Online ISSN : 2186-490X Print ISSN : 1346-4272

地質調査研究報告

BULLETIN OF THE GEOLOGICAL SURVEY OF JAPAN

Vol. 73 No. 3 2022

令和4年

地質調査研究報告 BULLETIN OF THE GEOLOGICAL SURVEY OF JAPAN Vol. 73 No. 3 2022

概報
Late Triassic radiolarians and conodonts from a chert pebble within the Lower Pleistocene Higashihigasa
Formation of the Kazusa Group, Boso Peninsula, Japan
ITO Tsuyoshi, MUTO Shun and UTSUNOMIYA Masayuki93
Chemical compositions and ages of basalts from seamounts in the Northwest Pacific YAMAOKA Kyoko, ISHIZUKA Osamu, MOROZUMI Haruhisa and HINO Hikari103
埼玉県岩殿丘陵西縁部から採取された砂質シルト岩試料の珪藻化石年代 納谷友規

表紙の図

3D 海底地形図で見る北西太平洋の海山群

アメリカ海洋大気庁国立環境情報センター (NOAA NCEI) が公開している海底地形図 (ETOPO1) を用 い,北西向き,高さ10倍強調で作成した.図の右側から,マーカス・ウェーク海山群,マーシャル諸島 海山群,マゼラン海山群が連なる.これらの海山の多くは,白亜紀のホットスポット火山活動で噴出した 玄武岩を基盤とする巨大な平頂海山 (ギヨー) である.露岩域には最大で10 cm を超える厚いマンガン酸 化物が分布し,コバルトリッチクラストの有望海域とされている.現在この海域には,日本,中国, 韓国,ロシアが鉱区を保有し,国際海底機構の下で,開発に向けた資源量調査や環境影響評価が進め られている.

(図:日野ひかり(独立行政法人石油天然ガス・金属鉱物資源機構),文:山岡香子)

Cover Figure

3D topographic map of seamounts in Northwest Pacific

A 3D topographic map was created using ETOPO1 published by the NOAA National Centers for Environmental Information (NCEI), oriented northwest with a height enhancement of 10 times. From right to left: the Marcus-Wake Seamount Group, the Marshall Islands Seamount Group, and the Magellan Seamount Group. Most of these seamounts are flat-topped seamounts (Guyots), whose basement consists of basalt that erupted during Cretaceous hotspot volcanism. This area is of interest for the mining of cobalt-rich crusts, since manganese oxides with a thickness of up to 10 cm or more are distributed over exposed rocks. Currently, Japan, China, Republic of Korea, and Russia hold exploration areas here, and resource surveys and environmental assessments are ongoing under the auspices of the International Seabed Authority (ISA).

(Figure: HINO Hikari (Japan Oil, Gas and Metals National Corporation), Caption: YAMAOKA Kyoko)

Report

Late Triassic radiolarians and conodonts from a chert pebble within the Lower Pleistocene Higashihigasa Formation of the Kazusa Group, Boso Peninsula, Japan

ITO Tsuyoshi^{1,*}, MUTO Shun¹ and UTSUNOMIYA Masayuki¹

ITO Tsuyoshi, MUTO Shun and UTSUNOMIYA Masayuki (2022) Late Triassic radiolarians and conodonts from a chert pebble within the Lower Pleistocene Higashihigasa Formation of the Kazusa Group, Boso Peninsula, Japan. *Bulletin of the Geological Survey of Japan*, vol. 73(3), p. 93–101, 6 figs and 1 table.

Abstract: Radiolarians and conodonts were obtained from a chert pebble within the conglomerate of the Higashihigasa Formation, Kazusa Group, Boso Peninsula, Japan. Based on the occurrence of radiolarians (*Praemesosaturnalis* sp. cf. *P. heilongjiangensis*) and conodonts (*Mockina* sp.), the chert pebble is considered to be Late Triassic (middle to late Norian) in age. This chert pebble is presumably derived from a Jurassic accretionary complex distributed in its provenance.

Keywords: radiolarian, conodont, Triassic, Pleistocene, Kazusa Group, conglomerate, provenance, Jurassic accretionary complex, Boso Peninsula, Chiba Prefecture

1. Introduction

Clasts within sediments, such as conglomerate, are supplied from the surrounding geologic units and record information of the provenance. Microfossils including radiolarians and conodonts can assign the age of the clasts, even if they are small clasts.

Radiolarian-bearing clasts have been reported from the Paleozoic to Cenozoic (Table 1) and compiled (e.g. Ishida *et al.*, 2003; Ito *et al.*, 2017a, e), but radiolarian-bearing clasts within the Quaternary are poorly investigated: only by Ito *et al.* (2020) as far as we know. Ito *et al.* (2020) indicated the presence of a water system different from the present one in the Nishi-Mikawa region, central Japan, based on microfossil-bearing clasts within the Quaternary in several areas and horizons will contribute to reconstruction of changes of provenances and water systems.

The Pleistocene Kazusa Group is distributed in the Boso Peninsula (Fig. 1). Some formations of the group include conglomerate layers. We investigated the conglomerate for the accumulation of data of microfossil-bearing clasts within the Quaternary. We consequently discovered radiolarians and conodonts from a chert pebble within the conglomerate of the Higashihigasa Formation of the Pleistocene Kazusa Group, Boso Peninsula (Fig. 1). In this article, we note the microfossils as the first report of microfossil-bearing clasts within the Quaternary in the Boso Peninsula.

2. Geologic setting

The Kazusa Group is mainly composed of shallow- to deep-marine successions (>3,000 m in total thickness). The group generally comprises the Kurotaki, Katsuura, Namihana, Ohara, Tomiya, Kiwada, Otadai, Umegase, Higashihigasa, Kokumoto, Kakinokidai, Ichijiku, Chonan, Mandano, Kasamori and Kongochi formations (Tokuhashi and Endo, 1984; Nakajima and Watanabe, 2005; Utsunomiya and Ooi, 2019) (Fig. 2).

The microfossil-bearing pebble dealt with in this study was collected from the conglomerate of the Higashihigasa Formation. The Higashihigasa Formation is considered as a canyon-fill deposit which interfingers with the submarine-fan deposits defined as the Otadai and Umegase formations (Yamauchi *et al.*, 1990). Chronostratigraphy based on magneto-, tephro- and bio-stratigraphy suggests the Otadai and Umegase formations were deposited during the Early Pleistocene (Calabrian) (Kazaoka *et al.*, 2015). The clast-bearing conglomerate is intercalated above the U10 tephra bed, which is near the Marine Isotope Stage 24 (Pickering *et al.*, 1999), at about 0.9 Ma.

The sample locality is along a tributary of the Obitsu River, north of Mt. Otsuka (Fig. 3). It is located in Otomi, Kimitsu City, Chiba Prefecture in administrative division. The chert clasts occur at the basal part of a conglomerate (2 m in thickness), associated with bioclasts (e.g. mollusks) and other kinds of gravels such as sedimentary rocks and volcanic rocks (Fig. 4A).

¹AIST, Geological Survey of Japan, Research Institute of Geology and Geoinformation

^{*} Corresponding author: ITO, T., Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan. Email: ito-t@aist.go.jp

Erathem	System	Series	Reference
Cenozoic	Quaternary	Pleistocene	Ito et al. (2020)
			Ito et al. (2022) [this study]
	Neogene	Pliocene?	Matsuoka (1998)
			Yamamoto et al. (2012)
		Pliocene	Kawajiri and Kashiwagi (2012)
			Kashiwagi et al. (2013)
			Utagawa et al. (2017)
		Miocene	Umeda et al. (1992)
			Kashiwagi (2012)
			Ito and Nakamura (2021)
			Yabuta et al. (2021)
	Paleogene	Oligocene	Umeda (1997)
	-	Eocene?	Kamemura and Okamura (1994)
		Paleocene?	Kishu Shimanto Research Group (2017)
Mesozoic	Cretaceous	Upper	Suzuki et al. (1996)
			Inose et al. (2018)
		Lower	Kojima (1986)
			Takeuchi et al. (1991)
			Umeda et al. (1995)
			Ishida and Hashimoto (1997)
			Ishida (1999)
			Umeda and Sugiyama (1998)
			Matsukawa and Takahashi (1999)
			Nikaido and Matsuoka (2004)
			Tomita <i>et al.</i> (2007)
			Ito et al. (2012)
			Ito et al. (2014)
			Ito et al. (2015)
			Kashiwagi and Isaji (2015)
			Takeuchi et al. (2015)
			Ozeki et al. (2021)
	Jurassic	Upper	Saida (1987)
		Middle?	Ito et al. (2016)
			Ito et al. (2017b)
		Lower	Kumazaki and Kojima (1996)
			Ito et al. (in press)
	Triassic	Upper	Kametaka (1997)
	Triassic?		Saito and Tsukamoto (1993)
			Kamata (1997)
Paleozoic	Permian	Gudalupian-Lopingian	Matsuoka and Kuwahara (2021)
			Takemura et al. (1996)
	Carboniferous	Mississippian	Uchino and Kurihara (2019)
Paleozoic?		••	Ito <i>et al.</i> (2017c)
			Ito et al. (2017d)

Table 1 Major previous studies of radiolarian-bearing clasts.

3. Method

Four pebbles collected from the conglomerate were processed with the following method to extract microfossils. They were crushed into some fragments to create more surface area. The crushed pebbles were soaked in 5 % hydrofluoric acid at room temperature, about 20–25 °C, for 24 h. The residues were collected by a sieve with

a mesh opening of 0.054 mm. This process was repeated four times. Fossil specimens in the residues were picked up and mounted on stabs. The specimens on the stabs were photographed by scanning electron microscopy. Part of the residues was enclosed within a slide prepared with a photocrosslinkable mounting medium (GJ-4006, Gluelabo Ltd.). The slides were photographed using a transmitted light microscope.

Fig. 1 Index and simplified geologic maps of Boso Peninsula (modified after from Utsunomiya et al., 2019).

Fig. 2 Stratigraphy of the Kazusa Group in the Boso Peninsula (modified after from Utsunomiya *et al.*, 2019).

4. Microfossil occurrences

Among the four pebbles, only one pebble (sample 21112309a) yielded radiolarians and conodonts. The pebble is a rounded reddish chert, and its diameter is about 3 cm (Fig. 4B). The radiolarian and conodont specimens are shown in Fig. 5.

Some radiolarians, *Praemesosaturnalis* sp. cf. *P. heilongjiangensis* Yang and Mizutani, *Praemesosaturnalis*? sp., *Paroertlispongus*? sp., Poulpidae? gen. et sp. indet. and Spumellaria gen. et sp. indet. were extracted. The specimens identified as *Praemesosaturnalis* sp. cf. *P. heilongjiangensis* (Figs. 5.1–5.5) seem to have spines with an elevated margin and bifurcated end. Such a spine is known in a broken specimen of *Praemesosaturnalis heilongjiangensis* (Yang and Mizutani, 1991).

Two specimens of conodonts were extracted. One specimen (Fig. 5.33) can be identified as *Mockina* sp. due to the following characters: a carina extending to the posterior end, a platform with only one sharp denticle on the lateral margin and an anteriorly shifted basal pit, at which the basal margin is upturned.

5. Age assignment

Praemesosaturnalis heilongjiangensis was originally described in the Norian (Upper Triassic) in the Nadanhada Terrane, Northeast China (Yang and Mizutani, 1991). The species has also been reported from the Norian in other areas (e.g. Yao, 1982; Yoshida, 1986; Tekin, 2002). According to Sugiyama (1997), *Praemesosaturnalis*

Fig. 3 Locality map. The map is modified from the topographic map published by Geospatial Information Authority of Japan (https://maps.gsi.go.jp/).

Fig. 4 Photographs of conglomerate and pebble. (A) Conglomerate of the Higashihigasa Formation of the Kazusa Group, Boso Peninsula. (B) Microfossil-bearing red chert pebble (sample 21112309a).

heilongjiangensis group mainly occurs in TR8A to TR8C, Norian, Upper Triassic.

The genus *Mockina* occurs in the middle to upper Norian (upper Alaunian to lower Sevatian) (Mazza *et al.*, 2012; Rigo *et al.*, 2018). The updated integrated biostratigraphy of radiolarians and conodonts by Yamashita *et al.* (2018) showed the co-occurrence of *Praemesosaturnalis heilongjiangensis* group and species of *Mockina* in the middle to upper Norian.

Based on the above-mentioned radiolarian and conodont occurrences, the sample is middle to late Norian in age.

6. Implication

In Southwest Japan, Triassic chert is a component rock of Jurassic accretionary complexes of the Tamba–Mino– Ashio and Chichibu belts (e.g. Nakae, 2000; Matsuoka *et al.*, 1998; Kojima *et al.*, 2016). Consequently, the chert pebble dealt with in this study must be derived from one of these Jurassic accretionary complexes. Meanwhile, the Jurassic accretionary complex is not exposed near the Boso Peninsula (Fig. 6). The nearest-exposed Jurassic accretionary complexes are those in the Yamizo Mountains (Ashio Belt), Ashio Mountains (Ashio Belt) and Kanto

Fig. 5 Late Triassic radiolarians (1–31) and conodonts (32, 33) from the chert pebble (sample 21112309a). (1–5) *Praemesosaturnalis* sp. cf. *P. heilongjiangensis* Yang and Mizutani. (6–14) *Praemesosaturnalis*? sp. (15) *Paroertlispongus*? sp. (16–28) Spumellaria gen. et sp. indet. (29) Poulpidae? gen. et sp. indet. (30, 31) Nassellaria gen. et sp. indet. (32) Breviform digyrate conodont element (M element?). (33) *Mockina* sp.

Jurassic accretionary complex

Fig. 6 Distribution of Jurassic accretionary complexes in central Japan. The distribution is based on Geological Survey of Japan, AIST (2020).

Mountains (Chichibu Belt). The Jurassic accretionary complex in one of these mountains is the presumable origin of the chert pebble. Triassic chert pebbles have also been reported from the Neogene in the Boso Peninsula (Yamamoto *et al.*, 2012), so the chert pebble might be secondarily derived from such strata.

In the current knowledge, the origin of the pebble is not conclusive. Triassic chert is found throughout most of the Jurassic accretionary complex, whereas some lithologies (e.g. limestone, Permian chert, Upper Jurassic mudstone) are unevenly distributed in the complex. If clasts of these lithologies can be found, their origin can be determined in more detail. Further accumulation of the data of the Quaternary in and near the Boso Peninsula will clarify its origin more accurately.

Acknowledgments: We thank Dr. NAYA Tomonori (editor) and Dr. UCHINO Takayuki (reviewer) for constructive comments that improved this manuscript.

References

- Geological Survey of Japan, AIST (2020) Seamless digital geological map of Japan 1: 200,000. Geological Survey of Japan, AIST. https://gbank.gsj.jp/seamless/ v2.html [Accessed: Aug. 8th, 2021].
- Inose, H., Furuuchi, K., Ito, T., Sashida, K. and Agematsu, S. (2018) Radiolarian fossils from conglomerate layers of the Upper Cretaceous Nakaminato Group exposed along the Pacific coast of Ibaraki Prefecture, central Japan: Staged denudation of the mid-Mesozoic

accretionary complexes in the Kanto District. *Paleontological Research*, **22**, 307–325.

- Ishida, K. (1999) Radiolarians as tracers for provenance of gravels in Lower Cretaceous molasse (Outer Zone of SW Japan). *Geodiversitas*, 21, 637–656.
- Ishida, K. and Hashimoto, H. (1997) Mesozoic and Paleozoic radiolarians from the chert pebbles and fine clastics of the Ryoseki and Monobegawa groups in East Shikoku. *News of Osaka Micropalaeotologist (NOM), Special Volume*, no. 10, 217–235 (in Japanese with English Abstract).
- Ishida, K., Kozai, T., Park, S. O. and Mitsugi, T. (2003) Gravel bearing radiolarian as tracers for erosional events: a review of the status of recent research in SW Japan and Korea. *Journal of Asian Earth Sciences*, 21, 909–920.
- Ito, T. and Nakamura, Y. (2021) Radiolarians from Jurassic accretionary complex of the Chichibu belt in the western Akaishi Mountains and chert pebbles of the Miocene Wada Formation in Minami-Shinano, central Japan. *Fossils (Kaseki)*, no. 110, 3–16. (in Japanese with English abstract)
- Ito, T., Sakai, Y., Ibaraki, Y., Yoshino, K., Ishida, N., Umetsu, T., Nakada, K., Matsumoto, A., Hinohara, T., Matsumoto, K. and Matsuoka, A. (2012) Radiolarian fossils from siliceous rock pebbles within conglomerates in the Mizukamidani Formation of the Tetori Group in the Itoigawa area, Niigata Prefecture, central Japan. *Bulletin of Itoigawa City Museums*, no. 3, 13–25. (in Japanese with English abstract)
- Ito, T., Sakai, Y., Ibaraki, Y. and Matsuoka, A. (2014) Middle Jurassic radiolarians from a siliceous mudstone clast within conglomerate of the Tetori Group in the Itoigawa area, Niigata Prefecture, central Japan. Science Reports of Niigata University (Geology), no. 29, 1–11.
- Ito, T., Sakai, Y., Feng, Q. L. and Matsuoka, A. (2015) Middle Jurassic radiolarians from chert clasts in conglomerates of the Tetori Group in the Taniyamadani valley, Fukui Prefecture, central Japan. *Science Reports of Niigata University (Geology)*, no. 30, 1–13.
- Ito, T., Kitagawa, Y. and Matsuoka, A. (2016) Middle and Late Permian radiolarians from chert blocks within conglomerates of the Kamiaso Unit of the Mino terrane in Gifu Prefecture, central Japan. *The Journal* of the Geological Society of Japan, **122**, 249–259. (in Japanese with English abstract)
- Ito, T., Ibaraki, Y. and Matsuoka, A. (2017a) Outline and history of the Itoigawa UNESCO Global Geopark in Niigata Prefecture in central Japan, with radiolarian occurrences in Itoigawa. *Science Reports of Niigata University (Geology)*, no. 32 (supplement), 71–90.
- Ito, T., Kitagawa, Y. and Matsuoka, A. (2017b) An aberrant bi-apical Follicucullus (Albaillellaria) from the late Guadalupian (Middle Permian), with the possible oldest evidence on double malformation

in radiolarians. *Journal of Micropalaeontology*, **36**, 222–223.

- Ito, T., Kurihara, T., Hakoiwa, H., Ibaraki, Y. and Matsuoka, A. (2017c) Late Silurian radiolarians from a radiolarite pebble within a conglomerate, Kotaki, Itoigawa, Niigata Prefecture, central Japan. *Science Reports of Niigata University (Geology)*, no. 32, 1–14.
- Ito, T., Kurihara, T., Hakoiwa, H., Ibaraki, Y. and Matsuoka, A. (2017d) Discovery of the oldest fossil in Niigata Prefecture of central Japan from the Kotaki area, Itoigawa: A report on collaboration research of Itoigawa City, Niigata University, and Geological Survey of Japan, AIST. *Bulletin of Itoigawa City Museums*, no. 4, 23–31. (in Japanese with English abstract)
- Ito, T., Sakai, Y., Feng, Q. L. and Matsuoka, A. (2017e) Review of microfossil-bearing clasts within Late Mesozoic strata in East Asia: staged denudation of mid-Mesozoic accretionary complexes. *Ofioliti*, 42, 39–54.
- Ito, T., Abe, T. and Miyakawa, A. (2020) Paleozoic and Mesozoic radiolarian fossils from siliceous rock pebbles of the Pleistocene in sediment core from Nishimikawa Plain, central Japan: Estimation of a source of the pebbles. *The Quaternary Research* (*Daiyonki-Kenkyu*), **59**, 105–116. (in Japanese with English abstract)
- Ito, T., Kawajiri, T. and Matsuoka, A. (in press) Permian radiolarians and spicules from conglomerate of the Lower Jurassic Kuruma Group in Itoigawa, Niigata Prefecture, central Japan. *Paleontological Research*.
- Kamata, Y. (1997) Late Permian to Late Triassic radiolarians obtained from a float of the sandstone and chert breccia on the Ashio Mountains (preliminary report). *News of Osaka Micropalaeotologist (NOM), Special Volume*, no. 10, 97–107. (in Japanese with English abstract)
- Kamemura, T. and Oakmura, M. (1994) Geologic age and it's source of radiolarites from the Paleogene formations, eastern Hokkaido. *Abstracts of the 101st Annual Meeting of the Geological Society of Japan*, 142. (in Japanese)
- Kametaka, M. (1997) Radiolarian fossils from conglomerate of the Upper Triassic Nariwa Group, and their geological significance. *News of Osaka Micropalaeotologist (NOM), Special Volume*, no. 10, 127–131. (in Japanese with English abstract)
- Kashiwagi, K. (2012) Sedimentary environment of the Nirehara Formation (Lower Miocene) in the Yatsuo area, Toyama Prefecture of central Japan and Paleozoic and Mesozoic radiolarian fossils from chert pebbles and cobbles. *Memoir of the Fukui Prefectural Dinosaur Museum*, **11**, 27–47. (in Japanese with English abstract)
- Kashiwagi, K. and Isaji, S. (2015) Paleozoic and Mesozoic radiolarians from chert pebbles and cobbles of the Lower Cretaceous Choshi Group, Japan. *Natural*

History Research (Natural History Museum and Institute, Chiba), 14, 35–46.

- Kashiwagi, K., Isaji, S. and Asai, H. (2013) Latest Late Jurassic to early Late Cretaceous radiolarians extracted from a gravel of the calcareous nodule originated from the basal conglomerate of the Pliocene Naarai Formation, Choshi area of Kanto Region, central Japan. *The Journal of the Geological Society of Japan*, **119**, 647–652. (in Japanese with English abstract)
- Kawajiri, K. and Kashiwagi, K. (2012) Triassic and Jurassic radiolarians from the chert pebbles of the Plio–Pleistocene Nakatsu Group in the central part of Kanagaw Prefecture, central Japan. *Bulletin of the Sagamihara City Museum*, no. 20, 65–74. (in Japanese)
- Kazaoka, O., Suganuma, Y., Okada, M., Kameo, K., Head, M.J., Yoshida, T., Sugaya, M., Kameyama, S., Ogitsu, I., Nirei, H., Aida, N. and Kumai, H. (2015) Stratigraphy of the Kazusa Group, Boso Peninsula and highly-resolved marine sedimentary record from the Lower and Middle Pleistocene of central Japan. *Quaternary International*, **383**, 116–135.
- Kishu Shimanto Research Group (2017) Discovery of the Paleocene radiolarian fossils from mudstone gravels in the Nyunokawa Formation of the Shimanto Superbelt in the Kii Peninsula—The Study of the Shimanto Terrain in the Kii Peninsula, Southwest Japan (Part 16)—. *Earth Science (Chikyu Kagaku)*, 71, 167–184. (in Japanese with English abstract)
- Kojima, S. (1986) Occurrence of Permian radiolarians from chert pebbles in conglomerate at Yokoo, Nyukawa Village, Gifu prefecture, central Japan. *News of Osaka Micropalaeotologist (NOM), Special Volume*, no. 7, 175–179. (in Japanese with English abstract)
- Kojima, S., Hayasaka, Y., Hiroi, Y., Matsuoka, A., Sano, H., Sugamori, Y., Suzuki, N., Takemura, S., Tsujimori, T. and Uchino, T. (2016) Pre-Cretaceous accretionary complexes. *In* Moreno, T., Wallis, S. and Gibbons, W., eds., *The Geology of Japan, Geological Society* of London, London, 61–100.
- Kumazaki, N. and Kojima, S. (1996) Depositional history and structural development of the Kuruma Group (Lower Jurassic) on the basis of clastic rock composition. *The Journal of the Geological Society* of Japan, **102**, 285–302. (in Japanese with English abstract)
- Matsukawa, M. and Takahashi, O. (1999) Radiolarian fossils occurred from the Itoshiro Subgroup of the Tetori Group and its geological significance. *Abstracts of the 106th Annual Meeting of the Geological Society of Japan*, 165. (in Japanese)
- Matsuoka, A., Yamakita, S., Sakakibara, M. and Hisada, K. (1998) Unit division for the Chichibu Composite Belt from a view point of accretionary tectonics and geology of western Shikoku Japan. *The Journal of*

the Geological Society of Japan, **104**, 634–653. (in Japanese with English abstract)

- Matsuoka, K. (1998) Cretaceous radiolarian red shale pebbles from the Hannou Gravel in the eastern margin of Kanto Mountains, Japan. *Earth Science (Chikyu Kagaku)*, **52**, 324–328. (in Japanese with English abstract)
- Matsuoka, K. and Kuwahara, K. (2021) Discovery of Capitanian (Permian) radiolarians and occurrence of conglomerate in volcaniclastic rocks in the Sumaizuku Unit of the Northern Chichibu Belt in the Kanto Mountains, Central Japan. *Earth Science (Chikyu Kagaku)*, **75**, 119–124. (in Japanese with English abstract)
- Mazza, M., Rigo, M. and Gullo, M. (2012) Taxonomy and biostratigraphic record of the Upper Triassic conodonts of the Pizzo Mondello section (western Sicily, Italy), GSSP candidate for the base of the Norian. *Rivista Italiana di Paleontologia e Stratigrafia*, **118**, 85–130.
- Nakae, S. (2000) Regional correlation of the Jurassic accretionary complex in the Inner Zone of Southwest Japan. *The Memoirs of the Geological Society of Japan*, no. 55, 73–98. (in Japanese with English abstract)
- Nakajima, T. and Watanabe, M. (2005) *Geology of the Futtsu District*. Quadrangle Series, 1:50,000, Geological Survey of Japan, AIST, 102p. (in Japanese with English abstract)
- Nikaido, T. and Matsuoka, A. (2004) Middle Jurassic radiolarian fossils from clasts of the Raga Formation and provenance of Raga Formation, Miyako Group in Iwate Prefecture. *Abstracts of the 111st Annual Meeting of the Geological Society of Japan*, 34. (in Japanese)
- Ozeki, M., Shimizu, N., Agematsu, S. and Sashida, K. (2021) Microfossils from siliceous rock pebbles contained in the Lower Cretaceous Ishido Formation of the Sanchu Group, central Japan. *Journal of Geography (Chigaku Zasshi)*, **130**, 311–329. (in Japanese with English abstract)
- Pickering, K. T., Souter, C., Oba, T., Taira, A., Schaaf, M. and Platzman, E. (1999) Glacio-eustatic control on deep-marine clastic forearc sedimentation, Pliocene– mid-Pleistocene (c. 1180–600 ka) Kazusa Group, SE Japan. *Journal of the Geological Society*, London, 256, 125–136.
- Rigo, M., Mazza, M., Karádi, V. and Nicora, A. (2018) New Upper Triassic conodont biozonation of the Tethyan realm. *In* Tanner, L., ed., *The Late Triassic World. Topics in Geobiology*, **46**. 189–235.
- Saida, T. (1987) Triassic and Jurassic radiolarians in chert clasts of the Tetori Group in Tamodani area of Izumi Village, Fukui Prefecture, central Japan. *The Journal* of the Geological Society of Japan, **93**, 57–59. (in Japanese)
- Saito, M. and Tsukamoto, H. (1993) Chert breccia, its occurrence and radiolarian fossils in the Hichiso-Mugi

area, central Mino Terrane, central Japan. *The Journal* of the Geological Society of Japan, **99**, 117–133. (in Japanese with English abstract)

- Sugiyama, K. (1997) Triassic and Lower Jurassic radiolarian biostratigraphy in the siliceous claystone and bedded chert units of the southeastern Mino terrane, central Japan. *Bulletin of the Mizunami Fossil Museum*, no. 24, 79–193.
- Suzuki, N., Takashima, R., Nishi, H. and Saito, T. (1996) Triassic and Jurassic Polycystine (Radiolaria) from the siliceous shale pebbles of the Lowest Middle Ezo Group, Soushunai Area, Hokkaido. Abstracts of the 103rd Annual Meeting of the Geological Society of Japan, 140. (in Japanese)
- Takemura, S., Umeda, M., Yao, A. and Suzuki, S. (1996) Middle and Late Permian radiolarian fossils yielding from siliceous rock pebbles in the Middle and Upper Permian Maizuru Group, Southwest Japan. *The Journal of the Geological Society of Japan*, **102**, 820–823. (in Japanese with English abstract)
- Takeuchi, M., Saito, M. and Takizawa F. (1991)
 Radiolarian fossils obtained from conglomerate of the Tetori Group in the upper reaches of the Kurobegawa River, and its geologic significance. *The Journal of the Geological Society of Japan*, **97**, 345–359. (in Japanese with English abstract)
- Takeuchi, M., Takenouchi, K. and Tokiwa, T. (2015) Range Metamorphic Rocks and the Mesozoic terrigenous strata. *The Journal of the Geological Society of Japan*, 121, 193–216. (in Japanese with English abstract)
- Tekin, U. K. (2002) Late Triassic (Late Norian–Rhaetian) radiolarians from the Antalya Nappes, Central Taurides, Southern Turkey. *Rivista Italiana di Paleontologia e Stratigrafia*, **108**, 415–440.
- Tokuhashi, S. and Endo, H. (1984) *Geology of the Anesaki District*. Quadrangle Series, scale 1:50,000, Geological Survey of Japan, 136 p. (in Japanese with English abstract)
- Tomita, S., Takeuchi, M. and Kametaka, M. (2007) Radiolarian fossils obtained from conglomerate of the Tetori Group in the northeastern part of Toyama Prefecture and its geological significance. *Abstracts* of the 114th Annual Meeting of the Geological Society of Japan, 243. (in Japanese)
- Uchino, T. and Kurihara, T. (2019) Middle Devonianearly Carboniferous radiolarian fossils extracted from the conglomerate in the Nedamo Complex, Nedamo Terrane, Northeast Japan. *Bulletin of the Geological Survey of Japan*, **70**, 109–115. (in Japanese with English abstract)
- Umeda, M. (1997) Petrography of orthoquartzite clasts and radiolarian fossils in chert clasts in the Late Oligocene conglomerate on the Mesozoic complex of the Nanjo Massif in the Mino Terrane, Central Japan. *Earth Science (Chikyu Kagaku)*, **51**, 199–211. (in Japanese with English abstract)

