千葉県北西部の沖積層基準ボーリング調査

Drilling survey for establishing standard stratigraphic framework of the alluvial beds in the northwestern part of Chiba Prefecture

宫地良典^{1*}·小松原純子¹·中島 礼¹ Yoshinori Miyachi^{1*}, Junko Komatsubara¹ and Rei Nakashima¹

Abstract: Drilling survey have been conducted for the purpose of establishing stratigraphic framework useful for correlation of a large amount of log data in the metropolitan area. The drill sites located in the lowland and burred area along the Tokyo Bay, Chiba Prefecture, central Japan. We obtained and analyzed sedimentary facies analysis of five drilling core samples. There are underlain by the Pleistocene to Holocene successions associated with man-made strata.

Keywords: drilling survey, standard stratigraphic framework, northwestern part of Chiba, alluvial beds

要旨

首都圏には数多くのボーリングデータが存在する が有効に活用されているとはいえない. これらの層 序関係とその物性を明確にするため,千葉県北部の 沖積層を対象に7本の「基準ボーリング」を掘削し た.これらの層相解析・年代測定などを行うとともに, 同孔を用いてP-S検層,密度検層を実施した.千葉県 北部東京湾岸地域は,更新統(下総層群),沖積層と 埋立層に区分される.これらの層相とともに平成26 年度に実施した年代値,検層記録などについて報告 する.

1. はじめに

土木・建築工事の際には土質ボーリングが実施さ れ大量のデータが蓄積されている.国立機関及び自 治体等によりこれらのデータベース化も進められて いる.しかし,地層の対比や地質構造の把握のため には,これらのデータは非常に簡素であり,その精 度も不十分である.一方で,地震動予測や地震に伴 う地盤の液状化現象の発生予測のためには,より精 度の高い地下構造区分とそれらの物性把握を行うこ とが重要である.千葉県北西部の東京湾岸低地では, 東日本大震災の際に深刻な液状化被害が発生した.液 状化は主に埋め立て層で生じるが,埋め立て層の液状 化の発生には下位の沖積層の層厚が関係している可能 性が指摘されている(千葉県環境研究センター 2011 など). このため,独自にボーリング調査を実施し, 既存ボーリングデータの対比のリファレンスとなる基 礎的な地質層序データや物性データの整備が必要とな る.

本報告は千葉県北西部のリファレンスとなる基準層 序ボーリングの一環として,平成25~26年度に沖 積層の埋没谷などで実施した5本のボーリング調査 結果について,層序記載及び物理検層結果について報 告する.

2. 地質概説

調査地域の千葉県北西部には、下総台地及び東京湾 に面した低地からなる船橋市,習志野市,千葉市の海 岸沿いにはこの低地が分布する.昭和初期の海岸線 は現在の国道14号線あたりで,これより北東側がも ともとの低地地域である.現在の海岸線はこれより 南西側へ3~4 km埋め立てられている.湾岸の低 地地下には台地の開析谷から続く埋没谷が分布し(松 田,1993),泥層を主体とした軟弱な沖積層によって 埋積されている.国道14号線より海側は,昭和30 年代以降サンドポンプ工法により埋め立てられ,埋立

^{*} Correspondence

¹ 産業技術総合研究所 地質調査総合センター 地質情報研究部門(AIST, Geological Survey of Japan, Research Institute of Geology and Geoinformation)

層は主に沖から浚渫した海成の砂泥からなる(風岡, 2003).

3. 調査手法

本研究のボーリング調査で掘削する地点選出にあた り,埋没谷の位置を再検討した.検討には,松田(1993) による埋没谷の分布と,千葉県インフォメーションバ ンク,内湾臨海部土質調査資料集(千葉県開発庁臨海 開発局,1974a,b),船橋市,習志野市から提供され たボーリング資料,千葉市が公開しているボーリング 資料を参考にした.また,Google Earthにより2011 年3月31日の空中写真を参考に,地盤の液状化によ る噴砂の有無を確認し,ボーリング地点を決定した.

