

5万分の1地質図幅「鳥羽」の 概要紹介と地質構造の解説

内野隆之¹⁾

1. はじめに

2017 年 8 月末に、5 万分の1 地質図幅「鳥羽」(内野 ほか、2017)(以降、鳥羽図幅と呼ぶ)が刊行された(第 1 図). 三重県の鳥羽市,伊勢市東部,志摩市北中部を含む 本図幅地域は、北から三波川帯,秩父帯北帯,黒瀬川帯, 秩父帯南帯,四万十帯という西南日本外帯の基盤をなす地 質帯を一通り揃えており、本図幅の作製は、日本列島形成 史(中古生代の島弧 – 海溝系テクトニクス)を解明してい く上で、また紀伊半島及びその周辺の外帯における地質基 準を設定・提示する上で重要である.更に、今後 30 年以 内に高い確率で起こるとされる東南海地震に備え、防災 に資する地質基盤情報を提供し得る点でも重要である. 特に、かつて秩父帯中帯とも呼ばれた黒瀬川帯は、ジュ ラ紀付加体を主体とする秩父帯中に、蛇紋岩・(半)深成 岩・角閃岩・古生代浅海層といった、付加体とは異質な岩 石を産することから,そのテクトニクスの解明に古くから 注目されてきた.しかし,内帯起源のクリッペ説(磯崎・ 板谷,1991)や大陸衝突・横ずれ複合説(Kato and Saka, 2003)など幾つかモデルは提示されているものの,未だ 決着に至っていない本邦地質学的第1級の難問が横たわっ ている.このようなことから2011年度より,地質情報研 究部門の内野隆之・中江 訓・中島 礼を著者として,本 図幅作製が開始され,5年をかけて完成に至った.

本稿では、本図幅の概要のほか、図幅作製の過程で得ら れた学術的成果を紹介する.特に地質構造については新た な図を用い、より分かり易く解説を行う.

2. 地質概要

三重県志摩半島に位置する鳥羽図幅地域には,北から三 波川帯,秩父帯北帯,黒瀬川帯,秩父帯南帯,四万十帯に

第1図 鳥羽図幅の地質図と説明書.

1) 産総研地質調査総合センター 地質情報研究部門

キーワード:5万分の1地質図幅,三重県,鳥羽,三波川帯,秩父帯北帯,黒瀬川帯, 秩父帯南帯,四万十帯,地質構造 属する中古生界と、全域に第四系が分布する.三波川帯に は泥質片岩を主体とする宮川コンプレックスと苦鉄質岩を 主体とする鷲嶺火成岩類(御荷鉾緑色岩類に相当)が分布 する.秩父帯北帯には、本地域のジュラ紀付加体群として 一括される五十鈴層群のうち、北から中期ジュラ紀の河内 コンプレックス,前期ジュラ紀の逢坂峠コンプレックス, 中期ジュラ紀の首木コンプレックスが分布する. 黒瀬川帯 には,前~後期ジュラ紀の青峰コンプレックス(五十鈴層 群の一要素)と中期ジュラ紀~前期白亜紀浅海層の松尾層 が広く分布し、その他、約200 Maを示す結晶片岩から なる砥谷コンプレックス,蛇紋岩・(半)深成岩・角閃岩 などからなる畑茶屋超苦鉄質岩類、前~中期デボン紀珪長 質凝灰岩の入長層,後期ペルム紀浅海層の湯舟層など(蛇 紋岩以降はまとめて黒瀬川古生界と一括される)が散在す る.秩父帯南帯には、中~後期ジュラ紀の築地コンプレッ クス(五十鈴層群の一要素)と中期ジュラ紀~前期白亜紀 浅海層の今浦層(鳥巣層群に相当)が分布する.四万十帯 には、後期白亜紀付加体である相差コンプレックス、国崎 コンプレックス、石鏡コンプレックスが分布し、それらは 的矢層群と一括される.第四系としては.下部更新統の先 志摩層と中期更新世以降の段丘堆積物・表層堆積物が上記 基盤岩類を覆う.

本地域に分布する各地質系統の概要について下記すると ともに、地質概略図及び地質総括図を、それぞれ第2図 及び第3図に示す.

黒瀬川古生界

主に五ヶ所 – 安楽島構造線以南で青峰コンプレックス分 布域(黒瀬川帯)に産するが,同構造線北側の白木コンプ レックス分布域(秩父帯北帯)にも畑茶屋超苦鉄質岩類の 蛇紋岩及び砥谷コンプレックスの泥質片岩が僅かに産す る.