Umeda, M. and Sugiyama, K. (1998) Paleozoic and

Mesozoic radiolarians from pebbles of siliceous rocks of the Upper Jurassic Shiranezaki Formation in the Toba area, Mie Prefecture, Southwest Japan. *The Journal of the Geological Society of Japan*, **104**, 454–461. (in Japanese with English abstract)

- Umeda, M., Kugimiya, Y. and Ishiga, H. (1992) Late Triassic–Early Jurassic Radiolarians from chert pebbles of the Middle Miocene in northern part of Ooda City, Shimane Prefecture, Japan. *Geological Reports of Shimane University*, **11**, 71–76. (in Japanese with English abstract)
- Umeda, M., Takemura, S. and Yao, A. (1995) Mesozoic and Paleozoic radiolarians from the chert pebbles of the Lower Cretaceous Sasayama Group in the eastern part of Hyogo Prefecture, Southwest Japan. *The Journal of the Geological Society of Japan*, **101**, 937–939. (in Japanese with English abstract)
- Utagawa, F., Sashida, K., Agematsu, S. and Kozu, S. (2017) Triassic and Jurassic radiolarian fossils from siliceous rock pebbles contained in the Nojimazaki Conglomerate Member of the upper Pliocene Shirahama Formation, Chikura Group, Central Japan. *The Journal of the Geological Society of Japan*, **123**, 969–976. (in Japanese with English abstract)
- Utsunomiya, M. and Ooi, S. (2019) Geology of the Kazusa-Ohara District. Quadrangle Series, 1:50,000, Geological Survey of Japan, AIST, 127p. (in Japanese with English abstract)
- Utsunomiya, M., Mizuno, K. and Tamura, I. (2019) Stratigraphic positions and characteristics of tephra beds in the lower to middle Kiwada Formation (lower Pleistocene), Kazusa Group. *Bulletin of the Geological Survey of Japan*, **70**, 373–441. (in Japanese with English abstract)
- Yabuta, S., Takeuchi, M. and Saito, M. (2021) Conglomerate in the Kuroze Formation of the Miocene Shidara Group, eastern Aichi Prefecture,

central Japan: Change in the provenance during the deposition of the Hokusetsu Subgroup. *The Journal of the Geological Society of Japan*, **127**, 689–700. (in Japanese with English abstract)

- Yamamoto, Y., Chiyonobu, S., Kurihara, T., Yamaguchi, A., Hina, S., Hamahashi, M., Raimbourg, H., Augier, R. and Gadenne, L. (2012) Unconformity between a Late Miocene–Pliocene accretionary prism (Nishizaki Formation) and Pliocene trench-slope sediments (Kagamigaura Formation), central Japan. *Island Arc*, 21, 231–234.
- Yamauchi, S., Mitsunashi, T. and Okubo, S. (1990) Growth pattern of the Early Pleistocene Higashihigasa Submarine Channel, Boso Peninsula, central Japan. *The Journal of the Geological Society of Japan*, 96, 523–536.
- Yamashita, D., Kato, H., Onoue, T. and Suzuki, N. (2018) Integrated Upper Triassic conodont and radiolarian biostratigraphies of the Panthalassa Ocean. *Paleontological Research*, 22, 167–197.
- Yang, Q. and Mizutani, S. (1991) Radiolaria from the Nadanhada Terrane, Northeast China. *The Journal of Earth Sciences, Nagoya University*, 38, 49–78.
- Yao, A. (1982) Middle Triassic to Early Jurassic Radiolarians from the Inuyama Area, Central Japan. *Journal of Geosciences, Osaka City University*, 25, 53–70.
- Yoshida, H. (1986) Upper Triassic to Lower Jurassic radiolarian biostratigraphy in Kagamigahara City, Gifu Prefecture, central Japan. *The Journal of Earth Sciences, Nagoya University*, 34, 1–21.

*Translated by the authors.

Recieved January 21, 2022 Accepted June 16, 2022 Published on-line July 20, 2022

房総半島,上総層群の下部更新統東日笠層のチャート礫から産出した 後期三畳紀放散虫及びコノドント

伊藤 剛・武藤 俊・宇都宮正志

要 旨

房総半島の上総層群の下部更新統東日笠層に挟在する礫岩中のチャート礫から,放散虫及びコノドントが産出した. 放散虫 (*Praemesosaturnalis* sp. cf. *P. heilongjiangensis*) とコノドント (*Mockina* sp.)の同定に基づくと,このチャート礫は後 期三畳紀 (中期~後期ノーリアン期)の年代を示す.本チャート礫は当時後背地に分布していたジュラ紀付加体に由来す ると考えられる.

Report

Chemical compositions and ages of basalts from seamounts in the Northwest Pacific

YAMAOKA Kyoko^{1,*}, ISHIZUKA Osamu², MOROZUMI Haruhisa³ and HINO Hikari³

YAMAOKA Kyoko, ISHIZUKA Osamu, MOROZUMI Haruhisa and HINO Hikari (2022) Chemical compositions and ages of basalts from seamounts in the Northwest Pacific. *Bulletin of the Geological Survey of Japan*, vol. 73(3), p. 103–135, 16 figs and 4 tables.

Abstract: As part of the exploration for cobalt-rich ferromanganese crusts in the Northwest Pacific, seamount basalts were collected for chemical composition analysis and K–Ar/Ar–Ar dating. Although the primary chemical compositions of the seamount basalts were not well preserved due to alteration and phosphatization, all 20 seamounts sampled showed typical characteristics of ocean island alkaline basalts. K–Ar dating did not provide reliable ages due to alteration, but Ar–Ar dating provided reliable plateau ages for several seamounts. Formation ages of 67–116 Ma were obtained from the Marcus-Wake Seamount Group, 87 Ma and 105 Ma from the Magellan Seamount Group, and 90 Ma from the Marshall Islands Seamount Group, which were generally consistent with those reported in previous studies.

Keywords: Northwest Pacific, hot spot volcanism, K-Ar/Ar-Ar dating, geochemistry

1. Introduction

The Japan Oil, Gas and Metals National Corporation (JOGMEC, formerly the Metal Mining Agency of Japan) has been conducting exploration for cobalt-rich ferromanganese crusts (referred to as cobalt-rich crusts) in the Northwest Pacific (JA area, Fig. 1) since 1987 commissioned by the Ministry of Economy, Trade and Industry (METI, formerly the Ministry of International Trade and Industry). Promising seamounts were selected based on the evaluation of the mineral resources in each seamount, and a 15-year exploration contract was signed with the International Seabed Authority (ISA) in January 2014 for a total of 3,000 km² of the flat tops of six seamounts (JA02, JA03, JA04, JA06, JA12, JA17) off the southeast of Minami-Torishima Island. The exploration contract requires that an environmental baseline survey be conducted in order to assess the environmental impact of future mining activities in addition to the resource estimation survey.

In this paper, we report on the chemical composition and age of the seamount basement rocks obtained in previous surveys. The formation history of the seamounts inferred from these data provides basic geological information and is useful for understanding the formation mechanism of cobalt-rich crusts. It is also important to understand the characteristics of the particles derived from the basement rock for the suspended plume generated during the mining activity.

2. Study area

The JA area is in the southwest of the North Pacific, extending from around Minami-Torishima Island (Marcus Island) in the north to the Caroline Islands in the south, and from Wake Island in the east to the Mariana Trench in the west. In the northern part of the JA area, the Marcus-Wake Seamounts (JA01-JA06, JA11, JA12, JA17, JA18, MT473) are linked in an east-west direction, and their eastern extension is continuous with the Central Pacific Seamounts. The Magellan Seamounts (JA09, JA13-JA15, JA19, JA22) are arranged in the NW-SE direction from the central to the southern part of the JA area. To the southeast of the JA area, the Marshall Islands Seamounts are aligned in the NNW-SSE direction, and some of the southeast of this area (JA10, JA16) (Fig. 1).

Most JA seamounts are flat-topped (Guyots), and their tops are generally shallower than 1,400 m in depth. The basement rocks of the seamounts are mainly basalt, hyaloclastite, and conglomerate, which are covered by shallow-water limestones and pelagic sediments.

¹AIST, Geological Survey of Japan, Research Institute of Geology and Geoinformation

²AIST, Geological Survey of Japan, Research Institute of Earthquake and Volcano Geology

³ Japan Oil, Gas and Metals National Corporation (JOGMEC)

^{*} Corresponding author: YAMAOKA, K., Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan. Email: k.yamaoka@aist.go.jp

Fig. 1 JJA area in the Northwest Pacific with seamount names. The map was created using ArcGIS ver10.8.1 (ESRI Japan). The used topographic data is ETOPO1 published by NOAA National Centers for Environmental Information (NCEI). The coordinate system is the World Geodetic System (WGS 84).

The limestones contain fossils of corals and thicktoothed bivalves, suggesting that the volcanic islands or atolls gradually subsided and reached the present depth. Limestones are sometimes phosphatized to form phosphate rocks. The exposed basement rocks are covered with ferromanganese crusts of several to ten centimeters thick, and foraminiferal sand is deposited on the flat tops (Watkins *et al.*, 1995, Usui and Someya, 1997).

The depth of the basin is 5,500–6,000 m, and it is known to belong to the oldest zone in terms of geological age of anywhere on Earth, which corresponds to the Cretaceous-Jurassic period according to paleomagnetism (e.g., Larson *et al.*, 1985, Abrams *et al.*, 1993). Based on the ⁴⁰Ar/³⁹Ar age of basalts, it is considered that the Marcus-Wake Seamount Group was formed 100–120 Ma (Early Cretaceous), while the Magellan Seamount Group and the Marshall Islands Seamount Group were formed 70–100 Ma (Late Cretaceous) (Smith *et al.*, 1989, Staudigel *et al*, 1991, Koppers *et al*. 2003).

The chemical composition of these basalts is similar to that of basalts from hotspot volcanoes in French Polynesia in the South Pacific, suggesting that these seamounts were formed by volcanic activity in the French Polynesian region, and have been subducting since the Cretaceous, moving with plate movements to their present positions (Smith *et al.*, 1989, Staudigel *et al.*, 1991). Volcanic activity in French Polynesia is often characterized by unique isotopic features such as HIMU mantle endmember (Zindler and Hart, 1986), and is referred to as the South Pacific Isotope and Thermal Anomaly (SOPITA) (e.g., Staudigel *et al.*, 1991). However, Koppers *et al.* (2003) proposed that the seamount chain was formed by intermittent short-term hotspot activity with diverse isotopic compositions, rather than continuous hotspot activity over a long period of time, based on the diversity of isotopic ratios and the contrast between the two regions.

3. Materials and methods

In each seamount, rock samples were collected mainly by arm type dredge (AD) or chain-bag dredge (CB), and core samples were collected by deep-sea drill machine (BMS: Benthic Multi-Coring System) from 2001. The year and project name for which samples were collected and/or analyzed are shown in Table 1 and 2.

3.1 Chemical analyses

Analytical methods for bulk chemical composition vary with each analysis year.

FY1989–1990: Detailed analysis methods are unknown. **FY1997:** Major elements were measured by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), FeO by titration, CO_2 by high-frequency combustion infrared absorption method, H_2O and loss on ignition (LOI) by gravimetric method, and rare earth elements by instrumental neutron activation analysis.

FY1998–2002: Major elements were measured by ICP-AES, FeO by titration, CO_2 and H_2O^+ by high-frequency combustion infrared absorption method, H_2O^- and LOI by gravimetric method, and trace elements by Inductively Coupled Plasma Mass Spectrometry (ICP-MS).

FY2005: Major elements were measured by X-ray Fluorescence Spectroscopy (XRF), FeO by titration, C by electrometric analysis, H_2O^+ by high-frequency combustion infrared absorption method, H_2O^- and LOI by gravimetric method, and trace elements by ICP-MS.

FY2018–2019: Analysis was performed at ALS Canada Ltd., Canada, including pretreatment. Major elements were measured by XRF or ICP-AES after mixed lithium tetraborate and lithium metaborate melt treatment. Trace elements were measured by ICP-AES or ICP-MS after mixed acid treatment or lithium metaborate melting treatment; H_2O^+ was measured by high-frequency combustion infrared absorption method; H_2O^- and LOI were measured by gravimetric method.

FY2020: Analysis was performed at GSJ/AIST. Rock samples were dissolved using mixed acid (HNO_3+HF), and then trace elements were measured by ICP-MS (Agilent 7700x) combined with the indium internal standard technique.

3.2 K-Ar/Ar-Ar dating

Based on the observation under microscope, samples with minimal alteration were selected for dating. The K–Ar dating was conducted through 1998, and the Ar–Ar dating was conducted starting 1999.

In the K–Ar dating, potassium was determined using a flame photometer and argon isotope ratios were determined using a noble gas mass spectrometer. The decay constants

used are based on Steiger and Jaeger (1977).

 $\lambda e = 0.581 \times 10^{-10}$ /year

$$\lambda\beta = 4.962 \times 10^{-10}$$
 /year

The ratio of 40 K in K was determined to be 40 K/K = 0.01167 atom%.

For the Ar–Ar dating, the analysis was carried out by the step heating method. When a constant Ar–Ar age is obtained from contiguous heating steps comprising >50 % of total ³⁹Ar, the age is called a plateau age. Plateau ages are considered to indicate the age of formation of the sample without secondary Ar loss. The isochron age can also be determined from the Ar isotope ratios obtained from each step.

For the measurements, the samples were crushed, dried at 105 °C for 3 h, and then finely ground to 180–250 μ m. The sample (2 g) was washed twice with 20 % nitric acid and once with 5 % hydrofluoric acid to prevent the formation of gases from carbonate minerals and other secondary minerals that could interfere with Ar analysis. The acid-washed sample was washed thoroughly with pure water, methanol and acetone. A portion of this sample was packed in aluminum foil and set in the reactor. Detailed procedures were described in Ishizuka *et al.* (2006).

Neutron irradiation was carried out at McMaster University in Canada in FY1999, 2000, and 2001. The samples and the standard samples for J-value measurement were irradiated for 45 hours. The standard samples used were LP-6 (biotite, 127.8 Ma) and Fish Canyon sanidine (27.95 Ma). The samples were heated in 8 to 11 steps in the range of 800 to 1800 K. In 2002, neutron irradiation was performed at the research reactor of Oregon State University. The samples and the standard samples for J-value measurement were irradiated for 16 hours. The standard sample used was Taylor Creek Rhyolite Sanidine (27.92 Ma). The sample was heated in 11 to 15 steps for the range of 460–1100 K.

Ar isotope corrections for K, Ca, and Cl originating from atmospheric and neutron irradiation were performed to determine the 40 Ar/{}^{39}Ar ratio. The 40 Ar/{}^{39}Ar ratio of the measured sample was then calculated from the J-value of the standard sample. The criteria for determining the age of the plateau were: 1) three or more consecutive heating age values in the medium to high temperature range must agree with each other with 95 % confidence limits, 2) the plateau must contain more than 50 % of the total 39 Ar. The weighted average of all the age values comprising the plateau was used as the plateau age (Dalrymple *et al.*, 1980).

4. Chemical composition

The chemical compositions of the basement rocks from each seamount are summarized in Table 1 and 2, and the plots of H_2O_{total} ($H_2O^+ + H_2O^-$) and CO_2 against LOI are shown in Fig. 2. The ratios of major elements to SiO₂ are shown in Fig. 3. LOI is >5 % in most of the samples, suggesting that they have suffered strong alteration.

in the JA area	
rom seamounts	
f basement rocks f	
compositions of	
Major elemental	
Table 1	

Year Seamount	t Sample ID	Rock type	(wt%) SiO ₂	TiO ₂	Al ₂ O ₃ I	Fe ₂ O ₃ t F	e2O3 F	Q M	N M	CaC O	Na ₂ C	K20	P_2O_5	$\rm H_2O^+$	H_2O^-	${\rm H_2O_{total}}$	CO_2	LOI	Total	FeO*	Mg#]	FeO*/MgO	Projec	t name
1999 JA01	99JA01AD12	Clinopyroxene olivine alkali basalt	39.8	3.4	12.2		8.9	2.3	0.3	.11 11.	8 2.(1.4	. 1.8	4.0	4.2	8.1	0.3	8.8	6.99	10.3	0.41	1.45	DMRS	1999
1999 JA01	99JA01AD13	Olivine clinopyroxene basalt	42.8	3.2	15.2		8.7	3.9	0.2	.1 10.	2.2	1.5	0.5	3.0	3.7	6.7	0.1	7.5	100.5	11.7	0.30	2.31	DMRS	1999
1999 JA01	99JA01AD18	Clinopyroxene olivine alkali basalt	40.3	3.7	14.3		9.5	2.8	12	3 12			1.2	2.4	3.3	5.6	0.1	6.0	6.66	11.3	0.39	1.56	DMRS	1999
1999 JA01	99JA01AD23	Clinopyroxene olivine alkali basalt	48.6	2.4	18.4		6.1	2.5	0.2	.8 7.	0 5.(3.]	0.4	1.5	1.5	3.0	>0.05	2.8	100.3	8.0	0.32	2.12	DMRS	1999
2001 JA02	011A02BM02C	Olivine clinonvroxene basalt	40.1	;;	12.5		ŝ	4.7	20	0 13	2.5	-	1	7.7	1.2	3.9	0.2	4.7	6.66	12.1	0.40	151	DMRS	2001
2001 IA02	011A02BM03A	Clinonvroxene olivine basalt	39.3	3.0	11.5		63	;;	10	1 12	-	0	Ξ	4.0	2.9	6.9	0.0	7.5	9.66	11.7	0.46	1.16	DMRS	2001
2001 1402	011A02BM05A	Olivine basalt	36.9	5	11 8		1 2 1	5	-	6 17		0	=	36	с С	5 0	00	7 4	0 00	141	0.35	1 86	DMRS	2001
2002 1A02	UDI ADDIMSOR		30.4	10	13.1			19		2 2 2			90		; c	1.2	8 1	28	000		0.47	1 14	DMRS	2002
2011 2002	decompany 110			ţ	1.01		, ,	2	1	1	-			, ,	1			0.1	11.00		Ì.		CODET	7005
2005 JA02	011A02BMS02B																						SOPET	2005
2005 JA02	021A02BMS06B																						SOPET	2005
2005 1A02	001A07BMS07A																						LIDOS	2005
2018 IA02	181A02#016BMS01A	Bacalt	45.8	18	14.4	1 2 1				5	2 0 0	-	20	3 2	41	73		62	101.8	10.9	0.41	1 46	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	2018
2010 10100		Decel+	12.0	0	7 7 1	3 01			1 0	; c	i c			1 6	; °	. 4		1 0	1001		1.0	66 C	LUVUS	2010
2041 0107		Dasalt	0.04	. r	0.4	0.71			10		- i			1.1	0.7	0.0		0.0	1.001	7.11	10.0	02 1	TUAR	0107
2046 0102	WINCINGOID#ZOWCO	Dasalt	0.60		t v	1.4.4			7.0	 . :				1.0	0.0	11.0		0.01	0.02	7.11	00.0	1.79	I JAVIC	2010
2018 JA02	18JA02#018BMIS01C	Basalt	40.5	8.7	C.51	13.9			6.0	8. o	0			6.2	5.5 0.7	6.9 1.9		9.0 -	100.0	C.21	0.32	2.13	SKAPI	2018
2018 JA02	18JA02#019BMS01A	Basalt	42.4	1.3	13.8	12.3			0.7	8	5.	1.4	. 0.5	3.7	5.0	8.7		9.7	101.6	11.0	0.45	1.24	SRAPI	2018
2018 JA02	18JA02#020BMS01A	Basalt	40.8	2.1	12.9	13.0			0.4 1(.2	7 1.8	.1.	Ξ	3.5	6.8	10.4		8.3	100.4	11.7	0.47	1.15	SRAPT	2018
2018 JA02	18JA02#020BMS01B	Basalt	41.0	2.4	14.4	14.9			1.2	.9 4.	3 2.4	1.8	0.8	6.2	8.7	14.8		11.3	100.2	13.4	0.31	2.28	SRAPT	2018
2018 JA02	18JA02#020BMS01C	Basalt	43.0	2.2	13.6	11.1			1.3	1. 7.	0 2.	1.2	. 0.7	5.2	5.8	11.0		9.8	101.3	9.9	0.48	1.08	SRAPT	2018
2018 JA02	18JA02#021BMS01B	Basalt	39.8	2.8	12.5	12.0			0.2	.5 12.	1	2.0		2.8	4.1	6.9		6.3	98.6	10.8	0.47	1.14	SRAPT	2018
2018 JA02	18JA02#021BMS01C	Basalt	37.2	2.0	13.3	16.0			1.4	.1 12.	2 3.0	.1.	3.1	2.1	3.9	6.0		5.9	99.4	14.4	0.22	3.48	SRAPT	2018
2018 JA02	18JA02#033BMS01A	Basalt	38.1	1.8	14.9	12.7			1.7	.2 10.	5 2.5	.1	4.5	4.8	4.9	9.7		9.4	100.2	11.4	0.16	5.20	SRAPT	2018
2018 JA02	18JA02#033BMS01B	Basalt	42.5	1.9	15.8	11.7				4	3 (5	2.5	5.0	4	9.2		8.7	101.2	10.5	0.19	4.33	SRAPT	2018
2018 1002	181 AD7#024BMS01 A	Baselt meyed	23.4	71	11.4	10.2				. 14		-		5.5	89	12.0		10.8	1 00	6.0	0.38	1.64	LdvdS	2018
2010 1 0 10C	G102MGFC0#20F001	Dasali glavel	t:00	t 4	+ 0 11	0.0			10		4 c		t. ~	10	0.0	D.41		17.1	1.77	100	2000	+ 0- 1	LIVIC	0107
2010 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Dasatt	1.10	<u>.</u>		0.0				· · ·				, c				1.11	1.001	<i>c</i>	10.0	0.15		0107
2018 JA02	18JA02#034BMS01C	Basalt gravel	58.0	1.8	14.2	10./				.9 12.			×	4. S	7.0	9.4		C.8	1.001	9.0	0.29	2.45	SKAPI	2018
2018 JA02	18JA02#038BMS01A	Basalt	37.0	2.7	10.7	12.1			0.8	.5 12.	9	0	0.0	4 4	6.3	10.7		9.2	98.7	10.9	0.51	0.95	SRAPT	2018
00 T 200 T			0.00	,	1		t	0		t	•		0			6	0				0000			1007
CUAL / 441	9/JA05AD19		2.7.2	5. 4. 7	15./		Ċ,	0.0	7.0	./ 12.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	C.U .		5.5 5.5	5.5 	7.0	9.C	0.66	C.21	0.58	1.02	CAIMIC	/ 661
2002 JA03	02JA03BMS04B-1		0.40	0.0	20.2		3.0	0.8	0.1	·7	2. 4.	4	0.1	2.9	2.0	4.8	<0.0>	0.0	99.0	4.1	0.28	7.50	DMKS	7007
2005 JA03	02JA03BMS04B-2																						SOPET	2005
2019 JA03	19JA03#052BMS01C	Fresh basalt	43.1	2.5	14.1	13.1			1.5	.6 10.	9.9.6	1.2	. 1.0					1.8	101.5	11.7	0.42	1.37	SRAPT	2019
2019 JA03	19JA03#054BMS01C	Basalt gravel	41.8	3.7	14.3	11.4			1.6	.8 12.	i x	0.0	2.3					4.2	101.6	10.3	0.36	1.76	SRAPT	2019
2019 JA03	19JA03#062BMS01A	Basalt	45.9	3.5	18.7	1.11			4.0	9	4	5	0.9					4.9	9.99	10.0	0.25	3.06	SKAP1	2019
2019 JA03	19JA03#064BMS01A	Basalt	38.9	3.3	12.1	13.3			=	.1 13.	2	0.0	3.2					5.1	9.66	12.0	0.37	1.68	SRAPT	2019
2019 JA03	19JA03#064BMS01C	Basalt	39.5	5.5	13.0	13.9			5.0	.9 I4.	9 2.0	 	2.1					3.9	101.5	12.5	0.39	1.58	SKAP1	2019
2019 JA03	19JA03#072BMS01B	Basalt	46.1	2.5	16.4	11.7			0.7	.7 10.	5	.1.8	1.5					2.5	101.1	10.5	0.31	2.22	SRAPT	2019
2019 JA03	19JA03#072BMS01D	Weathered basalt	39.6	3.1	15.4	12.8			5.1	6	5.0	57	.4.1					6.0	101.1	11.5	0.26	2.91	SRAPT	2019
2002 JA05	02JA05BMS01B		42.3	3.0	15.0		6.8	4.3	0.3	8 10.	4.	3.4	. 0.9	3.8	1.2	5.0	<0.05	5.5	98.6	10.4	0.21	3.70	DMRS	2002
1997 JA06	97JA06AD20		39.9	3.2	16.2		8.1	2.4	4.0	9 11.	6.3.	2.]	4.3		2.4	2.4	0.5	4.4	98.6	9.7	0.23	3.39	DMRS	1997
2018 JA06	18JA06#085BMS01B	Basalt gravel	43.3	3.2	17.0	13.0			0.6	.6 10.	9 3.	=	0.7	1.7	2.2	3.9		3.4	100.9	11.7	0.28	2.54	SRAPT	2018
2018 JA06	18JA06#086BMS02A	Basalt	44.5	2.5	14.2	12.3			0.2	.H H.	5 2.1	1.2	0.5	2.2	2.5	4.7		4.2	9.66	11.11	0.36	1.81	SRAPT	2018
2018 JA06	18JA06#086BMS02B	Basalt	44.5	2.5	14.4	12.5			0.4	2 12.	2.2	1.1	0.8	2.4	2.7	5.1		4.6	101.4	11.2	0.36	1.82	SRAPT	2018
2018 JA06	18JA06#089BMS01C	Basalt	39.4	2.2	11.4	16.5			0.8	.3 12	9 2.3	0.0	0.7	1.8	3.0	4.7		4.4	98.4	14.8	0.33	2.05	SRAPT	2018
2018 JA06	18JA06#089BMS01D	Basalt	39.1	2.3	11.2	10.2			1.2	2 16.	2 23		2.9	2.7	3.7	6.5		6.9	7.99	9.2	0.40	1.48	SRAPT	2018
2018 JA06	18JA06#093BMS01A	Basalt	41.3	2.9	13.6	11.8			0.4	.5 13.	0 2.	1.0	1.6	2.7	3.0	5.7		5.1	99.1	10.6	0.38	1.63	SRAPT	2018
2018 JA06	18JA06#096BMS01A	Basalt	41.1	2.7	12.3	13.3			0.5	.2 14.	1	0.0	0.0	1.9	2.3	4.2		3.8	98.7	11.9	0.38	1.66	SRAPT	2018
2018 JA06	18JA06#096BMS01B	Basalt	36.1	2.3	12.1	13.6			1.3	.9 15.	2	1	4.5	3.4	3.9	7.3		7.4	101.1	12.2	0.32	2.08	SRAPT	2018
2018 JA06	18JA06#096BMS01C	Basalt	39.2	2.6	12.3	13.1				.3 14.	1.1	0.0	1.7	2.4	3.3	5.7		5.2	99.0	11.8	0.38	1.61	SRAPT	2018
2018 JA06	18JA06#100BMS01A	Basalt	40.2	3.2	12.2	14.5			0.1	.8	2 - 1-7	0	0.8	2.6	4.0	6.6		4.9	101.2	13.0	0.38	1.66	SRAPT	2018
2018 JA06	18JA06#100BMS01B	Basalt	43.2	2.5	13.3	13.8			 	.5 II.	6 	0.	0.5	0.7	1.0	1.8		1.2	98.9	12.4	0.41	1.46	SRAPT	2018
2018 JA06	18JA06#100BMS01C	Basalt	41.9	4.6	14.2	15.5				.0 . 10.	7 0 				1.7	4. 4		5.5 4.0	1.99 1.90	11.9 	0.37	0.1	SKAPI	2018
2018 JA06	18JA06#086BMS01A	Basalt	31.1	5.5	13.1	13.2			× •	8. 0 4. 5	0	3		2.2	3. X	0.0 0		0.0 8.0	2.86	11.8	0.29	2.49	SKAPI	2018
2018 JAU6	18JA06#08/JBMISULA	Basalt	5.95 0.05	3.0	0.41 0.7	14.0 0.7			0, 1	9. 21 :	5 r 0 1		× :	7.1	0.2	5.2		5.5 5.5	4.66	1.5.1	17:0	2.00	SKAPI	2018
2018 JA06	18JA06#087BMS01B	Basalt	39.9	3.0	14.5	14.2			1.7	.1 11.	2.2		1.3	1.8	2.4	4.2		4.0	99.0	12.7	0.28	2.52	SRAPI	2018

