} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.



 $\boxtimes$  126: Eh-pH diagrams of the system Th-O-H (2).  $\sum \mathrm{Th} = 10^{-10},\,298.15\mathrm{K},\,10^5$  Pa.

表 78: List of Tl species

FACT	SUPCRT	LLNL	JNC-TDB
Tl[+], Tl[3+], TlOH(aq), TlOH[2+], Tl(OH) ₂ [+], Tl(s), Tl(s2), Tl ₂ O(s), Tl ₂ O ₃ (s), Tl ₂ O ₄ (s), TlOH(s), Tl(OH) ₃ (s)	Tl[+], Tl[3+], TlOH(aq), TlOH[2+], TlO[+], HTlO ₂ (aq), TlO ₂ [-]		T1[+]



 $\boxtimes$  127: Eh-pH diagrams of the system Tl-O-H.  $\sum {\rm Tl}=10^{-10},\,298.15{\rm K},\,10^5$  Pa.

## 表 79: List of Tm species

FACT	SUPCRT	LLNL	JNC-TDB
$\begin{array}{l} {\rm Tm}[3+], \ {\rm Tm}(s), \\ {\rm Tm}_2 O_3(s), \ {\rm Tm}_2 O_3(s2), \\ {\rm Tm}_2 O_3(s3) \end{array}$	Tm[3+], Tm[4+], Tm[2+], TmOH[2+], TmO[+], TmO ₂ H(aq), TmO ₂ [-]		



 $\boxtimes$  128: Eh-pH diagrams of the system Tm-O-H.  $\sum {\rm Tm} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.

表 80: List of U species

FACT	SUPCRT	LLNL	JNC-TDB
$ \begin{array}{c} U[3+], \ U[4+], \ UO_2 \\ [+], \ UO_2[2+], \ UOH[3 \\ +], \ HO_3U[+], \ H_3O_3U \\ [+], \ H_5O_5U[-], \ H_2O_2U \\ [2+], \ H_2O_6U_2[2+], \ H_5 \\ O_{11}U_3[+], \ H_7O_{13}U_3[-], \\ U(s), \ U(s2), \ U(s3), \\ UH_3(s), \ UO_3(s), \ U_3O_8 \\ (s), \ U_4O_9(s), \ UO_3(H_2 \\ O)(s), \ UO_3(H_2O)_2(s), \\ UO_2(s) \end{array} $	<pre>U[3+], U[4+], UO₂ [+], UO₂[2+], UOH[3 +], UO₂OH[+], HUO₂ [+], HUO₃[-], UOH[2 +], UO[+], HUO₂(aq), U O₂OH(aq), UO₃[-], U O₃(aq), HUO₄[-], UO₄ [2-], UO₂(Uranitite)</pre>	<pre>U[4+], U[3+], UO₂[+] UO₂[2+], (UO₂)₂(OH)₂[2+], (UO₂)₃(OH)₄[2+], (UO₂)₃(OH)₅[+], (UO₂)₃(OH)₇[-], (UO₂)₄ (OH)₇[+], U(OH)₂[2 +], U(OH)₄(aq), U (OH)₅[-], U₆(OH)₁₅[9 +], UO₂OH[+], UOH[3 +], Gummite, Schoep ite, U(c,alph), U₃O ₈(c,alph), U₄O₉(c), UO₂(OH)₂(c,bet), UO₂ (am) UO₃(c, gamma), Uraninite</pre>	<pre>U[4+], U[3+], UO2 [+], UO2(OH)3(aq), UO2(OH)4(aq), (UO2)2 OH(aq), (UO2)2(OH)2 [2+], (UO2)3(OH)4[2 +], (UO2)3(OH)5[+], (UO2)3(OH)7[-], (UO2) 4(OH)7[+], UO2OH[+], UO2(OH)2(aq), UOH[3 +], U(OH)4(aq), UO3(beta), UO3(beta), UO3(gamma), UO3.0.9H, UO3.2H2O, UO2(c) UO2.25(b), UO2.25(c), UO2.3333, UO2.6667, UH3 (beta), U(g), UO(g) UO2(g), UO3(g)</pre>