畑茶屋超苦鉄質岩類は,超苦鉄質岩,(半)深成岩及び 変成岩からなる.超苦鉄質岩はそのほとんどが蛇紋岩であ り,僅かに単斜輝石岩が認められる.蛇紋岩は北東 – 南西 方向の五ヶ所 – 安楽島構造線及びその派生断層に沿って 南北幅 500 m 以下で併入する.単斜輝石岩,深成岩及び 変成岩は蛇紋岩中に短径数 m 程度の岩塊として産する. (半)深成岩のそのほとんどがドレライトであり,僅かに 閃緑岩が認められる.変成岩には,角閃岩と藍閃石片岩 が少量認められる.久長層は,鳥羽市の久長海岸のみで 分布が確認され,前~中期デボン紀放散虫化石を含む(梅

第2図 鳥羽図幅地域の地質体区分図.

第3図 鳥羽図幅地域の地質総括図. C.: コンプレックス.

田・山際, 1997) 淡緑色の珪長質凝灰岩からなる. 湯舟 層は, 志摩市磯部町の神路ダム南東の湯舟川でのみ分布が 確認され,後期ペルム紀を示す放散虫化石を含む泥岩及び 砂岩からなる(内野・鈴木, 2016). 砥谷コンプレックス は,200 Ma 前後の白雲母 K-Ar 年代を示す泥質片岩(磯崎 ほか,1992) や苦鉄質片岩などからなり,蛇紋岩を密接 に伴うことが多い.また,付加年代については後期ペルム 紀と推定される.

五十鈴層群

秩父帯北帯には、北から河内コンプレックス、逢坂峠コ ンプレックス、白木コンプレックスが分布するが、胴切断 層の五知 – 朝熊ヶ岳断層以東では逢坂峠コンプレックスが 欠如する(第2図). 五知 – 朝熊ヶ岳断層以西では、逢坂 峠コンプレックスが河内及び白木コンプレックスの上位に クリッペとして累重していると考えられる(後述). 北帯 に分布する各コンプレックスは玄武岩,石灰岩,チャート, 泥岩,砂岩,砂岩泥岩互層及び混在岩からなるが,河内コ ンプレックスでは準片〜片岩が産すること,逢坂峠コンプ レックスでは石灰岩が卓越し全体に低角構造を示すこと, 白木コンプレックスでは赤紫色玄武岩と整然相を示す砕屑 岩が比較的多く産することといった特徴の差異が認められ る.

黒瀬川帯には青峰コンプレックスが,秩父帯南帯には築 地コンプレックスが分布する.青峰コンプレックス及び築 地コンプレックスは,主にチャート,泥岩,砂岩,砂岩泥 岩互層及び混在岩(第4図a)からなり,僅かな玄武岩及び 石灰岩を伴う.青峰コンプレックスの混在岩は,一部で含 石灰岩玄武岩や緑色チャートの岩塊を特徴的に含む.築地 コンプレックスの砂岩やチャートの岩体は,側方に比較的 連続性良く分布する.

五十鈴層群の各コンプレックスの付加年代は、泥岩から 得られた放散虫化石年代あるいは砂岩から得られた砕屑 性ジルコンの U-Pb 年代に基づき, 逢坂峠コンプレックス では前期ジュラ紀(都築・八尾, 2006; 内野, 2017a), 河内コンプレックスと白木コンプレックスでは中期ジュ ラ紀(都築・八尾, 2006;内野, 2017a;内野・鈴木, 2017), 青峰コンプレックスでは前~後期ジュラ紀 (Ohba and Adachi, 1995; 梅田, 1998), 築地コンプレック スでは中~後期ジュラ紀(坂・手塚, 1988; Ohba and Adachi, 1995; 内野・石田, 2017) と判断される. ち なみに、河内コンプレックスの珪質準片岩の白雲母から、 99.4 ± 2.1 Maの K-Ar 年代が得られている. なお、青峰 コンプレックスには、かつて磯崎ほか(1992)や杉山ほか (1993)により後期ペルム紀付加体と解釈された地層(鳥 羽層群: Yamagiwa and Saka, 1972) も含まれており、本 地層の年代については議論の余地がある.