Project name	SRAPT 2018 SRAPT 2018 SRAPT 2018 SRAPT 2018 SRAPT 2018 SRAPT 2018	DMRS 1998 DMRS 1998 DMRS 1999 DMRS 1999 DMRS 1999 DMRS 1999 DMRS 1999 DMRS 2000 DMRS 2000 DMRS 2000 DMRS 2000	DMRS 1989 DMRS 1999 DMRS 1999 DMRS 2000 DMRS 2000 DMRS 2000 DMRS 2000 DMRS 2000	DMRS 2001 DMRS 2001 SOPET 2005	DMRS 1989 DMRS 2002 DMRS 2002 SRAPT 2019 SRAPT 2019 SRAPT 2019 SRAPT 2019 SRAPT 2019 SRAPT 2019	DMRS 2002	DMRS 1989 DMRS 1998 DMRS 1998 DMRS 1998 DMRS 1998	DMRS 1989	DMRS 1990 SOPET 2005 SOPET 2005
FeO*/MgO	2.23 2.30 1.68 1.57 1.94 3.65	3.09 7.80 10.11 4.21 8.48 3.20 1.68 1.85 3.88 3.88 3.88 3.88 10.10 8.47 4.70	2.59 2.24 1.61 1.61 1.99 2.72 2.72 2.41 1.78 1.61	2.95 2.53	1.38 1.82 3.84 1.79 1.79 1.79 1.79 1.44 1.66 1.20	2.78	1.23 2.34 2.42 1.95	2.78	1.99 1.60 1.82
₩2#	0.31 0.30 0.37 0.39 0.34 0.34	$\begin{array}{c} 0.24\\ 0.11\\ 0.19\\ 0.19\\ 0.24\\ 0.37\\ 0.35\\ 0.35\\ 0.35\\ 0.21\\ 0.11\\ 0.18\end{array}$	0.28 0.31 0.38 0.38 0.33 0.38 0.29 0.36 0.38	0.25 0.28	0.42 0.36 0.21 0.36 0.40 0.41 0.41 0.48 0.48	0.27	0.45 0.30 0.29 0.17 0.34	0.26	0.33 0.53 0.50
FeO*	12.7 13.1 11.9 12.1 11.5 10.2	5.0 9.4 11.0 8.4 9.8 9.6 10.3 10.7 11.2 10.7	$\begin{array}{c} 12.4\\ 12.9\\ 12.9\\ 10.7\\ 11.7\\ 11.8\\ 8.8\\ 8.8\end{array}$	14.2 12.7	12.2 13.0 9.7 11.6 9.7 10.0 11.5 6.1 7.4	10.9	10.3 9.8 8.2 9.4	11.1	11.9 12.9 11.2
Total	100.4 100.1 99.9 99.3 99.3	98.9 99.1 99.2 99.2 99.4 99.0 100.5 98.4	99.5 98.8 99.1 99.8 99.8 99.8	99.7 99.5	99.0 98.7 98.7 101.2 98.1 98.1 100.3 99.2	98.6	99.9 98.5 98.6 98.7	9.66	100.3 98.3 98.4
IO	2.1 1.8 3.6 4.5 6.2 6.2	10.8 4.2 7.4 7.4 7.6 7.9 5.5 5.5 5.5	12.1 11.6 2.6 9.5 5.9 4.8	5.8 3.5	4.0 9.2 4.8 3.3 7.9 7.9 22.4	6.5	4.0 7.3 3.7 10.1 14.3	12.0	7.8 2.9 3.3
co,	a	2.4 0.2 0.1 0.4 0.4 0.5 0.05 0.05 0.05	3.0 0.9 8.5 0.6 0.9 0.3	<0.01	0.4 4.3	1.1	0.8 <0.01 2.6 0.2		0.5
Ototal	2.5 3.2 3.8 3.8 5.9	6.7 3.6 5.5 5.5 5.3 6.6 6.6	8.8 6.9 6.0 7.8 4.4	3.2	3.2 4.5	5.1	5.6 3.0 6.1		2.4 3.3
Н .04	$\frac{2}{1.5}$ 1.8 2.6 1.9 3.4 3.4	3.4 3.4 3.3 3.8 3.3 7.5 2.9 2.3 3.7 2.3 3.7 2.3 3.7 2.3 3.7 2.3 3.7 2.3 3.7 2.3 3.7 2.3 3.4 2.3 3.7 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	5.0 1.0 3.8 1.4 0.6 1.7	2.4 1.2	1.0	1.8	3.2 1.8 3.0 7.7		1.5 2.0
Ho ⁺ F	1.1 1.1 1.9 1.3 2.0 2.5	3.3 1.4 1.4 1.4 2.1 2.1 2.1 4.4 3.7 4.9 4.4	3.4 5.4 2.2 2.2 2.2	2.8	2.1	3.3	2.4 3.1 4.3		1.0
P,O, F	0.6 0.6 0.8 0.8 3.0 3.0	19.5 1.6 1.1 2.4 2.8 6.2 1.4 1.0 0.4 0.4 0.3 3.5 0.3	$\begin{array}{c} 1.3\\ 0.8\\ 0.8\\ 1.4\\ 1.3\\ 0.6\\ 0.8\\ 0.8\end{array}$	1.6 0.8	0.7 0.8 8.9 8.9 5.7 8.0 2.8	0.8	0.6 4.7 0.6 0.3 0.3	1.4	1.1 0.6 0.7
K,0	$\begin{array}{c} 1.1\\ 1.1\\ 1.0\\ 1.0\\ 1.2\\ 2.1\\ 2.1\end{array}$	1.5 2.9 3.5 3.5 2.1 1.2 1.2 1.3 1.4	$\begin{array}{c} 1.2 \\ 1.2 \\ 2.3 \\ 2.6 \\ 2.6 \\ 2.1 \\ 1.3 \\ 1.5 \end{array}$	2.2	$\begin{array}{c} 1.5 \\ 1.3 \\ 2.9 \\ 1.5 \\ 1.3 \\ 1.3 \\ 0.5 \\ 0.6 \end{array}$	1.7	1.9 1.8 2.3 3.8	1.5	1.9 1.1
Na,O	$\frac{1}{2}$ 3.4 3.4 3.1 3.1 3.1 3.1	1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	$\begin{array}{c} 1.4 \\ 1.4 \\ 3.4 \\ 1.0 \\ 1.7 \\ 3.2 \\ 3.7 \\ 3.7 \end{array}$	2.7 3.3	$\begin{array}{c} 2.4\\ 2.3\\ 3.1\\ 1.5\\ 1.5\\ 1.4\\ 1.6\\ 1.0\\ 1.0\end{array}$	3.5	2.9 3.0 3.1 3.1	2.0	1.3 2.8 2.4
CaO]	$ \begin{array}{c} 11.4 \\ 10.5 \\ 11.4 \\ 11.4 \\ 12.5 \\ 10.2 \\ \end{array} $	29.5 6.5 7.2 7.3 7.6 9.9 9.9 9.9 8.8 8.8	11.2 13.5 14.6 222.3 8.6 111.0 8.6 8.6 8.6 8.6	6.8 7.6	11.9 14.0 8.9 8.9 8.9 16.0 116.0 118.2 118.2 112.5 33.9 27.0	9.5	8.0 10.9 6.4 1.7 1.7	11.4	15.5 12.5 10.7
MgO	5.7 5.7 7.1 7.7 6.0 2.8	$\begin{array}{c} 1.6\\ 1.2\\ 1.1\\ 1.1\\ 2.0\\ 2.1\\ 2.1\\ 5.2\\ 5.2\\ 2.8\\ 2.8\\ 2.8\\ 2.1\\ 1.3\\ 1.3\end{array}$	4.8 8.6 8.6 7.4 6.6 7.4 7.4 7.4 8.7 7.4 8.6 7.4 7.4 8.6 7.4 7.5 8.6 7.5 8.6 7.5 8.6 7.5 8.6 7.5 8.6 7.5 8.6 7.5 8.6 7.5 8.6 7.5 8.6 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	4.8 5.0	8.9 3.0 5.4 7.0 7.0 5.1 6.9	3.9	8.3 4.2 1.7 4.8 4.8	4.0	6.0 8.0 6.1
MnO	0.6 0.5 0.5 0.5 0.4 0.2	3.1 0.1 0.5 0.5 0.1 0.1 0.2 0.2 0.3 0.3 0.1 0.1	$\begin{array}{c} 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.1\\ 0.1\end{array}$	0.3 0.2	$\begin{array}{c} 0.7\\ 0.2\\ 0.3\\ 0.5\\ 0.4\\ 0.5\\ 0.3\\ 0.3\\ 0.3\end{array}$	0.2	0.2 0.3 0.1 0.5 0.1	0.2	0.3 0.2 0.2
FeO		< 0.01 0.9 0.4 0.4 0.4 0.4 1.4 1.4 1.6 0.3 0.3 1.3	3.7 3.3 3.1 2.5 1.9 1.9	1.6 3.3	3.6 1.3 1.3	4.1	$\begin{array}{c} 5.9 \\ 0.2 \\ < 0.01 \\ 0.3 \end{array}$	4.0	5.5 5.8 3.5
Fe,O,	3	5.6 9.4 9.4 7.0 9.9 9.1 10.1 10.1 10.4	9.7 9.6 8.5 8.5 9.5 7.6	14.0 10.4	9.6 8.9 11.5	7.5	4.8 10.8 8.5 9.1 10.1	7.9	7.1 7.9 8.5
Fe,O _i t	14.1 14.6 13.2 13.4 13.4 11.4				10.8 7.8 11.2 12.8 6.8 8.2				
Al ₃ O,	15.3 15.9 15.9 13.2 14.2 16.3	5.9 18.3 18.3 18.3 14.6 15.1 15.1 15.1 15.1 15.1 15.1 15.1 15	14.9 12.3 12.4 10.6 12.9 16.6 14.5 15.1	14.7 14.4	12.2 13.2 15.2 15.2 10.6 13.1 10.5 12.4 7.1 7.1	16.1	15.5 13.5 14.7 7.6 13.7	14.2	13.0 12.9 15.3
TiO,	3.1 3.0 2.6 2.7 2.7 2.7 2.9	1.0 3.6 2.3 3.0 2.3 2.3 3.0 1.5 1.5 1.5	8.24 8.54 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6	4.9 4.8	2.8 3.5 3.5 3.5 2.6 1.4 1.8	2.9	2.5 1.6 2.4 1.0 2.1	3.6	3.4 3.6 4.2
(wt%) SiO,	42.8 43.4 43.7 43.7 42.9 44.1 44.1	19.2 46.8 46.6 46.6 44.3 47.1 45.1 47.1 39.7 39.7 46.4	35.9 36.6 36.6 28.1 40.3 41.6 44.0 45.2	40.3 44.6	40.9 37.9 33.2 33.2 35.8 35.8 35.8 37.8 16.4 16.4	42.0	45.3 40.4 19.9 44.7	37.4	37.4 40.0 42.0
Rock type	Basalt Basalt Basalt Basalt Basalt Basalt	Fine-grained tuff Clinopyroxene oli vine alkali dolerite Clinopyroxene oli vine alkali basalt Olivine basalt Olivine basalt Clinopyroxene andesite Aphyric basalt	Amygdaloidal olivine basalt Clinopyroxene olivine alkali basalt Clinopyroxene olivine alkali basalt Olivine alkali basalt Olivine alkali basalt Olivine alkali basalt	Olivine basalt Clinopyroxene basalt	Olivine basalt Weathered dolerite Weathered dolerite Weathered dolerite Hyaloclastite Voleanielastic tuff Voleanielastic tuff		Olivine basalt Basalt Basalt Hyaloclastite	Amygdaloidal pyroxene basalt	Augite aegirine olivine basalt
t Sample ID	181A06#087BMS01C 181A06#081BMS01C 181A06#091BMS01A 181A06#091BMS01A 181A06#091BMS01B 181A06#091BMS01C 181A06#092BMS01C	981A09AD18 981A09AD20-1 981A09AD20-2 991A09AD34-1 991A09AD34-2 991A09AD35-1 991A09AD35-1 001A09AD35-4 001A09AD54-1 001A09AD54-2 001A09AD58-2 001A09CB69	89JA10AD04-E 99JA10AD11 99JA10AD11 99JA10AD13 00JA10AD33 00JA10AD34 00JA10AD31 00JA10AD41 02JA10BMS02B	01JA11BM01A 01JA11BM02A 02JA11BMS06A	891A12AD07-A 021A12BMS03A 021A12BMS04A 191A12#101BMS01A 191A12#101BMS01B 191A12#101BMS01C 191A12#103BMS01C 191A12#103BMS01C 191A12#105BMS01A 191A12#105BMS01C	02JA13BMS02B	89JA14AD06-B 98JA15AD10CA01 98JA15AD12CA01 98JA15AD13CA01 98JA15AD19CA01	891A16AD01	90JA17AD01C 05JA17AD05b1 05JA17AD05b2
Year Seamount	2018 JA06 2018 JA06 2018 JA06 2018 JA06 2018 JA06 2018 JA06	1998 1A09 1998 1A09 1998 1A09 1999 1A09 1999 1A09 1999 1A09 1999 1A09 1999 1A09 1999 1A09 2000 1A09 2000 1A09 2000 1A09 2000 1A09	1989 JA10 1999 JA10 1999 JA10 2000 JA10 2000 JA10 2000 JA10 2000 JA10 2002 JA10 2002 JA10	2001 JA11 2001 JA11 2005 JA11	1989 JA12 2002 JA12 2002 JA12 2019 JA12 2019 JA12 2019 JA12 2019 JA12 2019 JA12 2019 JA12	2002 JA13	1989 JA14 1998 JA15 1998 JA15 1998 JA15 1998 JA15	1989 JA16	1990 JA17 2005 JA17 2005 JA17

Table 1 Continued.

Year Seamount	Sample ID	Rock type	(wt%) SiO ₂	TiO ₂ .	Al ₂ O ₃ F	e ₂ O ₃ t Fe ₂	03 FeC	OnM (MgO	CaO	Na_2O	K_2O	P ₂ O ₅	H_2O^+	H_0 H	² O _{total}	202	LOI	otal	FeO*	Mg# FeC	0%//MgO	Project name
2005 JA17	05JA17AD07r3		43.6	4.3	16.7		.1 2.	0 0.1	4.5	10.5	2.4	1.9	0.8	1.5	1.7	3.2	0.1	4.1	98.9	9.3	0.46	2.06	SOPET 2005
2005 JA1/ 2018 IA17	02JA1/BMS01A 181A17#145BMS01B	A traved baseds	46.4	1	17.6	4 3		01	10	0.0	35	4 3	1 2	ر ۱	<i>د</i> ر	4.4		5 3	1 10	3 8	0.33	2.01	SOPET 2005 SP A DT 2018
2018 JA17	18JA17#146BMS01C	Basalt	42.8	4.6	16.4	11.7		0.7	5.1	8.6	2.7	6.1	1.1	23	3.4	5.7		6.9	00.3	10.5	0.33	2.06	SRAPT 2018
2018 JA17	18JA17#147BMS01A	Basalt	38.4	2.5	12.7	12.9		0.5	7.0	13.6	1.6	1.4	2.6	3.4	4.8	8.2		6.9	6.66	11.6	0.38	1.64	SRAPT 2018
2018 JA17	18JA17#147BMS01B	Basalt	39.5	2.8	14.8	11.8		0.7	6.6	12.3	4.0	1.6	1.3	2.2	3.7	5.9		4.6	6.66	10.6	0.39	1.59	SRAPT 2018
2018 JA17	18JA17#147BMS01C	Basalt	37.9	2.0	12.9	11.8		1.3	5.2	14.7	2.5	1.2	4.6	2.5	3.3	5.8		6.1	00.1	10.6	0.33	2.02	SRAPT 2018
2018 JA17	18JA17#147BMS01D	Basalt	44.9	2.2	15.1	12.1		0.2	5.7	11.3	3.6	1.7	0.7	1.2	2.0	3.2		2.9	00.2	10.9	0.34	1.91	SRAPT 2018
2019 JA17	19JA17#142BMS01C	Fresh basalt gravel	46.2	1.9	20.2	7.6		0.8	2.0	9.9	6.7	4.8	0.5					3.9	01.1	6.8	0.23	3.4 4.0	SRAPT 2019
/ TVf 6107	19JA1 /#150BMS01C	Basalt	42.7	C .7	13.0	13.4		c.0	4./	12.0	5.8	1.4						9.T	c.00	171	0.38	1.62	SKAP1 2019
1990 JA19	90JA19AD01C	Augite olivine basalt	44.8	1.8	9.5	ч	.7 6.	0 0.4	16.9	6.8	1.7	2.3	0.4					3.1	99.4	11.4	0.60	0.67	DMRS 1990
1990 JA19	90JA19AD04D	Augite olivine basalt	38.2	2.8	11.7		.1 4.	5 0.3	7.4	12.8	1.5	2.8	0.9					10.4	00.4	10.9	0.41	1.46	DMRS 1990
1000 14.77		A Itawad bocolt	6 64	<i>c</i> 2	13.3	3	0	000	1 8		3.0	2 1	7					00	0.00	0 1	0.16	516	DMP 5 1990
1990 JA22	901A22AD11B	Augite olivine basalt	39.1	1.6	10.7		.7 U.	8 0.4 4.0	2.6	17.8	2.7	3.1	2.2					11.2	00.7	8.7	0.23	3.42	DMRS 1990
2005 MT472	05DSMT472AD01r1-1		42.9	4.2	17.0	~	8.2	2 0.2	1.8	9.1	2.8	1.7	2.2	2.5	2.2	4.7	0.4	5.3	98.1	10.1	0.24	5.66	SOPET 2005
2005 MT472 2005 MT472	05DSMT472AD01r1-2 05DSMT472AD01a3		43.8 43.0	4.3 4.3	17.2 17.1	~~~		2 0.1 4 0.2	1.9 1.8	7.8 8.8	2.8 2.7	1.8 1.7	1.6 1.9	4.1 2.5	2.0 2.2	6.1 4.7	0.3 0.5	6.8 5.3	98.8 97.9	9.9 10.3	0.24 0.24	5.37 5.65	SOPET 2005 SOPET 2005
2005 MT473	MT473BMS02A-2																						SOPET 2005
2005 MT474	MT474BMS04A																						SOPET 2005
2019 Takuyo-Daigo	19TAKUYO5BMS4IB	Volcaniclastic tuff	29.8	1.6	6.6	14.8		12.3	3.0	7.9	2.3	2.8	4.3					11.0	99.5 01.2	13.3	0.19	4.39	SRAPT 2019
2019 Takuyo-Daigo 2019 Takuvo-Daigo	19TAKUYO5BMS57B	Basalt Basalt	49.1	23	16.6	9.1 12.5		C. 0 4.0	5.8	0.1 11.4	0.4 0.4	1.6	0.5					2.5	2.10	۵ <i>۲</i> 112	0.34	1.71	SRAPT 2019 SRAPT 2019
2019 Takuyo-Daigo	19TAKUYO5BMS57C	Basalt	47.1	1.6	18.4	12.0		0.8	3.0	8.9	5.4	2.2	0.9					1.6	01.7	10.8	0.22	3.63	SRAPT 2019
2019 Takuyo-Daigo	19TAKUYO5BMS58C	Basalt	42.8	2.2	16.3	12.8		1.0	5.5	10.2	4.2	1.7	0.8					2.0	99.3	11.5	0.32	2.09	SRAPT 2019
2019 Takuyo-Daigo	19TAKUYO5BMS59A	Basalt	45.4	2.1	16.4	12.8		0.3	5.8	11.6	4.5	1.5	0.5					6.0	01.8	11.5	0.34	1.97	SRAPT 2019
2019 Takuyo-Daigo 2010 Takuyo-Daigo	19TAKUYO5BMS59B	Porous basalt Bacalt mayod	45.6 43.0	5.7 7 2	20.5	10.6		4.0	9.5	0.0	2.9 2.5	2.2	4. 0					4.0	0.00	0.6 13.0	0.29	7.47 7.47 7.47	SKAPT 2019 SPAPT 2019
2019 Takuyo-Daigo 2019 Takuvo-Daigo	19TAKUYO5BMS55C	Basalt gravel Basalt gravel?	40.6	2.0	13.1	14.7		0.3	8.9	11.8	2.1	13	1.4					3.1	98.2	12.3	0.42	1.39	SRAPT 2019 SRAPT 2019
2019 Takuyo-Daigo	19TAKUYO5BMS52A	Hyaloclastite	36.4	1.9	13.2	12.7		0.4	6.3	15.8	2.4	1.7	0.6					10.5	01.7	11.4	0.36	1.81	SRAPT 2019
2019 Takuyo-Daigo	19TAKUYO5BMS52B	Hyaloclastite	42.8	2.2	15.3	15.6		0.7	5.4	4.3	3.0	3.5	1.1					7.2	01.0	14.0	0.28	2.61	SRAPT 2019
2019 Takuyo-Daigo	19TAKUYO5BMS53B	Hyaloclastite	37.8	2.6	14.2	15.8		0.6	5.6	6.4		3.2	0.5					4. 1	01.1	14.2	0.28	2.55	SRAPT 2019
2019 Takuyo-Daigo 2019 Takuvo-Daigo	19TAKUYO5BMS53E	Hyalociastite	40.2	3.0	16.2	15.5		0.1	0.4 2.4	2.5	3.8	3.7	1.0					9.4	99.5	13.9	0.23	3.33	SRAPT 2019
2019 Takuyo-Daigo	19TAKUYO5BMS52A	Hyaloclastite including basalt gravel	43.0	2.2	15.6	14.5		0.2	6.8	6.9	3.0	2.7	0.6					6.4	01.8	13.0	0.34	1.93	SRAPT 2019
2019 Takuyo-Daigo	19TAKUYO5BMS53B	Hyaloclastite (calcite filling)	33.4	1.6	14.5	10.9		1.2	4.2	12.9	1.9	1.7	0.4					17.8 1	00.4	9.8	0.30	2.33	SRAPT 2019
2019 Takuyo-Daigo	19TAKUYO5BMS53D	Hyaloclastite (calcite filling)	24.7	1.8	9.5	8.6		0.7	4.6 6.2	28.2	1.6	1.1	0.5					19.4	00.1	L.L	0.37	1.70	SRAPT 2019 ESCEC 2020
2020 Takuyo-Daigo 2020 Takuvo-Daigo	19TAKUTO5BMS53D_1	a Dasan h Basalt		0.0	16.0	14.1		1.0	80				1.0							+ 0 7	0.95 0	0.05	ESCRC 2020
2020 Takuyo-Daigo	19TAKUYO5BMS53D_2	a Basalt		1.9	9.7	I II		0.2	4.6				0.6							0.3	0.94	0.07	ESCRC 2020
2020 Takuyo-Daigo	19TAKUYO5BMS53D_21	b Basalt		1.6	9.4	10.1		0.2	3.7				0.4							0.3	0.93	0.08	ESCRC 2020
2020 Takuyo-Daigo	19TAKUYO5BMS53E_1	a Fe-rich basalt		2.0	11.4	11.3		0.0	3.3				0.3							0.2	0.93	0.07	ESCRC 2020
2020 Takuyo-Daigo	19TAKUYO5BMS53E_I	b Fe-rich basalt		2.0	11.5	12.9		0.1	20 E				0.0							0.2	0.94	0.07	ESCRC 2020
2020 Takuyo-Daigo 2020 Takuyo Daigo	19TAKUYO5BMS53F_18	a Basalt b Decelt		77	C21	12.1		0.0	2.0				0.4							0.3	0.94	0.07	ESCRC 2020 ESCPC 2020
2020 Takuyo-Daigo 2020 Takuyo-Daigo	19 TAKUTOJBIMS53F 7a	o Dasau a Rasalt including carbonate		1.2	+-11 L L	0.71		1.0	4.0				0.6							C 0	0.91	0.10	ESCRC 2020 FSCRC 2020
2020 Takuvo-Daigo	19TAKUYO5BMS53F_2F	b Basalt including carbonate		2.5	13.9	12.4		0.2	6.7				0.9							04	0.95	0.06	ESCRC 2020
2020 Takuyo-Daigo	19TAKUYO5BMS53F 3a	a Fe-rich basalt		1.5	8.4	9.8		0.2	3.8				0.4							0.3	0.93	0.08	ESCRC 2020
2020 Takuyo-Daigo	19TAKUYO5BMS53F_3t	b Fe-rich basalt		1.6	9.0	10.2		0.2	3.4				0.3							0.3	0.93	0.08	ESCRC 2020
Total was calculated t	y using major element comp	position and LOI. FeO*: FeO+Fe ₂ O ₃ , Mg [#]	#: MgO/()	MgO+Fet	0*)																		
DMRS: Deep-sea min	teral resource surveys																						
SOPET: Survey on of	Tshore petroleum exploration	n technology (basic survey on exploration	technolog	gy for de	ep water	petroleum	resource	s)															
SKAP1: Survey on re	source assessment and produ-	uction technology for the development of I	marine mi	meral res	ources																		
ESCRC: Environmen	tal study in the area ior expire	oration of cobait-rich crusts																					

