概報 - Report

岩手県盛岡市薮川,大石川沿いで確認された十和田大不動テフラ

工藤 崇^{1,*}・内野 隆之¹

KUDO Takashi and UCHINO Takayuki (2021) The Towada-Ofudo Tephra found along the Oishi River, Yabukawa, Morioka City, Iwate Prefecture. *Bulletin of the Geological Survey of Japan*, vol. 72 (2), p. 129–138, 5 figs, 1 table.

Abstract: Four tephra layers, Os-4, Os-3, Os-2 and Os-1 in ascending stratigraphic order, were found in the Quaternary valley floor deposits distributed along the Oishi River, Yabukawa, Morioka City, Iwate Prefecture. Correlation of tephra layers was carried out on the basis of stratigraphy, sedimentary facies, constituent materials and major element chemical compositions of volcanic glasses. The Os-4 is estimated to be derived from the Iwate or Akita-Komagatake volcanoes, but a detailed correlation is difficult at present. The Os-3 is correlated to the Towada-Ofudo Tephra (36 ka) and corresponds to the co-ignimbrite ash fall deposit of the Towada-Ofudo Pyroclastic Flow Deposits. The Os-2 is a reworked deposit of the Towada-Ofudo Tephra.

Keywords: tephra, stratigraphy, correlation, Towada-Ofudo Tephra, Towada-Hachinohe Tephra, coignimbrite ash fall deposit, Iwate Prefecture

要 旨

岩手県盛岡市薮川,大石川沿いの谷底低地を埋積す る礫層主体の第四紀堆積物中に,下位よりOs-4,Os-3, Os-2,Os-1の4枚のテフラを見出した.これらのテフラ について,層序,層相,構成物質及び火山ガラスの化学 組成の特徴から対比を行った.Os-4は岩手火山あるいは 秋田駒ヶ岳火山起源と推定されるが,現時点での詳細な 対比は困難である.Os-3は36 kaの十和田大不動テフラ に対比され,十和田大不動火砕流堆積物のco-ignimbrite ash fall depositに相当する.Os-2は十和田大不動テフラの 再堆積層と考えられる.Os-1は15.5 kaの十和田八戸テフ ラに対比される可能性が高い.

1. はじめに

産総研地質調査総合センターでは、現在、5万分の1 地質図幅「外山」の作成を目的とした野外地質調査を行っ ている.その調査の過程で、本論の著者のうち内野は、 岩手県盛岡市数川付近(第1図)の谷底低地を埋積する礫 層主体の第四紀堆積物中に、複数枚のテフラを見出した. これらのテフラについて詳細を明らかにし、既知のテフ ラとの対比を行うことは、火山噴出物の分布範囲を把握 するだけではなく、同一時間面を認識してテフラを挟有 する堆積物の年代を明らかにするためにも重要である. そこで,これらのテフラを対象として我々は,層序,層 相,構成物質,火山ガラスの主成分化学組成について検 討を行った.その結果,これらの中に十和田大不動テフ ラ(町田・新井,1992,2003)に対比されるテフラが確認 されたので,本論にて報告する.

2. 地質記載

2.1 概要

岩手県盛岡市薮川付近(第2図)は、北部北上帯のジュ ラ紀付加体を基盤とする標高700~1,000 mのいわゆる 隆起準平原をなす小起伏山地からなり、これらを刻む谷 沿いには、礫層を主体とする第四紀の谷底低地堆積物 が分布する. このうち, 大石川沿いに分布する谷底低地 堆積物は、平坦な地形面をなしており(第2図)、大石川 の侵食による下刻作用を受けて、川床から最大比高4 m 程度の段丘地形を示す. 大石川沿いでは, 谷底低地堆積 物の断面が複数箇所で露出する(第2図;第3図).これ らの谷底低地堆積物は、礫層を主体とし、泥炭層、泥層、 砂質泥層,砂層及びテフラ層を伴い,表層の土壌層によ り覆われる(第3図). 堆積物中には少なくとも4枚のテ フラが認められる(第3図). これらのテフラを下位より Os-4, Os-3, Os-2, Os-1と呼ぶことにする(第3図). 以 下では、これらのテフラについて記載を行う.なお、火 山灰の構成粒子についての記載は、水洗・超音波洗浄し

¹ 産業技術総合研究所 地質調査総合センター 地質情報研究部門 (AIST, Geological Survey of Japan, Research Institute of Geology and Geoinformation)

* Corresponding author: KUDO, T., Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan. Email: kudo-taka@aist.go.jp

第1図 (a) 調査地域の位置図. (b) 岩手県盛岡市周辺の地質図. 「外山」図幅内に分布する地質体のみ凡例で示してある. 地質図 は産総研地質調査総合センター (2019)の20万分の1日本シームレス地質図V2を引用した.

Fig. 1 (a) Locality map of the study area. (b) Geological map around Morioka City, Iwate Prefecture. Only legends of geologic bodies within the quadrangle Sotoyama District were shown. The map was referred from the Seamless Digital Geological Map of Japan (1:200,000) V2 of the Geological Survey of Japan, AIST (2019). AC: accretionary complex.

て懸濁物(細粒物)を取り除いた試料の実体顕微鏡観察の 結果による.火山ガラスの形態分類は町田・新井(1992, 2003)に従った.

2.2 テフラ記載

2. 2. 1 Os-4

地点1のみで確認される. 層厚は7 cmで,上下を淡灰 色泥層に挟まれる(第3図).火山礫混じりの火山灰層で ある.火山礫として長径2~3 mmの黒色スコリア及び 石質岩片をまばらに含む. 層全体として褐灰色を呈する. 火山灰の構成粒子は,斜長石,斜方輝石,単斜輝石,鉄 鉱物,風化したかんらん石,黒色スコリア,赤褐色風化 スコリア及び灰色~暗灰色の石質岩片などからなる.

2. 2. 2 Os-3

地点1~4で確認される.層厚は8~12 cmで,層厚 の側方変化は少なく,淡灰色泥層あるいは泥炭層に上 下を挟まれる(第3図). 正級化構造が認められ,粒径の 違いから下部と上部の2つのユニットに区分される(第3 図;第4図a, c).下部ユニットは,灰色を呈する粗粒 火山灰混じりの軽石火山礫層である.軽石火山礫の長 径は1 cm以下である.白色軽石火山礫を主体とし,礫 支持で,粒間を粗粒火山灰が埋める層相を示す(第4図c). 上部ユニットは、灰色を呈する粗粒火山灰層である.両 ユニットで火山灰の構成粒子の種類に違いは認められない.鉱物粒子としては、斜長石、斜方輝石、単斜輝石及 び鉄鉱物を含む.火山ガラス粒子としては、スポンジ状 の白色ガラス及び繊維状の透明~白色ガラスを多く含み、 曇りガラス状の灰色塊状ガラスや黒曜石片を伴う.その 他、各種石質岩片を含む.