今浦層及び松尾層

今浦層は秩父帯南帯に属し,ジュラ紀付加体の築地コン プレックスの北側に狭長に分布する.砕屑岩を主体とし, 石灰岩を伴う.この石灰岩は,鳥巣式石灰岩と呼ばれ,暗 灰色を呈し,泥岩中にレンズ状岩塊として産する.石英な どの陸源性砕屑物や有機物を含み,ハンマーで叩くと,ほ のかな油臭がすることが特徴である.六射珊瑚や床板珊瑚 などの化石を多産する(例えば,山際ほか,1979).砕屑 岩は,泥岩,砂岩,砂岩泥岩互層を主体とし,一般に整然 相を示す.泥岩の風化部分は細かく割れる特徴を示す.泥 岩からは植物,ウニ,二枚貝,巻貝,アンモナイトなどの 化石のほか(山際ほか,1979;佐藤ほか,2005),中期 ジュラ紀中頃~前期白亜紀前半の放散虫化石(坂・手塚, 1988;内野・石田,2017)が見出されている.

松尾層は, 青峰コンプレックス分布域(黒瀬川帯)に数 列にわたり分布する.砂岩, 泥岩,砂岩泥岩互層を主体と し,少量の礫岩を伴う.断層の周辺を除いて,一般に整然 相を示す(第4図b).砂岩の一部には,白色を呈するア ルコース質なものが特徴的に認められるほか,しばしばト ラフ型斜交層理などの堆積構造が認められる.泥岩の風化 部分は細かく割れる特徴を示す.礫岩は,亜円~円礫を含 む中~大礫岩が特徴的に認められる.礫種は珪長質火山岩, 花崗岩類,玄武岩,チャート,砕屑岩のほか,僅かながら 超苦鉄質岩も認められる.泥岩からは,多くの貝化石(例 えば,山際,1954)のほか,前期白亜紀前半(一部で中期 ジュラ紀中頃)の放散虫化石が見出されている(杉山ほか, 1993;川端,2001;太田ほか,2013).また,鳥羽市の 遊蝶海岸からは"鳥羽竜"と呼ばれる恐竜(ティタノサウ ルス上科)の骨化石が発見されている(亀井,1997;冨田 ほか,2001).

的矢層群

本地域の的矢層群は、下位より、相差コンプレックス、 国崎コンプレックス,石鏡コンプレックスに区分される. 相差コンプレックスは、シルト質泥岩ならびに砂岩泥岩互 層を挟有する砂岩から構成され、その層厚は本地域内に おいては少なくとも 3,000 m 以上に達する. 他のコンプ レックスと比較して、砂岩が著しく卓越することが特徴で ある. 国崎コンプレックスと石鏡コンプレックスは共に、 チャートを伴う多色珪質泥岩を基底にその上位にシルト質 泥岩ならびに砂岩泥岩互層を挟有する砂岩からなる. 国崎 コンプレックスの層厚は 2,200 ~ 2,700 m 程度, 石鏡コ ンプレックスの層厚は最大で約 1,500 m である. 国崎コ ンプレックスと石鏡コンプレックスにおける岩相的差異は 顕著でないが、石鏡コンプレックスではシルト質泥岩の層 厚がより厚く、側方への連続性がより高い傾向にある. こ れらのコンプレックスは、北東 - 南西性の走向と北西に傾 斜する同斜構造をなしており、それぞれの境界は断層関係 であると推定される.

付加年代は、泥岩から得られた放散虫化石に基づき、相 差コンプレックスはカンパニアン期中頃~後半、国崎コン プレックスはサントニアン期中頃~カンパニアン期中頃、 また石鏡コンプレックスはコニアシアン期初頭と判断され る (Nakae and Kurihara, 2017).

鷲嶺火成岩類

三波川帯に属し,御荷鉾緑色岩類に相当する鷲嶺火成岩 類は,超苦鉄質岩類及び苦鉄質岩類からなる.それらは朝 熊ヶ岳岩体として本地域中央部に大規模に分布するほか, 北縁部にも^全寛岩体として狭長に分布している(第2図). 超苦鉄質岩類は,かんらん岩を主体とし,僅かに角閃石岩 と角閃岩を伴う.苦鉄質岩類は,主に斑れい岩,ドレライ ト及び玄武岩からなり,少量の斜長岩と苦鉄質片岩を伴 う.苦鉄質岩中には,火成褐色普通角閃石と変成アルカリ 角閃石が含まれていることが特徴的である.

鷲嶺火成岩類は,主に宮川コンプレックスの構造的上位 に位置するが,朝熊ヶ岳岩体の東部では本岩類の一部が宮 川コンプレックスの構造的下位に位置している.枕状溶岩 の上下判定(第4図c)から朝熊ヶ岳岩体は全体に逆転し ている(後述).角閃石岩及び斑れい岩中の普通角閃石か らは 150 Ma 前後の K-Ar 年代が報告されている (小澤ほか, 1997).