-108 -

Project name	DAMPS 1000	DMRS 1999 DMRS 1999	DMRS 1999	DMRS 1999	DMRS 2001	DMRS 2001	DMRS 2001	SOPET 2005	SOPET 2005	SOPET 2005	SOPET 2005 SD ADT 2018	SRAPT 2018	SRAPT 2018	SRAPT 2018	SRAPT 2018	SRAPT 2018 52 ADT 2018	5KAP1 2018 5P 4 DT 2018	SRAP1 2018 SPAPT 2018	SRAPT 2018	SRAPT 2018	SRAPT 2018	SRAPT 2018	SRAPT 2018	SRAPT 2018	SRAPT 2018	DMRS 1997	DMRS 2002	SOPET 2005	SRAPT 2019	SRAPT 2019	SRAPT 2019 52 ADT 2010	SKAF I 2019 SD ADT 2010	SRAPT 2019	SRAPT 2019	DMRS 2002	DMRS 1997	SRAPT 2018	SKAPT 2018 SPAPT 2018	SKAL1 2016 SP APT 2018	SRAPT 2018	SRAPT 2018	SRAPT 2018	SRAPT 2018	SRAPT 2018	SRAPT 2018	SRAPT 2018	SKAPT 2018	5KAF1 2010	DKAL1 2010
=								0.7	2.2	1.7	1.4 0 e	0.0	2.1	1.7	0.5	0.9	0.7		2.8	2.5	2.0	2.4	0.9	2.4	1.4			3.1	2.9	3.0	1.7	1.2	3.0	3.6			1.9	<u>.</u>	0.1 9	2.2	2.0	1.4	2.6	1.8	1.6	1.3	2.1	0.7 C	7.7
£								2.9	10.3	6.7	2.0	o 7	5.2	4.2	1.9	2.7		5.2 6.3	3.6	2.0	2.1	1.7	1.9	2.3	5.1			27.5	9.8	14.1	6.7	0.0	10.4	8.3			6.6	4 • 9 •	, v , t	3.9	6.1	4.9	4.7	4.5	6.3	8.4	6.8 7	4 v 1 v	7.0
Чd	•							1.9	4.6	3.0	2.0 7 6	46	65.0	45.1	2.3	5.1	20.5	0.00	74.6	95.6	129.5	12.3	7.0	15.7	38.1			16.8	77.1	118.0	17.2	0.00	51.6	85.0			28.2	9.5.1	33.4	69.4	15.1	21.3	42.5	47.9	42.8	5.2	48.6	70.02	10.0
5	200	0.8	0.3	0.4	0.4	0.3	c.0	0.3	0.3	0.3	0.3	0.3	0.5	0.4	0.2	0.3	4.0	4.0	2.0	13	0.6	0.5	0.3	1.0	0.3	0.3	0.4	0.4							0.6	0.4	0.4	0.3	7 C	0.5	0.4	0.4	1.0	0.6	0.4	0.3	0.4 0 0	0.0	U.)
٩Х	101	5.6 4.0	2.2	2.4	2.9	5.7 7	1.2	1.9	2.6	2.0	2.0	2.3	3.4	2.8	1.5	1.8	07 c	7 i 7 i	i 4	9.3	4.0	3.1	1.6	7.0	2.2	1.9	3.0	2.7							4.3	2.6	3.0	1.2	0.7 7 4	1 6	2.8	2.8	6.3	3.4	2.7	2.3	2.7 7	י ל ל ל	с. С
Ĕ		0.9	0.4	0.4	0.4	0.4		0.3	0.5	0.4	0.4	40	0.6	0.5	0.2	0.3	C.U	4 V	0.7	1.4	0.6	0.5	0.3	1.2	0.4	0.3	0.5	0.4							0.7	0.5	0.4	0.3	4.0 7	0.5	0.5	0.5	1.0	0.6	0.5	0.3	c.0 ° ¢	0.0	U.N
Ъ	1 1	3.8	3.2	2.8	3.9	2.9 2.6	0.7 2.5	2.3	3.6	2.4	2.7	6 8 8	4.7	3.4	1.8	5.6	7.6	- · ·	5.2	11.3	4.2	3.4	2.2	8.3	2.6	2.4	2.9	2.7							5.5	3.2	3.3	4 2	0.7 8 6	4 60 7 4	3.3	3.3	7.5	3.9	3.6	2.7	0.5 2.0	0.0	4 2
Но	200	2.6 1 4	1.2	1.0	1.6	1.2	101	0.9	1.5			2	1.6	1.3	0.7	0.0	u c	1 i 1 i	61	4.0	1.6	1.3	0.8	2.8	1.1	0.9	1.0	0.9							2.1	1.2	1.3	0.1	: :	13	1.2	1.3	2.5	1.5	1.4	1.0	۲. I د د	7.7	. I
Å	5	12.1 6 8	6.9	5.1	9.1	6.8 6.8	5.5	5.3	8.2	5.7	6.3 7 A		7.7	6.9	3.5	4.7	0.0).C	5 8	17.1	L.T	6.7	3.9	12.2	5.5	5.1	5.1	4.5							12.5	5.7	7.0		5.4 7.4	6.2	 6.6	6.5	10.6	6.9	7.7	5.2	6.4 0	ν υί	Ċ.
É	2	2.2	1.4	1.0	1.8	1.3	01	1.0	1.7		1.2	0.0	1.4	1.3	0.6	0.8	3 3	1.1	1 4	2.7	1.3	Ξ	0.8	1.9	1.1	1.0	0.7	0.7							2.1	1.1	1.3	1.0	1 0	1.2	1.2	1.2	1.7	1.2	1.4	1.0	1.2	<u>†</u>	<u>.</u> 1
Gd		14.3 7.8	9.2	6.1	12.4	9.3	6.9	6.2	11.5	7.4	8.5	4.4	10.2	8.6	4.0	0.9	0.7	0.0	6.6	19.5	8.4	7.8	4.6	14.1	7.2	7.2	4.7	5.5							16.0	8.2	8.3	0.0	n.,	7.8	7.3	8.0	12.4	9.4	10.2	7.2	8.4 1 2 2	0.01	7.0
E	10	4.6 8.8	3.5	2.4	4.6	3.5	5.5	2.2	4.1	2.4	3.0	19	2.9	2.7	1.3	1.7	0.7	0.7 8 C	2.6	3.7	2.1	2.1	1.5	3.0	2.3	2.1	2.2	1.9							6.5	2.4	3.0	5.7	7 t	23	2.6	2.6	3.0	2.7	3.1	2.2	2.6	0.7	7.7
u.S.	110	14.0 7.9	10.4	7.3	13.6	10.1	7.3	6.9	14.1	8.1	9.3 7	1.5	11.3	9.1	3.7	5.7		10.0	0.01	13.8	6.8	7.2	4.8	10.5	8.4	7.3	6.7	6.3							21.0	7.6	10.4	8.2	1.0	8.0	9.6	8.8	10.5	9.8	12.3	8.5	C.6	C.UI	C.UI
PN	0.32	37.3	54.6	42.6	76.8	55.2	38.0	30.8	72.4	43.1	48.9	24.9	54.3	39.9	15.9	25.9	54.1	55.6	242	70.3	29.0	32.2	20.2	54.4	38.5	34.9	44.8	43.8							122.2	39.0	54.3	42.3	47.4	37.8	50.9	41.7	62.7	44.4	60.6	41.7	48.8	0./4	0.10
P.	10.7	8.9	13.8	12.3	18.7	13.3	0.6	7.1	18.7	1.1	12.2	5.5	13.6	9.4	3.6	6.1	- v 2	14.2	10.3	15.7	6.6	7.6	4.8	12.3	9.5	8.4	13.9	13.8							31.6	9.9	13.4	10.8	0.3	93	12.6	10.3	15.3	11.0	14.5	10.4	12.5	0.21	14.0
Ge Ce	20201	137.0 73.2	126.0	127.0	158.0	112.0	88.8	56.9	157.7	97.0	102.3	36.2	128.5	90.9	30.5	50.4 84.8	84.8	70.7	103.0	90.5	116.5	44.6	43.2	48.8	96.1	70.9	148.3	153.5							283.6	76.8	123.0	88.6	0.0% 88.7	105.0	108.0	87.2	107.0	101.0	133.5	87.2	0.132.5	\$3.4 1.7	V.1CI
e I	10/0	106.0 40.2	68.6	73.1	87.5	61.4 54.5	49.6	28.0	80.6	54.8	52.3 21.6	29.1	72.3	43.8	15.7	29.9	58.4 9 0 0 0	52.0 68.7	58.2	131.0	36.1	41.0	21.2	88.1	42.0	35.1	97.9	7.76							146.5	64.4	58.3	43.4	35.0	41.5	56.2	44.7	122.0	54.4	65.7	42.6	57.0	. 1	0.00
Ba	200	235	214	394	807	516	240	315	713	287	625 205	682	730	478	181	298	005	524 616	510	165	210	103	138	170	329	290	1210	826	560	860	940	000	540	1630	1840	471	440	505	C07	381	355	268	480	459	414	321	207	110	410
ź	32	\$ 6	52	198	85	<u></u>	76	84	82	80	02															54	135	126							213	LL													
Zr	12000	339	369	687	236	269	182	171	256	186	222															162	484	488							798	226													
>	107	106 38	35	27	42	31	70	26	41	28	30 27	3.6	67	41	11	28	с ;	10 14	1 12	195	51	49	21	131	27	24	27	25							60	53	36	17	10	5 4	39	38	141	52	4	28	5 S	; ;	ĉ
,	50.5	523	1300	586	1470	1450	643	573	1346	687	320	347	567	736	239	349	542 2 2 2	1355	661	524	448	454	335	558	276	470	863	656	859	1165	1230	0127	859	596	1850	665	731	1.003	458	498	660	494	643	549	778	516	602	770	<u>†</u> 0
Rh		53 23	18	106	14	10	2 =	26	12	6	4 2 8	17	48	33	11	21	67 2	1 70	27	31	26	23	Ξ	28	10	17	170	155	43	16	52	C 7	38	60	45	31	30	67	16	25	13	21	30	20	15	52	5 5	47 K	Ç1
Ċ	5							528	309	236	392	00±	009	069	450	330	450	005	430	480	350	290	240	340	750			-	192	67	382	100	95	287			20	040	010c	1710	420	390	480	460	210	480	330	020	710
(mqq)	100	284 338	295	189	260	297	216	290	251	227	208	LCC	250	315	186	229	817	162	305	183	209	150	134	136	295	386	21	21	252	281	304	C07	231	363	114	224	314	280	411	320	287	384	323	370	345	280	862	104	000
Samule ID	out a dund	99JA01AD12 991A01AD13	99JA01AD18	99JA01AD23	01JA02BM02C	01JA02BM03A	021A02BMS06B	01JA02BMS05B	01JA02BMS02B	02JA02BMS06B	02JA02BMS07A 181407#016PM501A	18JA02#016BMS01C	18JA02#018BMS01A	18JA02#018BMS01C	18JA02#019BMS01A	18JA02#020BMS01A	18JA02#020BM501C	181A02#020BM501C 181A02#071BM501B	18JA02#021BMS01C	18JA02#033BMS01A	18JA02#033BMS01B	18JA02#034BMS01A	18JA02#034BMS01B	18JA02#034BMS01C	18JA02#038BMS01A	97JA03AD19	02JA03BMS04B-1	02JA03BMS04B-2	19JA03#052BMS01C	19JA03#054BMS01C	19JA03#062BMS01A	191A05#064BMS01A	19JA03#072BMS01B	19JA03#072BMS01D	02JA05BMS01B	97JA06AD20	18JA06#085BMS01B	18JA06#086BMS02A	181A00#00#000 181A06#080#3017	181A06#089BMS01D	18JA06#093BMS01A	18JA06#096BMS01A	18JA06#096BMS01B	18JA06#096BMS01C	18JA06#100BMS01A	18JA06#100BMS01B	18JA06#100BMS01C	AUVCIVICIÓN I NO MARIA	LINCINIC/ 00#00/LAU
Year Seamount	1000 LA 01	1999 JA01 1999 IA01	1099 JA01	1999 JA01	2001 JA02	2001 JA02	2002 JA02	2005 JA02	2005 JA02	2005 JA02	2005 JA02 2018 1A02	2018 JA02 2018 JA02	2018 JA02	2018 JA02	2018 JA02	2018 JA02	2041 8102	2018 JA02 2018 1402	2018 JA02	1997 JA03	2002 JA03	2005 JA03	2019 JA03	2019 JA03	2019 JA03	2019 JAU3	2019 JA03	2019 JA03	2002 JA05	1997 JA06	2018 JA06	2018 JA06	0041 8100	2018 JA06	2018 JAU6	2015 JAND	2010 JAV00												

Table 2 Minor elemental compositions of basement rocks from seamounts in the JA area

- 109 -

1	i i																																								
Project name	SRAPT 2018	SRAPT 2018 SRAPT 2018	SRAPT 2018 SRAPT 2018	SRAPT 2018	DMRS 1998	DMRS 1998 DMRS 1998	DMRS 1999	DMRS 1999	DMRS 1999	DMRS 1999	DMRS 2000	DMRS 2000	DMRS 2000	DMRS 2000	DMRS 1989	DMRS 1999	DMPS 2000	DMRS 2000	DMRS 2000	DMRS 2000	DMRS 2002	DMRS 2001	DMKS 2001 SOPET 2005		DMRS 1989 DMRS 2002	DMRS 2002	SRAPT 2019	SRAPT 2019	SRAPT 2019 SPAPT 2010	SRAPT 2019	SRAPT 2019	DMRS 2002	DMRS 1989	DMRS 1998	DMRS 1998	DMRS 1998	DMRS 1998	DMRS 1989	DMRS 1990	SOPET 2005 SOPET 2005	SOPET 2005
D	1.5	2.0	1.9	1.9																							4.4	4.8	2.7	6.1 1.4	2.3									1.5	1.5
μŢ	5.5	9.0 6.9	6.7 6.9	4.6																							5.1	7.1	4.9	6.7	11.2								;	6.0 5.2	9.5
PP P	22.5	19.4 66.1	22.3 17.1	12.5																							10.9	10.3	15.0	D.7C	14.1									2.4 3.1	4.0
Lu	0.4	0.3 0.4	0.3	0.5	1.4 4.0	0.3	0.2	0.4	0.7	c.0 C	0.2	1.6	0.6	0.7		0.3	c.0 C	1.0	0.3	0.3	0.4	0.4	0.4		0.3	0.2						0.3		0.6	0.3	0.7	0.2		:	0.3	0.4
γP	2.9	2.8	2.5	4.0	8.0	8.1	1.6	2.5	4	1.5	1.8	10.7	4.5	1.1		1.7	0.7	3 8	2.1	2.1	2.6	2.9	6.7		2.3	1.7						2.2		3.4	2.0	3.8	1.1			2.1	2.5
T	0.5	0.5	0.4 4.0	0.6	1.4	0.3	0.3	0.4	0.3	4. 0 1. 0	0.3	1.7	0.8	0.7		0.3	0.4 7	0.0	0.4	0.4	0.4	0.5	C.U		0.4	0.3						0.3		0.6	0.3	0.6	0.2			0.4 4.0	0.4
Er	3.7	3.6	3.3	4.6	8.9	2.6	2.5	3.2	2.1	0.7 7	- 7 - 7	12.9	5.6	1.6		2.5	7.0 C	; c 8	2.9	2.7	3.5	4.0	5.5		2.8	2.1						2.7		4.1	2.6	4.1	1.6			3.0	3.2
Ю	1.3	1.3		1.7	2.7	0.7	1.0	1.2	0.9	0.1	0.9	4.4	2.0	0.6		1.0	1 2	1 -	1.2	I.1	1.4	1.7	1.0		Ξ	0.8						1.1		1.4	0.9	1.3	0.6			1.1	1.3
Å	7.0	7.0 6.7	6.2 6.0	8.0	11.0	4.4	5.7	7.0	5.7	0.0 4 6	4.6	20.4	9.6	3.4		5.4	0.0	2.9	6.5	5.5	7.9	9.7	9.0		6.2	4.5						6.5		6.7	5.1	5.9	3.6		1	5.9 6.6	6.9
٩L	1.3	1.0		1.2	1.8	0.9	1.2	1.4	1.2	6.0 0 9	0.8	3.4	1.6	0.0			- - -	1 1	1.3	1.0	1.4	2.0	1.8		Ξ	0.7						1.1		1.1	1.0	1.0	0.7		:	1.2	1.3
Gd	9.3	9./ 9.0	8.0	8.7	11.0	5.3 4.6	8.6	10.1	8.8	5.0 7	5.2	21.0	10.9	5.4		7.7	11.3	10.4	9.3	7.0	10.2	13.3	11.0		8	5.1						8.7		6.1	6.4	5.9	4.3		1	7.8 8.4	9.5
Eu	2.9	2.8	2.5	2.7	2.7	2.5	3.4	4.0	3.6	7.7 7 1 C	1.9	5.9	3.1	5.1		3.0	4.4	- ×	3.3	2.3	3.9	4.9	4.1			2.0						3.4		1.9	2.3	1.8	1.8			2.8 3.0	3.4
Sm	10.6	8.7 9.5	9.8 10.0	10.1	10.0	6.7	10.6	12.6	11.3	۶.c 6.1	4.6	18.7	9.4	5.4		9.1	13.2	1.01	9.8	6.9	11.9	14.6	11.9		9.2	5.5						10.6		6.2	7.9	6.0	5.7			9.9 9.9	I.H
PN	52.3	45.3 52.9	50.8 49.1	49.1	59.0	32.0 28.0	58.4	69.1	62.5	20.8 20.8	19.1	98.8	49.7	13.6		49.5	7.07	1.00	51.6	35.3	63.2	72.9	1.00		48.4	27.9						58.0		29.0	42.0	33.0	25.0		1	48.7 51.0	65.1
Pr	13.0	10.9	12.8 12.4	12.0	14.5	7.5	15.3	18.0	16.5	0.7	4.5	23.4	12.1	2.9		12.8	19.2	177	13.8	9.2	16.1	16.1	8.11		12.2	6.8						14.5		9.9	10.7	8.5	0.9			12.3 12.0	16.5
Ce	14.0	140.0	116.0	86.2	83.0	57.0 49.0	45.0	167.0	[53.0	01.0 65.7	30.2	83.0	67.5	21.4		15.0	03.0	0.00	18.0	<i>T.T.</i>	138.1	19.0	88.0		04.9	56.7						25.4		41.0	91.0	65.0	55.0			107.1 103.2	144.2
La	53.5	40.8 59.1	56.4 54.3	55.1	48.0	36.0 26.0	85.2	96.7	87.9	0.1c	16.9	46.0	78.4	12.8		57.2	05.0	L L L 8	60.2	39.4	69.7	62.7	41.5		58.3	35.8						62.4		45.0	48.0	62.0	23.0			52.8 49.5	1 6.77
Ba	412	378 399	371 358	1045	2030 1	368 453	1110	918	848	165	171	452 1	395	130	358	206	504		468	458	912	378	342	100	948 948	550	400	500	390	50	40	403	806	319	752	411	961	895		560 435	170
ę					15	30 50 %	84	54	46	C 86	18	48	37	12		59	101	114	96	51	75	73	66		16	46						82		22	35	17	24		;	80 83	120
Zr					245	238 206	168	174	145	101	60	178	219	çç		279	CI C	261	201	175	372	487	585		210	117						307		127	277	210	184			220 275	267
×	36 20	35	32 30	57	216	5 č	38	48	30	31	23	157	93	11		3 28	c; ;;	96	29	25	36	50	47		33	24						31		74	29	73	16		1	29 35	36
Sr	797	66U 687	689 648	643	800	521 469	651	760	868	060	475	744	580	317		361	216	700	833	576	870	822	6/0		792	515	1495	713	1015	999 999	289	865		435	517	759	260		-	787	808
Rb	29	20	28 29	4	4 8	46 82	55	38	5 5	4 4	36	34	84 8	40		58	9 <u>1</u>	3.5	39	45	27	38	30		17	30	33	41	24		Ξ	37		34	45	37	69			31	16
Ľ.	06 06	380 380	400 420	130																							369	419	266 152	352	292									636 217	355
(mqq)	333	2/0 264	260 250	325	105	328 318	96	139	74	204 184	204	322	209	183		294	040 0760	213	300	296	342	330	665		427	160	216	260	265	017 16	170	188		147	215	132	61			294 280	306
tt Sample ID	18JA06#087BMS01C	18JA06#088BMS01C 18JA06#091BMS01A	18JA06#091BMS01B 18JA06#091BMS01C	18JA06#092BMS01C	98JA09AD18	98JA09AD20-1 98JA09AD20-2	99JA09AD34-1	99JA09AD34-2	99JA09AD34-3	991A09AD35-7	00JA09AD54-1	00JA09AD54-2	00JA09AD58	00JA09CB69	89JA10AD04-E	99JA10AD11	99JA10AD17	001A10AD34	00JA10AD37	00JA10AD41	02JA10BMS02B	01JA11BM01A	02JA11BMS06A		89JA12AD0/-A 02JA12BMS03A	02JA12BMS04A	19JA12#101BMS01A	19JA12#101BMS01B	19JA12#101BMS01C	19JA12#105BMS01A	19JA12#105BMS01C	02JA13BMS02B	89JA14AD06-B	98JA15AD10CA01	98JA15AD12CA01	98JA15AD13CA01	98JA15AD19CA01	89JA16AD01	90JA17AD01C	05JA17AD05b1 05JA17AD05b2	05JA17AD07r1
Year Seamoun	2018 JA06	2018 JA06 2018 JA06	2018 JA06 2018 JA06	2018 JA06	1998 JA09	1998 JA09 1998 JA09	1999 JA09	1999 JA09	1999 JA09	1999 IA09	2000 JA09	2000 JA09	2000 JA09	2000 JA09	1989 JA10	1999 JA10	01AL 6661	2000 IA10	2000 JA10	2000 JA10	2002 JA10	2001 JA11	2005 JA11 2005 JA11	01 TL 0001	1989 JA12 2002 JA12	2002 JA12	2019 JA12	2019 JA12	2019 JA12	2019 JA12	2019 JA12	2002 JA13	1989 JA14	1998 JA15	1998 JA15	1998 JA15	1998 JA15	1989 JA16	1990 JA17	2005 JA17 2005 JA17	2005 JA17

Table 2 Continued.

Year Seamount	Sample ID	(mqq)	c	Rb	Sr	¥	Zr	4P 1	3a I	a O	e P	ž	l Sm	Eu	Gd	đT	Ď	Но	Er	шЦ	Хb	Lu	Pb	Ē	D	Project name
2005 JA17	05JA17AD07r3	294	2	36	824	36	353	75	448 5	1.8 102	1.6 13	.0 55	.5 10.4	5 3.4	3.6 1	1.4	7.2	1.4	3.4	0.5	2.7	0.4	4.0	5.6	1.7	SOPET 2005
2005 JA17	02JA17BMS01A	207	10	39	1323	50	335	123	594 9	9.3 192	.4 22	.3 89	.9 16.	5.0	14.2	1.9	10.0	1.8	4.5	0.6	3.6	0.5	4.4	9.6	2.4	SOPET 2005
2018 JA17	18JA17#145BMS01B	98	70	102	1080	125		-	913 14	7.5 195	5.0 24	4 92	.3 15.0	4.0	15.8	2.2	13.2	3.2	9.3	1.3	8.6	1.2	51.7	17.8	4.9	SRAPT 2018
2018 JA17	18JA17#146BMS01C	262	60	40	1070	38		2	611 6	8.9 151	.5 16	.4 64	.8 13.	1 3.6	5 10.5	1.4	7.9	1.5	4.1	0.5	3.0	0.4	31.0	7.2	2.2	SRAPT 2018
2018 JA17	18JA17#147BMS01A	313	006	30	1060	99		2	569 6	7.9 103	11 0.1	.1 42	.9 8.	8 2.5	9.6	1.2	6.9	1.7	4.1	0.5	3.6	0.5	36.1	5.6	2.5	SRAPT 2018
2018 JA17	18JA17#147BMS01B	301	180	16	1325	47			848 9	4.4 18(0.0	.3 73	.9 12.	9.6	11.3	1.6	8.3	1.6	4.4	0.6	3.7	0.6	33.7	9.6	3.0	SRAPT 2018
2018 JA17	18JA17#147BMS01C	256	400	25	766	112			545 7	3.8 79	0.6 10	8. 44	.9 8.	8 2.6	5 10.4	1.6	9.8	2.3	6.6	0.9	6.2	0.9	52.5	3.7	2.8	SRAPT 2018
2018 JA17	18JA17#147BMS01D	242	310	39	1090	28			703 4	7.1 87	.2 9	.5 37	.5 8.	2.2	1.5	1.0	5.4	1.1	2.8	0.4	2.4	0.3	6.1	5.7	2.0	SRAPT 2018
2019 JA17	19JA17#142BMS01C	153	5	76	2270			T	950														44.1	12.7	5.8	SRAPT 2019
2019 JA17	19JA17#150BMS01C	231	167	36	1800				960														23.5	8.2	3.0	SRAPT 2019
1990 JA19 1990 JA19	90JA19AD01C 90JA19AD04D																									DMRS 1990 DMRS 1990
1990 JA22 1990 JA22	90JA22AD05D 90JA22AD11B																									DMRS 1990 DMRS 1990
2005 MT472 2005 MT472 2005 MT472	05DSMT472AD01r1-1 05DSMT472AD01r1-2 05DSMT472AD01a3	241 201 230	136 132 149	30 30	627 552 638	82 63 76	312 297 301	4 4 43 43	219 6 158 4 195 5	3.1 71 4.1 72 8.2 70	7 15 2.5 10 3.5 13	.9 76 .9 51 .8 65	5 16. 7 11. 7 14.	2 0 4 2 8 6 2 8 6	18.2 11.9	2.7 1.8 2.3	14.2 9.5 12.4	2.8 2.0 2.5	7.2 5.0 6.2	$ \frac{1.0}{0.7} $ $ 0.9 $	5.4 3.9 4.7	0.8 0.5 0.7	6.0 3.0 5.0	2.8 2.6 2.7	1.1 1.4 1.0	SOPET 2005 SOPET 2005 SOPET 2005
2005 MT473	MT473BMS02A-2	327	22	36	650	52	270	54	317 4	4.2 7.	.7 11	.7 51	.11 6.	4 3.7	10.8	1.6	8.8	1.7	4.5	0.7	3.4	0.5	1.7	3.6	2.4	SOPET 2005
2005 MT474	MT474BMS04A																									SOPET 2005
. 4 1 ± 0100				ç	200			ć	0.00														0.00	000		0100 14 4 45
2019 Takuyo-Daigo	191AKUYU5BMS41B	747	177	77	700			2	007														504.0 21 4	8.7	4.6	SKAP1 2019
2019 Lakuyo-Daigo	191AKUYUSBMS50B	190	4C1 4	64 g	71/				050														21.4	10.6	1.2	SKAP1 2019 55 : 57 2010
2019 Takuyo-Daigo	191AKUY05BMS57B	282	89	15	c/01				530														17.8	7.7	5.0	SKAPT 2019
2019 Takuyo-Daigo	19TAKUY05BMS57C	136	m	22	933			- '	640														40.5	12.4	3.1	SKAPT 2019
2019 Takuyo-Daigo	19TAKUY05BMS58C	224	57	45	737			-	610														27.5	7.6	2.2	SRAPT 2019
2019 Takuyo-Daigo	19TAKUY05BMS59A	231	20	37	774				540														7.5	8.0	2.0	SRAPT 2019
2019 Takuyo-Daigo	19TAKUY 05BMS59B	215	62	21	793			,	730														16.4 ۲۰۰۲	8.5	6.1	SKAPT 2019 5P APT 2010
2019 Lakuyo-Daigo	191AKUYU5BMS52A	24/	234	16	128			. •	210														53.5 1 1 1	9.5 9.6		SKAPT 2019
2019 Lakuyo-Daigo	191AKUYU2BMS53C	077	328	57	770				500														13.6	8.7	2. I 2. Q	SKAP1 2019 52 A DT 2010
2019 Takuyo-Daigo 2010 Tabuyo-Daigo	191ANUTU3BMS22A 19TAKTIVOSBMS52B	151	196 736	07 7	216 216				0.01														C.CI	0.0	۲.0 ۲.1	SKAP1 2019 SP APT 2019
2019 Takuyo-Daigo 2019 Takuvo-Daigo	19TAKUYO5BMS53B	161	127	64 04	197				001														32.5	t oc n or	1 9	SRAPT 2019
2019 Takuvo-Daigo	19TAKUYO5BMS53D	196	128	33 9	3270				130														25.7	3.9	3.3	SRAPT 2019
2019 Takuvo-Daigo	19TAKUYO5BMS53E	155	117	47	480				240														10.0	4.0	2.2	SRAPT 2019
2019 Takuyo-Daigo	19TAKUY05BMS52A	157	254	27	412				130														8.2	3.3	1.1	SRAPT 2019
2019 Takuyo-Daigo	19TAKUY05BMS53B	170	95	37	244				370														69.3	3.4	1.5	SRAPT 2019
2019 Takuyo-Daigo	19TAKUY05BMS53D	165	84	19	458				240														9.7	2.8	0.7	SRAPT 2019
2020 Takuyo-Daigo	19TAKUY05BMS53D_la	271	217	26	487	23	189	58	150 3	6.1 72	8.5 8	.5 36	.0 7.	1 2.4	1.6	1.0	5.1	0.9	2.4	0.3	1.9	0.3	2.4	4.4	1.8	ESCRC 2020
2020 Takuyo-Daigo	19TAKUY05BMS53D_1b	274	220	36	458	23	207	63	148 3	37 - 7.8	8.0 8	.8 36	5 7.	4	2.6	Ξ	5.3	1.0	2.5	0.3	1.9	0.2	2.8	4.8	2.0	ESCRC 2020
2020 Takuyo-Daigo	19TAKUY05BMS53D_2a	153	118	28	129	13	124	39	87 2	3.8	. 5 . 6	.6 22	4.	+	4.6	0.6	3.2	0.6	1.5	0.2	3	0.1	1.4	2.9	1.2	ESCRC 2020
2020 Takuyo-Daigo	19TAKUY05BMS53D_2b	153	115	31	109	= :	Ξ	35	65	7.8 35	4	.3 17	5	2.1		0.5	2.6	0.5	1.3	0.7	1.0	0.1	1.3	2.5	1.0	ESCRC 2020
2020 Takuyo-Daigo	19TAKUYO5BMS53E_la	139	88	50	228	29	180	20	185 5	5.8 71	.9 10	.9 143	x; x;	1 2.5	8.	= :	5.9	1.1	3.0	0.4	2.3	0.3	18.4	3.8	1.7	ESCRC 2020
2020 Takuyo-Daigo	19TAKUY05BMS53E_1b	140	106	47	327	55	169	22	180 5	9.5 7 7 7	5 II	ы. 19 19 19 19			2.0 10.2	1.5	L.8	1.8	5.1	0.7	4.	0.0	20.2	4.0 7	1.9	ESCRC 2020 ESCBC 2020
2020 Takuyo-Daigo	191AKUYU2BMS53F_1a	159	16	4 :	248	67 2	189	4 ·	0 1 1 0 1	0.1	8.0 0 1 0	0.0 4.6	 	10	× •	3		::	6.7	4.0	5.5	0.5	7.71	0.5 1	9.1	ESCRC 2020
2020 Takuyo-Daigo 2020 Takuyo-Daigo	191ANU TUJBMISSE 10 10TAVITVOSDMISSE 76	121	C01	+ - 	205	6 5	102	40 20	C CCI CCI	0.0	7 I O	і г 5 -	0 -	+ -	10.0		0.0	1.1	1.0	0.0	7.0 0	0.0	1.1	0 C	0.1	ESCRC 2020
2020 Takuyo-Daigo 2020 Takuvo-Daigo	19TAKUYO5BMS53F 24	696	179	37	573	71	178	с С	4 898	3.5 0.0	- ×	; 0 ; 0	- c				. 4 . 8	6.0	; r ; c	4.0 7.0	1.8	0.0	1.1	5 4 1 1	0.0	ESCRC 2020
2020 Takuyo-Daigo	19TAKUY05BMS53F 3a	146	108	28	121	14	115	6 6	90	4.9	5 6.0	.8 23	1 % 4	1.6	4	0.6	3.3	0.6	1.5	0.2	1	0.2	1.5	2.9	13	ESCRC 2020
2020 Takuyo-Daigo	19TAKUYO5BMS53F_3b	165	127	35	114	12	115	39	77 2	0.5 4(.4	.9 20	.1 4.	1.4	4.3	0.6	3.1	0.5	1.4	0.2	1.1	0.1	1.6	3.0	1.2	ESCRC 2020
DMRS: Deep-sea min	eral resource surveys																									
SOPET: Survey on ofi	(shore petroleum exploration)	technolog.	y (basic	survey c	on exploi	ration te	chnolog	y for dec	p water	petroleu	m resou	rces)														
SRAPT: Survey on re	source assessment and produc	ction techi	nology fc	or the de	evelopme	ent of m	urine mir	neral res	ources																	
ESCRC: Environment	al study in the area for explor	ation of c	obalt-ric	h crusts																						

- 111 -

The decrease in SiO_2 is observed with the increase in LOI. The alteration reflects two stages of magmatic activity: hydrothermal alteration (recrystallization of hydrous minerals, increase in H_2O^+) and seafloor weathering (formation of clay minerals, increase in H_2O^{-}). With alteration, calcite crystallizes in the voids and CO₂ increases. For the samples with >1 % P₂O₅, the effect of phosphatization is considered. It is known that many elements, including alkali elements, are lost in hydrothermal alteration and alkali elements are added in seafloor weathering. In addition, with the increase of calcite and phosphate, elements such as Ca, Ba, Y, and REE are added. Careful interpretation is needed since the chemical composition of the rock changes from the original composition due to hydrothermal alteration and phosphatization.