2. 2. 3 Os-2

地点3のみで確認される.上下を泥炭層に挟まれる(第 3図).層厚は一定せず,最大8 cmで,レンズ状で側方に 尖滅する.長径4 mm以下の白色軽石火山礫を交える灰 色細粒~粗粒火山灰層である.淘汰は比較的悪い.鉱物 粒子としては,斜長石,斜方輝石,単斜輝石,鉄鉱物及 びごく微量の石英を含む.火山ガラス粒子としては,ス ポンジ状の白色ガラス及び繊維状の透明~白色ガラスを 多く含み,曇りガラス状の灰色塊状ガラスや黒曜石片を 伴う.その他,各種石質岩片を含む.火山灰の構成粒子 は,ごく微量の石英が含まれる点以外は,Os-3とほぼ同 様である.

2. 2. 4 Os-1

地点1のみで確認される.淡灰色泥層を覆い、褐色土

第2図 露頭の位置図.本区域の位置を第1図に示す.基図に地理院地図を使用. Fig. 2 Locality of outcrops. The location of this area is shown in Fig. 1. Base map is from GSI Map.

壌層に覆われる(第3図).層厚は最大23 cmで、側方に 一定しない(第4図a).層の上面は、一部で境界がはっき りしない.長径1 cm以下の白色及び灰色軽石火山礫を交え る淡褐灰色火山灰層であり、塊状で淘汰が悪い(第4図b). 火山灰の構成粒子として、斜長石、斜方輝石、単斜輝石、 鉄鉱物と少量の普通角閃石を含む.また、スポンジ状の 白色~灰色ガラス及び多種の石質岩片を含む.石質岩片 の量は他のテフラに比較して多い.

3. 火山ガラス主成分化学組成分析

3.1 試料

テフラ中の火山ガラスについて,主成分化学組成分 析を行った.ここでは地点1~4の全ての露頭で観察さ れ,一定した層厚で側方へ追跡可能な産状を示すOs-3を 分析対象とした.試料は地点1より採取した(試料番号: 19051402).Os-3は軽石質テフラであり,火山ガラスの 特徴から比較的珪長質なテフラと判断される.本地域付 近には,岩手火山,秋田駒ヶ岳火山,十和田火山起源の テフラが分布することが知られている(土井, 2000).そ の中でも, 珪長質な軽石質テフラとしては, 十和田火山 起源の十和田大不動テフラ(To-Of)及び十和田八戸テフ ラ(To-H)(町田・新井, 1992, 2003)が挙げられる. 今 回見つかったOs-2は、火山灰構成粒子の特徴がTo-Ofに 極めて類似している(詳細は後述). そこで、給源付近 に分布し、対比が明確になっているTo-Ofについても比 較対象として分析を行った. 給源付近のTo-Ofは、火砕 流堆積物である十和田大不動火砕流堆積物(東北地方第 四紀研究グループ, 1969; Hayakawa, 1985; 宝田・村 岡、2004)、ビスケット浮石1:BP1(東北地方第四紀研 究グループ、1969) あるいは切田降下火砕堆積物 (Kirida fallout deposits) (Havakawa, 1985) と呼ばれる降下火砕堆 積物などからなる. これらのうち, 青森県十和田市奥瀬 仙ノ沢(北緯40度34分33.12秒、東経141度5分1.48秒) で露出する十和田大不動火砕流堆積物から採取した軽石 (試料番号:No-4)を分析対象とした. 十和田大不動火砕 流堆積物は、To-Ofの主部を構成するテフラであり、こ の露頭は早川(1993)及び工藤(2005)でも記載が行われ (後者の第4.13図に露頭写真が,第4.18図に柱状図が示

第3図 地質柱状図. 各露頭の位置を第2図に示す. Fig. 3 Stratigraphic columnar sections. The locality of each section is shown in Fig. 2.

第4図 地点1における露頭写真. (a)露頭最上部に見られるOs-1及びOs-3. (b) Os-1の接写写真. (c) Os-3の接写写真. Fig. 4 Outcrop photographs at the location 1. (a) The Os-1 and Os-3 at the uppermost part of the outcrop. (b) Close-up photo of the Os-1. (c) Close-up photo of the Os-3.

されている), To-Ofであることが確実とされている. また, 試料No-4の全岩化学組成についてはYamamoto *et al.* (2018)により公表されている.

3.2 手法

火山ガラス主成分化学組成分析は、株式会社古澤地質 に依頼した. 試料は、19051402が軽石火山礫混じりの 火山灰, No-4が火砕流堆積物中から採取した1個の軽石 火山岩塊である. 前処理は古澤(2003)の方法を基本とし た. 試料を粉砕した後、ナイロン製使い捨て#255メッ シュシート(糸径43 μm,オープニングワイド57 μm)を用 い,流水中で洗浄した. 残渣を#125メッシュシート(糸 径70 μm,オープニングワイド133 μm)を用い水中で篩い 分けした. これにより1/8 ~ 1/16 mmに粒度調整した試 料について、超音波洗浄機を用いて洗浄し、表面に付着 した粘土分などを洗い流した. 次に、偏光顕微鏡を用い て試料から火山ガラスのみを手選し、エポキシ樹脂を用 いてスライドグラス上に包埋し、#3000カーボランダム で研磨、1 μmのダイヤモンドペーストにて鏡面研磨した 薄片を作成した.主成分元素分析には、エネルギー分散 型X線マイクロアナライザー (EDX)を用いた.加速電圧 は15 kV, 試料電流は0.3 nAである.4 μm四方の範囲を 約150 nmのビーム径にて走査させて測定した.各試料に ついて、火山ガラス片1個につき1点、合計15点の分析 を行った.スタンダードには高純度人工酸化物結晶(純 度99.99%以上のSiO₂, Al₂O₃, TiO₂, MnO, MgO),純度 99.99%以上の単結晶NaCl, KCl, CaF₂を用いた.これを, アメリカ標準局NIST620ガラス,旧NISTK-961ガラス及 びglass-D(沢田ほか、1997)を用いてチェックした.また, ASTIMEX, TaylorなどのいわゆるEPMA用標準物質など でもその精度をチェックした.Kについてはニチカ製高 純度Adularia(沢田ほか、1997)を用い,ダブルチェック した.ワーキングスタンダードにはATテフラの火山ガラ スを用い、測定時毎に値をチェックした.