宮川コンプレックス

三波川帯に属し,いわゆる三波川結晶片岩に相当する 宮川コンプレックスは,泥質片岩(第4図d)を主体とし, 苦鉄質片岩,石灰質片岩,珪質片岩,砂質片岩を伴う.苦 鉄質片岩中の変成鉱物組み合わせは,アルバイト+緑れん 石+緑泥岩+フェンジャイト+チタン石±アクチノ閃石± スティルプノメレン±パンペリー石±方解石±石英±アル カリ角閃石である.泥質片岩中のそれは,フェンジャイト +アルバイト+チタン石+石墨±緑泥石±スティルプノメ レン±方解石である.これらの組み合わせは,パンペリー 石 - アクチノ閃石相の高圧部を示す.宮川コンプレックス は鷲嶺火成岩類の構造的下位に位置しているが,本地域南 東側ではその一部が鷲嶺火成岩類の構造的上位に位置して いる.本報告では,2地点の砂質片岩からそれぞれ177.1 ± 1.6 Ma と 95.5 ± 2.5 Ma の砕屑性ジルコン U-Pb 年代 (最若粒子群の加重平均年代)が得られた(内野,2017a) ほか,84.7 ± 1.8 Ma と 79.0 ± 1.7 Ma のフェンジャイ ト K-Ar 年代が得られている.

第四系

先志摩層は層厚約 10 m で, 基盤となる四万十帯の砂岩・ 泥岩層を削り込んだ谷地形を埋めるように本図幅地域南部 の志摩市磯部町道間や鳥羽市相差町に分布する. 海成粘土・ シルト層と河成砂礫層の互層から主に構成される. 磯部町 迫間における海成粘土層からは, アズキ火山灰 (Ss-Az) に 対比される (町田ほか, 1980) 磯部火山灰や, 海生貝類, 有孔虫, 植物遺体などの化石が報告されている (例えば, 大炊御門, 1933; Itoigawa and Ogawa, 1973; 槇山・中 川, 1941; Miki, 1957). また, 相差町では, 山田 I 火

第4図 (a) 五十鈴層群青峰コンプレックスの混在岩, (b) 松尾層の整然相を示す砂岩泥岩互層, (c) 鷲嶺火成岩類の逆転した枕状溶岩, (d) 宮川コンプレックスの泥質片岩.

山灰に対比される相差火山灰がみられる. これらが対比される火山灰の堆積年代はそれぞれ前者が MIS 21,後者が MIS 25の海洋酸素同位体ステージにあたるため,先志摩 層の年代は約 0.9 Ma 前後の前期更新世と考えられる.

段丘堆積物は,高位,中位 I,中位 II,低位の 4 つに区 分される.いずれからも堆積年代の証拠は得られていない が,太田 (2001)によると最も広く分布する海成中位 I 段 丘堆積物の年代が MIS 5e (約 13 万年前の最終間氷期)と 推定されている.高位段丘堆積物は,鳥羽市から志摩市に おける先志摩台地と伊勢市朝熊町の苦帯台地の尾根上に狭 く分布する層厚約 3 m の砂礫層である.中位 I 及び II 段 丘堆積物は,沿岸域である先志摩台地と,鳥羽低地や古市 台地など河川流域に分布する.構成する堆積物は主に約 3 ~ 5 m の砂礫層であるが,志摩市磯部町から阿児町だか けては,基盤を下刻する谷地形を埋積した層厚約 20 m 以 下の海成の砂層や砂質泥層がみられる場合がある.低位段 丘堆積物は,先志摩台地の鳥羽市相差町周辺と志摩市の いますのう。 伊雑ノ浦周辺の標高約 10 m 以下にみられる砂礫層で,縄 文時代の沖積段丘と考えられる.

表層堆積物は、内陸の河川流域では河川の氾濫原や河道 で堆積した谷底平野堆積物、及び崖錘堆積物からなる. 宮 川低地や先志摩台地の沿岸部では海岸平野で堆積した後背 湿地・谷底平野堆積物が広く分布する.自然堤防堆積物 が伊雑ノ浦周辺,大規模な浜堤堆積物が宮川低地に分布す る.遠州灘に面する志摩市阿児町国府や鳥羽市相差町では, 現世海浜堆積物と過去の浜堤堆積物がみられる.