Although SiO₂ of most samples are reduced due to increased LOI and CaO, these samples are classified as basalt. These basalts show a wide range of undifferentiated basalts with high MgO and Mg# (MgO/MgO+FeO*, FeO* = FeO+Fe₂O₃) to highly differentiated basalts with low MgO and Mg#. The high Na₂O+K₂O (>3 %) and high TiO₂ (>2 %) relative to SiO₂ indicate the characteristics of alkaline rocks.

Figure 4 shows the Ti/1000-V diagram (after Shervais, 1982) and Figure 5 shows the Zr/4-2Nb-Y diagram (after Meschede, 1986). In the Ti/1000-V and Zr/4-2Nb-Y diagrams, the plots are in the oceanic island alkaline basalt region, although there is some variation. In the Zr/4-2Nb-Y diagram, samples with slightly higher Y values outside the oceanic island alkali basalt region are considered to be due to the increase in Y caused by phosphatization.

Figure 6 shows the Ba/Zr–Nb/Zr diagram. The Ba/Nb ratios of most of the samples are in the range of 4 to 10, which is similar to the basalts in the South Pacific Isotope and Thermal Anomaly (SOPITA) region where the seamounts in this area are thought to have been formed. The samples with Ba/Nb ratios higher than 10 are considered to have undergone Ba addition due to phosphatization. This is especially true for JA09 and JA15 Seamounts.

The MORB-normalized diagram is shown in Figure 7, and the REE chondrite-normalized diagram is shown in Figure 8. The reference values used for the normalization are those of Sun and McDonough (1989), and the figures are divided by seamounts. In the MORB normalized diagram, each seamount basically shows a smooth downward pattern enriched in incompatible elements. Rb, Ba, U, and K increase or decrease due to the influence of alteration, and the increase in Ba and Y may be due to phosphatization. For the samples with a large increase in Pb, MnO is also high, which may be due to the contamination of ferromanganese crusts. Ti-poor samples are found in JA02, JA03, JA05, JA09, JA15, and JA17 Seamounts. Since Ti is an element that is difficult to move during alteration, it may reflect the primary composition and may have been produced by different

Fig. 2 H_2O , CO_2 , and SiO_2 plots against LOI of seamount basement basalts.

magmatic activities.

The REE chondrite-normalization diagrams also show typical oceanic island alkaline basalt features enriched in LREEs for many samples. Two samples from the JA03 Seamount (02JA03BMS04B-1, 02JA03BMS04B-2) and one sample from the JA17 Seamount (05JA17AD07r2) show a low MREE pattern that is different from the other samples. In the JA02 Seamount, JA09 Seamount, and MT472 Seamount, some samples show negative Ce anomalies. The negative Ce anomaly reflects the influence

Fig. 3 Major elements plot against SiO₂ of seamount basement basalts.

Fig. 4 Ti-V discrimination diagram for basalts (after Shervais, 1982). The fields are IAT-island arc tholeiite; MORB and BAB-mid-ocean ridge basalt and back-arc basin basalt; OIA-ocean island alkali basalt.

Fig. 5 Zr-Nb-Y discrimination diagram for basalts (after Meschede, 1986). Samples with P₂O₅>2 % were excluded because yttrium is increased by phosphatization. The fields are defined as follows: AI, within-plate alkali basalts; AII, within-plate alkali basalts and within-plate tholeiites; B, E-type MORB; C, within-plate tholeiites and volcanic-arc basalts; D, N-type MORB and volcanic-arc basalts.

Fig. 6 Nb/Zr-Ba/Zr discrimination diagram for basalts. Samples with P₂O₅>2 % were excluded because barium is increased by phosphatization. The area enclosed by dashed line indicates SOPITA island chains (from Christie *et al.*, 1995).

of seawater and may be due to calcite crystallization, phosphatization, or limestone incorporation. On the other hand, some samples from JA02 Seamount and JA06 Seamount show positive Ce anomalies, suggesting contamination of ferromanganese crusts.

5. Formation age

The ages obtained from each seamount are summarized in Table 3. Below are the formation ages for the Marcus-Wake Seamount Group, Magellan Seamount Group, and Marshall Islands Seamount Group.

5.1 Marcus-Wake Seamount Group (1) JA01 Seamount (Miami Guyot)

Ar–Ar dating was performed on three samples with relatively little alteration, but no reliable age values were obtained from 99JA01AD12 and 99AD13K01. 99JA01AD18 yielded a plateau age of 85.7 ± 2.0 Ma. The stage-heating age spectra and inverse isochron diagrams are shown in Figure 9. The 40 Ar/ 39 Ar age measurement data are shown in Table 4. This age is slightly younger than the Ar–Ar age of 96.8 ± 1.2 Ma reported by Koppers *et al.* (2003).

(2) JA02 Seamount (Lamont Guyot)

Ar–Ar dating was carried out on three samples, but no plateau age was obtained for 01JA02BM02C due to alteration, and an isochron age value of 60.00 ± 16.92 Ma was obtained, which is not considered to be a valid result. A plateau age of 72.4 ± 1.4 Ma was obtained for 02JA02BM06B. Figure 10 shows the step heating age spectra and inverse isochron diagrams. The ⁴⁰Ar/³⁹Ar age measurement data are shown in Table 4. The ages obtained from the high-temperatures (9 to 12 steps) are much younger than those from the low-temperatures (1 to 8 steps) and the K/Ca ratios of each plateau decrease rapidly at high-temperatures, suggesting that the Ar–emitting mineral phases may differ between the high and low temperatures. In addition, the K/Ca ratio and ⁴⁰Ar* (radiogenic ⁴⁰Ar) are generally low, suggesting that the ages obtained are not from the source rock but from secondary mineral phases. A plateau age of 82.4 ± 0.5 Ma was obtained for 02JA02BMS07A, which is in harmony with the Ar–Ar ages (81.6 ± 1.2 Ma, 87.2 ± 0.6 Ma) reported by Koppers *et al.* (2003).

(3) JA03 Seamount (Arnold Guyot)

K–Ar dating was performed on one sample and Ar–Ar dating on two samples. The K–Ar age of 47.5 \pm 1 Ma obtained from 97JA03AD19 is unreliable due to alteration. A plateau age of 98.4 \pm 0.4 Ma was obtained from 02JA03BMS04B. The stage-heating age spectra and inverse isochron diagrams are shown in Fig. 11. The ⁴⁰Ar/³⁹Ar age measurement data are shown in Table 4. The K/Ca ratio of each plateau is very high, suggesting that the main source of Ar emission is alkali feldspar in matrix, which is K-rich and has a high K/Ca ratio. Ar–Ar dating was performed again on another part of the 02JA03BMS04B, yielding a whole rock age of 100.6 Ma and an isochron age of 93.6 Ma.

(4) JA05 Seamount (Batiza Guyot)

Ar–Ar dating was performed on one sample, and the stage-heating age spectra diagram yielded an age of 98.4

Fig. 7 MORB-normalized patterns of seamount basement basalts

 \pm 0.4 Ma. However, the plateau age criterion is not met because there is no plateau greater than 50 % of ³⁹Ar. The inverse isochron diagram cannot be used to verify the plateau age because no isochron can be drawn. The stage-heating age spectra and inverse isochron diagram are shown in Figure 12. The ⁴⁰Ar/³⁹Ar age measurement data are shown in Table 4.

(5) JA06 Seamount (Xufu Guyot)

K-Ar dating was carried out on two relatively unaltered

samples, which yielded the ages of Late Cretaceous (80.0 \pm 2 Ma, 86.5 \pm 2 Ma), but the results are not reliable due to alteration.

(6) JA11 Seamount (McDonnell Guyot)

Ar–Ar dating was carried out on two samples. The obtained plateau ages are 109.4 ± 0.3 Ma and 116.43 ± 4.94 Ma (Late Cretaceous: Albian), which are reasonable results. Figure 13 shows the stage-heating age spectra diagram of 01JA11BMS02A. The 40 Ar/ 39 Ar age measurement data are

Fig. 8 REE patterns of seamount basement basalts

shown in Table 4.

(7) JA12 Seamount (Zhinyu Guyot)

K-Ar dating was performed on one sample and Ar-Ar dating on two samples. The K-Ar age of 72.4 \pm 2.3 Ma obtained from 89JA12AD07-A is unreliable due to alteration. The stage-heating age spectra of 02JA12BMS03B gives an age of 85.6 \pm 0.4 Ma. However, the plateau age criterion is not met because there is no plateau greater than 50 % of ³⁹Ar. The inverse isochron

diagram cannot be used to verify the plateau age because no isochron can be drawn. Figure 14 shows the stageheating age spectra and inverse isochron diagram. The ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ age measurement data are shown in Table 4. A plateau age of 66.77 \pm 0.17 Ma was obtained from 02JA12BMS04B.

(8) JA17 Seamount (Scripps Guyot)

K–Ar dating was performed on two samples and Ar–Ar dating on one sample. The K–Ar ages of 29.5 ± 1.9 Ma

Seamoun	It	Sample ID	Year	K-Ar age ± 1σ (Ma)	Ar-Ar age ± 1σ (Λ Total integrated	Aa) Inverse isochron	$^{40}{ m Ar}^{36}{ m Ar}$	Weighted mean			
				~	age	age	intercept	blateau age	MSWD	³⁹ Ar (%)	Project name
Marcus- JA01	.Wake Seamour Miami	tt Group 99JA01AD12 99JA01AD13 99JA01AD13 Koppers et al	1999 1999 1999 1, (2003)					- 85.7±2.0 96.8±1.2 (2σ)		62.9	DMRS 1999 DMRS 1999 DMRS 1999
JA02	Lamont	01JA02BMS02C 02JA02BMS06B 02JA02BMS07A <i>Koppers et al</i> <i>Koppers et al</i>	2001 2002 2005 <i>I. (2003)</i> <i>I. (2003)</i>		82.3±1.1	60.00±16.92 72.53±1.36 80±5	294.4±7.0 724±315	72.4±1.4 82.4±0.5 87.2±0.6 (20) 81.6±1.2 (20)	1.24	67.3 92.1	DMRS 2001 DMRS 2002 SOPET 2005
JA03	Arnold	97JA03AD19 02JA03BMS04B-1 02JA03BMS04B-2	1997 2002 2005	47.5±1	100.58±0.17	98.00±0.22 -	845.9±27.1	98.4±0.4 -		60.0	DMRS 1997 DMRS 2002 SOPET 2005
JA04	Maloney	Koppers et al Koppers et al	I. (2003) I. (2003)					$100.8{\pm}0.6~(2\sigma)$ $97.7{\pm}0.6~(2\sigma)$			
JA05	Batiza	02JA05BMS01C	2002					98.8±0.4		37.2	DMRS 2002
JA06	Xufu	97JA06AD13 97JA06AD20	1997 1997	80.0±2 86.5±2							DMRS 1997 DMRS 1997
JA11	McDonnell	01JA11BMS02A 02JA11BMS06A	2001 2005		110.94 ± 0.20	117.77±4.62 109.7±0.8	276±31	116.43 ± 4.94 109.4 ± 0.3	3.91	53.4 69.6	DMRS 2001 SOPET 2005
JA12	Zhinyu	89JA12AD07-A 02JA12BMS03B 02JA12BMS04B	1989 2002 2005	72.4±2.3	70.9±0.5	- 68.3±0.7	-166±77	85.6±0.4 66.77±0.17	1.59	31.2 66.4	DMRS 2002 SOPET 2005
JA17	Scripps	90JA17AD01C 91JA17AD10A 02JA17BMS01A Koppers et al	1990 1991 2005 I. <i>(2003)</i>	29.5±1.9 94.6±4.7	104.54±0.13	113±6	-7200±8600	105.29±0.19 101.4±1.4 (20)	0.53	46.0	DMRS 1990 DMRS 1991 SOPET 2005
JA18	Kimotsuki	04MT474BMS04A	2005		152.6±1.3	ı		ı			DMRS 2005
MT473	Tsunogai	04MT473BMS02A-1 04MT473BMS02A-2	2005 2005		79.24 ± 0.21 74.80 ± 0.09	85.3±1.5 79.5±0.6	-747±770 545±235	84.4±0.3 79.77±0.21	0.60 1.20	37.9 37.2	SOPET 2005 SOPET 2005
Takuyo-I	Daigo	NT09-02HPD#953-R11 Tokumaru et al	I. (2015)					101.4±2.3		83.0	

Table 3 K-Ar/Ar-Ar ages of basement basalts from seamounts in the JA area

Bulletin of the Geological Survey of Japan, vol. 73 (3), 2022

Magelina Semant Cana ape ape ape ape ape ape ape app app<	Magellan Seamount Group JA09 loah (Fedorov) 98JA09Al 98JA09A			I OIAL INTERTATED INV	erse isochron	Ar/~Ar	Weighted mean			
Magtina Sement Gram	Magellan Seamount GroupJA09Ioah (Fedorov)98JA09A1			age	age	intercept	plateau age	MSWD	³⁹ Ar (%)	Project name
	JA09 Ioah (Fedorov) 98JA09AI 98JA09AI									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1981AUAA	D20-1 1998	70.8±3.5							DMRS 1998
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	991A09A1	9661 7-070 134 1999	0.6±0.1/				86 8+1 0		45.7	DMRS 1990 DMRS 1999
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ATOMICO 1901/00/100/00/00/00/00/00/00/00/00/00/00/	035 1999					105 ± 4		48.6	DMRS 1999
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IA00I00	D58 2000			,		66.6 ± 1.8		33.8	DMRS 2000
Koppers et al. (2003) Koppers et al. (2003) JA13 Mageshich 89.JA13AD03-D 1989 66.9422 BM JA14 Govoro 89.JA13AD03-D 1989 66.9422 BM JA14 Govoro 89.JA13AD03-D 1989 66.9422 BM JA14 Govorov 89.JA13AD01 1989 66.9423 BM JA15 Pears 98.JA13AD13 1998 66.343.4 BM JA15 Pears 99.JA13AD012 1990 79.642.6 DM JA19 Henler 90.JA9AD4C 1990 79.642.6 DM JA10 Henler 90.JA9AD4C 1990 78.42.5 DM JA10 Henler 90.JA19AD4C 1990 78.42.5 DM JA10 Henler 90.JA19AD4C 1990 78.42.5 DM JA22AD15 1990 78.42.5 100.140.8 (70) DM JA10 Rykabev 90.JA10AD44E 1990 74.40 87.41.0	00JA09C1	369 2000			ı		I			DMRS 2000
Image: control in the properties of the pr		Koppers et al. (2003) Konners et al. (2003)					$86.7\pm0.4~(2\sigma)$ $88.5\pm0.7~(2\sigma)$			
		(conz) un in cinddou					00.770.1 (20)			
	JA13 Magoshichi 89JA13AJ	D03-D 1989	66.9±2.2							DMRS 1989
	JA14 Govorov 89JA14A	06-Е 1989	86.8±3.0							DMRS 1989
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	JA15 Pegas 98JA15AJ 98IA15AJ	010 1998 133 1998	56.0±2.8 68.7±3.4							DMRS 1998 DMRS 1998
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0//1 (10	F.C+1.00							
JA2 Butakov 901A22AD05C 1990 53.3±1.9 $100.1\pm0.8(2\sigma)$ DMI JA2 Butakov 901A22AD11B 1990 53.3±1.9 DMI Marshall Islands Seamount Group 901A22AD11B 1990 69.9±2.3 DMI Marshall Islands Seamount Group 901A10AD04-E 1889 43.6±2.8 43.6 ± 2.8 DMI JA10 Rykachev 89JA10AD04-E 1989 43.6 ± 2.8 $ -$ 901A10AD17 1999 $ -$	JA19 Hemler 90JA19Al 901A19Al	D01C 1990 D04C 1990	79.6±2.6 78 1+7 5							DMRS 1990 DMRS 1990
JA2 Butakov 90JA22AD05C 1990 53.3±1.9 DMI Marshall Islands Scamount Group 90JA22AD11B 1990 69.9±2.3 DMI Marshall Islands Scamount Group 59.9±1.0 89.43.6±2.8 43.6±2.8 DMI JA10 Rykachev 89.10AD04-E 1989 43.6±2.8 DMI JA10 Rykachev 89.10AD04-E 1989 43.6±2.8 DMI JA10 Rykachev 89.10AD04-E 1989 43.6±2.8 DMI JA10 Rykachev 89.10AD01 1999 - - - - DMI JA10 Rykachev 89.10AD17 1999 -		Koppers et al. (2003)					100.1±0.8 (2σ)			
901A22AD11B 1990 69.9±2.3 DMI Marshall Islands Seamount Group 100 Rykachev 891A10AD04-E 1989 43.6±2.8 DMI JA10 Rykachev 891A10AD01-E 1989 43.6±2.8 DMI JA10 Rykachev 891A10AD01-E 1989 43.6±2.8 DMI JA10 Rykachev 891A10AD01-E 1989 43.6±2.8 DMI JA10 Rykachev 891A10AD01 1999 - - DMI 991A10AD17 1999 - - - - DMI 901A10AD34 2000 79.8±4.0 367±1.0 82.7±3.1 3.74 83.8 DMI 0.01A10AD31 2000 891.5±1.8 412±2.1 91.8±0.7 1.1 DMI JA16 Charebogo 89JA16AD01 1989 54.1±2.1 88.5±1.2 1.6 DMI	JA22 Butakov 90JA22Al	205C 1990	53.3±1.9							DMRS 1990
Marshall Islands Scamount Group - - - - - DMI JA10 Rykachev 89JA10AD04-E 1989 43.6±2.8 DMI	90JA22AI	D11B 1990	69.9±2.3							DMRS 1990
JA10 Rykachev 89JA10AD04-E 1989 43.6±2.8 DMI 99JA10AD11 1999 - - - - 99JA10AD17 1999 - - - - 90JA10AD17 1999 - - - - 90JA10AD17 1999 - - - - DMI 90JA10AD34 2000 79.8±4.0 367±1.0 82.7±3.1 3.74 83.8 DMI 0.01A10AD37 2000 91.5±1.8 412±21 91.8±0.7 1.1 DMI 0.01A10AD41 2000 89.5±2.7 457±41 88.5±1.2 1.6 DMI JAI6 Charebogo 89JA16AD01 1989 54.1±2.1 91.8±0.7 1.1 DMI	Marshall Islands Seamount Group									
9JA10AD11 1999 - - - - DMI 9JA10AD17 1999 - - - - - DMI 9JA10AD17 1999 - - - - - DMI 9JA10AD17 1999 - - - - - DMI 9JA10AD34 2000 79.8±4.0 367±10 82.7±3.1 3.74 83.8 DMI 00JA10AD37 2000 91.5±1.8 412±21 91.8±0.7 1.1 DMI 00JA10AD41 2000 89.5±2.7 457±41 88.5±1.2 1.6 DMI JAI6 Charebogo 89JA16AD01 1989 54.1±2.1 0.6 DMI	JA10 Rykachev 89JA10A1	D04-E 1989	43.6 ± 2.8							DMRS 1989
9JA10AD17 1999 DMI 00JA10AD34 2000 79.8±4.0 367±10 82.7±3.1 3.74 83.8 DMI 00JA10AD37 2000 91.5±1.8 412±21 91.8±0.7 1.1 DMI 00JA10AD41 2000 89.5±2.7 457±41 88.5±1.2 1.6 DMI 1A16 Charebogo 89JA16AD01 1989 54.1±2.1 DMI	99JA10AJ	11C 1999								DMRS 1999
00JA10AD34 2000 79.8±4.0 367±10 82.7±3.1 3.74 83.8 DMI 00JA10AD37 2000 91.5±1.8 412±21 91.8±0.7 1.1 DMI 00JA10AD41 2000 89.5±2.7 457±41 88.5±1.2 1.6 DMI JA16 Charebogo 89JA16AD01 1989 54.1±2.1 DMI	99JA10AJ	D17 1999			ı		ı			DMRS 1999
00JA10AD37 2000 91.5±1.8 412±21 91.8±0.7 1.1 DMI 00JA10AD41 2000 89.5±2.7 457±41 88.5±1.2 1.6 DMI JA16 Сћаверодо 89JA16AD01 1989 54.1±2.1 DM	00JA10AJ	D34 2000			79.8 ± 4.0	$367{\pm}10$	82.7 ± 3.1	3.74	83.8	DMRS 2000
00JA10AD41 2000 89.5±2.7 457±41 88.5±1.2 1.6 DMI JA16 Charedoeco 89JA16AD01 1989 54.1±2.1 DMI	00JA10AJ	D37 2000			91.5±1.8	412±21	$91.8 {\pm} 0.7$	1.1		DMRS 2000
JA16 Chanepogo 89JA16AD01 1989 54.1±2.1 DM	00JA10A	D41 2000			89.5±2.7	457±41	88.5±1.2	1.6		DMRS 2000
2	JA16 Changpogo 89JA16AJ	1089	54.1±2.1							DMRS 1989

Table 3 Continued.

JA01AD18

Fig. 9 Step heating age spectra and inverse isochron diagrams for Ar–Ar dating (JA01 Seamount)

and 94.6 \pm 4.7 Ma are unreliable due to the effects of alteration. A plateau age of 105.29 \pm 0.19 Ma was obtained from 02JA17BMS01A, which is consistent with the Ar–Ar age of 101.4 \pm 1.4 Ma reported by Koppers *et al.* (2003). The ⁴⁰Ar/³⁹Ar age measurement data are shown in Table 4. **(9) JA18 Seamount (Kimotsuki Seamount)**

Ar–Ar dating was carried out on one sample, but no plateau age was obtained. The ⁴⁰Ar/³⁹Ar age measurement data are shown in Table 4.

(10) MT473 Seamount (Tsunogai Seamount)

Ar–Ar dating was carried out on two samples and yielded plateau ages of 79.77 ± 0.21 Ma and 84.4 ± 0.3 Ma. The 40 Ar/ 39 Ar age measurement data are shown in Table 4.

5.2 Magellan Seamount Group

(1) JA09 Seamount (Ioah/Fedorov Guyot)

K–Ar dating was performed on two samples and Ar–Ar dating on four samples. The ages obtained from 98JA09AD20 are 70.8 ± 3.5 Ma and 71.5 ± 3.5 Ma, corresponding to the Late Cretaceous (Maastrichtian), but

it is likely that some of the Ar in the rocks was lost due to weathering and alteration, resulting in slightly younger ages. The Ar-Ar ages obtained from relatively less altered samples (99JA09AD34 and 99JA09AD35) are 86.8 ± 1.0 Ma and 105 ± 4 Ma, respectively, corresponding to the Late Cretaceous (Coniacian) and Middle Cretaceous (Albian). There is a large gap between these ages, suggesting that there were two distinct periods of volcanic activity. The Ar-Ar age from 00JA09AD58 is 66.6 ± 1.8 Ma and corresponds to the Late Cretaceous (Maastrichtian), but is unreliable because ³⁹Ar only accounts for 33.8 %. No plateau age was obtained from 00JA09CB69 due to alteration. Koppers et al. (2003) reported Ar-Ar ages of 86.7 ± 0.4 Ma and 88.5 ± 0.7 Ma. The stage-heating age spectra and inverse isochron diagrams of 99JA09AD34, 99JA09AD35, 00JA09AD58, and 00JA09CB69 are shown in Figure 15. The ⁴⁰Ar/³⁹Ar age measurement data are shown in Table 4.

(2) JA13 Seamount (Magoshichi Guyot)

K–Ar dating was carried out on one sample and yielded an age of 66.9 ± 2.2 Ma, but the results are not reliable

neasurement data
Ar age r
$^{40}Ar/^{39}A$
Table 4

sample ID: JAG	1AD12				
Temp. (K)	$^{36}Ar/^{40}Ar$	$^{39}\mathrm{Ar}/^{40}\mathrm{Ar}$	39 Ar	40 Ar *	Age (Ma)
800	$1.292E+00 \pm 1.419E+03$	$9.651E-02 \pm 1.512E+02$	0.00	0.00	
006	$4.622E+00 \pm 2.457E+03$	$1.225E-01 \pm 8.085E+01$	0.01	0.00	
1000	$1.446E-02 \pm 9.086E-03$	$1.932E-04 \pm 5.046E-02$	0.02	0.00	
1100	$1.611E+00 \pm 4.305E+02$	$1.766E+01 \pm 4.721E+03$	1.75	0.00	
1200	$6.413E-03 \pm 2.575E-03$	$1.179E-01 \pm 3.354E-02$	11.82	0.00	
1400	$4.557E-04 \pm 1.369E-03$	$1.301E-01 \pm 6.455E-03$	57.74	86.48	62.97 ± 29.11
1600	$0.000E+00 \pm 4.432E-03$	$5.650E-02 \pm 2.023E-02$	67.43	100.00	162.94 ± 211.40
1800	$2.153E-04 \pm 6.041E-04$	$2.576E-01 \pm 2.940E-03$	100.00	93.52	34.68 ± 6.56
sample ID: JA6	1AD13		:	:	
Temp. (K)	30 Ar/ 40 Ar	$^{39}\mathrm{Ar}/^{40}\mathrm{Ar}$	$^{0.39}$ Ar	40 Ar *	Age (Ma)
800	$1.169E-02 \pm 1.508E+01$	$9.651E-02 \pm 1.429E+02$	0.01	0.00	
906	$0.000E+00 \pm 3.673E+00$	$1.514E-01 \pm 9.151E+01$	0.03	0.00	
1000	$5.617E+00 \pm 2.051E+03$	$1.537E-01 \pm 6.104E+01$	0.06	0.00	
1100	$3.312E+00 \pm 8.407E+02$	$1.360E-01 \pm 3.844E+01$	0.09	0.00	
1200	$1.216E-02 \pm 9.179E-03$	$6.037E-02 \pm 4.528E-02$	6.00	0.00	
1400	$1.344E-03 \pm 1.466E-03$	$1.180E-01 \pm 1.087E-02$	50.92	60.25	48.53 ± 33.80
1600	$0.000E+00 \pm 5.775E-03$	$2.339E-02 \pm 2.633E-02$	61.59	100.00	370.97 ± 685.40
1800	$1.716E-03 \pm 2.319E-03$	$2.373E-01 \pm 6.468E-03$	100.00	49.24	19.90 ± 27.53
sample ID: JA0	1AD18	2 5	:	:	
Temp. (K)	${}^{36}Ar/{}^{40}Ar$	$^{39}\mathrm{Ar}/^{40}\mathrm{Ar}$	$^{0.39}$ Ar	40 Ar *	Age (Ma)
800	$1.745E-03 \pm 6.814E-05$	$3.957E-02 \pm 1.625E-04$	9.32	48.41	114.16 ± 4.66
906	$6.965E-04 \pm 4.402E-05$	$8.816E-02 \pm 4.256E-04$	17.60	79.38	84.75 ± 1.46
1000	$5.843E-04 \pm 5.528E-05$	$8.936E-02 \pm 2.951E-04$	43.22	82.70	87.04 ± 1.73
1100	$2.476E-05 \pm 9.053E-05$	$1.086E-01 \pm 4.642E-04$	72.26	99.21	85.92 ± 2.31
1200	$5.481E-04 \pm 1.345E-04$	$1.204E-01 \pm 4.744E-07$	81.30	83.75	65.83 ± 3.09
1300	$9.753E-04 \pm 5.836E-04$	$2.437E-01 \pm 1.340E-03$	87.96	71.09	27.92 ± 6.72
1400	$0.000E+00 \pm 1.656E-03$	$2.705E-01 \pm 7.494E-03$	93.75	100.00	35.31 ± 17.11
1500	$0.000E+00 \pm 3.726E-03$	$1.564E-01 \pm 1.499E-02$	94.35	100.00	61.30 ± 66.50
1600	$0.000E+00 \pm 4.476E-03$	$1.142E+01 \pm 1.988E-02$	96.05	100.00	82.50 ± 107.50
1700	$0.000E+00 \pm 1.592E-03$	$2.564E+01 \pm 6.876E-03$	97.80	100.00	37.23 ± 17.35
1800	$0.000E+00 \pm 5.601E-04$	$2.607E-01 \pm 3.505E-03$	100.00	100.00	36.61 ± 6.01
sample ID: JA0	9AD34	<u> </u>	:	:	
Temp. (K)	${}^{36}Ar/{}^{40}Ar$	$^{39}\mathrm{Ar}/^{40}\mathrm{Ar}$	$^{0.39}$ Ar	$\%^{40} \mathrm{Ar}^{*}$	Age (Ma)
800	$2.164E-03 \pm 1.709E-04$	$3.034E-02 \pm 1.354E-03$	2.11	36.04	110.96 ± 16.53
906	$2.231E-04 \pm 9.177E-05$	$1.135E-01 \pm 2.456E-03$	9.11	93.35	77.59 ± 2.80
1000	$1.582E-04 \pm 3.470E-05$	$1.017E-01 \pm 1.154E-03$	26.78	95.28	88.10 ± 1.40
1100	$2.478E-05 \pm 2.508E-05$	$1.083E-01 \pm 8.329E-04$	54.30	99.21	86.22 ± 0.96
1200	$3.811E-05 \pm 5.119E-05$	$1.143E-01 \pm 8.930E-04$	75.29	98.82	81.43 ± 1.40
1400	$2.361E-06 \pm 2.557E-05$	$1.311E-01 \pm 5.542E-04$	96.44	99.86	71.97 ± 0.67
1600	$2.999E-04 \pm 3.395E-04$	$1.502E-01 \pm 1.525E-03$	97.62	91.07	57.50 ± 6.26
1800	$1.840E-04 \pm 1.456E-04$	$1.514E-01 \pm 4.541E-04$	100.00	94.49	59.18 ± 2.66