3.3 結果

分析結果を第1表及び第5図に示す.火山ガラス化学 組成については、以下では無水100 wt.%に再計算した値

第1表 Os-3及び十和田大不動火砕流堆積物の火山ガラス主成分化学組成

Table 1 Major element chemical compositions of volcanic glasses from the Os-3 and Towada-Ofudo Pyroclastic Flow Deposits

Sample no.	19051402	2													
Tephra name	Os-3														
Point no	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Raw data (wt	.%)	_	Ŭ		Ū	U U	-								
SiO ₂	71.41	71.48	72.15	72.35	72.09	69.12	71.76	71.81	72.04	69.75	74.74	73.46	71.83	72.92	71.44
TiO ₂	0.4	0.36	0.37	0.26	0.32	0.51	0.44	0.26	0.39	0.46	0.3	0.53	0.43	0.45	0.43
Al ₂ O ₂	11.74	12.34	11.77	12.44	11.83	12.54	12.02	11.52	12.73	12.8	12.06	12.74	12.99	12.42	11.73
FeO	1.73	2.03	1.6	1.93	1.68	2.17	1.71	1.49	2	2.22	1.64	2.13	2.29	1.88	1.82
MnO	0.12	0.04	0.13	0.13	0.05	0.07	0.19	0.1	0.22	0.06	0.16	0.21	0.1	0.06	0.19
MgO	0.36	0.54	0.36	0.46	0.42	0.56	0.51	0.37	0.53	0.64	0.45	0.49	0.58	0.53	0.44
CaO	2.04	2.19	1.98	2.2	2.06	2.47	2.01	1.92	2.33	2.72	2	2.46	2.56	2.26	2.01
Na ₂ O	3.93	3.92	3.91	3.97	3.84	3.89	3.95	3.82	3.96	3.89	4.05	4.15	4.01	4.02	3.86
K ₂ O	1.3	1.18	1.22	1.23	1.2	1.09	1.25	1.19	1.1	1.07	1.23	1.17	1.04	1.06	1.14
Total	93.03	94.08	93.49	94.97	93.49	92.42	93.84	92.48	95.3	93.61	96.63	97.34	95.83	95.6	93.06
Data normali	zed to 100	% (wt.%)													
SiO ₂	76.76	75.98	77.17	76.18	77.11	74.79	76.47	77.65	75.59	74.51	77.35	75.47	74.96	76.28	76.77
TiO ₂	0.43	0.38	0.40	0.27	0.34	0.55	0.47	0.28	0.41	0.49	0.31	0.54	0.45	0.47	0.46
Al ₂ O ₃	12.62	13.12	12.59	13.10	12.65	13.57	12.81	12.46	13.36	13.67	12.48	13.09	13.56	12.99	12.60
FeO	1.86	2.16	1.71	2.03	1.80	2.35	1.82	1.61	2.10	2.37	1.70	2.19	2.39	1.97	1.96
MnO	0.13	0.04	0.14	0.14	0.05	0.08	0.20	0.11	0.23	0.06	0.17	0.22	0.10	0.06	0.20
MgO	0.39	0.57	0.39	0.48	0.45	0.61	0.54	0.40	0.56	0.68	0.47	0.50	0.61	0.55	0.47
CaO	2.19	2.33	2.12	2.32	2.20	2.67	2.14	2.08	2.44	2.91	2.07	2.53	2.67	2.36	2.16
Na ₂ O	4.22	4.17	4.18	4.18	4.11	4.21	4.21	4.13	4.16	4.16	4.19	4.26	4.18	4.21	4.15
K ₂ O	1.40	1.25	1.30	1.30	1.28	1.18	1.33	1.29	1.15	1.14	1.27	1.20	1.09	1.11	1.23
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Samplo no	No 4														
Sample no.	No-4	Ofudo Pyr	oclastic F		neite										
Sample no. Tephra name Point no.	No-4 Towada-0 1	Dfudo Pyr 2	oclastic F 3	Flow Depo	osits 5	6	7	8	9	10	11	12	13	14	15
Sample no. Tephra name Point no. Raw data (wt	No-4 Towada-0 1 .%)	Dfudo Pyr 2	oclastic F 3	Flow Depo 4	osits 5	6	7	8	9	10	11	12	13	14	15
Sample no. Tephra name Point no. Raw data (wt SiO ₂	No-4 • Towada-0 1 .%) 66.13	Dfudo Pyr 2 62.91	oclastic F 3 72.47	Flow Depo 4 71.17	osits 5 70.42	6	7	8	9	10	<u>11</u> 68.28	12	13	14	15 76.45
Sample no. Tephra name Point no. Raw data (wt SiO ₂ TiO ₂	No-4 Towada-0 1 .%) 66.13 0.31	Dfudo Pyr 2 62.91 0.33	roclastic F 3 72.47 0.36	Flow Depo 4 71.17 0.37	70.42 0.43	6 70.81 0.37	7 70.5 0.4	8 71.07 0.31	9 69.91 0.34	10 72.38 0.33	11 68.28 0.26	12 70.3 0.33	13 70.76 0.27	14 67.18 0.41	15 76.45 0.39
Sample no. Tephra name Point no. Raw data (wt SiO ₂ TiO ₂ Al ₂ O ₃	No-4 Towada-0 .%) 66.13 0.31 11.59	Dfudo Pyr 2 62.91 0.33 10.82	roclastic F 3 72.47 0.36 11.9	Flow Depo 4 71.17 0.37 11.9	5 70.42 0.43 12.45	6 70.81 0.37 12.12	7 70.5 0.4 12.22	8 71.07 0.31 11.37	9 69.91 0.34 11.41	10 72.38 0.33 11.4	11 68.28 0.26 11.18	12 70.3 0.33 11.34	13 70.76 0.27 11.76	14 67.18 0.41 11.22	15 76.45 0.39 12.22
Sample no. Tephra name Point no. Raw data (wt SiO ₂ TiO ₂ Al ₂ O ₃ FeO	No-4 Towada-(1 .%) 66.13 0.31 11.59 1.9	Dfudo Pyr 2 62.91 0.33 10.82 1.74	roclastic F 3 72.47 0.36 11.9 1.59	Flow Depo 4 71.17 0.37 11.9 1.71	5 70.42 0.43 12.45 2.11	6 70.81 0.37 12.12 1.92	7 70.5 0.4 12.22 1.75	8 71.07 0.31 11.37 1.64	9 69.91 0.34 11.41 1.52	10 72.38 0.33 11.4 1.6	11 68.28 0.26 11.18 1.66	12 70.3 0.33 11.34 1.43	13 70.76 0.27 11.76 1.57	14 67.18 0.41 11.22 1.74	15 76.45 0.39 12.22 1.69
Sample no. Tephra name Point no. Raw data (wt SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO	No-4 Towada-0 1 .%) 66.13 0.31 11.59 1.9 0.04	Dfudo Pyr 2 62.91 0.33 10.82 1.74 0.14	roclastic F 3 72.47 0.36 11.9 1.59 0.05	Flow Depo 4 71.17 0.37 11.9 1.71 0.13	5 70.42 0.43 12.45 2.11 0.01	6 70.81 0.37 12.12 1.92 0.07	7 70.5 0.4 12.22 1.75 0.02	8 71.07 0.31 11.37 1.64 0.1	9 69.91 0.34 11.41 1.52 0.06	10 72.38 0.33 11.4 1.6 0.1	11 68.28 0.26 11.18 1.66 0.12	12 70.3 0.33 11.34 1.43 0.02	13 70.76 0.27 11.76 1.57 0.04	14 67.18 0.41 11.22 1.74 0.16	15 76.45 0.39 12.22 1.69 0.01