3. 地質構造の解説

第四系以外の各地質系統の配列を規制している断層面及 び地層の層理面,劈開面,片理面は,いずれも概ね東北東 - 西南西ないし北東 - 南西走向を示している.また,前~ 後期ジュラ紀付加体(五十鈴層群)と後期白亜紀低温高圧 型変成岩類(御荷鉾緑色岩類及び三波川結晶片岩)中には 東西ないし北東 - 南西走向の軸を持つ褶曲が発達する.こ れらが本地域の大局的な地質構造を形成している.それら は,性状及び活動時期などからA~Gに分けられる(第5 図;第6図).

A は覆瓦構造など付加体の基本配列を形作った,すなわち構造層序単元(コンプレックス)を境する東北東 – 西南 西走向の断層群で,活動時期は前期ジュラ紀~後期白亜紀 と様々である.Bは五十鈴層群に累重する中期ジュラ紀~

第5図 鳥羽図幅地域の断層区分図. BTL:仏像構造線,EKL:恵利原 – 櫛ヶ峰断層,GAF:五知 – 朝熊ヶ岳断層,GATL:五ヶ所 – 安楽島構造線, MTL:御荷鉾構造線,NF:鳴ヶ谷断層.A ~ F は本文を参照.

第6図 鳥羽図幅地域の地質構造を表した3次元モデル図.

前期白亜紀の浅海層を切る、すなわち付加体と浅海層を境 する東北東 - 西南西ないし北東 - 南西走向の高角断層で, 活動時期は前期白亜紀以降である.Cは付加体の覆瓦構造 を切る北東 - 南西走向の北傾斜の断層で、活動時期は後期 白亜紀以降である. 仏像構造線や五ヶ所 - 安楽島構造線が それに相当する.Dは三波川帯の低温高圧型変成岩類中に 大規模に発達する南方に凸の形状を示す横臥褶曲である. E はその横臥褶曲に変形を与えた褶曲であり、宮川コンプ レックス中に東西走向の軸を持つ背斜あるいは向斜状背斜 として認められる.Fは横臥褶曲及びその後の褶曲を切る 東西ないし東北東 - 西南西走向の高角な断層である. 御荷 鉾構造線や鳴ヶ谷断層がそれに相当する. D~Fの活動時 期はいずれも三波川帯形成後、すなわち後期白亜紀以降で ある. G は本地域の基盤岩すべてを切る北北西 - 南南東あ るいは北北東 – 南南西走向の高角な胴切断層である. 活動 時期は後期白亜紀以降で、次段落で記す活構造を除き本地 域の中では一番新しいと考えられる.

その他,朝熊ヶ岳北方,鳥羽市白木周辺における五ヶ所 - 安楽島構造線沿い,志摩市浜島町道子付近で,活構造の 可能性が指摘されているリニアメントが認められる(第5 図).

さて,この地質構造で特に注目したいのは三波川帯の横 臥褶曲と秩父帯北帯の構造である.まず三波川帯の構造で あるが, 鷲嶺火成岩類(朝熊ヶ岳岩体)は東北東 - 西南西 ないし東西方向に 40 km 以上にわたり分布しており, こ れが本図幅地域最高峰の朝熊ヶ岳(555 m)を擁する朝熊 山地を形成している. この朝熊ヶ岳岩体の 4 地点から逆 転した枕状溶岩が認められ(第 4 図 c),本岩体全体が逆転 していることが分かる.一方,本岩体北側に分布する宮川 コンプレックスは逆転しておらず,背斜構造を示している. この構造は,当初宮川コンプレックスとその構造的上位 にあった鷲嶺火成岩類(第 7 図 i)がともに横臥褶曲をなし (第 7 図 ii),その後,逆断層である鳴ヶ谷断層によって 南側の褶曲軸部が上昇し(第 7 図 iii),下翼の逆転した鷲 嶺火成岩類が朝熊山地を形成し現在地表に現れている(第 7 図 iv)と考えられる.

なお、向斜状背斜を示す、下翼の逆転した鷲嶺火成岩類 とその見掛け上位に位置する宮川コンプレックスは、鳥羽 市街周辺(東セグメント)で認められる(第6図).つまり、 中央セグメントは東セグメントより相対的な上昇量が大き いと考えられる.

次に,秩父帯北帯の構造について考える.前述したよう に北帯では,胴切断層である五知 – 朝熊ヶ岳断層の西側(西 セグメント)では北側から中期ジュラ紀の河内コンプレッ クス,前期ジュラ紀の逢坂峠コンプレックス,中期ジュラ 紀の白木コンプレックスが分布するが,東側(中央・東セ 内野隆之

第8図 秩父帯北帯のジュラ紀付加体の分布を説明した地質構造モデル.