本研究のボーリング調査は、ロータリー工法により 実施し、内管に塩化ビニール管を挿入した掘削径 116 mm のトリプルチューブサンプラーを用いてコアを採 取した.掘削作業終了後には掘削孔を用いて PS 検層、

密度検層及びキャリパー検層を実施した. PS 検層は 地盤工学会(案)JGS1122に基づき,孔内水位より深 い部分についてはサスペンション法、孔内水位より浅 い部分についてはダウンホール法により実施し、測定 ピッチは1mとした.サスペンション法では応用地 質株式会社製の PSLog-170 システムを使用し、ダウ ンホール法では, 孔内受信機に同社製 MODEL-3315 型を使用した.密度検層及びキャリパー検層は応用地 質株式会社製ジオロガー 3030 システムを使用し、測 定ピッチは 0.05 mとした. 測定された y 線の計数率 (CPS)にあらかじめ作成した較正曲線とキャリパー検 層で得られた光景による補正を行い、各深度の密度を 求めた.採取したコア試料は室内で半割し、切断面 の詳細に観察した.半割した片方から厚さ1 cm のア クリルケースに試料を採取し、軟X線写真を撮影し、 また、ハイセル OH-1 による剥ぎ取り試料を作成した. これらを合わせてボーリングコアの詳細な記載を行っ た. また, 主に沖積層と考えられる部分については,

第1図 ボーリング地点

ベースマップは国土地理院の色別標高図.

Fig. 1 Map showing the drill sites of this study.

Base map taken from elevation map, Geospatioal Information Authority of Japan.

第1表 ボーリング地点データ Table 1 Drill sites data of this study

掘削年度	平成25年度		平成26年度					
孔名	GS-FB-2	GS-FB-3	GS-FB-4	GS-NS-1	GS-CB-2	GS-CB-4	GS-CB-3	
緯度	35°40' 19.38"N	35°40' 48.9"N	35°40'07.7332″N	35°40'27.0412″N	35°38'59.8464″N	35 [°] 38'32.7203″N	35°36'23.1596"N	
経度	139°58' 08.47"E	139°59' 09.7"E	140°00'12.9921"E	140°01'01.6469"E	140°1'55.9352″E	140°1'56.1998″E	140°6'21.3999″E	
標高(TP)	3.560m	3.482m	4.091m	2.903m	4.362m	3.882m	5.383m	
	船橋市潮見町	船橋市浜町	船橋市高瀬 千	習志野市袖ヶ浦	千葉市美浜区	千葉市美浜区	千葉市中央区	
位置	ふなばし三番瀬	産総研船橋サ	葉県葛南防災	袖ヶ浦近隣公園	豊砂 浜田川緑	豊砂 幕張海浜	千葉港 港公園	
	海浜公園	イト	備蓄倉庫敷地内	内	地内	公園内	内	
掘削深度	60m	110m	35m	30m	30m	40m	40m	

20 cm おきに 7 cc のプラスティックキューブサンプ ルを採取し,含水率を測定した.

GS-FB-2, GS-FB-3, GS-CB-2 及 び GS-CB-3 の 4 本 のコア堆積物中に含まれる 30 点の貝殻片および植 物片等について,(株)加速器分析研究所に依頼し て放射性炭素年代を測定した.得られた年代値は, Reimer et al.(2013)のデータセット IntCal13 および MARINE13 と,較正ソフトウェア CALIB 7.0.4 (Stuiver and Reimer, 1993; Stuiver et al., 2015)を使用して暦 年較正を行った.

4. ボーリング調査結果

平成 25 年度に船橋市で実施した 2 地点 (GS-FB2, GS-FB3) に加え,以下の 5 地点でボーリング調査 (コア採取, PS 検層,密度検層)を実施した (第1 図,第1表).柱状図及び検層結果を第2~6 図に示 す.ボーリング調査は南より GS-CB-3, GS-CB-4, GS-CB-2, GS-FB-4 および GS-NS-1 である.

4.1 ボーリングコアの層相

GS-CB-3(第2図)は千葉市中央区千葉港の港公園 東端で掘削されたもので,沖積層基底は深度20.9 m, 埋立層の基底は深度4.7 mと考えられる.更新統の下 部は砂鉄を含む平行葉理または弱い斜交葉理を持つ砂 層で,しばしばパッチ状の泥を含む.上部は生痕を含 む細砂よりなり,シルトの葉理を含む.沖積層下部(深 度20.9 mから11.0 m)貝殻片を含む泥層で,上部 には生痕が見られる.深度11.0 mから4.8 mは貝殻 片を含む砂層で,しばしば合弁貝を含むことから沖積 層と考えられる.深度4.8 mから4.5 mには貝殻片 を多く含み,これより上位は平行葉理を持つ細砂で, パッチ状の泥を含む埋立層と考えられる.