Sample no. Tephra name Point no. Raw data (wt SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO	No-4 Towada-0 1 .%) 66.13 0.31 11.59 1.9 0.04 0.53	Dfudo Pyr 2 62.91 0.33 10.82 1.74 0.14 0.49	oclastic F 3 72.47 0.36 11.9 1.59 0.05 0.42	Flow Depo 4 71.17 0.37 11.9 1.71 0.13 0.5	5 70.42 0.43 12.45 2.11 0.01 0.57	6 70.81 0.37 12.12 1.92 0.07 0.58	7 70.5 0.4 12.22 1.75 0.02 0.49	8 71.07 0.31 11.37 1.64 0.1 0.34	9 69.91 0.34 11.41 1.52 0.06 0.32	10 72.38 0.33 11.4 1.6 0.1 0.4	11 68.28 0.26 11.18 1.66 0.12 0.35	12 70.3 0.33 11.34 1.43 0.02 0.41	13 70.76 0.27 11.76 1.57 0.04 0.38	14 67.18 0.41 11.22 1.74 0.16 0.42	15 76.45 0.39 12.22 1.69 0.01 0.32
Sample no. Tephra name Point no. Raw data (wt SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO	No-4 Towada-(1 %) 66.13 0.31 11.59 1.9 0.04 0.53 2.38	Dfudo Pyr 2 62.91 0.33 10.82 1.74 0.14 0.49 1.94	roclastic F 3 72.47 0.36 11.9 1.59 0.05 0.42 1.96	Flow Depo 4 71.17 0.37 11.9 1.71 0.13 0.5 2.22	5 70.42 0.43 12.45 2.11 0.01 0.57 2.55	6 70.81 0.37 12.12 1.92 0.07 0.58 2.36	7 70.5 0.4 12.22 1.75 0.02 0.49 2.26	8 71.07 0.31 11.37 1.64 0.1 0.34 1.91	9 69.91 0.34 11.41 1.52 0.06 0.32 1.95	10 72.38 0.33 11.4 1.6 0.1 0.4 1.84	11 68.28 0.26 11.18 1.66 0.12 0.35 2.03	12 70.3 0.33 11.34 1.43 0.02 0.41 1.84	13 70.76 0.27 11.76 1.57 0.04 0.38 1.95	14 67.18 0.41 11.22 1.74 0.16 0.42 2.03	15 76.45 0.39 12.22 1.69 0.01 0.32 2.01
Sample no. Tephra name Point no. Raw data (wt SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O	No-4 Towada-(1 %) 66.13 0.31 11.59 1.9 0.04 0.53 2.38 3.72	Dfudo Pyr 2 62.91 0.33 10.82 1.74 0.14 0.49 1.94 3.57	roclastic F 3 72.47 0.36 11.9 1.59 0.05 0.42 1.96 3.94	Flow Depo 4 71.17 0.37 11.9 1.71 0.13 0.5 2.22 3.88	5 70.42 0.43 12.45 2.11 0.01 0.57 2.55 3.98	6 70.81 0.37 12.12 1.92 0.07 0.58 2.36 3.9	7 70.5 0.4 12.22 1.75 0.02 0.49 2.26 4.03	8 71.07 0.31 11.37 1.64 0.1 0.34 1.91 3.97	9 69.91 0.34 11.41 1.52 0.06 0.32 1.95 3.87	10 72.38 0.33 11.4 1.6 0.1 0.4 1.84 3.87	11 68.28 0.26 11.18 1.66 0.12 0.35 2.03 3.8	12 70.3 0.33 11.34 1.43 0.02 0.41 1.84 3.59	13 70.76 0.27 11.76 1.57 0.04 0.38 1.95 4.02	14 67.18 0.41 11.22 1.74 0.16 0.42 2.03 3.88	15 76.45 0.39 12.22 1.69 0.01 0.32 2.01 4.31
Sample no. Tephra name Point no. Raw data (wt SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O	No-4 Towada-(1 %) 66.13 0.31 11.59 1.9 0.04 0.53 2.38 3.72 1.12	Dfudo Pyr 2 62.91 0.33 10.82 1.74 0.14 0.49 1.94 3.57 1.07	roclastic F 3 72.47 0.36 11.9 1.59 0.05 0.42 1.96 3.94 1.26	Flow Depp 4 71.17 0.37 11.9 1.71 0.13 0.5 2.22 3.88 1.24	70.42 0.43 12.45 2.11 0.01 0.57 2.55 3.98 1.22	6 70.81 0.37 12.12 1.92 0.07 0.58 2.36 3.9 1.14	7 70.5 0.4 12.22 1.75 0.02 0.49 2.26 4.03 1.14	8 71.07 0.31 11.37 1.64 0.1 0.34 1.91 3.97 1.25	9 69.91 0.34 11.41 1.52 0.06 0.32 1.95 3.87 1.23	10 72.38 0.33 11.4 1.6 0.1 0.4 1.84 3.87 1.29	11 68.28 0.26 11.18 1.66 0.12 0.35 2.03 3.8 1.17	12 70.3 0.33 11.34 1.43 0.02 0.41 1.84 3.59 1.17	13 70.76 0.27 11.76 1.57 0.04 0.38 1.95 4.02 1.22	14 67.18 0.41 11.22 1.74 0.16 0.42 2.03 3.88 1.15	15 76.45 0.39 12.22 1.69 0.01 0.32 2.01 4.31 1.32
Sample no. Tephra name Point no. Raw data (wt SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Total	No-4 Towada-(1 -%) 66.13 0.31 11.59 1.9 0.04 0.53 2.38 3.72 1.12 87.72	Dfudo Pyr 2 62.91 0.33 10.82 1.74 0.14 0.49 1.94 3.57 1.07 83.01	roclastic F 3 72.47 0.36 11.9 1.59 0.42 1.96 3.94 1.26 93.95	Flow Depp 4 71.17 0.37 11.9 1.71 0.13 0.5 2.22 3.88 1.24 93.12	70.42 0.43 12.45 2.11 0.01 0.57 2.55 3.98 1.22 93.74	6 70.81 0.37 12.12 1.92 0.07 0.58 2.36 3.9 1.14 93.27	7 70.5 0.4 12.22 1.75 0.02 0.49 2.26 4.03 1.14 92.81	8 71.07 0.31 11.37 1.64 0.1 0.34 1.91 3.97 1.25 91.96	9 69.91 0.34 11.41 1.52 0.06 0.32 1.95 3.87 1.23 90.61	10 72.38 0.33 11.4 1.6 0.1 1.84 3.87 1.29 93.21	11 68.28 0.26 11.18 1.66 0.12 0.35 2.03 3.8 1.17 88.85	12 70.3 0.33 11.34 1.43 0.02 0.41 1.84 3.59 1.17 90.43	13 70.76 0.27 11.76 1.57 0.04 0.38 1.95 4.02 1.22 91.97	14 67.18 0.41 11.22 1.74 0.16 0.42 2.03 3.88 1.15 88.19	15 76.45 0.39 12.22 1.69 0.01 0.32 2.01 4.31 1.32 98.72
Sample no. Tephra name Point no. Raw data (wt SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Total Data normalii	No-4 Towada-(1 .%) 66.13 0.31 11.59 1.9 0.04 0.53 2.38 3.72 1.12 87.72 zed to 100	Dfudo Pyr 2 62.91 0.33 10.82 1.74 0.14 0.49 1.94 3.57 1.07 83.01 % (wt.%)	roclastic F 3 72.47 0.36 11.9 1.59 0.42 1.96 3.94 1.26 93.95	Flow Depp 4 71.17 0.37 11.9 1.71 0.13 0.5 2.22 3.88 1.24 93.12	5 70.42 0.43 12.45 2.11 0.01 0.57 2.55 3.98 1.22 93.74	6 70.81 0.37 12.12 1.92 0.07 0.58 2.36 3.9 1.14 93.27	7 70.5 0.4 12.22 1.75 0.02 0.49 2.26 4.03 1.14 92.81	8 71.07 0.31 11.37 1.64 0.1 0.34 1.91 3.97 1.25 91.96	9 69.91 0.34 11.41 1.52 0.06 0.32 1.95 3.87 1.23 90.61	10 72.38 0.33 11.4 1.6 0.1 0.4 1.84 3.87 1.29 93.21	11 68.28 0.26 11.18 1.66 0.12 0.35 2.03 3.8 1.17 88.85	12 70.3 0.33 11.34 1.43 0.02 0.41 1.84 3.59 1.17 90.43	13 70.76 0.27 11.76 1.57 0.04 0.38 1.95 4.02 1.22 91.97	14 67.18 0.41 11.22 1.74 0.16 0.42 2.03 3.88 1.15 88.19	15 76.45 0.39 12.22 1.69 0.01 0.32 2.01 4.31 1.32 98.72