グメント)では逢坂峠コンプレックスを欠く(第6図).河 内コンプレックス・白木コンプレックスは概ね中角度で北 に傾斜しているが,逢坂峠コンプレックスは極めて低角度 で北に傾斜している.これらの状況から,そのテクトニク スは以下のように考えられる.

付加体層序学的解釈に基づくと,前期ジュラ紀の逢坂峠 コンプレックスは,もともと,陸側の構造的最上位に位置 していたが(第8図i),それがある時,中期ジュラ紀の 河内コンプレックスと白木コンプレックスの上に乗り上げ (第8図ii),その後,五知 – 朝熊ヶ岳断層によって東側(中 央・東セグメント)が上昇し(第8図ii),そして,削剥さ れた結果,五知 – 朝熊ヶ岳断層以西にのみ,逢坂峠コンプ レックスが分布するに至った(第8図iv).五知 – 朝熊ヶ 岳断層東側では,上昇に伴い付加体のより深い部分が露出 することになるが,野外でも河内コンプレックス中にア ルカリ角閃石やアルカリ輝石を含む片岩が産し(第9図), 実際に深部(変成)相が確認できる.

4. 鳥羽図幅の研究成果

変成相

鳥羽図幅の学術的成果は多岐にわたる.例えば,上述 した地質構造のほか,これまで年代が得られていなかっ た三波川帯の宮川コンプレックス,秩父帯北帯の逢坂峠 コンプレックス・河内コンプレックス・白木コンプレッ クス,四万十帯の相差コンプレックス・国崎コンプレッ クス・石鏡コンプレックスの年代を明らかにしたこと(内

実分布域

第9図 中央セグメントの河内コンプレックスで見られる含アルカ リ角閃石・アルカリ輝石苦鉄質片岩.

野,2017a:内野・鈴木,2017; Nakae and Kurihara, 2017),秩父帯北帯と黒瀬川帯の境界位置を一部見直した こと(内野・鈴木,2017),下部白亜系松尾層と考えられ ていた地層の一部が上部ペルム系であることを示し,紀伊 半島で初めて後期ペルム紀浅海層を認定したこと(内野・ 鈴木,2016)などが挙げられる.そして,下位階層であ る"層"の設定がなされないまま"層群"として扱われて いた地層(例えば,青峰層群,白木層群,今浦層群,松尾 層群,的矢層群)について適切な階層の層序単元名を再設 定したり,地理的に離れて分布するが故に異なる層序単元 とされていた地層を統合したりといった,図幅の重要な役 割の一つである"地質体の整理"を行っている.その結果, 当初目的としていた地質基準の確立を行うことができた. ただ,冒頭で述べた地質学的第1級の難問である黒瀬川 帯のテクトニクスの解明については,それに資するデータ は幾つか提示できたものの,解決には至っていない.今後, 継続して研究を進めていきたい.

そして、本図幅の関連研究として、伊勢神宮式年遷宮の 祭事「お白石持ち行事」に使用される白石の起源について の地質学的考察(内野, 2015)や、チャートとヒトツバ(シ ダ植物)の植生関係の考察(内野, 2017b)も行うことがで きた.これらは、地質学と文化及び植物学という異分野の 融合研究であり、今後新たな価値を創造し得る研究として 意義がある.

5.おわりに

図幅で得られた研究成果の中から、一般の方にとって理 解し易い、かつ興味をそそりそうな内容を選定し、「恐竜 化石はなぜ鳥羽で見つかったのか?」という題目で2017 年9月14日に産総研プレスリリースを行い(産総研、 2017)、同時に三重県庁にて記者会見を行った、内容は、 「地殻変動における差別的上昇の結果,恐竜化石を含むよ うな浅海層(松尾層)が偶然鳥羽市付近に残された.地質 図ではその地層の分布を詳細に示したので,今後同様の地 層からも化石発見の可能性はある.」というものである. 下部白亜系の松尾層はジュラ紀付加体青峰コンプレックス を一部不整合に覆っており,黒瀬川帯に東北東 - 西南西方 向に幅狭く分布する.一方,黒瀬川帯と中~高角度断層を 介して接する北及び南側の秩父帯北帯や四万十帯では浅海 層が分布しない.すなわち,それらの浅海層は秩父帯北帯 及び四万十帯に相当する地塊の上昇により削剥されたと考 えられるので,上昇量としては黒瀬川帯の方が小さい.従っ て,黒瀬川帯が位置する鳥羽市南方で恐竜化石が発見され たという訳である(第 10 図).