led.
ntinu
Cor
4
Table

		-			
Tample ID: JA(9 AD35 36 <u>A</u> 40 <u>A</u>	39 A A0 A	0 × 39 A	* 40 * *	
800	$\frac{AU}{7} \frac{AU}{400E} \frac{AU}{14} \pm \frac{3}{2} \frac{332E}{232E} \frac{0}{14}$	$\frac{AU}{8064E07 \pm 7000E03}$	70 AF	% AF 77.81	$\frac{Agc}{D} \frac{Ma}{66} \pm 8.37$
000	7475 04 ± 11605 04	0.004E-02 ± 2.202E-03 0.414E A2 ± 1.750E A3	2.00	10.11	100.03 ± 0.07
1000	2.74/L-04 ± 1.100E-04 1 551E 04 ± 3 030E 05	0.414E-02 H 1.73E-03 0.170E A3 H 1.170E A3	CC.7C	71.07	20.7 ± 0.021
1100	$7.931E_{05} \pm 3.071E_{05}$	8 0775-02 ± 1.1752-03	51 10	00.30	103.67 ± 1.56
1200	2.200 ± 0.2000	$0.070E_{00} \pm 1.000E_{00}$	LC 09	06.00	03 50 +1 86
1400	0.00000 ± 0.27600	$1.057F_{01} \pm 0.426F_{04}$	12.00	00.001	001 + 00.00 88 00 + 1 00
1600	$3037F_04 + 180F_03$	$1.54E_{01} \pm 1.16E_{03}$	0.133	01.07	74.63 ± 4.30
1800	$5.233E-05 \pm 2.276E-04$	$1.031E-01 \pm 3.097E-04$	100.00	98.40	89.68 ± 5.99
samula ID: 1A1	04.011				
Temp. (K)	$^{36}Ar/^{40}Ar$	$^{39}\mathrm{Ar}^{40}\mathrm{Ar}$	39 Ar	$^{40}\mathrm{Ar}^{*}$	Age (Ma)
800	$1.705E+00 \pm 2.664E+03$	$4.577E-02 \pm 1.140E+02$	0.00	0.00	
006	$6.525E+00 \pm 4.845E+03$	$9.449E-02 \pm 8.521E+01$	0.01	0.00	
1000	$6.466E-03 \pm 2.077E-03$	$4.608E-03 \pm 1.353E-02$	0.67	0.00	
1100	$2.353E-03 \pm 1.405E-03$	$7.936E-02 \pm 1.484E-02$	17.49	30.45	36.60 ± 51.16
1200	$1.592E-03 \pm 1.176E-03$	$7.257E-02 \pm 6.582E-02$	45.99	52.92	68.93 ± 45.32
1400	$0.000E+00 \pm 1.235E-03$	$9.778E-02 \pm 6.128E-03$	87.23	100.00	95.95 ± 34.58
1600	$0.000E+00 \pm 2.173E-02$	$4.537E-02 \pm 9.573E-02$	89.07	100.00	200.00 ± 1275.00
1800	$0.000E+00 \pm 2.427E-03$	$2.128E-01 \pm 1.025E-02$	100.00	100.00	44.75 ± 31.74
sample ID: JA1		07 02	ę	ę	
Temp. (K)	$Ar/^{ro}$ Ar		$^{0.09}$ Ar	$^{0.40}$ Ar [*]	Age (Ma)
800	$1.813E+01 \pm 4.456E+04$	$3.430E-03 \pm 1.278E+02$	0.00	0.00	
006	$1.526E+01 \pm 2.801E+04$	$3.859E+00 \pm 7.083E+05$	3.46	0.00	
1000	$4.390E-02 \pm 8.598E-02$	$3.065E-01 \pm 5.957E-01$	6.07	0.00	
1100	$2.723E-03 \pm 4.652E-03$	$2.003E-02 \pm 6.367E-03$	9.51	19.53	91.58 ± 629.00
1200	$3.119E-03 \pm 3.299E-04$	$1.239E-02 \pm 1.201E-03$	15.04	7.82	59.81 ± 73.98
1400	$2.270E-03 \pm 5.674E-04$	$9.274E-02 \pm 2.372E-03$	55.68	32.90	33.86 ± 17.13
1600	$0.000E+00 \pm 3.492E-03$	$6.275E-02 \pm 1.590E-02$	94.07	100.00	147.30 ± 150.30
1800	$0.000E+00 \pm 2.827E-03$	$1.852E-01 \pm 6.565E-03$	100.00	100.00	51.32 ± 42.27
Temp. (K)	30 Ar/ ⁴⁰ Ar	³⁹ Ar/ ⁴⁰ Ar	0,∕ ³⁹ Ar	06,40 År*	Age (Ma)
<u>)006</u>	$4.973E-03 \pm 1.104E-02$	$1.320E-01 \pm 2.445E-03$	10.34	0.00	× ×
1200	$3.490E-03 \pm 2.066E-03$	$3.505E-02 \pm 2.831E-03$	12.13	6.28	
1400	$7.160E-04 \pm 7.670E-04$	$1.249E-01 \pm 2.606E-03$	50.88	78.72	56.53 ± 16.13
1823	$2.921E-03 \pm 1.791E-03$	$2.204E-01 \pm 8.985E-03$	100.00	13.64	5.63 ± 21.81
Sample LD: ULJ. Temp. (K)	ALLIBINUZA ³⁶ Ar/ ⁴⁰ Ar	$^{39}Ar/^{40}Ar$	0∕× ³⁹ ∆r	₀∕ ⁴⁰ Δr*	A ge (Ma)
600	$2.290E-04 \pm 8.520E-04$	$6.776E-02 \pm 2.189E-02$	4.06	93.18	121.14 ± 33.74
1100	$7.920E-04 \pm 5.940E-04$	$6.401E-01 \pm 1.825E-03$	16.83	76.56	105.79 ± 23.78
1300	$7.200E-05 \pm 1.330E-04$	$7.383E-02 \pm 6.210E-04$	53.39	97.81	116.62 ± 5.11
1500	$1.430E-04 \pm 9.500E-05$	$9.203E-02 \pm 2.042E-03$	80.02	95.72	92.34 ± 3.31
1823	$4.280E-04 \pm 3.460E-04$	$7.120E-02 \pm 6.630E-04$	100.00	87.29	108.35 ± 12.51

Continued.	
Table 4	

100 41 1	1001540				
Sample LD: UUJ. Temp. (K)	³⁶ Ar/ ⁴⁰ Ar	${}^{39}Ar/{}^{40}Ar$	39 Ar	$^{40}\mathrm{Ar}^{*}$	Age (Ma)
006	$1.425E-03 \pm 1.496E-05$	$2.792E-02 \pm 1.535E-04$	28.07	57.89	126.41 ± 2.71
1000	$6.677E-05 \pm 1.873E-05$	$5.896E-02 \pm 3.056E-04$	51.86	98.00	102.03 ± 2.13
1100	$9.378E-05 \pm 2.962E-05$	$6.988E-02 \pm 3.142E-04$	66.16	97.19	85.78 ± 1.88
1300	$1.358E-04 \pm 3.759E-05$	$8.770E-02 \pm 2.450E-04$	87.53	95.95	67.82 ± 1.55
1500	$3.850E-04 \pm 5.266E-05$	$8.477E-02 \pm 1.939E-04$	97.86	88.58	64.83 ± 1.70
1823	$4.717E-04 \pm 1.718E-04$	$8.488E-02 \pm 4.263E-04$	100.00	86.02	62.91 ± 3.87
Concelle TD- 001	0000500				
Temp. (K)	³⁶ Ar/ ⁴⁰ Ar	${}^{39}\mathrm{Ar}/{}^{40}\mathrm{Ar}$	% ³⁹ Ar	$^{0,40}{ m Ar}^{*}$	Age (Ma)
006	$1.438E-03 \pm 2.750E-05$	$2.534E-02 \pm 1.571E-04$	30.27	57.49	137.84 ± 3.40
1000	$1.750E-04 \pm 8.436E-05$	$7.339E-02 \pm 6.035E-04$	46.58	94.80	78.80 ± 2.66
1100	$3.985E-05 \pm 6.480E-05$	$8.697E-01 \pm 4.370E-04$	60.46	98.78	70.36 ± 1.95
1300	$1.202E-04 \pm 7.984E-05$	$1.171E-01 \pm 4.752E-04$	88.13	96.39	51.29 ± 1.61
1500	$4.576E-04 \pm 8.664E-05$	$8.524E-02 \pm 4.363E-04$	94.70	86.44	62.95 ± 2.23
1823	$5.337E-04 \pm 2.237E-04$	$8.535E-02 \pm 4.273E-04$	100.00	84.19	61.26 ± 4.89
sample ID: 00J	A10AD34 36 - 40 -	39 . 40 .	30	+ 07	
l emp. (K)	^{or} Ar/ ^{or} Ar	Ar/wAr	$\%^{27}$ Ar	$\%^{40}$ Ar [*]	Age (Ma)
006	$2.304E-03 \pm 2.767E-05$	$1.206E-02 \pm 1.537E-04$	15.27	31.91	159.78 ± 5.79
1000	$7.961E-04 \pm 1.567E-04$	$5.166E-02 \pm 7.085E-04$	24.61	76.46	91.13 ± 5.84
1100	$4.174E-04 \pm 8.654E-05$	$6.354E-02 \pm 2.487E-04$	60.05	87.64	85.08 ± 2.96
1300	$1.417E-04 \pm 8.386E-03$	$7.542E-02 \pm 4.063E-03$	60.66	95.78	78.49 ± 2.55
1500	$0.000E+00 \pm 1.334E-03$	$5.204E-02 \pm 5.953E-03$	66.66	100.00	117.47 ± 46.73
1823	$4.880E-03 \pm 1.062E-03$	$9.566E-04 \pm 2.353E-03$	100.00	0.00	
completion of the	104 1027				
Temp (K)	36 A AU A	39 A /40 A	0/39 4	0740 A *	A de (Ma)
	AI/AI 1 212E 02 ± 6 801E 05	AI/AI 3 060E 07 ± 6 914E 04	70 AF 1 00	70 AT 61 10	101 60 ± 5 57
000	3 610F_04 ± 3.346F_05	$5.005E-02 \pm 0.614E-04$	20.84	80.08	0556 ± 7.73
1000	$3 889F_{05} + 9 165F_{06}$	6.638F-02 + 1.815F-04	51.66	98.82	91.66 + 1.82
1100	$2.505E-05 \pm 1.430E-05$	$6.632E-02 \pm 9.300E-05$	76.16	99.23	92.11 ± 1.84
1300	$0.000E+00 \pm 9.724E-05$	$7.578E-02 \pm 4.579E-03$	98.54	100.00	81.49 ± 2.83
1500	$0.000E+00 \pm 6.604E-04$	$6.797E-02 \pm 2.352E-03$	99.75	100.00	90.61 ± 17.60
1700	$2.477E-03 \pm 5.806E-04$	$3.752E-02 \pm 1.935E-03$	66.66	26.79	44.54 ± 28.31
1823	$8.212E-03 \pm 2.537E-03$	$4.589E-03 \pm 3.598E-03$	100.00	0.00	
sample ID: 00J	A10AD41				
Temp. (K)	${}^{36}\mathrm{Ar}/{}^{40}\mathrm{Ar}$	$^{39}\mathrm{Ar}/^{40}\mathrm{Ar}$	$^{39}{ m Ar}$	$^{0.40}_{ m Ar}$	Age (Ma)
006	$6.763E-04 \pm 4.190E-05$	$4.786E-02 \pm 5.244E-04$	20.68	80.00	102.59 ± 2.80
1000	$2.329E-04 \pm 5.225E-05$	$6.062E-02 \pm 5.218E-04$	33.78	93.09	94.47 ± 2.53
1100	$1.019E-04 \pm 3.088E-05$	$6.225E-02 \pm 2.940E-04$	49.20	96.96	95.79 ± 2.11
1300	$0.000E+00 \pm 6.493E-05$	$6.987E-02 \pm 2.875E-04$	92.08	100.00	88.21 ± 2.41
1500	$0.000E+00 \pm 2.501E-04$	$6.283E-02 \pm 1.116E-03$	98.92	100.00	97.82 ± 7.48
1823	$2.142E-04 \pm 3.601E-04$	$5.988E-02 \pm 1.176E-03$	100.00	93.64	96.17 ± 10.96

Table 4 Continued.

sample ID: 02	2JA02BMS06B							
Temp. (K)	${}^{36}\mathrm{Ar}/{}^{40}\mathrm{Ar}$	$^{37}\mathrm{Ar}^{40}\mathrm{Ar}$	${}^{38}\mathrm{Ar}^{40}\mathrm{Ar}$	$^{39}\mathrm{Ar}^{\!/40}\mathrm{Ar}$	K/Ca	$^{39}\mathrm{Ar}$	$\%^{40}\mathrm{Ar}*$	Age (Ma)
460	1.840E-03	5.815E-02	8.978E-05	3.453E-02	0.290	10.2	45.6	72.2 ± 1.7
500	1.817E-03	1.020E-01	9.872E-05	3.656E-02	0.180	19.2	46.3	69.3 ± 1.9
540	1.658E-03	2.184E-01	1.351E-04	3.752E-02	0.084	27.2	51.0	74.3 ± 2.1
580	1.559E-03	3.987E-01	2.948E-04	4.038E-02	0.050	35.7	54.0	73.1 ± 2.0
620	1.099E-03	5.201E-01	1.649E-04	4.997E-02	0.047	45.4	67.5	73.8 ± 1.6
660	5.085E-04	5.230E-01	6.519E-04	6.519E-02	0.061	55.4	85.0	71.3 ± 1.5
700	7.169E-04	3.680E-01	3.555E-04	5.925E-02	0.079	61.4	78.8	72.7 ± 2.5
740	9.689E-04	2.008E-01	1.205E-05	5.237E-02	0.130	64.8	71.4	74.5 ± 4.4
780	1.473E-03	1.751E-01	2.051E-04	4.661E-02	0.130	67.3	56.5	66.4 ± 5.8
850	1.444E-03	3.674E-01	0.000E+00	6.335E-02	0.084	69.4	57.4	49.8 ± 7.2
920	1.505E-03	7.867E-01	8.584E-04	1.010E-01	0.063	72.7	55.6	$30.5 \hspace{0.2cm} \pm 4.5 \hspace{0.2cm}$
1100	4.659E-04	1.106E+01	7.248E-04	1.294E-01	0.006	100.0	86.2	36.8 ± 0.7
sample ID: 02	2JA03BMS04B							
Temp. (K)	$^{36}\mathrm{Ar}^{\!/40}\mathrm{Ar}$	$^{37}\mathrm{Ar}^{40}\mathrm{Ar}$	${}^{38}{ m Ar}{}^{40}{ m Ar}$	$^{39}\mathrm{Ar}^{\!/40}\mathrm{Ar}$	K/Ca	$^{0.039}$ Ar	$^{40}\mathrm{Ar}^{*}$	Age (Ma)
460	8.117E-04	1.185E-03	0.000E+00	2.306E-02	9.500	2.6	76.0	174.9 ± 0.6
520	2.212E-04	1.783E-03	0.000E+00	4.514E-02	12.000	7.2	93.5	111.9 ± 0.3
580	2.167E-05	1.587E-03	0.000E+00	5.417E-02	17.000	19.4	99.4	99.4 ± 0.2
640	1.099 E-05	1.407E-03	0.000E+00	5.495E-02	19.000	36.7	7.00	98.3 ± 0.2
670	1.098E-05	1.449E-03	0.000E+00	5.490E-02	19.000	47.6	7.00	$98.4 \hspace{0.2cm} \pm \hspace{0.2cm} 0.2 \hspace{0.2cm}$
700	1.096E-05	1.562E-03	0.000E+00	5.481E-02	17.000	55.6	7.00	$98.6 \hspace{0.2cm} \pm \hspace{0.2cm} 0.2 \hspace{0.2cm}$
730	5.493E-06	1.697E-03	0.000E+00	5.493E-02	16.000	61.9	99.8	98.5 ± 0.2
760	1.654E-05	1.891E-03	0.000E+00	5.515E-02	14.000	67.2	99.5	97.8 ± 0.2
790	1.669E-05	2.443E-03	0.000E+00	5.565E-02	11.000	71.0	99.4	96.9 ± 0.3
820	1.690E-05	3.307E-03	0.000E+00	5.633E-02	8.300	73.8	99.4	95.7 ± 0.3
850	2.271E-05	4.133E-03	0.000E+00	5.678E-02	6.700	76.6	99.3	94.9 ± 0.3
870	2.280E-05	4.627E-03	1.083E-05	5.699E-02	6.000	79.0	99.4	$94.6 \ \pm 0.3$
930	1.159E-05	9.213E-03	0.000E+00	5.794E-02	3.100	83.9	9.66	93.3 ± 0.2
1000	1.724E-05	1.831E-02	0.000E+00	5.748E-02	1.500	93.0	99.5	$93.9 \hspace{0.2cm} \pm \hspace{0.2cm} 0.2$
1080	5.576E-05	3.831E-02	0.000E+00	5.576E-02	0.710	100.0	98.3	95.6 ± 0.2

Continued.	
Table 4	

sample ID: 02	JA05BMS01C							
Temp. (K)	$^{36}\mathrm{Ar}/^{40}\mathrm{Ar}$	$^{37}\mathrm{Ar}^{40}\mathrm{Ar}$	$^{38}\mathrm{Ar}/^{40}\mathrm{Ar}$	$^{39}\mathrm{Ar}^{40}\mathrm{Ar}$	K/Ca	$^{39}_{ m Ar}$	$\%^{40}\mathrm{Ar}^{*}$	Age (Ma)
460	1.064E-04	4.571E-03	0.000E+00	5.068E-02	5.400	4.3	96.9	103.3 ± 0.3
520	3.649E-05	3.216E-03	0.000E+00	5.213E-02	7.900	12.7	98.9	102.5 ± 0.2
580	1.623E-05	1.785E-03	0.000E+00	5.410E-02	15.000	27.9	99.5	99.5 ± 0.2
640	1.639E-05	1.465E-03	0.000E+00	5.465E-02	18.000	41.7	99.5	98.5 ± 0.2
700	2.712E-05	1.974E-03	0.000E+00	5.424E-02	13.000	50.4	99.2	$98.9 \hspace{0.2cm} \pm \hspace{0.2cm} 0.2$
770	3.781E-05	3.376E-03	0.000E+00	5.401E-02	7.800	57.6	98.9	99.1 ± 0.2
840	2.717E-05	6.754E-03	0.000E+00	5.434E-02	3.900	65.1	99.2	98.7 ± 0.2
910	2.223E-05	1.594E-02	0.000E+00	5.558E-02	1.700	72.9	99.3	96.8 ± 0.2
970	2.818E-05	3.019E-02	0.000E+00	5.637E-02	0.910	82.2	99.2	95.4 ± 0.2
1040	9.645E-05	2.513E-01	0.000E+00	5.674E-02	0.110	94.4	97.2	92.8 ± 0.2
1100	1.519E-04	5.011E-01	0.000E+00	5.425E-02	0.053	100.0	95.4	$95.3 \hspace{0.2cm} \pm \hspace{0.2cm} 0.2 \hspace{0.2cm}$
sample ID: 02	JA12BMS03B							
Temp. (K)	$^{36}\mathrm{Ar}/^{40}\mathrm{Ar}$	$^{37}\mathrm{Ar}^{40}\mathrm{Ar}$	$^{38}\mathrm{Ar}/^{40}\mathrm{Ar}$	$^{39}\mathrm{Ar}^{40}\mathrm{Ar}$	K/Ca	$\%^{39}\mathrm{Ar}$	$\%^{40}\mathrm{Ar}^{*}$	Age (Ma)
460	2.591E-04	2.898E-02	0.000E+00	6.025E-02	1.000	9.0	92.4	83.2 ± 0.3
520	1.255E-04	3.219E-02	0.000E+00	6.275E-02	0.960	22.1	96.2	83.2 ± 0.2
570	6.345E-05	3.579E-02	0.000E+00	6.345E-02	0.870	36.6	98.1	$83.9 \hspace{0.2cm} \pm \hspace{0.2cm} 0.2$
610	3.799E-05	3.247E-02	0.000E+00	6.332E-02	0.960	49.4	98.9	$84.7 \ \pm 0.2$
640	1.261E-05	2.802E-02	0.000E+00	6.306E-02	1.100	59.3	9.66	85.7 ± 0.3
670	3.147E-05	2.701E-02	2.455E-05	6.294E-02	1.100	67.4	99.1	85.6 ± 0.3
710	4.376E-05	2.650E-02	0.000E+00	6.251E-02	1.200	74.5	98.7	85.6 ± 0.3
760	5.002E-05	2.810E-02	1.063E-04	6.252E-02	1.100	80.6	98.5	85.4 ± 0.4
820	6.355E-05	4.322E-02	0.000E+00	6.355E-02	0.720	84.8	98.1	83.7 ± 0.5
920	1.095E-04	1.784E-01	6.060E-05	7.302E-02	0.200	88.7	96.7	72.1 ± 0.5
1020	2.788E-04	8.221E-01	5.166E-04	8.200E-02	0.049	92.5	91.7	$61.0 \ \pm 0.6$
1100	1.936E-04	5.858E+00	6.292E-04	6.914E-02	0.006	100.0	94.3	$74.2 \hspace{0.2cm} \pm \hspace{0.2cm} 0.4$

Continued.
Table 4

	±1s)	$^{39}\mathrm{Ar}(\pm1\mathrm{s})$	$^{38}\mathrm{Ar}~(\pm1\mathrm{s})$	$^{37}\mathrm{Ar}~(\pm1\mathrm{s})$	$^{36}\mathrm{Ar}(\pm1\mathrm{s})$	irradiation	K/Ca	$^{40}Ar^{*}$ (%)	³⁹ Ar _K fraction (%)	$^{40}{\rm Ar}^{*}\!/^{39}{\rm Ar}_{\rm K}(\pm 1{\rm s})$	Age (±1s) (Ma)	as plateau
D: MT474BMS0 4 J= 0.003097	4A (JA18)											
$1.04681 \pm$	0.00338	0.008849 ± 0.000035	0.000433 ± 0.000024	0.00481 ± 0.00023	0.002228 ± 0.000021	1.98.1	1.083	37.1	9.2	43.89 ± 0.80	229.94 ± 4.01	u
2.21677 ±	0.01335	$0.017/47 \pm 0.000108$	0.000969 ± 0.000032	0.01008 ± 0.00000	0.005163 ± 0.000033	100.2	1.035	31.2	C.81	38.95 ± 0.96	205.45 ± 4.84	с :
H 100001	202000	0.00000 ± 0.00000	+000000 + 2000000	0.0023 ± 0.0020	0.001637 + 0.00017	7.061	016.0	1.02	1.01	20.1 ± 60.00	170.04 H J.10	-
# +00/000	0750000	$0.000000 \pm 0.00000000000000000000000000$	0.00022 ± 0.00012	0.00548 ± 0.00022	0.000063 ± 0.000003	198.2	01400	101	4.7 C -	22.03 ± 2.07	1005 ± 300	
± C1700.0	0.00033	0.001264 ± 0.00009 0.000674 + 0.000043	0.000035 ± 0.000012	0.00118 ± 0.00025	0.00000 ± 0.00000	198.2	0.770	0.00	0 I I	24.15 ± 0.70	101.20 ± 5.90	= :
0.24135 +	090000	0.015651 ± 0.00047	0.00000 ± 0.00001	0.01956 ± 0.0007	0.000001 ± 0.000001	108.8	0.471	0 00	16.4	21.70 ± 0.10	11782 ± 0.57	= :
+ 001400	0.00000	0.00054 ± 0.000130	0.000070 ± 0.000017	10000 ± 0.02100	0.00001 ± 0.00001	100.0	0.126	0.00	t:01 c	21.75 ± 0.07	10.2 ± 0.07	= :
0.17625 ±	0.00063	0.009808 ± 0.000039	0.000008 ± 0.000014	0.36025 ± 0.00217	0.000018 ± 0.000007	199.0	0.016	97.0	10.3	17.44 ± 0.23	94.90 ± 1.24	= =
										OU	plateau	
						days after						adoption
/) ⁴⁰ Ar (^j	±1s)	$^{39}\mathrm{Ar}(\pm1\mathrm{s})$	${}^{38}\mathrm{Ar}(\pm1\mathrm{s})$	$^{37}\mathrm{Ar}(\pm1\mathrm{s})$	$^{36}\mathrm{Ar}(\pm1\mathrm{s})$	irradiation	K/Ca	$^{40}Ar^{*}$	³⁹ Ar _K fraction (%)	$^{40}\mathrm{Ar}^{*/^39}\mathrm{Ar}_\mathrm{K}~(\pm1\mathrm{s})$	Age (±1s) (Ma)	as plateau
D: 02JA12BB04B	~							(0/)			(bId)	
J = 0.0030270												
$0.10533 \pm$	0.00079	0.00160 ± 0.00002	0.000045 ± 0.000010	0.00765 ± 0.00032	0.000211 ± 0.00005	227.0	0.123	40.9	0.1	26.87 ± 1.08	141.06 ± 5.48	u
$0.35461 \pm 0.45720 \pm 0.45720$	0.00287	0.00550 ± 0.00005	0.000125 ± 0.000013	0.00632 ± 0.00035	0.000695 ± 0.00010	227.0	0.512	42.1	0.4 • •	27.14 ± 0.78	142.46 ± 3.97	a 1
0.437435 +	0.01329	0.01381 ± 0.00074	0.000224 ± 0.000020	000000 ± 060000	0.001673 ± 0.00016	0.122	170.0	36.1	01	20.26 ± 1.23	10730 ± 555	= =
0.84662 ±	0.01281	0.01945 ± 0.00029	0.000304 ± 0.000045	0.01276 ± 0.00068	0.0010720 ± 0.000010	227.2	0.896	40.0	5 4	17.39 ± 0.78	92.57 ± 4.08	= =
1.08345 ±	0.01309	0.03497 ± 0.00042	0.000436 ± 0.000042	0.01911 ± 0.00070	0.001897 ± 0.000020	227.2	1.076	48.3	2.6	14.95 ± 0.45	79.86 ± 2.36	
$1.11840 \pm$	0.01351	0.04675 ± 0.00057	0.000374 ± 0.000051	0.02484 ± 0.00082	0.001586 ± 0.000013	227.2	1.107	58.1	3.4	13.90 ± 0.35	74.35 ± 1.82	u
$1.59213 \pm$	0.01456	0.10385 ± 0.00096	0.000233 ± 0.000079	0.05479 ± 0.00106	0.000514 ± 0.00010	227.2	1.115	90.5	7.6	13.87 ± 0.19	74.19 ± 1.03	п
$3.07162 \pm$	0.03080	0.22694 ± 0.00228	0.000059 ± 0.000336	0.12570 ± 0.00207	0.000143 ± 0.000009	228.9	1.062	98.6	16.6	13.35 ± 0.19	71.46 ± 1.03	u
2.57277 ±	0.05420	0.19512 ± 0.00413	-0.00096 ± 0.000419	0.12935 ± 0.00267	0.000068 ± 0.00008	228.9	0.887	99.2 00.7	14.2	13.08 ± 0.39	70.07 ± 2.07	У;
4.02234 ±	0.03347	0.32369 ± 0.00272	-0.000373 ± 0.000293	0.41792 ± 0.00517	0.000080 ± 0.000080	229.0	0.456	99.4	23.6	12.35 ± 0.15	66.23 ± 0.80	~ >
$0.68409 \pm$	0.00092	0.05394 ± 0.00009	-0.000174 ± 0.000032	0.07496 ± 0.00074	0.000025 ± 0.00004	229.0	0.423	98.9	3.9	12.55 ± 0.03	67.26 ± 0.27	~ ~
$0.43228 \pm$	0.00125	0.03426 ± 0.00010	-0.00005 ± 0.000024	0.06887 ± 0.00088	0.000024 ± 0.00004	229.1	0.293	98.4	2.5	12.41 ± 0.06	66.53 ± 0.39	, >
$0.60771 \pm$	0.00124	0.04839 ± 0.00010	-0.000120 ± 0.000032	0.17575 ± 0.00228	0.000031 ± 0.00007	229.1	0.162	98.5	3.5	12.37 ± 0.06	66.30 ± 0.36	×
$0.46347 \pm$	0.00096	0.03656 ± 0.00014	-0.000073 ± 0.000039	0.32655 ± 0.00240	0.000037 ± 0.00005	229.1	0.066	97.7	2.7	12.38 ± 0.07	66.36 ± 0.41	у
										Plateau Age	66.77 ± 0.17	
04		10	36		ж	days after		104	10	40 30.		adoption
7) Tr (3	±ls)	²² Ar (±1s)	[∞] Ar (±1s)	²⁷ Ar (±1s)	[∞] Ar(±1s)	irradiation	K/Ca	"Ar*	²⁷ Ar _K fraction (%)	''Ar*/''Ark (±1s)	Age (±1s) (Ma)	as plateau
D: MT473BMS02	2A-1							(0)	(a) nonann		(mere)	
= 0.0031040	01020.0	030000 - 012000		0.05750	200000 0 - 1200000	0 000		100	-	200 - 06 21	62 1 0 1 1 72	;
7 07001 +	0.02273	$0.20/46 \pm 0.0020$ 0.103/13 \pm 0.00157	-0.000.4 ± 0.000.5	$0.07100.0 \pm 0.0200.0$		0.677 9.000	1207	4.66 100	1.11	15.30 ± 0.20 15.31 ± 0.17	83.76 ± 0.04	× ;
+ 0.046.7	0.01187	0.15776 ± 0.00078	-0.00013 ± 0.0001	$0.0/160 \pm 0.0002$	0.000020 ± 0.000002	0.000	0.051	00.8	t.01	15.50 ± 0.11	84.70 ± 0.54	~ ~
- 35598 +	0.00187	0.15226 ± 0.00073	-0.00010 ± 0.0000	0.13395 ± 0.00189	0.00000 ± 0.00000	0.000	0.669	2.00	108	15.42 ± 0.03	84.35 ± 0.09	~ >
3.07132 ±	0.00863	0.20295 ± 0.00063	-0.0003 ± 0.0012	0.21227 ± 0.00129	0.000029 ± 0.000006	230.0	0.562	7.66	10.9	15.09 ± 0.06	82.59 ± 0.42	. =
$2.55746 \pm$	0.00565	0.17107 ± 0.00038	-0.00011 ± 0.00009	0.18145 ± 0.00156	0.000036 ± 0.000004	230.0	0.555	9.66	9.2	14.89 ± 0.05	81.50 ± 0.35	u
$3.62409 \pm$	0.01708	0.25277 ± 0.00121	0.00001 ± 0.00017	0.21893 ± 0.00133	0.000063 ± 0.000003	230.0	0.679	99.5	13.6	14.26 ± 0.10	78.16 ± 0.56	ц
1.98127 ± 20010	0.00339	0.14097 ± 0.00027	-0.00005 ± 0.00003	0.07876 ± 0.00078	0.000030 ± 0.00003	230.1	1.053	99.6	7.6	13.99 ± 0.04	76.70 ± 0.30	u
1.28049 ±	0.00574	$0.093/2 \pm 0.00029$	$-0.00004 \pm 0.0000/$	0.04258 ± 0.0002	0.000015 ± 0.00001	230.1	1.301	1.66	0.0	13.05 ± 0.00 12.05 ± 0.00	7164 ± 0.38	- 1
1.42942 H	0.00415	1000.0 ± 1700.0	/0000.0 ± 60000.0-	0.0000 ± 21100.0	0.000013 ± 0.00000	230.7	127.1	1.66	v. v 1 v	12.03 ± 0.05	10.0 ± 10.01	= =
$1.1/049 \pm 1.05250 \pm$	0.00382	0.09204 ± 0.00039 0.09207 ± 0.00039	-0.00005 ± 0.00006	0.05154 ± 0.00093	0.000012 ± 0.000003	230.2	1.051	C.66	4.9	12.32 ± 0.06 11.39 ± 0.06	62.70 ± 0.39	= =
										Plateau Age	84.35 ± 0.25	