Sample no. Tephra name Point no. Raw data (wt SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Total Data normalii SiO ₂	No-4 Towada-(1 .%) 66.13 0.31 11.59 1.9 0.04 0.53 2.38 3.72 1.12 87.72 zed to 100 75.39	Dfudo Pyr 2 62.91 0.33 10.82 1.74 0.14 0.49 1.94 3.57 1.07 83.01 % (wt.%) 75.79	roclastic F 3 72.47 0.36 11.9 1.59 0.42 1.96 3.94 1.26 93.95 77.14	Flow Depp 4 71.17 0.37 11.9 1.71 0.13 0.5 2.22 3.88 1.24 93.12 76.43	5 70.42 0.43 12.45 2.11 0.01 0.57 2.55 3.98 1.22 93.74 75.12	6 70.81 0.37 12.12 1.92 0.07 0.58 2.36 3.9 1.14 93.27 75.92	7 70.5 0.4 12.22 1.75 0.02 0.49 2.26 4.03 1.14 92.81 75.96	8 71.07 0.31 11.37 1.64 0.1 0.34 1.91 3.97 1.25 91.96 77.28	9 69.91 0.34 11.41 1.52 0.06 0.32 1.95 3.87 1.23 90.61 77.15	10 72.38 0.33 11.4 1.6 0.1 0.4 1.84 3.87 1.29 93.21 77.65	11 68.28 0.26 11.18 1.66 0.12 0.35 2.03 3.8 1.17 88.85 76.85	12 70.3 0.33 11.34 1.43 0.02 0.41 1.84 3.59 1.17 90.43 77.74	13 70.76 0.27 11.76 1.57 0.04 0.38 1.95 4.02 1.22 91.97 76.94	14 67.18 0.41 11.22 1.74 0.16 0.42 2.03 3.88 1.15 88.19 76.18	15 76.45 0.39 12.22 1.69 0.01 0.01 2.01 4.31 1.32 98.72 77.44
Sample no. Tephra name Point no. Raw data (wt SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Total Data normalii SiO ₂ TiO ₂	No-4 Towada-(1 -%) 66.13 0.31 11.59 1.9 0.04 0.53 2.38 3.72 1.12 87.72 zed to 100 75.39 0.35	Dfudo Pyr 2 62.91 0.33 10.82 1.74 0.14 0.49 1.94 3.57 1.07 83.01 % (wt.%) 75.79 0.40	roclastic F 3 72.47 0.36 11.9 1.59 0.42 1.96 3.94 1.26 93.95 77.14 0.38	Flow Depp 4 71.17 0.37 11.9 1.71 0.13 0.5 2.22 3.88 1.24 93.12 76.43 0.40	posits 5 70.42 0.43 12.45 2.11 0.01 0.57 2.55 3.98 1.22 93.74 75.12 0.46	6 70.81 0.37 12.12 1.92 0.07 0.58 2.36 3.9 1.14 93.27 75.92 0.40	7 70.5 0.4 12.22 1.75 0.02 0.49 2.26 4.03 1.14 92.81 75.96 0.43	8 71.07 0.31 11.37 1.64 0.1 0.34 1.91 3.97 1.25 91.96 77.28 0.34	9 69.91 0.34 11.41 1.52 0.06 0.32 1.95 3.87 1.23 90.61 77.15 0.38	10 72.38 0.33 11.4 1.6 0.1 0.4 1.84 3.87 1.29 93.21 77.65 0.35	11 68.28 0.26 11.18 1.66 0.12 0.35 2.03 3.8 1.17 88.85 76.85 0.29	12 70.3 0.33 11.34 1.43 0.02 0.41 1.84 3.59 1.17 90.43 77.74 0.36	13 70.76 0.27 11.76 1.57 0.04 0.38 1.95 4.02 1.22 91.97 76.94 0.29	14 67.18 0.41 11.22 1.74 0.16 0.42 2.03 3.88 1.15 88.19 76.18 0.46	15 76.45 0.39 12.22 1.69 0.01 0.01 2.01 4.31 1.32 98.72 77.44 0.40
Sample no. Tephra name Point no. Raw data (wt SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Total Data normalii SiO ₂ TiO ₂ Al ₂ O ₃	No-4 Towada-(1 -%) 66.13 0.31 11.59 1.9 0.04 0.53 2.38 3.72 1.12 87.72 zed to 100 75.39 0.35 13.21	Dfudo Pyr 2 62.91 0.33 10.82 1.74 0.14 0.49 1.94 3.57 1.07 83.01 % (wt.%) 75.79 0.40 13.03	roclastic F 3 72.47 0.36 11.9 1.59 0.42 1.96 3.94 1.26 93.95 77.14 0.38 12.67	Flow Depr 4 71.17 0.37 11.9 1.71 0.13 0.5 2.22 3.88 1.24 93.12 76.43 0.40 12.78	posits 5 70.42 0.43 12.45 2.11 0.01 0.57 2.55 3.98 1.22 93.74 75.12 0.46 13.28 0.28	6 70.81 0.37 12.12 1.92 0.07 0.58 2.36 3.9 1.14 93.27 75.92 0.40 12.99	7 70.5 0.4 12.22 1.75 0.02 0.49 2.26 4.03 1.14 92.81 75.96 0.43 13.17	8 71.07 0.31 11.37 1.64 0.1 0.34 1.91 3.97 1.25 91.96 77.28 0.34 12.36	9 69.91 0.34 11.41 1.52 0.06 0.32 1.95 3.87 1.23 90.61 77.15 0.38 12.59	10 72.38 0.33 11.4 1.6 0.1 0.4 1.84 3.87 1.29 93.21 77.65 0.35 12.23	11 68.28 0.26 11.18 1.66 0.12 0.35 2.03 3.8 1.17 88.85 76.85 0.29 12.58	12 70.3 0.33 11.34 1.43 0.02 0.41 1.84 3.59 1.17 90.43 77.74 0.36 12.54	13 70.76 0.27 11.76 1.57 0.04 0.38 1.95 4.02 1.22 91.97 76.94 0.29 12.79	14 67.18 0.41 11.22 1.74 0.16 0.42 2.03 3.88 1.15 88.19 76.18 0.46 12.72	15 76.45 0.39 12.22 1.69 0.01 0.01 2.01 4.31 1.32 98.72 77.44 0.40 12.38