記者会見では,上記内容に加え,逆転層を示す朝熊ヶ岳 の成り立ちにも触れた.学術的な内容・意義を分かり易く 説明することの難しさは感じたが,まず,この伊勢・鳥羽・ 志摩地域の地質はどういうものであって,また,地質図幅 という地質を知るための媒体が存在しているということを 周知できたことは意義があったと思われる.ちなみに会見 内容は,翌日幾つかの新聞に取り上げられた(例えば,毎 日新聞,2017a;伊勢新聞,2017;産経 WEST,2017).

第10図 鳥羽で恐竜化石が見つかった理由を説明した地殻変動モデル図.

そして、これを機に程なくして、伊勢・鳥羽・志摩地域 の日本ジオパーク登録を推進している地域団体が、地質・ 地形調査を再開したことが、新聞で取り上げられている (毎日新聞, 2017b). 鳥羽図幅地域には、恐竜化石地点 のみならず、鳥羽市天然記念物になっている大村島の枕状 溶岩、磯部町恵利原の天の岩戸(鍾乳洞)、一枚岩のチャー トからなる恵利原の鸚鵡岩などがあり、本図幅が学術的貢 献のみならず、地元の人達への地質への認知・理解の向上、 引いては地域振興へのきっかけになってくれれば幸いであ る.

文 献

- 伊勢新聞(2017)" 恐竜化石地層 " 鳥羽に点在 「トバリ ュウ」発見の理由―産総研解明. http://www.isenp. co.jp/2017/09/15/7583/(2017年12月15日 確認)
- 磯崎行雄・板谷徹丸(1991)四国中西部秩父累帯北帯の 先ジュラ系クリッペー黒瀬川内帯起源説の提唱ー.地 質雑, 97, 431-450.
- 磯崎行雄・橋口孝泰・板谷徹丸(1992)黒瀬川クリッペ の検証. 地質雑, 98, 917-941.
- Itoigawa, J. and Ogawa, H. (1973) Pleistocene Molluscan Fauna of the Sakishima Formation, Shinma Peninsula, Central Japan. *Tohoku Univ. Sci. Rep. 2nd Ser. Special Volume 6 (Hatai Memorial Volume)*, 69–80.
- 亀井節夫(1997) 鳥羽市安楽島海岸で発掘された恐竜化石. 三重県大型化石発掘調査団編, 三重県鳥羽市産恐竜化石発掘調査中間報告書, 三重県大型化石発掘調査団, 20-26.
- Kato, K. and Saka, Y. (2003) Kurosegawa terrane as a transform fault zone in southwest Japan. *Gondwana Res.*, 6, 669–686.
- 川端清司(2001)恐竜化石胚胎層準における松尾層群の 放散虫化石.三重県大型化石発掘調査団編,鳥羽の恐 竜化石,三重県鳥羽市産恐竜化石調査研究報告書,三 重県立博物館,59-62.
- 町田 洋・新井房夫・杉原重夫(1980)南関東と近畿の 中部更新統の対比と編年.第四紀研究, 19, 233-261.
- 毎日新聞(2017a)志摩半島の地質図製作―トバリュウ発 見理由判明. https://mainichi.jp/articles/20170915/ ddl/k24/040/150000c(2017 年 12 月 15 日 確認)
- 毎日新聞(2017b)ジオパーク整備へ一歩―志摩半島を 視察. https://mainichi.jp/articles/20171108/ddl/

k24/040/259000c(2017年12月15日 確認)