GS-CB-4(第3図)は千葉市美浜区幕張海浜公園内 で掘削されたもので、沖積層埋没谷の軸部付近にあ たる.沖積層基底は深度 37.6 m,埋立層の基底は, 10.8 mと考えられる.深度 37.6 mより下位の更新統 は,生痕の見られる細砂よりなる.沖積層基底部約 1 mは腐植質な泥,沖積層下部の深度 27 m~37 m は 生痕や貝殻混じりの泥からなる.深度 27 mから 24 m は細砂の葉理を含み上方粗粒化し,深度 24 m~ 22 m で細礫を含む.さらに上位の 10.8 mから 22 m は細砂-極細砂へ上方細粒化し,深度 10.8 m~15 m付近までは合弁貝を含む.これより上位は貝殻片 を含む泥層から細砂へ上方粗粒化する地層で,パッチ 状の泥を含む埋立層である.

GS-CB-2(第4図)は、GS-CB-4の約800m北方で 掘削され、沖積層埋没谷の鞍部と考えられる地点で ある.この地点の沖積層基底は深度13.6m、埋立層 の基底は深度8.6mと考えられる.更新統のうち深度 22m以深は平行葉理をもつ砂層で、深度22mから 8.6mは細粒砂よりなり生痕を含む.沖積層は主に泥 層からなり、貝殻片を含む.また沖積層最上部の深度 8.6m~9.3mにはウニ化石が含まれる.埋立層は、 泥層から細砂からなり、低角な斜交葉理を持ち、貝殻 片を含む.

GS-FB-4 と GS-NS-1 は同じ埋没谷内に位置すると考 えられ, GS-NS-1 は昭和 30 年頃までの海岸線付近, GS-FB-4 は現在の海岸に近いところで掘削された.

GS-FB-4(第5図)の沖積層基底は24.1 m, 埋立 層の基底は5.3 mと考えられる.更新統は,砂鉄質 な平行葉理を持つ細粒砂で,深度33 m以深には生痕 が見られることがある.沖積層基底部の深度24.1 m から22.7 mは淘汰の悪い細礫混じりの細砂で,深度 16.5 m付近までは極細砂からシルトで生痕や植物片 を含む.深度16 mから13 mは,細礫や貝殻片を多 く含む極細砂である.深度13 mから10.5 mまでは 生痕を含むシルト,深度10.5 mから5.3 mまでは極 細砂からなり,合弁貝を含む.深度5.3 m以浅は埋 立層であり,平行葉理を持つシルトよりなり,全体に

第2図 千葉市中央区港公園 GS-CB-3 ボーリングの柱状図と検層結果 Fig. 2 Log data of GS-CB-3 borehole, Minato-Koen, Chuo-ku, Chiba city.

貝殻片を含む.

GS-NS-1(第6図)の沖積層基底は深度19.6 m, 埋立層の基底は深度5.8 mである.更新統は深度22 m低角な斜交葉理の発達した砂鉄を含む砂層よりな り,深度25.6 mに火山灰層を挟在する.深度22 m から19.6 mは細礫混じりの細粒から中粒砂よりなる. 沖積層基底には細礫や貝殻片を含む極細砂よりなり, 腐植層を挟む. 深度17 mから12 mは生痕を含むシ ルト層,12 mから5.8 mは貝殻片を含むシルト層か ら細粒砂へと上方粗粒化する.しばしば合弁貝を含み,

Fig. 3 Log data of GS-CB-4 borehole, Makuhari Seaside Park, Mihama-ku, Chiba city. See Fig. 2 for legend

深度 8.5 m 付近にはウニ化石も含まれる. 5.8 m から 5.5 m に貝殻片を含む極細砂が見られ, 5.5 m より上部はコンクリート片など人工物である.

4.2 物理検層結果

ボーリング孔の物理検層の結果 S 波速度は更新統上 部 3 m 程度は 220 ~ 230 m/s と低いこともあるが, 320 m/s から 410 m/s であり砂層で比較的早い.た

凡例は第2図を参照のこと Fig. 4 Log data of GS-CB-2 borehole, Hamadagawa Park, Mihama-ku, Chiba city. See Fig. 2 for legend

だし, GS-NS-1 コアでは, 上部8m程度は細礫を含 む部分も含め220 m/s と遅い. 沖積層と埋立層では おおむね100 m/s から190 m/s であるが, GS-CB-4 の沖積層では細礫混じり部を含め細粒砂で230 m/s である.

4.3 ¹⁴C 年代

今回平成 25 年度に掘削した GS-FB-2, GS-FB-3 コ ア (中澤ほか, 2014)の補足的な¹⁴C 年代測定及び GS-CB-2, GS-CB-3 コアの年代測定を行った. この結 果を第2表に、柱状図と年代値を第7図にまとめる.