Sample no. Tephra name Point no. Raw data (wt SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Total Data normali SiO ₂ TiO ₂ Al ₂ O ₃ FeO	No-4 Towada-(1 -%) 66.13 0.31 11.59 1.9 0.04 0.53 2.38 3.72 1.12 87.72 zed to 100 75.39 0.35 13.21 2.17	Dfudo Pyr 2 62.91 0.33 10.82 1.74 0.49 1.94 3.57 1.07 83.01 % (wt.%) 75.79 0.40 13.03 2.10	roclastic F 3 72.47 0.36 11.9 1.59 0.42 1.96 3.94 1.26 93.95 77.14 0.38 12.67 1.69	Flow Depp 4 71.17 0.37 11.9 1.71 0.13 0.5 2.22 3.88 1.24 93.12 76.43 0.40 12.78 1.84	posits 5 70.42 0.43 12.45 2.11 0.01 0.57 2.55 3.98 1.22 93.74 75.12 0.46 13.28 2.25	6 70.81 0.37 12.12 1.92 0.07 0.58 2.36 3.9 1.14 93.27 75.92 0.40 12.99 2.06	7 70.5 0.4 12.22 1.75 0.02 0.49 2.26 4.03 1.14 92.81 75.96 0.43 13.17 1.89	8 71.07 0.31 11.37 1.64 0.1 0.34 1.91 3.97 1.25 91.96 77.28 0.34 12.36 1.78	9 69.91 0.34 11.41 1.52 0.06 0.32 1.95 3.87 1.23 90.61 77.15 0.38 12.59 1.68	10 72.38 0.33 11.4 1.6 0.1 0.4 1.84 3.87 1.29 93.21 77.65 0.35 12.23 1.72	11 68.28 0.26 11.18 1.66 0.12 0.35 2.03 3.8 1.17 88.85 76.85 0.29 12.58 1.87	12 70.3 0.33 11.34 1.43 0.02 0.41 1.84 3.59 1.17 90.43 77.74 0.36 12.54 1.58	13 70.76 0.27 11.76 1.57 0.04 0.38 1.95 4.02 1.22 91.97 76.94 0.29 12.79 1.71	14 67.18 0.41 11.22 1.74 0.16 0.42 2.03 3.88 1.15 88.19 76.18 0.46 12.72 1.97	15 76.45 0.39 12.22 1.69 0.01 0.32 2.01 4.31 1.32 98.72 77.44 0.40 12.38 1.71
Sample no. Tephra name Point no. Raw data (wt SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Total Data normali SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO	No-4 Towada-(1 -%) 66.13 0.31 11.59 1.9 0.04 0.53 2.38 3.72 1.12 87.72 zed to 100 75.39 0.35 13.21 2.17 0.05	Dfudo Pyr 2 62.91 0.33 10.82 1.74 0.49 1.94 3.57 1.07 83.01 % (wt.%) 75.79 0.40 13.03 2.10 0.17	roclastic F 3 72.47 0.36 11.9 1.59 0.05 0.42 1.96 3.94 1.26 93.95 77.14 0.38 12.67 1.69 0.05	Flow Depp 4 71.17 0.37 11.9 1.71 0.13 0.5 2.22 3.88 1.24 93.12 76.43 0.40 12.78 1.84 0.14	5 70.42 0.43 12.45 2.11 0.01 0.57 2.55 3.98 1.22 93.74 75.12 0.46 13.28 2.25 0.01	6 70.81 0.37 12.12 1.92 0.07 0.58 2.36 3.9 1.14 93.27 75.92 0.40 12.99 2.06 0.08	7 70.5 0.4 12.22 1.75 0.02 0.49 2.26 4.03 1.14 92.81 75.96 0.43 13.17 1.89 0.02	8 71.07 0.31 11.37 1.64 0.1 0.34 1.91 3.97 1.25 91.96 77.28 0.34 12.36 1.78 0.11	9 69.91 0.34 11.41 1.52 0.06 0.32 1.95 3.87 1.23 90.61 77.15 0.38 12.59 1.68 0.07	10 72.38 0.33 11.4 1.6 0.1 0.4 1.84 3.87 1.29 93.21 77.65 0.35 12.23 1.72 0.11	11 68.28 0.26 11.18 1.66 0.12 0.35 2.03 3.8 1.17 88.85 76.85 0.29 12.58 1.87 0.14	12 70.3 0.33 11.34 1.43 0.02 0.41 1.84 3.59 1.17 90.43 77.74 0.36 12.54 1.58 0.02	13 70.76 0.27 11.76 1.57 0.04 0.38 1.95 4.02 1.22 91.97 76.94 0.29 12.79 1.271 0.04	14 67.18 0.41 11.22 1.74 0.16 0.42 2.03 3.88 1.15 88.19 76.18 0.46 12.72 1.97 0.18	15 76.45 0.39 12.22 1.69 0.01 0.32 2.01 4.31 1.32 98.72 77.44 0.40 12.38 1.71 0.01
Sample no. Tephra name Point no. Raw data (wt SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Total Data normali SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO	No-4 Towada-(1 -%) 66.13 0.31 11.59 1.9 0.04 0.53 2.38 3.72 1.12 87.72 zed to 100 75.39 0.35 13.21 2.17 0.05 0.60	Dfudo Pyr 2 62.91 0.33 10.82 1.74 0.49 1.94 3.57 1.07 83.01 % (wt.%) 75.79 0.40 13.03 2.10 0.17 0.59	roclastic F 3 72.47 0.36 11.9 1.59 0.05 0.42 1.96 3.94 1.26 93.95 77.14 0.38 12.67 1.69 0.05 0.45	Flow Depp 4 71.17 0.37 11.9 1.71 0.13 0.5 2.22 3.88 1.24 93.12 76.43 0.40 12.78 1.84 0.14 0.54	5 70.42 0.43 12.45 2.11 0.01 0.57 2.55 3.98 1.22 93.74 75.12 0.46 13.28 2.25 0.01 0.61	6 70.81 0.37 12.12 1.92 0.07 0.58 2.36 3.9 1.14 93.27 75.92 0.40 12.99 2.06 0.08 0.62	7 70.5 0.4 12.22 1.75 0.02 0.49 2.26 4.03 1.14 92.81 75.96 0.43 13.17 1.89 0.02 0.53	8 71.07 0.31 11.37 1.64 0.1 0.34 1.91 3.97 1.25 91.96 77.28 0.34 12.36 1.78 0.31 1.25	9 69.91 0.34 11.41 1.52 0.06 0.32 1.95 3.87 1.23 90.61 77.15 0.38 12.59 1.68 0.07 0.35	10 72.38 0.33 11.4 1.6 0.1 0.4 1.84 3.87 1.29 93.21 77.65 0.35 12.23 1.72 0.11 0.43	11 68.28 0.26 11.18 1.66 0.12 0.35 2.03 3.8 1.17 88.85 76.85 0.29 12.58 1.87 0.14 0.39	12 70.3 0.33 11.34 1.43 0.02 0.41 1.84 3.59 1.17 90.43 77.74 0.36 12.54 1.58 0.02 0.45	13 70.76 0.27 11.76 1.57 0.04 0.38 1.95 4.02 1.22 91.97 76.94 0.29 12.79 1.71 0.04 0.41	14 67.18 0.41 11.22 1.74 0.16 0.42 2.03 3.88 1.15 88.19 76.18 0.46 12.72 1.97 0.18 0.48	15 76.45 0.39 12.22 1.69 0.01 0.32 2.01 4.31 1.32 98.72 77.44 0.40 12.38 1.71 0.01 0.32