	adoption as plateau		ц	u	u	u	u	u	y	, x	, V	, x	. ^	. >	. =	ц	ц	u			adoption	as plateau			п	u	u	u	u	y	y	N	ц	u	u	u	u	
	Age (±1s) (Ma)		88.34 ± 2.14	84.29 ± 1.89	82.75 ± 1.13	120.94 ± 1.18	114.36 ± 0.88	108.37 ± 0.67	105.78 ± 0.48	104.89 ± 0.44	105.73 ± 0.52	105.65 ± 0.34	104.84 ± 0.53	104.11 ± 0.62	103.07 ± 0.35	101.82 ± 0.34	101.63 ± 0.36	101.49 ± 0.43	105.29 ± 0.19			Age $(\pm 1s)$	(Ma)		150.40 ± 3.81	143.20 ± 4.03	127.80 ± 3.54	221.51 ± 7.41	116.31 ± 1.61	108.61 ± 0.53	110.30 ± 0.39	109.05 ± 0.39	106.03 ± 0.37	106.09 ± 0.36	104.32 ± 0.35	103.01 ± 0.48	99.52 ± 2.57	109.44 ± 0.25
	$^{40}{\rm Ar}^{*/^39}{\rm Ar}_{\rm K}(\pm1{\rm s})$		16.10 ± 0.40	15.34 ± 0.35	15.06 ± 0.20	22.24 ± 0.22	21.00 ± 0.15	19.86 ± 0.11	19.37 ± 0.07	19.21 ± 0.06	19.36 ± 0.08	19.35 ± 0.03	19.20 ± 0.08	19.06 ± 0.10	18.86 ± 0.03	18.63 ± 0.03	18.59 ± 0.04	18.57 ± 0.06	Plateau Age	3		$^{40}{\rm Ar}^{*/^{59}}{\rm Ar}_{ m K}~(\pm 1{ m s})$			29.31 ± 0.77	27.85 ± 0.81	24.75 ± 0.71	44.04 ± 1.56	22.45 ± 0.31	20.92 ± 0.08	21.26 ± 0.04	21.01 ± 0.05	20.41 ± 0.04	20.42 ± 0.03	20.07 ± 0.03	19.81 ± 0.07	19.12 ± 0.50	Plateau Age
	³⁹ Ar _K action (%)		1.6	1.7	1.8	2.2	7.0	9.8	10.0	9.7	6.7	6.3	6.7	6.6	7.9	9.3	7.4	5.1			:	39 Ar _K	action (%)		0.6	0.6	1.0	1.5	3.7	12.5	34.1	23.0	7.1	3.9	4.1	4.7	3.2	
	⁴⁰ Ar* (%) fi		76.8	79.2	81.5	97.4	99.3	9.66	99.7	99.7	99.7	99.7	99.7	99.7	99.8	9.99	99.7	99.4			:	40 Ar*	(%) fi		36.0	36.8	36.0	70.6	46.4	86.3	9.99	9.99	99.8	99.7	99.8	100.0	99.5	
	K/Ca		0.896	0.894	1.018	1.173	1.988	2.828	2.674	2.321	1.805	1.546	1.236	0.998	0.640	0.385	0.259	0.153				K/Ca			0.482	0.657	0.661	101.1	248.0	1.605	1.982	1.479	0.980	0.855	0.808	0.637	0.407	
	days after irradiation		230.2	230.2	231.8	231.9	232.0	232.1	232.1	232.1	232.1	232.2	232.2	232.2	232.9	232.9	232.9	233.0			days after	irradiation			233.0	233.0	233.1	237.8	237.8	237.9	237.9	238.1	238.2	238.2	238.3	238.2	238.9	
Continued.	³⁶ Ar (±1s)		0.000309 ± 0.000007	0.000276 ± 0.00008	0.000239 ± 0.00005	0.000053 ± 0.000004	0.000038 ± 0.00005	0.000028 ± 0.000004	0.000019 ± 0.000003	0.000024 ± 0.00003	0.000015 ± 0.000003	0.000015 ± 0.000004	0.000017 ± 0.000005	0.000015 ± 0.000004	0.000010 ± 0.000005	0.000010 ± 0.000004	0.000014 ± 0.00004	0.000022 ± 0.000006			:	$^{36}\mathrm{Ar}(\pm1\mathrm{s})$			0.001246 ± 0.000014	0.001195 ± 0.000012	0.001868 ± 0.000018	0.001175 ± 0.000100	0.004074 ± 0.000025	0.001766 ± 0.000011	0.000030 ± 0.00005	0.000030 ± 0.00004	0.000011 ± 0.00004	0.000010 ± 0.000004	0.000006 ± 0.000004	0.000001 ± 0.000004	0.000012 ± 0.000005	
Table 4 C	$^{37}\mathrm{Ar}(\pm1\mathrm{s})$		0.01233 ± 0.00062	0.01328 ± 0.00050	0.01195 ± 0.00057	0.01304 ± 0.00049	0.02408 ± 0.00086	0.02365 ± 0.00074	0.02553 ± 0.00060	0.02830 ± 0.00093	0.02526 ± 0.00094	0.02760 ± 0.00099	0.03670 ± 0.00069	0.04501 ± 0.00120	0.08418 ± 0.00130	0.16458 ± 0.00171	0.19408 ± 0.00103	0.22895 ± 0.00220				37 Ar (±1s)			0.00862 ± 0.00075	0.00662 ± 0.00078	0.01113 ± 0.00088	0.00011 ± 0.00463	0.00011 ± 0.00465	0.05757 ± 0.00119	0.12751 ± 0.00190	0.11542 ± 0.00083	0.05381 ± 0.00086	0.03419 ± 0.00082	0.03736 ± 0.00075	0.05468 ± 0.00081	0.05842 ± 0.00246	
	$^{38}\mathrm{Ar}(\pm1\mathrm{s})$		0.00003 ± 0.00003	-0.00003 ± 0.00004	0.00000 ± 0.00003	0.00028 ± 0.00022	0.00051 ± 0.00006	0.00026 ± 0.0004	0.00003 ± 0.00007	-0.00007 ± 0.00004	-0.00008 ± 0.00006	-0.00008 ± 0.00003	-0.00001 ± 0.00006	-0.00005 ± 0.00005	-0.00009 ± 0.00003	0.0001 ± 0.0005	-0.00002 ± 0.00004	-0.00008 ± 0.00003			:	${}^{38} m Ar~(\pm 1s)$			0.00025 ± 0.00022	0.00019 ± 0.00001	0.00031 ± 0.00002	0.00038 ± 0.00005	0.00083 ± 0.00004	0.00046 ± 0.00006	0.00010 ± 0.00010	-0.00014 ± 0.00008	-0.00006 ± 0.00005	0.00001 ± 0.00004	-0.00007 ± 0.00003	0.00000 ± 0.00004	-0.00010 ± 0.00006	
	$^{39}\mathrm{Ar}(\pm1\mathrm{s})$		0.01877 ± 0.00028	0.02018 ± 0.00027	0.02067 ± 0.00017	0.02601 ± 0.00018	0.08138 ± 0.00042	0.11370 ± 0.00046	0.11607 ± 0.00030	0.11165 ± 0.00026	0.07752 ± 0.00023	0.07254 ± 0.00007	0.07711 ± 0.00023	0.07639 ± 0.00030	0.09160 ± 0.00012	0.10761 ± 0.00013	0.08555 ± 0.00013	0.05937 ± 0.00014			:	39 Ar (±1s)			0.00706 ± 0.00005	0.00739 ± 0.00007	0.01252 ± 0.00010	0.01893 ± 0.00003	0.04648 ± 0.00024	0.15704 ± 0.00040	0.42957 ± 0.00073	0.29023 ± 0.00060	0.08968 ± 0.00013	0.04970 ± 0.00005	0.05134 ± 0.00006	0.05924 ± 0.00019	0.04046 ± 0.00084	
	$^{40}\mathrm{Ar}(\pm1\mathrm{s})$	2JA17BMS01A 0031170	0.3937 ± 0.00562	0.3910 ± 0.00519	0.3818 ± 0.00311	0.5943 ± 0.00379	1.7198 ± 0.00881	2.2665 ± 0.00888	2.2545 ± 0.00566	2.1515 ± 0.00432	1.5056 ± 0.00409	1.4080 ± 0.00116	1.4854 ± 0.00419	1.4604 ± 0.00515	1.7308 ± 0.00153	2.0075 ± 0.00202	1.5946 ± 0.00209	1.1088 ± 0.00124			:	$^{40}\mathrm{Ar}(\pm1\mathrm{s})$	2JA11BMS06A	002960	0.5752 ± 0.00341	0.5588 ± 0.00452	0.8618 ± 0.00656	1.1809 ± 0.00113	2.2474 ± 0.01150	3.8073 ± 0.00954	9.1398 ± 0.01098	6.1058 ± 0.00325	1.8336 ± 0.00185	1.0178 ± 0.00075	1.0323 ± 0.00045	1.1739 ± 0.00166	0.7773 ± 0.01256	
	Laser output (W)	sample ID: 0. J= 0.	0.8W	0.95W	1.12W	1.3W	1.55W	1.73 W	1.89W	2.06W	2.22W	2.43W	2.7W	3.02W	3.4W	3.85W	4.4W	5.08W			Laser	output (W)	sample ID: 0) = 0	0.75W	0.9W	1.15W	1.3W	1.55W	1.72W	1.89W	2.01W	2.08W	2.21W	2.45W	2.85W	3.55W	

	Continued.
:	Table 4

Laser output (W)	⁴⁰ Ar (±1s)	³⁹ Ar (±1s)	³⁸ Ar (±1s)	³⁷ Ar (±1s)	³⁶ Ar (±1s)	days after irradiation	K/Ca	⁴⁰ Ar* (%) fi	³⁹ Ar _K action (%)	$^{40}\mathrm{Ar}^{*\!/^{39}}\mathrm{Ar}_{K}(\pm1\mathrm{s})$	Age (±1s) (Ma)	adoption as plateau
sample ID: 02, J= 0.0	IA03BMS04B-2 029690											
0.75W	0.6129 ± 0.00267	0.01647 ± 0.00009	0.00016 ± 0.00003	0.0011 ± 0.0005	0.000589 ± 0.00005	238.9	8.599	71.6	0.6	26.64 ± 0.24	137.32 ± 1.24	п
0.92W	0.8740 ± 0.00556	0.02278 ± 0.00017	0.00020 ± 0.00003	0.0032 ± 0.0005	0.000846 ± 0.000013	239.0 730.0	4.240	71.4	0.8	27.40 ± 0.36	141.11 ± 1.82	с :
1.3W	1.4555 + 0.01449	0.03715 ± 0.00038	0.00020 ± 0.0004 0.00004 + 0.00004	0.0040 ± 0.000	0.001189 ± 0.00016	1.920	5.526	15.9		29.72 ± 0.51	152.57 + 2.54	= =
1.64W	1.5985 ± 0.01511	0.04407 ± 0.00042	0.00026 ± 0.0005	0.0054 ± 0.0006	0.001062 ± 0.000011	239.1	4.778	80.4	1.5	29.15 ± 0.45	149.75 ± 2.25	
1.74W	1.8964 ± 0.01619	0.06380 ± 0.00056	0.00012 ± 0.0006	0.0050 ± 0.0008	0.000770 ± 0.000007	239.1	7.543	88.0	2.2	26.16 ± 0.34	134.93 ± 1.75	п
1.84W	2.1616 ± 0.01215	0.09422 ± 0.00053	0.00012 ± 0.00005	0.0050 ± 0.0007	0.000331 ± 0.00008	239.2	11.128	95.5	3.2	21.90 ± 0.18	113.67 ± 0.96	u
1.93W	2.7384 ± 0.01428	0.13927 ± 0.00075	-0.00005 ± 0.00011	0.0055 ± 0.0007	0.000093 ± 0.000004	239.2	14.763	99.0	4.7	19.46 ± 0.15	101.35 ± 0.80	п
2.01W	6.9663 ± 0.04185	0.36355 ± 0.00240	-0.00030 ± 0.00017	0.0099 ± 0.0008	0.000047 ± 0.000005	239.2	21.692	99.8	12.3	19.12 ± 0.17	99.63 ± 0.91	u
2.06W	12.4168 ± 0.00561	0.66136 ± 0.00129	-0.00062 ± 0.00011	0.0201 ± 0.0004	0.000068 ± 0.000004	240.8	19.339	99.8	22.3	18.74 ± 0.04	97.71 ± 0.34	u
2.09W	5.5968 ± 0.00309	0.31529 ± 0.00023	-0.00047 ± 0.00007	0.0143 ± 0.0009	0.000046 ± 0.000003	240.9	12.990	99.8	10.6	17.71 ± 0.02	92.44 ± 0.28	u
2.13W	3.8877 ± 0.00099	0.21564 ± 0.00009	-0.00028 ± 0.00005	0.0107 ± 0.0005	0.000038 ± 0.00003	240.9	11.903	99.7	7.3	17.98 ± 0.01	93.80 ± 0.28	У
2.19W	1.9379 ± 0.00272	0.10586 ± 0.00016	-0.00009 ± 0.00004	0.0055 ± 0.0005	0.000017 ± 0.000004	241.0	11.299	7.66	3.6	18.26 ± 0.04	95.25 ± 0.34	У
2.36W	1.4966 ± 0.00212	0.08171 ± 0.00017	-0.00006 ± 0.00003	0.0036 ± 0.0005	0.000019 ± 0.000004	241.1	13.181	9.66	2.8	18.25 ± 0.05	95.18 ± 0.37	У
2.82W	2.0911 ± 0.00170	0.11612 ± 0.00015	0.0000 ± 0.0000	$0.050.0 \pm 0.010.0$	$0.00002 \le 0.00003$	1.142	115.0	1.66	9.5 0.0	$1.7.9 \pm 0.02$	93.01 ± 0.30	Y :
4.5W	$4.1000 \pm 0.001/9$ 7.6555 + 0.00439	$0.23/00 \pm 0.00020$ 0.47316 + 0.00092	$-0.0005/ \pm 0.00010$	0.1439 ± 0.0016	0.000048 ± 0.00003	241.2 241.2	0 <i>61.7</i>	99.8	0.0 143	$1/.25 \pm 0.02$ 18.06 ± 0.04	90.01 ± 0.26 94.77 + 0.34	= =
										ou	plateau	
						•						
Laser output (W)	$^{40}\mathrm{Ar}(\pm1\mathrm{s})$	$^{39}\mathrm{Ar}~(\pm1\mathrm{s})$	$^{38}\mathrm{Ar}~(\pm1\mathrm{s})$	$^{37}\mathrm{Ar}(\pm1\mathrm{s})$	$^{36}\mathrm{Ar}~(\pm1\mathrm{s})$	days after irradiation	K/Ca	$^{40}\mathrm{Ar}^{*}$	$^{39}Ar_{\rm K}$	${}^{40}{\rm Ar}^{*/^39}{\rm Ar}_{\rm K}~(\pm 1{\rm s})$	Age (±1s)	adoption as plateau
	~	~	~		~			(%) fi	action (%)		(Ma)	-
sample ID: 02.	IA02BMS07A											
0.8W	10044 + 0.00314	0.04307 + 0.00092	0.00037 + 0.00007	0.02438 + 0.00059	$0\ 000976\ +\ 0\ 000004$	241.9	1 039	713	7 9	16.62 ± 0.36	86 98 + 1 87	5
1W	1.9655 ± 0.00573	0.12028 ± 0.00173	0.00050 ± 0.00014 0.00050 ± 0.00014	0.04017 ± 0.00048	0.000168 ± 0.000005	241.9	1.761	97.5	21.9	15.93 ± 0.23	83.44 ± 1.22	- >
1.25W	1.4725 ± 0.00844	0.08737 ± 0.00242	-0.00001 ± 0.00016	0.02955 ± 0.00066	0.000113 ± 0.000003	242.0	1.739	97.7	15.9	16.47 ± 0.47	86.22 ± 2.40	, ×
1.55W	1.0375 ± 0.00430	0.06471 ± 0.00028	0.00007 ± 0.00006	0.02898 ± 0.00086	0.000071 ± 0.000004	242.0	1.314	98.0	11.8	15.71 ± 0.10	82.33 ± 0.55	y
1.92W	1.1102 ± 0.00739	0.07197 ± 0.00415	0.00005 ± 0.00028	0.03570 ± 0.00083	0.000053 ± 0.00005	242.0	1.186	98.6	13.1	15.21 ± 0.88	79.75 ± 4.54	У
2.45W 3.7W	1.1817 ± 0.00786 1.2963 ± 0.00099	0.07774 ± 0.00433 0.08322 + 0.00201	-0.00015 ± 0.00029	$0.05669 \pm 0.000/1$	0.000042 ± 0.00004	242.1 242 1	0.807	98.9 97.4	14.2	15.04 ± 0.84 15.17 ± 0.37	79.89 ± 4.33 79.54 + 1.90	~ ~
1.4.0	1/000 T 00/7:1	107000 + 770000	110000 T 010000-	COTOO:0 + CTOCTO	2000000 ± 2110000	1.71.7	0170		7.7.7	Plateau Age	82.4 ± 0.5	6
										9 9 9		
Laser						days after						adoption
output (W)	$^{40}\mathrm{Ar}~(\pm1\mathrm{s})$	39 Ar (±1s)	$^{38} m Ar~(\pm 1s)$	$^{37}\mathrm{Ar}(\pm1\mathrm{s})$	$^{36}\mathrm{Ar}~(\pm1\mathrm{s})$	irradiation	K/Ca	$^{40}\mathrm{Ar}^{*}$	$^{39}Ar_{\rm K}$	$^{40}{ m Ar}^{*/^39}{ m Ar}_{ m K}(\pm 1{ m s})$	Age (±1s)	as plateau
								(%) fi	action (%)		(Ma)	
sample ID: M $I=0.0$	[473BMIS02A-2 031100											
0.60W	2.8529 ± 0.01174	0.19033 ± 0.00079	-0.00016 ± 0.00011	0.03165 ± 0.00161	0.000114 ± 0.000005	294.8	3.537	98.8	<i>L.T</i>	14.81 ± 0.09	81.25 ± 0.53	y
0.82W	3.0234 ± 0.00880	0.20838 ± 0.00063	-0.00041 ± 0.00009	0.05165 ± 0.00192	0.000034 ± 0.00005	294.9	2.373	99.7	8.5	14.46 ± 0.06	79.36 ± 0.40	y
0.94W	2.7555 ± 0.00858	0.18850 ± 0.00062	-0.00026 ± 0.00007	0.06621 ± 0.00200	0.000017 ± 0.000004	295.0	1.675	99.8	7.7	14.59 ± 0.07	80.06 ± 0.43	y
1.08W	3.0301 ± 0.01126	0.20879 ± 0.00081	-0.00029 ± 0.00009	0.09904 ± 0.00262	0.000024 ± 0.00003	295.0	1.240	99.8	8.5	14.48 ± 0.08	79.46 ± 0.48	У
1.24W	3.1841 ± 0.01215	0.22345 ± 0.00087	-0.00019 ± 0.00010	0.15990 ± 0.00337	0.000026 ± 0.00004	295.0	0.822	9.66	9.1	14.22 ± 0.08	78.05 ± 0.48	u
1.39W	2.3703 ± 0.00358	0.16827 ± 0.00028	-0.00014 ± 0.00007	0.15387 ± 0.00437	0.000024 ± 0.00005	295.1 205 1	0.643	99.7	6.8	14.04 ± 0.03	77.13 ± 0.29	ц
W0C 1	3.700 ± 0.01094 3.4970 ± 0.00738	$0.2/653 \pm 0.00057$	-0.00015 ± 0.00010	$0.202/\delta \pm 0.00300$ 0.21067 + 0.00232	0.000035 ± 0.000005	1.062	0.744	0.700 7.00	10.8	13.04 ± 0.00	71.06 ± 0.3	= =
2.0W	2.5349 ± 0.00255	0.19840 ± 0.00026	-0.00011 ± 0.00008	0.11007 ± 0.00173	0.000033 ± 0.000004	295.2	1.060	9.66	8.1	12.73 ± 0.02	70.04 ± 0.24	= =
2.28W	2.2710 ± 0.00252	0.18283 ± 0.00022	-0.00015 ± 0.00006	0.07857 ± 0.00246	0.000045 ± 0.00005	295.2	1.369	99.4	7.4	12.35 ± 0.02	67.99 ± 0.23	-
2.62W	2.0961 ± 0.00106	0.17213 ± 0.00026	-0.00023 ± 0.00006	0.06716 ± 0.00178	0.000092 ± 0.000004	296.2	1.508	98.7	7.0	12.02 ± 0.02	66.20 ± 0.22	u
3.22W	2.1085 ± 0.00213	0.17440 ± 0.00026	-0.00039 ± 0.00006	0.07875 ± 0.00181	0.000094 ± 0.000004	296.2	1.303	98.7	7.1	11.93 ± 0.02	65.73 ± 0.23	u
							[]		Plateau Age	79.77 ± 0.21	

Fig. 10 Step heating age spectra and inverse isochron diagrams for Ar–Ar dating (JA02 Seamount)

Fig. 12 Step heating age spectra and inverse isochron diagrams for Ar–Ar dating (JA05 Seamount)

Fig. 14 Step heating age spectra and inverse isochron diagrams for Ar–Ar dating (JA12 Seamount)

Fig. 15 Step heating age spectra and inverse isochron diagrams for Ar-Ar dating (JA09 Seamount)

due to alteration.

(3) JA14 Seamount (Govorov Guyot)

K–Ar dating was carried out on one sample and yielded an age of 86.8 ± 3.0 Ma, but the results are not reliable due to alteration.

(4) JA15 Seamount (Pegas Guyot)

K–Ar dating was carried out on two samples with a slightly higher degree of alteration. The obtained ages are 56.0 ± 2.8 Ma and 68.7 ± 3.4 Ma, corresponding to the Early Eocene to Late Cretaceous (Maastrichtian). However, these ages may be slightly young due to the loss of some Ar in the rocks through weathering and alteration after the magma solidified. This is supported by the facts that fossils from the Late Cretaceous (88–85 Ma) have been found in this seamount, and previous studies suggesting that the Magellan Seamounts were formed during the Aptian at the end of the Early Cretaceous (Smith *et al.*, 1989, Abrams *et al.*, 1993).

(5) JA19 Seamount (Hemler Guyot)

K-Ar dating was performed on two samples and yielded ages of 78.1 ± 2.5 Ma and 79.6 ± 2.6 Ma (Late Cretaceous), but the results are unreliable due to alteration. Ar-Ar age of 100.1 ± 0.8 Ma was reported by Koppers *et al.* (2003). **(6) JA22 Seamount (Butakov Guyot)**

K–Ar dating was carried out on two samples, yielding ages of 53.3 ± 1.9 Ma and 69.9 ± 2.3 Ma, but the results are unreliable due to alteration.

5.3 Marshall Islands Seamount Group (1) JA10 Seamount (Rykachev Guyot)

K-Ar dating was performed on one sample and Ar-Ar dating on five samples. The K-Ar age of 43.6 ± 2.8 Ma obtained from 89JA10AD04-E is unreliable due to alteration. No reliable Ar-Ar ages were obtained from 99JA10AD11 and 99JA10AD17. An age of 82.7 ± 3.1 Ma (Late Cretaceous: Campanian) was obtained from 00JA10AD34 but is unreliable due to lack of agreement within the 95 % confidence limits. Plateau ages of 91.8 \pm 0.7 Ma (Middle Cretaceous: Cenomanian) and 88.5 ± 1.2 Ma (Middle Cretaceous: Turonian) were obtained from 00JA10AD37 and 00JA10AD41, respectively, suggesting that the basement basalts of JA10 Seamount were formed during the Middle Cretaceous. Figure 16 shows the stage-heating age spectra and inverse isochron diagrams of 00JA10AD34, 00JA10AD37, and 00JA10AD41. The ⁴⁰Ar/³⁹Ar age measurement data are shown in Table 4.

(2) JA16 Seamount (Changpogo Seamount)

K–Ar dating was carried out on one sample with a slightly higher degree of alteration and yielded an age of 54.1 \pm 2.1 Ma (Early Eocene to Late Cretaceous: Maastrichtian), but the reliability is low due to alteration.