GS-FB-2 コアでは,沖積層は 1.8 ~ 10.3 千年前, GS-CB-2 コアでは 0.5 ~ 8.6 千年前,GS-CB-3 コアか らは 8.2 千年から 9.1 千年前の年代値が測定されてい る.

5. 終わりに

本研究では千葉県北西部東京湾岸の沖積層につい て,既存ボーリングデータ対比のリファレンスとなる

第5図 船橋市高瀬 GS-FB-4 ボーリングの柱状図と検層結果凡例は第2図を参照のこと

基準ボーリング調査を実施した.今回は埋立層,沖積 層及び更新統を層相から区分し,沖積層埋没谷と尾根 部において層相・弾性波速度を比較した.この地域は 更新統・沖積層・埋立層が,それぞれ再堆積,浚渫の ため,同様の層相であることから区別がつきにくい(小 松原ほか,2014).今回千葉市から船橋市の4本の 埋没谷での沖積層の層相を比較することができた.今 後これらの層相解析・年代測定などの分析を進め,既 存ボーリングとの対比を進め,地質地盤図の作成を進 める.

謝辞

コア試料の観察・分析作業では、地質情報研究部門 の國本節子氏、村岡英樹氏にご協力をいただいた.千 葉県環境研究センターの風岡 修博士、吉田 剛博士 にはボーリング用地選定、コア観察では有意義なご指 摘をいただいた.ボーリング調査にあたっては、千葉

第6図 首志町印冊ケ佣 GS-NS-1 ホーリングの社状図と検層結果 凡例は第2図を参照のこと Fig. 6 Log data of GS-NS-1 borehole, Sodegaura, Narashino city. See Fig. 2 for legend

県千葉土木事務所,防災危機管理部防災政策課,千葉 市公園管理課中央・稲毛公園緑地事務所,美浜土木事 務所,習志野市公園緑地課に多大な便宜をはかってい ただいた.ボーリング作業は,大洋地下調査株式会社 によって実施され,きわめて状態の良いコア試料が採 取された.

習志野市情報政策課,都市計画部技術管理課には多 数のボーリング資料を提供いただいた.以上の方々に 深く感謝いたします.

文献

- 千葉県環境研究センター (2011) 千葉県内の液状化-流動化現象とその被害の概要及び詳細分布調査 結果.平成23年(2011年)東北地方太平洋沖 地震による千葉県内の液状化-流動化被害(第 3報),25p.
- 千葉県開発庁臨海開発局(1974a)内湾臨海部土質調 査資料集(1)A地区(浦安〜船橋)千葉県臨海 開発局臨海計画課.783p.
- 千葉県開発庁臨海開発局(1974b)内湾臨海部土質調 査資料集(2)B地区(習志野〜袖ヶ浦)千葉県

臨海開発局臨海計画課. 1021p.

- 風岡 修 (2003) 利根川下流低地・東京湾岸埋立地. アーバンクボタ, 40, 5-13.
- 小松原純子・中島 礼・納谷友規(2014)千葉県船 橋市の埋立地における沖積層の堆積層と堆積環 境. 日本地質学会第 121 年学術大会講演要旨集, p.53
- 松田盤余 (1993) 東京湾とその周辺の沖積層. 貝塚 爽平編,東京湾の地形・地質と水,築地書館,東 京, 67-109.
- 中澤 努・長 郁夫・納谷友規・小松原純子・宮地良 典(2014)首都圏の基準ボーリング調査及び常 時微動測定.地質分野企画室編,巨大地震による 複合的地質災害に関する調査・研究報告書.産業 技術総合研究所地質調査総合センター速報,66, 207-228.
- Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M. and Plicht, J. V. D.(2013) IntCal13 and MARINE13 radiocarbon age calibration curves 0-50,000 years calBP. Radiocarbon, 55, 1869-1887.
- Stuiver, M. and Reimer, P. J. (1993) Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon, 35, 215-230.
- Stuiver, M., Reimer, P. J. and Reimer, R. (2015) http://calib.qub.ac.uk/calib/(参照2015年2月 19日)

参考としたボーリングデータベース

千葉県インフォメーションバンク;

http://wwwp.pref.chiba.lg.jp/ pbgeogis/servlet/ infobank/ index

千葉市;市有建築物におけるボーリングデータの情報 提供;http://www.city.chiba.jp/toshi/kenchiku/ kanri/bolingdata.html