Sample no. Tephra name Point no. Raw data (wt SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Total Data normali SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO	No-4 Towada-(1 -%) 66.13 0.31 11.59 1.9 0.04 0.53 2.38 3.72 1.12 87.72 zed to 100 75.39 0.35 13.21 2.17 0.05 0.60 2.71	Dfudo Pyr 2 62.91 0.33 10.82 1.74 0.49 1.94 3.57 1.07 83.01 % (wt.%) 75.79 0.40 13.03 2.10 0.17 0.59 2.34	roclastic F 3 72.47 0.36 11.9 1.59 0.05 0.42 1.96 3.94 1.26 93.95 77.14 0.38 12.67 1.69 0.05 0.45 2.09	Flow Depp 4 71.17 0.37 11.9 1.71 0.13 0.5 2.22 3.88 1.24 93.12 76.43 0.40 12.78 1.84 0.14 0.54 2.38	5 70.42 0.43 12.45 2.11 0.57 2.55 3.98 1.22 93.74 75.12 0.46 13.28 2.25 0.01 0.61 2.72	6 70.81 0.37 12.12 1.92 0.07 0.58 2.36 3.9 1.14 93.27 75.92 0.40 12.99 2.06 0.08 0.62 2.53	7 70.5 0.4 12.22 1.75 0.02 0.49 2.26 4.03 1.14 92.81 75.96 0.43 13.17 1.89 0.02 0.53 2.44	8 71.07 0.31 11.37 1.64 0.34 1.91 3.97 1.25 91.96 77.28 0.34 12.36 1.78 0.34 12.36 1.78 0.31	9 69.91 0.34 11.41 1.52 0.06 0.32 1.95 3.87 1.23 90.61 77.15 0.38 12.59 1.68 0.07 0.35 2.15	10 72.38 0.33 11.4 1.6 0.1 0.4 1.84 3.87 1.29 93.21 77.65 0.35 12.23 1.72 0.11 0.43 1.97	11 68.28 0.26 11.18 1.66 0.12 0.35 2.03 3.8 1.17 88.85 76.85 0.29 12.58 1.87 0.14 0.39 2.28	12 70.3 0.33 11.34 1.43 0.02 0.41 1.84 3.59 1.17 90.43 77.74 0.36 12.54 1.58 0.02 0.45 2.03	13 70.76 0.27 11.76 1.57 0.04 0.38 1.95 4.02 1.22 91.97 76.94 0.29 12.79 1.71 0.04 0.41 2.12	14 67.18 0.41 11.22 1.74 0.16 0.42 2.03 3.88 1.15 88.19 76.18 0.46 12.72 1.97 0.18 0.48 2.30	15 76.45 0.39 12.22 1.69 0.01 0.32 2.01 4.31 1.32 98.72 77.44 0.40 12.38 1.71 0.01 0.32 2.04
Sample no. Tephra name Point no. Raw data (wt SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Total Data normali SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO MnO MgO CaO Na ₂ O	No-4 Towada-(1 -%) 66.13 0.31 11.59 1.9 0.04 0.53 2.38 3.72 1.12 87.72 zed to 100 75.39 0.35 13.21 2.17 0.05 0.60 2.71 4.24	Dfudo Pyr 2 62.91 0.33 10.82 1.74 0.49 1.94 3.57 1.07 83.01 % (wt.%) 75.79 0.40 13.03 2.10 0.17 0.59 2.34 4.30	roclastic F 3 72.47 0.36 11.9 1.59 0.05 0.42 1.96 3.94 1.26 93.95 77.14 0.38 12.67 1.69 0.05 0.45 2.09 4.19	Flow Depr 4 71.17 0.37 11.9 1.71 0.13 0.5 2.22 3.88 1.24 93.12 76.43 0.40 12.78 1.84 0.14 0.54 2.38 4.17	5 70.42 0.43 12.45 2.11 0.57 3.98 1.22 93.74 75.12 0.46 13.28 2.25 0.01 0.61 2.72 4.25	6 70.81 0.37 12.12 1.92 0.07 0.58 2.36 3.9 1.14 93.27 75.92 0.40 12.99 2.06 0.08 0.62 2.53 4.18	7 70.5 0.4 12.22 1.75 0.02 0.49 2.26 4.03 1.14 92.81 75.96 0.43 13.17 1.89 0.02 0.53 2.44 4.34	8 71.07 0.31 11.37 1.64 0.34 1.3.97 1.25 91.96 77.28 0.34 12.36 1.78 0.34 12.36 1.78 0.34 12.36 1.78 0.31	9 69.91 0.34 11.41 1.52 0.06 0.32 1.95 3.87 1.23 90.61 77.15 0.38 12.59 1.68 0.07 0.35 2.15 4.27	10 72.38 0.33 11.4 1.6 0.1 0.4 1.84 3.87 1.29 93.21 77.65 0.35 12.23 1.72 0.11 0.43 1.97 4.15	11 68.28 0.26 11.18 1.66 0.12 0.35 2.03 3.8 1.17 88.85 76.85 0.29 12.58 1.87 0.14 0.39 2.28 4.28	12 70.3 0.33 11.34 1.43 0.02 0.41 1.84 3.59 1.17 90.43 77.74 0.36 12.54 1.58 0.02 0.45 2.03 3.97	13 70.76 0.27 11.76 1.57 0.04 0.38 1.95 4.02 1.22 91.97 76.94 0.29 12.79 1.71 0.04 0.41 2.12 4.37	14 67.18 0.41 11.22 1.74 0.16 0.42 2.03 3.88 1.15 88.19 76.18 0.46 12.72 1.97 0.18 0.48 2.30 4.40	15 76.45 0.39 12.22 1.69 0.01 0.32 2.01 4.31 1.32 98.72 77.44 0.40 12.38 1.71 0.01 0.32 2.04 4.37
Sample no. Tephra name Point no. Raw data (wt SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Total Data normali SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O	No-4 Towada-(1 -%) 66.13 0.31 11.59 1.9 0.04 0.53 2.38 3.72 1.12 87.72 zed to 100 75.39 0.35 13.21 2.17 0.05 0.60 2.71 4.24 1.28	Dfudo Pyr 2 62.91 0.33 10.82 1.74 0.49 1.94 3.57 1.07 83.01 % (wt.%) 75.79 0.40 13.03 2.10 0.17 0.59 2.34 4.30 1.29	roclastic F 3 72.47 0.36 11.9 1.59 0.05 0.42 1.96 3.94 1.26 93.95 77.14 0.38 12.67 1.69 0.05 0.45 2.09 4.19 1.34	Flow Depr 4 71.17 0.37 11.9 1.71 0.13 0.5 2.22 3.88 1.24 93.12 76.43 0.40 12.78 1.84 0.14 0.54 2.38 4.17 1.33	5 70.42 0.43 12.45 2.11 0.057 2.55 3.98 1.22 93.74 75.12 0.46 13.28 2.25 0.01 0.61 2.72 4.25 1.30	6 70.81 0.37 12.12 1.92 0.07 0.58 2.36 3.9 1.14 93.27 75.92 0.40 12.99 2.06 0.08 0.62 2.53 4.18 1.22	7 70.5 0.4 12.22 1.75 0.02 0.49 2.26 4.03 1.14 92.81 75.96 0.43 13.17 1.89 0.02 0.53 2.44 4.34 1.23	8 71.07 0.31 11.37 1.64 0.34 1.3.97 1.25 91.96 77.28 0.34 12.36 1.78 0.34 12.36 1.78 0.31 1.037 2.08 4.32 1.36	9 69.91 0.34 11.41 1.52 0.06 0.32 1.95 3.87 1.23 90.61 77.15 0.38 12.59 1.68 0.07 0.35 2.15 4.27 1.36	10 72.38 0.33 11.4 1.6 0.1 0.4 1.84 3.87 1.29 93.21 77.65 0.35 12.23 1.72 0.11 0.43 1.97 4.15 1.38	11 68.28 0.26 11.18 1.66 0.12 0.35 2.03 3.8 1.17 88.85 76.85 0.29 12.58 1.87 0.14 0.39 2.28 4.28 1.32	12 70.3 0.33 11.34 1.43 0.41 1.84 3.59 1.17 90.43 77.74 0.36 12.54 1.58 0.02 0.45 2.03 3.97 1.29	13 70.76 0.27 11.76 1.57 0.04 0.38 1.95 4.02 1.22 91.97 76.94 0.29 12.79 1.71 0.04 0.41 2.12 4.37 1.33	14 67.18 0.41 11.22 1.74 0.16 0.42 2.03 3.88 1.15 88.19 76.18 0.46 12.72 1.97 0.18 0.48 2.30 4.40 1.30	15 76.45 0.39 12.22 1.69 0.01 0.32 2.01 4.31 1.32 98.72 77.44 0.40 12.38 1.71 0.01 0.32 2.04 4.37 1.34