HATCHES	OECD-NEA	OECD-NEA update	
U[4+], UO ₂ [+], UO ₂ [2+], U(OH)[3+], U (OH) ₄ (aq), U ₆ (OH) ₁₅ [9+], U1(OH) ₂ (aq), U1(OH) ₃ [-], U1(OH) ₄ [2-], U1 ₂ (OH) ₂ [2+], U1 ₂ OH[3+], U1 ₃ (OH) ₄ [2+], U1 ₃ (OH) ₅ [+], U1 ₃ (OH) ₇ [-], U1 ₄ (OH) 7[+], U1OH[+], Gumm ite, Schoepite, U (c,alph), U ₃ O ₈ , U ₄ O ₉ , UO ₂ (am), UO ₂ (c), U O ₂ (OH) ₂ , UO ₂ OH, UO ₃ , UO ₃ *2H ₂ O, Uraninite	U[4+], U[3+], UO ₂ [+], UO ₂ [2+], UOH[3 +], UO ₂ OH[+], U(OH) 4(aq), UO ₂ (OH) ₃ [-], UO ₂ (OH) ₄ [2-], (UO ₂ ) ₂ OH[3+], (UO ₂ ) ₂ (OH) ₄ [2 +], (UO ₂ ) ₃ (OH) ₄ [2 +], (UO ₂ ) ₃ (OH) ₅ [+], (UO ₂ ) ₃ (OH) ₇ [-], (UO 2) ₄ (OH) ₇ [+], U(c), UO ₂ (c), UO _{2.25} (c), UO 2.25(beta), UO _{2.3333} (be ta), UO _{2.6667} (c), UO ₃ (alpha), UO ₃ (beta), UO ₃ (gamma), UH ₃ (bet	U[4+], U[3+], UO2 [+], UO ₂ [2+], UOH[3 +], UO ₂ OH[+], UO ₂ (0 H) ₂ (aq), U(OH) ₄ (aq), UO ₂ (OH) ₃ [-], UO ₂ (OH) 4[2-], (UO ₂ ) ₂ OH[3+], (UO ₂ ) ₂ (OH) ₂ [2+], (UO 2) ₃ (OH) ₄ [2+], (UO ₂ ) ₃ (OH) 7[-], (UO ₂ ) ₄ (OH) ₇ [+], U(cr), UO ₂ (cr), UO 2.25(beta), UO _{2.25} (cr), UO _{2.3333} (beta), UO _{2.66} 67(cr), UO ₃ (alpha), UO ₃ (beta), UO ₃ (gamm	
	a), $UO_3 * 0.9H_2O(alpha)$ a), $UO_2(OH)_2(beta)$ , $UO_3 * 2H_2O(c)$	a), $UH_3(Deta)$ , $UO_3^{*}$ 0.9H ₂ O(alpa), $UO_2(OH)_2(Deta)$ , $UO_3^{*}2H_2O(Cr)$	

<u>Rmarks</u> HATCHES: Ul stands for UO2. JNC-TDB: Given reaction of  $UO_{3.0.9}H$  in the database file suggests its formula as UO₃H.

Given reaction of  $UO_{3.2}H_2O$  in the database file suggests its formula as  $UO_3*2H_2O$ .  $UO_{2.25}(b)$  may be  $UO_{2.25}(beta)$ ?



 $\boxtimes$  129: Eh-pH diagrams of the system U-O-H (1).  $\sum {\rm U}=10^{-10},$  298.15K,  $10^5$  Pa.



 $\boxtimes$  130: Eh-pH diagrams of the system U-O-H (2).  $\sum {\rm U}=10^{-10},\,298.15{\rm K},\,10^5$  Pa.

表 81: List of V species

FACT	SUPCRT	LLNL	JNC-TDB
$\begin{array}{c} VO[2+], VO_{2}[+], \\ VO_{4}[3-], HVO_{4}[2-], \\ VO_{3}[-], VO_{4}[-], \\ V_{2}O_{7}[4-], \\ VOH_{2}O_{2}[3+], \\ HVO_{4}(aq), H_{2}VO_{4}[+], \\ HV_{2}O_{7}[3-], H_{3}V_{2}O_{7}[-], \\ HV_{10}O_{28}[5-], \\ H_{2}V_{10}O_{28}[4-], V(s), \\ VO(s), VO_{2}(s), \\ VO_{2}(s), V_{2}O_{3}(s), \\ VO_{2}(s2), V_{2}O_{3}(s), \\ V_{2}O_{4}(s), V_{3}O_{5}(s), \\ V_{4}O_{7}(s) \end{array}$	VO[2+], VO ₂ [+], VO ₄ [3-], HVO ₄ [2-], V[3+], V[2+], H ₃ VO ₄ (aq), H ₂ VO ₄ [-], VO[+], VOH[+], VOH[2+], VOOH[+]	V[3+], VO[2+], VO ₄ [3-], (VO) ₂ (OH) ₂ [2+], (VO) ₂ (OH) ₅ [-], V(OH)2[+], V ₂ (OH) ₂ [4+], VO(OH) ₃ (aq), VO ₂ (OH) ₂ [-], VO ₂ [+], VO ₃ OH[2-], VOH[2+], VOOH[+], V ₂ O ₃ (c), V ₂ O ₄ (c), V ₂ O ₅ (c), V ₃ O ₅ (c), V ₄ O ₇ (c)	

HATCHES		
VO[2+], V[3+], VO ₂ [+], VO ₄ [3-], V ₂ (OH) ₂ [4+], VO(OH)[+], VO(OH) ₃ (aq), VO) ₂ (OH) ₂ [2+], VO ₂ (OH) ₂ [2-], VO ₃ (OH)[2-], VOH[2+], V(OH) ₃ ,		
$V_2O_3(c)$ , $V_2O_4(c)$ , $V_2O_5(c)$ , $V_3O_5(c)$ ,		
$V_4O_7(c)$ , $VO(OH)_2$		



 $\boxtimes$  131: Eh-pH diagrams of the system V-O-H (1).  $\sum {\rm V} = 10^{-10},\,298.15{\rm K},\,10^5$  Pa.