第2表 放射性炭素年代値の概要 Table 2 Summary of radiocarbon dates

GS-FB-2						
測定番号	試料名	深度(m)	試料	14C age yrBP	暦年代(2σ)	-
IAAA-141118	GS-FB-2_0647	6.47	貝殻片(バカガイ)	1320 ± 20	788-926	*
IAAA-133058	GS-FB-2_0923	9.23	植物片	120±20	12- 48 (0.15) 54- 148 (0.54) 188- 200 (0.02) 211- 269 (0.29)	+
IAAA-133059	GS-FB-2_1084	10.84	植物片	1890 ± 20	1739–1759 (0.05) 1774–1891 (0.95)	+
IAAA-133060	GS-FB-2_1366	13.66	植物片	1910±20	1812–1903 (0.97) 1908–1924 (0.02)	+
IAAA-140336	GS-FB-2_1786	17.86	貝殻片(ウラカガミガイ)	3260 ± 20	2988-3174	*
IAAA-140337	GS-FB-2_1980	19.8	貝殻片(ウラカガミガイ)	5850 ± 30	6193-6327	*
IAAA-140338	GS-FB-2_2137-2147	21.37	貝殻片(マテガイ)	8410 ± 30	8926-9114	*
IAAA-133061	GS-FB-2_2806	28.06	植物片	42250 ± 770	44168-47095	+
IAAA-133062	GS-FB-2_3044	30.44	植物片	8330 ± 30	9269-9452	+
IAAA-140339	GS-FB-2_3065	30.65	貝殻片(ハイガイ)	8840 ± 30	9437-9541	*
					9689-9946 (0.89)	
IAAA-133063	GS-FB-2_3555	35.55	植物片	8810 ± 30	9993-10008 (0.01)	+
					10063-10127 (0.01)	
IAAA-133064	GS-FB-2_3664	36.64	植物片	9190 ± 30	10246-10429 (0.97) 10465-10481 (0.03)	+

GS-FB-3					
測定番号	試料名	深度(m)	試料	14C age yrBP	暦年代(2σ)cal BP
IAAA-141119	GS-FB-3_0683	6.83	植物片	1420±20	1293-1351 +
IAAA-133065	GS-FB-3_1065	10.65	植物片	750 ± 20	667-709 (0.94) 715-726 (0.06) +
IAAA-133066	GS-FB-3_1092	10.92	植物片	1070±20	932-1007 (0.79) 1025-1052 (0.21) +

GS-CB-2 測定番号 深度(m) 14C age yrBP 暦年代(2σ)cal BP 試料名 試料 IAAA-142446 8.68 貝殻(サルボウ) GS-CB-2_0868 460 ± 20 1-131 * IAAA-142447 GS-CB-2_0917 9.17 貝殻(サクラガイ) 820 ± 20 416-503 * IAAA-142448 GS-CB-2_1082 10.82 貝殻(ヒメカノコアサリ) 2150 ± 30 1645-1824 * 11.7 貝殻(巻貝) IAAA-142449 GS-CB-2_1170追加 2300 ± 30 1827-1983 * 12.57 貝殻(モモノハナガイ) IAAA-142450 GS-CB-2_1257 8409-8576 8040 ± 30 * 13.48 貝殻(シオフキ) IAAA-142451 GS-CB-2_1348 8140 ± 30 8518-8743 * IAAA-142452 GS-CB-2_1730 17.3 貝殻(イタヤガイ) 47730 ± 580

GS-CB-3

測定番号	試料名	深度(m)	試料	14C age yrBP	暦年代(2σ)cal BP	
IAAA-142455	GS-CB-3_1323	13.23	貝殻(ツルマルケボリガイ	7.770 ± 30	8319-8161	*
IAAA-142456	GS-CB-3_1454	14.54	貝殻(アラムシロガイ)	7890 ± 30	8419-8290	*
IAAA-142457	GS-CB-3_1545-2	15.45	カニ	8110±30	8684-8471	*
IAAA-142458	GS-CB-3_1630	16.30	貝殻片	8090 ± 30	8635-8436	*
IAAA-142459	GS-CB-3_1823	18.23	貝殻(ハイガイ)	8520 ± 30	9255-9020	*
IAAA-142460	GS-CB-3_2089	20.89	貝殻片	46500 ± 500	50000-48441 \$	*
IAAA-142461	GS-CB-3_2120_2	21.20	貝殻片	>53900		*
IAAA-142462	GS-CB-3_2138	21.38	土壌	32600 ± 160	36999-36092	+

* Marine13(marine100%)を使用し、Calib7.0.4にて較正

+ IntCal13を使用し、Calib7.0.4にて較正

\$ out of range 暦年較正曲線の範囲を超える