- 槇山次郎・中川 保(1941) 志摩木場洪積統の有孔虫類.地質雑,48,239-243.
- Miki, S. (1957) Pinaceae of Japan, with special reference to its remains. *Jour. Inst. Polytechnics. Osaka City University, Series D*, 8, 221–272.
- Nakae, S. and Kurihara, T. (2017) Preliminary report on the radiolarian age of the Upper Cretaceous Matoya Group (Shimanto belt) in the Toba District, Mie Prefecture, Southwest Japan. *Bull. Geol. Surv. Japan*, 68, 57–86.
- Ohba, H. and Adachi, M. (1995) Permian, Triassic and Jurassic radiolarians from Omura and Ogura Island in the eastern part of the Shima Peninsula, Southwest Japan. *Jour. Earth Planet. Sci. Nagoya Univ.*, **42**, 55– 67.
- 大炊御門経輝(1933)志摩木場の洪積世介化石について. 地球, 19, 305–308.
- 太田 亨・今井智文・石田直人・坂 幸恭(2013)三重 県志摩半島東部の黒瀬川帯中生界から見出されたジュ ラ紀・白亜紀放散虫化石. 地質雑, 118, 588-593.
- 太田陽子(2001)能登・若狭・志摩半島.小池一之・町 田 洋編,日本の海成段丘アトラス.東京大学出版会, 東京,105p.
- 小澤大成・村田 守・西村 宏・板谷徹丸(1997)造山 帯中の緑色岩からみた海洋地域の火成活動―みかぶ 帯の火成岩の岩石学的特徴と火成年代―.火山, 42, 231-237.
- 坂 幸恭・手塚茂雄(1988)志摩半島の秩父帯南帯.地 学雑, 97, 10-24.
- 産経 WEST (2017) 日本列島成り立ち分かる―三重・ 鳥羽の地質図幅, 国内最大級の恐竜化石発見の謎 も. http://www.sankei.com/west/news/170923/ wst1709230016-n1.html (2017年12月15日 確認)
- 産業技術総合研究所(2017)恐竜化石はなぜ鳥羽で見 つかったのか? http://www.aist.go.jp/aist_j/press_ release/pr2017/pr20170914/pr20170914.html (2017年12月15日 確認)
- 佐藤 正・水野吉昭・蜂矢喜一郎・安井 謙(2005) 三 重県志摩半島から採集されたジュラ紀アンモナイト. 瑞浪市化石博紀要, **32**, 235–243.
- 杉山和弘・小澤智生・畔柳勇生・古谷 裕(1993) 三重 県志摩半島東部のジュラ系白根崎層(新称)および白 亜系松尾層群の層序と放散虫化石.大阪微化石研究会

誌特別号, no. 9, 191-203.

- 冨田幸光・桂嘉志浩・東 洋一・亀井節夫(2001)鳥羽 市恐竜化石の記載と分類.三重県大型化石発掘調査団 編,鳥羽の恐竜化石,三重県鳥羽市産恐竜化石調査研 究報告書,三重県立博物館,13-31.
- 都築 宏・八尾 昭(2006) 志摩半島東部地域の秩父北 帯のジュラ紀付加コンプレックス.日本地質学会第 113 年学術大会講演要旨,45.
- 内野隆之(2015)伊勢神宮式年遷宮「お白石持」行事に おける白石の起源. GSJ 地質ニュース, 4, 69-74.
- 内野隆之(2017a)5万分の1地質図幅「鳥羽」地域にお ける秩父累帯北帯の砂岩及び三波川帯の砂質片岩から 得られた砕屑性ジルコンU-Pb年代.地質調査研究報 告,68,41-56.
- 内野隆之(2017b)チャートを好むシダ植物ヒトツバ―三 重県志摩半島の鳥羽地域を例として―. GSJ 地質ニュ ース, 6, 283-288.
- 内野隆之・石田直人(2017)5万分の1地質図幅「鳥羽」 地域における秩父累帯南帯の泥岩から見出された中 期及び後期ジュラ紀放散虫化石.地質調査研究報告, 68,25-39.
- 内野隆之・鈴木紀毅(2016)三重県志摩半島の黒瀬川帯 から見出された後期ペルム紀整然層と広域対比.地質 雑, 122, 207-222.
- 内野隆之・鈴木紀毅(2017)三重県志摩半島,秩父累帯

北帯白木層群から得られた中期ジュラ紀放散虫化石と 地質対比.地質雑, **123**, 1015–1033.

- 内野隆之・中江 訓・中島 礼(2017)鳥羽地域の地質. 地域地質研究報告(5万分の1地質図幅). 産総研地 質調査総合センター, 141p.
- 梅田真樹(1998)紀伊半島東部,鳥羽地域の秩父帯青峰 層群からの中・古生代放散虫化石.地球科学,52, 106-114.
- 梅田真樹・山際延夫(1997)三重県鳥羽地域の黒瀬川帯 から産出したデボン紀放散虫化石. 地質雑, 103, 1081-1084.
- 山際延夫(1954) 志摩半島白亜系より産する貝化石の研 究. 大阪学芸大学紀要, 3, 43–55.
- Yamagiwa, N. and Saka, Y. (1972) On the *Lepidolina* zone discovered from the Shima Peninsula, Southwest Japan. *Trans. Proc. Palaeontol. Soc. Japan. N.S.*, no. 85, 260–274.
- 山際延夫・鳴橋憲一・辻井安喜・藤田孝子・和田朋子(1979) 志摩半島東部に分布する上部ジュラ系今浦層群産出の 珊瑚化石について(第1報). 地学雑, 88, 29–39.

UCHINO Takayuki (2018) Introduction of the geological map of the Toba District (quadrangle series, 1:50,000) and explanation of its geologic structure.

(受付:2017年12月18日)