⊠ 132: Eh-pH diagrams of the system V-O-H (2).  $\sum V = 10^{-10}$ , 298.15K, 10⁵ Pa.

## 表 82: List of W species

FACT	SUPCRT	LLNL	JNC-TDB
$WO_4[2-], W(s), WO_2(s), WO_3(s), WO_3(s2), O_2W(OH)_2(s)$	WO ₄ [2-], HWO ₄ [-]		



 $\boxtimes$  133: Eh-pH diagrams of the system W-O-H.  $\sum W = 10^{-10},\,298.15 {\rm K},\,10^5$  Pa.

表 83: List of Y species

FACT	SUPCRT	LLNL	JNC-TDB
$\begin{array}{l} & Y[3+], YOH[2+], \\ & Y_2(OH)_2[4+], Y(s), \\ & Y(s2), YH_2(s), \\ & YH_3(s), Y_2O_3(s), \\ & Y_2O_3(s2), YO_3H_3(s) \end{array}$	Y[3+], YOH[2+], YO[+], HYO ₂ (aq), YO ₂ [-]		



 $\boxtimes$  134: Eh-pH diagrams of the system Y-O-H.  $\sum {\rm Y} = 10^{-10},$  298.15K,  $10^5$  Pa.

## 表 84: List of Yb species

FACT	SUPCRT	LLNL	JNC-TDB
Yb[2+], Yb[3+], Yb(s), Yb(s2), Yb ₂ O ₃ (s), Yb ₂ O ₃ (s2), Yb ₂ O ₃ (s3)	Yb[2+], Yb[3+], Yb[4+], YbOH[2+], YbO[+], YbO ₂ H(aq), YbO ₂ [-]		



 $\boxtimes$  135: Eh-pH diagrams of the system Yb-O-H.  $\sum {\rm Yb}=10^{-10},\,298.15{\rm K},\,10^5$  Pa.

## 表 85: List of Zn species

FACT	SUPCRT	LLNL	JNC-TDB
<pre>Zn[2+], ZnO₂[2-], ZnOH[+], HZnO₂[-], Zn(OH)₂(aq), ZnO(s), Zn(s), Zn(OH)₂(s), Zn(OH)₂(s2), Zn(OH)₂(s3)</pre>	<pre>Zn[2+], ZnO₂[2-], ZnOH[+], HZnO₂[-], ZnO(aq), ZnO(Zincite)</pre>	Zn[2+]	

HATCHES		
Zn[2+], Zn(OH) ₂ (aq), Zn(OH) ₃ [-], Zn(OH) ₄ [2-], Zn ₂ (OH) ₆ [2-], Zn ₂ OH[3+], ZnO ₂ [2-], ZnOH[+], <b>Zincite,</b> <b>Zn(OH)₂</b>		



 $\boxtimes$  136: Eh-pH diagrams of the system Zn-O-H (1).  $\sum {\rm Zn}=10^{-10},$  298.15K,  $10^5$  Pa.



 $\boxtimes$  137: Eh-pH diagrams of the system Zn-O-H (2).  $\sum {\rm Zn}=10^{-10},$  298.15K,  $10^5$  Pa.

# 表 86: List of Zr species

FACT	SUPCRT	LLNL	JNC-TDB
ZrO[2+], Zr(s), Zr(s2), ZrH ₂ (s), ZrO ₂ (s), ZrO ₂ (s2), ZrO ₂ (s3)	ZrO[2+], Zr[4+], ZrOH[3+], HZrO ₂ [+], ZrO ₂ (aq), HZrO ₃ [-]		<pre>Zr(OH)₄(aq), Zr(OH)₅[-], <b>ZrO₂(am)</b></pre>

HATCHES		
Zr[4+],		
Zr(OH)[3+],		
$Zr(OH)_{4}(aq),$ $Zr(OH)_{5}[-],$		
$Zr_{3}(OH)_{4}[8+],$		
$Zr_4(OH)_8[8+]$ ,		
$ZrO_2(am)$ , $ZrO_2(c)$		



 $\boxtimes$  138: Eh-pH diagrams of the system Zr-O-H (1).  $\sum {\rm Zr} = 10^{-10},$  298.15K,  $10^5$  Pa.


 $\boxtimes$  139: Eh-pH diagrams of the system Zr-O-H (2).  $\sum {\rm Zr} = 10^{-10},$  298.15K,  $10^5$  Pa.