6. Summary

The basement basalts of seamounts in the Northwest Pacific show characteristics of ocean island alkaline basalts similar to those of the basalts from the SOPITA region in the South Pacific, although many samples have been affected by alteration and phosphatization. The K–Ar ages of the basalts are likely to be younger than their actual ages due to alteration. On the other hand, Ar–Ar dating is more resilient to alteration than K–Ar dating, the plateau ages obtained by Ar–Ar dating are considered to be reliable. The basement basalts of JA01, JA02, JA03, JA11, JA12, JA17, and MT473 Seamounts in the Marcus Wake Seamount Group have Ar–Ar plateau ages of 67–116 Ma, the basement basalts of JA09 Seamount in the Magellan Seamount Group have Ar–Ar plateau ages of 87 Ma and 105 Ma, and the basement basalts of JA10 Seamount in the Marshall Islands Seamount Group have Ar–Ar plateau ages of 90 Ma.

Acknowledgments:Dr. TOKUMARU, A. provided the technical information on Ar–Ar age of Takuyo-Daigo Smt. The manuscript was improved by constructive comments from Dr. KON, Y. The data in this paper have been collected as a part of sponsored projects by Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry (METI), Japan, and Japan Oil, Gas and Metals National Corporation (JOGMEC). This study was also funded by internal grants from the National Institute of Advanced Industrial Science and Technology (AIST). The authors express their appreciation to everyone involved in this project.

References

- Abrams, L.J., Larson, R.L., Shipley, T.H. and Lancelot, Y. (1993) Cretaceous volcanic sequence and Jurassic oceanic crust in the East Mariana and Pigafetta basins of the western Pacific. *In* Pringle, M.S., Sahger, W.W., Sliter, W.V. and Stein, S. (Eds.), *The Mesozoic Pacific: Geology, Tectonics, and Volcanism, Geophysical Monograph Series*, **77**, 77–101, AGU, Washington, D.C.
- Christie, D.M., Dieu, J.J. and Gee, J.S. (1995) Petrologic studies of basement lavas from northwest Pacific guyots. *In* Haggerty, J.A., Premoli Silva, I., Rack, F. and McNutt, M.K. (Eds.), *Proceedings of the ODP*, *Scientific Results*, **144**, 295–512.
- Dalrymple, G.B., Lanphere, M.A. and Clague, D.A. (1980) Conventional and ⁴⁰Ar/³⁹Ar K–Ar ages of volcanic rocks from Ojin (Site 430), Nintoku (Site 432), and Suiko (Site 433) Seamounts and the chronology of volcanic propagation along the Hawaiian-Emperor Chain. *Initial Report of the DSDP*, **55**, 659–676.
- Ishizuka, O., Kimura, J.I., Li, Y.-B., Stern, R.J. Reagan, M.K., Taylor, R.N., Ohara, Y., Bloomer, S.H., Ishii, T, Hargrove III, U.S. and Haraguchi, S. (2006) Early stages in the evolution of Izu-Bonin arc volcanism: new age, chemical and isotopic constraints. *Earth and Planetary Science Letters*, **250**, 385–401.
- Koppers, A.A.P., Staudigel, H., Pringle, M.S. and Wijbrans, J.R. (2003) Short-lived and discontinuous

JA10AD11

Fig. 16 Step heating age spectra and inverse isochron diagrams for Ar-Ar dating (JA10 Seamount)

intraplate volcanism in the South Pacific: hot spots or extensional volcanism? *Geochemistry, Geophysics, Geosystems*, **4**, 1089. doi:10.1029/2003GC000533

- Larson, R.L., Pitman, W.C., III, Golovchenko, X., Cande, S.C., Dewey, J.F., Haxby, W.F. and Labrecque, J.L. (1985) *The Bedrock Geology of the World*. Freeman, New York.
- Meschede, M. (1986) A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb–Zr–Y diagram. *Chemical Geology*, **56**, 207–218.
- Shervais, J.W. (1982) Ti-V plots and the petrogenesis of modern and ophiolitic lavas. *Earth and Planetary Science Letters*, **59**, 101–118.
- Smith, W.H.F., Staudigel, H., Watts, A.B. and Pringle, M.S. (1989) The Magellan Seamountains: Early Cretaceous record of the South Pacific isotopic and thermal anomaly. *Journal of Geophysical Research*, 94, 10501–10523.
- Staudigel, H., Park, K.-H., Pringle, M.S., Rubenstone, J.L., Smith, W.H.F. and Zindler, A. (1991) The longevity of the south Pacific isotope and thermal anomaly. *Earth and Planetary Science Letters*, **102**, 24–44.
- Steiger, R.H. and Jager, E. (1977) Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. *Earth and Planetary Science Letters*, **36**, 359–362.
- Sun, S.-s. and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. *Magmatism in the Ocean Basins, Geological Society Special*

Publication, 42, 313–345.

- Tokumaru, A., Nozaki, T., Suzuki, K., Goto, K.T., Chang, Q., Kimura, J.I., Takaya, Y., Kato, Y., Usui, A. and Urabe, T. (2015) Re-Os isotope geochemistry in the surface layers of ferromanganese crusts from the Takuyo Daigo Seamount, northwestern Pacific Ocean. *Geochemical Journal*, **49**, 233–241.
- Usui, A. and Someya, M. (1997) Distribution and composition of marine hydrothermal manganese deposits in the northwest Pacific. *In* Nicholson K., Hein J.R., Buhn B., and Dasgupta S. (Eds.), *Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits, Geological Society Special Publication*, **119**, 177–198.
- Watkins, D.K., Premoli Silva, I. and Erba, E. (1995) Cretaceous and Paleogene manganese-encrusted hardgrounds from central Pacific guyots. *In* Haggerty, J.A., Premoli-Silva, I., Rack, F. and McNutt, M.K. (Eds.), *Proceedings of the ODP, Scientific Results*, 144, 97–126.
- York, D. (1969) Least squares fitting of a straight line with correlated errors. *Earth and Planetary Science Letters*, 5, 320–324.
- Zindler, A. and Hart, S.R. (1986) Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14, 493–571.

Recieved October 25, 2021 Accepted June 30, 2022 Published on-line October 4, 2022

北西太平洋における海山基盤玄武岩の化学組成及び生成年代

山岡 香子・石塚 治・両角 春寿・日野 ひかり

要 旨

北西太平洋海域におけるコバルトリッチクラスト鉱床の探査の一環として,海山基盤玄武岩が採取され,全岩化学組成分析及び K-Ar/Ar-Ar 法年代測定が実施された.海山基盤玄武岩は変質やリン酸塩化の影響を受けて初生的な化学組成の保存が良くないものの,試料が採取された 20 海山は全て典型的な海洋島アルカリ玄武岩の特徴を示した.生成年代については,K-Ar 法年代測定では変質の影響により信頼できる年代値が得られなかったが,Ar-Ar 法年代測定ではいくつかの海山から信頼性の高いプラトー年代が得られた.マーカス・ウェーク海山群に属する海山からは 67 ~ 116 Ma,マゼラン海山群に属する海山からは 87 Ma 及び 105 Ma,マーシャル諸島海山群に属する海山からは 90 Ma の生成年代が得られ,概ね先行研究で報告されている年代と一致した.

概報 - Report

埼玉県岩殿丘陵西縁部から採取された砂質シルト岩試料の珪藻化石年代

納谷 友規^{1,*}

NAYA Tomonori (2022) Diatom biochronology of the sandy siltstone samples collected from the western margin of the Iwadono Hills, Saitama Prefecture, central Japan. *Bulletin of the Geological Survey of Japan*, vol. 73 (3), p. 137–142, 3 figs, 1 table and 1 plate.

Abstract: Diatom analysis was performed to determine the depositional age of previously undated sandy siltstone samples from the western margin of the Iwadono Hills, Saitama Prefecture, central Japan. The age of the samples is assigned to the early Middle Miocene according to the occurrence of diatoms that are correlative to the diatom zone NPD4A (*Denticulopsis lauta* Zone). The occurrence of *Cavitatus lanceolatus* limits the age of these samples to the interval between biohorizon D41.5 (first occurrence of *Cv. lanceolatus*: 15.6 Ma) and D43.2 (last occurrence of *Cv. lanceolatus*: 15.2 Ma). Based on the diatom biostratigraphy and biochronology, these samples can be correlated with the upper part of the Arakawa Formation or the Ichinokawa Formation of the Hiki Group.

Keywords: diatom, biostratigraphy, Miocene, Iwadono Hills, Saitama Prefecture, Japan

要 旨

岩殿丘陵西縁部の帰属不明の砂質シルト岩試料の堆積 年代を明らかにするために,珪藻化石分析を行った.分 析した試料からは,珪藻化石帯NPD4A帯(Denticulopsis lauta帯)を特徴づける珪藻化石が産出するため,年 代は中期中新世前期と判断される.また,Cavitatus lanceolatusを産することから,本試料の年代は生層準 D41.5(Cv. lanceolatusの初産出:15.6 Ma)-D43.2(Cv. lanceolatusの終産出:15.2 Ma)の区間に限定される.珪 藻化石層序に基づくと,本試料は比企層群荒川層の上部 か市ノ川層に対比される.

1. はじめに

埼玉県の中央部に位置する比金丘陵と岩殿丘陵 (第1 図)には海成の中新統が分布している (例えば、小池ほか、 1985;間嶋、1989). 高橋・柳沢 (2004) は微化石層序に 基づく複合年代層序を検討し岩相層序の再検討を行い、 この地域の中新統を下位より比企層群と都幾川層群にま とめた (高橋、2008). 比企層群は比企丘陵と岩殿丘陵の 北縁を流れる都幾川とその支流沿いに分布し、下位より、 小園層、荒川層、市ノ川層に区分される (高橋、2008; 栗原・柳沢、2015;荒井・原田、2015) (第2図). 都幾 川層群は岩殿丘陵では下位より神戸層、根岸層、将華沢 層,鳩山層、今宿層に区分される (栗原ほか、2003;高橋、 2008)(第2図).比企層群は都幾川層群最下部の神戸層 基底によって不整合に覆われ(栗原・柳沢, 2015;荒井・ 原田, 2015),この不整合は約15 Maに形成された広域不 整合と考えられている庭谷不整合に対比されている(高 橋・柳沢, 2004).

従来, 岩殿丘陵では北縁部を除き比企層群に相当する 地層は分布しないと考えられていたが, 近年, 岩殿丘陵 西縁部において, 市ノ川層や荒川層に岩相が類似した地 層が報告されるようになった(原田, 2009). 筆者が行っ た5万分の1地質図幅[川越]作成のための地質調査でも, 岩殿丘陵の西縁部に市ノ川層と岩相が類似する礫岩層と 砂岩層が分布することが確認された. 原田 (2009)では年 代の指標となる化石は報告されておらず, また, 筆者に よる調査でも年代の指標となる化石の産出を確認できな かったため, これらの地層の年代と帰属については不明 であった.

北西太平洋地域の珪藻化石層序は前期中新世後期~中 期中新統前期に数多くの生層準を持つため、この年代区 間では特に高時間分解能で年代層序を検討することが可 能である(Yanagisawa and Akiba, 1998). 比企層群と都 幾川層群においても、珪藻化石層序が年代層序を構築 するために極めて重要な役割を果たしてきた(堀内・柳 沢、1994;栗原ほか、2003;高橋・柳沢、2004). さらに、 帰属不明の試料においては、その堆積年代を決定し両層 群への帰属を明らかにするためにも有用であり、例えば

¹ 産業技術総合研究所 地質調査総合センター 地質情報研究部門 (AIST, Geological Survey of Japan, Research Institute of Geology and Geoinformation) * Corresponding author: NAYA, T., Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan. Email: t-naya@aist.go.jp

第1図 岩殿丘陵と比企丘陵の位置.地質図は杉山ほか (1997) に基づく. Fig.1 Locality map of the Iwadono and Hiki Hills in the Kanto Plain. Map after Sugiyama *et al.* (1997).

関東平野地下の温泉ボーリングのカッティングス試料の 分析でも利用されている(例えば、納谷ほか、2013).

原田 (2009) が報告した露頭のうち,越生町六地蔵の 露頭 (第3図) ではシルト岩が観察され,原田 (2009) はこ の岩相は荒川層に類似すると考えた.シルト岩からは珪 藻化石が産出する可能性が高いが,残念ながら現在この 露頭は観察不可能である.本研究では,岩殿丘陵にお ける比企層群の有無を検証することを目的として,原田 (2009) によってこの露頭から貝化石と一緒に採取された 岩片に含まれる珪藻化石を検討した.その結果,この試 料の年代を制約する知見が得られたので報告する.

2. 試料と方法

原田 (2009)によって貝化石が報告された越生町六地蔵 の露頭 (第3図)において,貝化石と一緒に採取された2 個の細粒砂を含む砂質シルト岩片 (no.1, no.2)を分析試 料とした.両試料は露頭から直接採取されたものであり, 両試料の採取層準はほぼ同一である.

試料の処理は基本的には納谷ほか(2009)の手法Aに 従って行った.ただし,懸濁液は大豆大(0.5 cm³程度) の砂質シルト岩片を瑪瑙乳鉢で軽くつぶした試料を用い て作成した.封入材にはMountmedia (富士フイルム和光 純薬株式会社)を用いた.

検鏡は倍率1000倍の生物顕微鏡 (ニコンECLIPSE E80i, 対物レンズPlan Apo VC 100×: 1.40 N.A.)を用いて行い, 視野に出現した分類群の殻数を記録し,合計100殻にな るまで計数した.100殻計数した後に,さらに広い範囲 を検鏡して,化石帯の認定に重要な分類群の有無を確認 した.*Chaetoceros*属の休眠胞子については,珪藻殻の計 数時に視野のなかに認められた数を別途計数した.珪藻 化石帯区分と生層準は,Akiba (1986)とYanagisawa and Akiba (1998)のNPDとDコードを用いた.生層準の年代は Watanabe and Yanagisawa (2005)を用い,Raffi *et al.* (2020) の地磁気極性年代尺度に合わせて調整された柳沢 (2021) の年代値を参照した.

3. 結果

両試料の分析結果を第1表に示す. 産出した主な珪 藻化石の顕微鏡写真を図版1にまとめた. 両試料とも, Thalasionema spp. (T. nitzschioides, T. cf. nitzschioides, T. cf. hirosakiensisを一括してここに含めた)とActinocyclus ingens f. planusが多く産出し両分類群が50%以上を占め る. Denticulopsis lautaとD. ichikawaeが共存し, D. hyalina を含まないことから, NPD4A帯に属すると判断される. さらに, Cavitatus lanceolatusを産することから, D41.5 (Cv. lanceolatusの初産出: 15.6 Ma) – D43.2 (Cv. lanceolatusの 終産出: 15.2 Ma)の区間に限定される.

4. 考察

高橋・柳沢 (2004) は岩殿丘陵北側の都幾川沿いの都

- 第2図 比企層群と都幾川層群および六地蔵の砂質シルト岩の珪藻化石年代. 地磁気極性年代尺度はRaffi et al. (2020) に, 珪藻化石帯および生層準はAkiba (1986), Yanagisawa and Akiba (1998) に従い, Watanabe and Yanagisawa (2005) で 改訂された年代値に基づく.
- Fig.2 Diatom biochronology of the Hiki and Tokigawa groups and the sandy siltstone collected from Rokujizo, Ogose Town, Saitama Prefecture. Diatom zonation, biohorizones and ages follow Akiba (1986) and Yanagisawa and Akiba (1998), and are partly revised by Watanabe and Yanagisawa (2005).

- 第3図 埼玉県越生町六地蔵付近の珪藻分析試料の 採取位置.基図には国土地理院のweb版地理 院地図を利用した.
- Fig.3 Map showing the locality of diatom samples at Rokujizo, Ogose Town, Saitama Prefecture, Japan. The base map is digital map images published from the website of the Geospatial Information Authority of Japan.

第1表 越生町六地蔵の珪藻化石産出表

Table 1 Occurrence of diatoms in sandy siltstone samples collected from Rokujizo, Ogose Town, Saitama Prefecture, Japan.

Taxa / Sample number	no.1	no.2
Actinocyclus ingens Rattray 1890	-	2
Actinocyclus ingens f. planus Whiting & Schrader 1985	24	29
Actinoptychus senarius (Ehrenberg) Ehrenberg 1843	3	5
Cavitatus jouseanus (Sheshukova) Williams 1989	+	-
Cavitatus lanceolatus Akiba & Hiramatsu 1993	14	9
Cocconeis sp.	1	-
Coscinodiscus cf. lewisianus Greville 1866	-	1
Denticulopsis ichikawae Yanagisawa & Akiba 1990	+	2
Denticulopsis lauta (Bailey) Simonsen 1979	15	6
Grammatophora sp.	1	-
Kisseleviella sp.	+	-
Melorisa (?) sp.	-	1
Paralia sulcata (Ehrenberg) Cleve 1873	9	7
Rhaphidodiscus sp.	1	-
Rhaphoneis gemmifera Ehrengerg 1844	-	+
Thalassionema spp.	32	37
Thalassiosira sp.	-	1
Total nunber of valves counted	100	100
Resting spore of Chaetoceros	9	19

+: spiceies encountered after the routine count, -: absent

幾川セクションと槻川セクションの珪藻化石年代を検討 し、比企層群荒川層と市ノ川層の境界がNPD4A帯中部の 生層準D43 (*D. okunoi*の終産出層準:15.4 Ma)付近に,最 上部の市ノ川層の上限が,NPD4A帯の生層準D43.2 (15.2 Ma)付近,おそらくはD43.2 よりも上位に位置づけられ ることを示した(第2図). 荒川層の下限の年代は不明だ が,少なくとも生層準D33 (16.7 Ma)からD35 (16.4 Ma) の区間を含むことが示された(栗原ほか,2003;高橋・ 柳沢,2004)(第2図). 一方,岩殿丘陵の都幾川層群下 部の根岸層や将軍沢層からは,NPD5B帯に属する珪藻化 石が報告されている(栗原ほか,2003)(第3図).

六地蔵の2試料の珪藻年代はD41.5 (15.6 Ma) ~ D43.2 (15.2 Ma) であり,珪藻化石層序に基づけば,比企層群 荒川層最上部と市ノ川層に対比される(第2図). この結 果は,岩殿丘陵の西縁部においても比企層群に属する地 層が分布することを明確に示している.ただし,両試料には生層準D42 (D. okunoiの初産出)とD43 (D. okunoi の終産出)を規定するD. okunoiが産出しないため,生層 準D41.5 (Cv. lanceolatusの初産出) ~ D42と生層準43 ~ D43.2 (Cv. lanceolatusの終産出)のどちらにも対比が可能

であり(第2図), 珪藻化石層序から荒川層と市ノ川層へ の帰属を判断することは困難である.

今回分析した試料はいずれも砂質シルト岩であった. また,原田(2009)によればこの露頭のシルト岩には径 15 cm程度の角礫が含まれる.高橋・柳沢(2004)は,荒 川層の最上部は塊状の珪藻質シルト岩からなり,市ノ川 層はシルト岩と砂岩の互層や不淘汰角礫岩からなるとし た.六地蔵の露頭の岩相はどちらかというと市ノ川層に 類似することから,周辺に露出する砂岩や礫岩と合わせ て市ノ川層に対比される可能性が高い.

謝辞:本研究は,産業技術総合研究所地質調査総合セン ターが発行する5万分の1地質図幅「川越」地域を作成す るための調査の一環として行われたものである.東松山 市文化財専門調査員の原田吉樹氏には,珪藻化石分析用 の試料を提供していただいた.地質情報研究部門の柳沢 幸夫博士には草稿に対して貴重なコメントをいただいた. 担当編集委員の持丸華子博士および査読者の渡辺真人博 士による有意義なコメントは原稿を改善する上で大変有 益であった.以上の方々に記して御礼申し上げます.

文 献

- Akiba, F. (1986) Middle Miocene to Quaternary diatom biostratigraphy in the Nankai Trough and Japan Trench, and modified Lower Miocene through Quaternary diatom zones for middle-to-high latitudes of the North Pacific. *In* Kagami, H., Karig, D. E., Coulbourn, W. T. *et al.*, *Initial Reports of the Deep Sea Drilling Project*, **87**, 393–480. U. S. Government Printing Office, Washington D. C.
- 荒井 豊・原田吉樹 (2015) 葛袋における都幾川層群の基 底礫岩と不整合.埼玉県東松山市葛袋化石調査報告 書.東松山市教育委員会, 17–32.
- 原田吉樹 (2009) 埼玉県岩殿丘陵西縁の"N.8 期堆積層"と 貝類化石. 地学研究, **58**, 29–33.
- 堀内誠示・柳沢幸夫 (1994) 埼玉県岩殿丘陵に分布する中 新統の珪藻化石層序. 地質調査所月報,45,655-675.
- 小池美津子・武井晛朔・下野敏弘・町田二郎・秋元和実・ 橋屋 功・吉野博厚・平社定夫 (1985) 岩殿丘陵の 中新統・都幾川層群.地質学雑誌, 91, 665-677.
- 栗原行人・堀内誠示・柳沢幸夫 (2003) 埼玉県岩殿丘陵地 域に分布する中新統の岩相層序と珪藻・石灰質ナン ノ化石層序.地質学雑誌, 109, 215–233.
- 栗原行人・柳沢幸夫 (2015) 東松山市葛袋地区の地質. 埼 玉県東松山市葛袋地区化石調査報告書. 東松山市教 育委員会, 8–16.
- 間嶋隆一 (1989) 埼玉県中央部, 荒川から岩殿丘陵にかけ て分布する新第三系の層序. 静岡大学地球科学研究 報告, 15, 1–24.
- 納谷友規・山口正秋・水野清秀(2009)関東平野中央部 埼玉県菖蒲町で掘削された350mボーリングコア (GS-SB-1)の珪藻化石産出層準と淡水成層準および

海成層準の識別. 地質調査研究報告, 60, 245-256.

- 納谷友規・平松 力・古澤 明・柳沢幸夫・山口和雄 (2013)関東平野中央部埼玉県大利根町で掘削され た1505m温泉ボーリングの年代層序. 地質学雑誌, 119, 375–395.
- Raffi, I., Wade, B. S. and Pälike, H. (2020) Chapter 29, The Neogene Period. In Gradstein, F. M. et al. eds. Geologic Time Scale 2020, 1141–1215. Elsevier, Amsterdam, Oxford, Cambridge.
- 杉山雄一・須貝俊彦・井村隆介・水野清秀・遠藤秀典・ 下川浩一・山崎晴雄 (1997) 50 万分の1 活構造図8「東 京」 (第2 版). 地質調査所.
- 高橋雅紀 (2008) 岩殿丘陵, 関東山地周辺. 日本地質学会 編, 日本地方地質誌3:関東地方, 朝倉書店, 東京, 162–166.
- 高橋雅紀・柳沢幸夫(2004)埼玉県比企丘陵に分布する中 新統の層序—複合年代層序に基づく岩相層序の総 括—. 地質学雑誌,110,290–308.
- Watanabe, M. and Yanagisawa, Y. (2005) Refined Early to Middle Miocene diatom biochronology for the middle- to high-latitude North Pacific. *Island Arc*, 14, 91–101.
- 柳沢幸夫(2021)秋田県大仙市下荒川に分布する中新統上 部の船川層における暖流系石灰質微化石産出層準 の珪藻年代.地質調査研究報告,72,459-477.
- Yanagisawa, Y. and Akiba, F. (1998) Refined Neogene diatom biostratigraphy for the northwest Pacific around Japan, with an introduction of code numbers for selected diatom biohorizons. *The Journal of the Geological Society of Japan*, **104**, 395–414.

(受付:2022年6月23日;受理:2022年10月4日)

図版1 越生町六地蔵から産出した珪藻化石

- Plate 1 Fossil diatoms in the sandy siltstone samples collected from Rokujizo, Ogose Town, Saitama Prefecture, Japan.
- 1-3 Denticulopsis lauta (Bailey) Simonsen [no.1]
- 4-5 Denticulopsis ichikawae Yanagisawa & Akiba [4: no.1, 5: no.2]
- 6 Rhaphidodiscus sp. [no.1]
- 7 Melorisa (?) sp. [no.2]
- 8 Rhaphoneis gemmifera Ehrenberg [no.2]
- 9-11 Cavitatus lanceolatus Akiba & Hiramatsu [9, 10: no.1, 11: no.2]
- 12–16 Thlassionema spp. [no.1]: 12–14: T. nitzschioides (Grunow) Mereschkowsky, 15: T. cf.
 - hirosakiensis (Kanaya) Schrader, 16: T. cf. nitzschioides (Grunow) Mereschkowsky.
- 17 Grammatophora sp. [no.1]
- 18–19 Actinoptychus senarius (Ehrenberg) Ehrenberg [no.2]
- 20-21 Paralia sulcata (Ehrenberg) Cleve [20: no.2, 21: no.1]
- 22-23 Actinocyclus ingens f. planus Whiting & Schrader [no.1]
- 24-25 Coscinodiscus cf. lewisianus Greville [no.2]

地質調査総合センター研究資料集

731	磐梯・吾妻・安達太良火山周辺の中期更新世~完新世テフラ層序	山元 孝広
732	富士火山の完新世テフラ層序	山元 孝広
733	富士火山の火口位置情報	石塚 吉浩・山元 孝広・中野 俊・ 宝田 晋治
734	第 36 回地質調査総合センターシンポジウム「3 次元で解き明かす東京都区 部の地下地質」講演要旨集	中澤 努・野々垣 進・小松原 純子・宮地 良典 (編)
735	葛根田花崗岩の石英の岩石学的組織	佐々木 宗建・佐脇 貴幸・藤本 光 一郎・笹田 政克
736	20万分の1日高変成帯地質図	高橋浩
737	遺跡発掘調査において記載された桜島テフラ その1	西原 歩・下司 信夫・成尾 英仁
738	日本全国内陸部の地殻内応力マップと微小地震の発震機構解のデジタル データ	内出 崇彦・椎名 高裕・今西 和俊
739	熊本,阿蘇およびくじゅう地域の地下水および河川水の化学・同位体組成	高橋 正明·稲村 明彦·高橋 浩· 森川 徳敏·東郷 洋子·風早 康平· 佐藤 努·半田 宙子·仲間 純子· 中村 有理·大和田 道子·宮越 昭 暢·戸崎 裕貴·冨島 康夫·大丸 純·清水 日奈子·大沢 信二·網 田 和宏·堀口 桂香·柴田 智郎· 小泉 尚嗣·川端 訓代·安原 正也

740 第2白嶺丸重力異常データ

石原 丈実・小田 啓邦

5 万分の1 地質図幅	桐生及足 和気 豊田	利
20 万分の 1 地質図幅	宮津(第	52版)
海洋地質図	No. 91 No. 92	種子島付近海底地質図 久米島周辺海域海洋地質図
火山地質図	No. 21 No. 22	恵山火山地質図 日光白根及び三岳火山地質図
海陸シームレス地質図	S-7	海陸シームレス地質情報集「相模湾沿岸域」
大規模火砕流分布図	No. 1	姶良カルデラ入戸火砕流堆積物分布図
特殊地質図	No. 42	多摩川低地の沖積層アトラス
その他	東・東南 中部地方	「アジア磁気異常図 改訂版(第 3 版) 「の地球化学図

地質調查研究報告編集委員会

委	員	長	鈴	木		淳
副	委員	長	佐	マフ	卜宗	建
委		員	宮	城	磯	治
			松	本		弾
			東	郷	洋	子
			持	丸	華	子
			藤	井	孝	志
			大	谷		竜
			長	森	英	明
			納	谷	友	規
			天	野	敦	子
			細	井		淳
			森	尻	理	恵

事務局 国立研究開発法人 産業技術総合研究所 地質調査総合センター 地質情報基盤センター 出版室 https://www.gsj.jp/inquiries.html Bulletin of the Geological Survey of Japan Editorial Board

Chief Editor: SUZUKI Atsushi Deputy Chief Editor: SASAKI Munetake Editors: MIYAGI Isoji MATSUMOTO Dan TOGO Yoko MOCHIMARU Hanako FUJII Takashi OHTANI Ryu NAGAMORI Hideaki NAYA Tomonori AMANO Atsuko HOSOI Jun MORIJIRI Rie

Secretariat Office National Institute of Advanced Industrial Science and Technology Geological Survey of Japan Geoinformation Service Center Publication Office https://www.gsj.jp/en/

地質調査研究報告 第73巻 第3号 令和4年10月26日 発行

国立研究開発法人 産業技術総合研究所 地質調査総合センター

〒305-8567 茨城県つくば市東1-1-1 中央第7 Bulletin of the Geological Survey of Japan Vol. 73 No. 3 Issue October 26, 2022

Geological Survey of Japan, AIST

AIST Tsukuba Central 7, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8567 Japan

©2022 Geological Survey of Japan, AIST https://www.gsj.jp/

BULLETIN OF THE GEOLOGICAL SURVEY OF JAPAN

Vol. 73 No. 3 2022

CONTENTS

Late Triassic radiolarians and conodonts from a chert pebble within the Lower Pleistocene Higashihigas Formation of the Kazusa Group, Boso Peninsula, Japan	sa
ITO Tsuyoshi, MUTO Shun and UTSUNOMIYA Masayuki	93
Chemical compositions and ages of basalts from seamounts in the Northwest Pacific	
YAMAOKA Kyoko, ISHIZUKA Osamu, MOROZUMI Haruhisa and HINO Hikari)3
Diatom biochronology of the sandy siltstone samples collected from the western margin of th Iwadono Hills, Saitama Prefecture, central Japan	ie
NAYA Tomonori ······13	37

Geological Survey of Japan, AIST