を用いて記載を行う. Os-3と十和田大不動火砕流堆積物 は、火山ガラスのSiO₂含有量が74.5 ~ 77.7 wt.%の範囲 にあり、1つのまとまった組成領域を構成する. 両者は いずれの元素においても極めて類似した組成を示し、両 者に明瞭な差異は認められない(第5図).

4. テフラの対比

本地域付近には、西方に位置する岩手火山、秋田駒ヶ

岳火山,北西方に位置する十和田火山(第1図)起源のテ フラが分布することが知られている(土井,2000).以下 では,本地域で確認されたテフラについて,層序,層相, 構成物質及び火山ガラスの化学組成の特徴から,テフラ の対比を試みる.

4.1 Os-3

Os-3は、火山ガラスのSiO₂含有量が74.5~77.7 wt.%

Fig. 5 Harker diagrams for the major element chemical compositions of volcanic glasses from the Os-3 and Towada-Ofudo Pyroclastic Flow Deposits.

と珪長質な組成を示す(第5図). この特徴は, Os-3が玄 武岩〜安山岩主体の岩手火山や秋田駒ヶ岳火山(例えば, 石川ほか, 1982;中川ほか, 1985;藤縄ほか, 2004;伊 藤・土井, 2005)を起源とするテフラではなく, 珪長質 マグマに卓越する十和田火山(工藤ほか, 2019)を起源と するテフラであることを示唆する.

本地域付近に分布する十和田火山起源の珪長質テフラ としては、十和田大不動テフラ(To-Of)と十和田八戸テ フラ(To-H)が知られている(土井, 2000). 両テフラは 非常に良く似た特徴を有しており、火山ガラスの主成分 化学組成では差異が認められない(柴・佐々木, 2006; 古澤, 2017). 一方, 鉱物組み合わせでは, To-Ofには 普通角閃石が含まれないのに対し、To-Hには普通角 閃石が含まれるという違いが報告されている(例えば、 Hayakawa, 1985;松山·大池, 1986;中川ほか, 1986; 土井, 2000;町田・新井, 2003;宝田・村岡, 2004;工藤, 2005; 工藤ほか, 2019). ただし最近, To-Ofにも径0.125 mm以下の細粒な粒子として、普通角閃石が少量含まれ る場合があることが報告されている(古澤, 2017). ここ で重要なのは、To-Hは普通角閃石を必ず含むのに対し、 To-Ofは普通角閃石を含む場合と含まない場合があるこ と(例えば、古澤、2017)である、つまり、対比候補がこ れらの2つのテフラに絞られる場合, 普通角閃石を含ま ない場合にはTo-Ofと判別できるが, 普通角閃石を含む 場合には両者の判別が難しくなる.しかし、これは観察 する粒子のサイズに左右される問題であり、斑晶サイズ (おおよそ0.3 mm以上)の粒子で見た場合には、To-Ofに は普通角閃石が含まれないため、両者を区別することが 比較的容易である(工藤ほか, 2019). 加えて、To-Ofの 本質物質である軽石中には、これまで普通角閃石の存在 が報告された報告例はない.本論の筆頭著者である工藤 も、これまで20年以上にわたり十和田火山の研究を行っ てきたものの(例えば、工藤、2005;工藤・小林、2013; Yamamoto et al., 2018; 工藤ほか, 2019), To-Ofの軽石 中に普通角閃石を確認したことは一度もない. おそらく, 古澤(2017)が確認したTo-Of中の普通角閃石は、本質物 質由来ではなく、噴出時における火道壁岩からの取り込 み、もしくは火砕流の流走中における基底層の取り込み に由来するものと推定される. To-Ofに普通角閃石が存 在するか否か,研究報告により違いが生じる要因は,本 質物質のみを観察した場合と火砕流基質など本質物質以 外の部分も観察した場合の差、または、観察を行った粒 子の粒径の差に起因すると考えられる.

Os-3に含まれる鉱物の組み合わせは、斜長石+斜方輝 石+単斜輝石+鉄鉱物であり、To-Ofの鉱物組み合わせ (工藤, 2005;工藤ほか, 2019)と一致し、To-Hとは一致 しない.また、Os-3の火山ガラスは軽石型が卓越するが、 この特徴はTo-Ofの特徴(町田・新井, 1992, 2003)とも 一致する.更に、Os-3には曇りガラス状の灰色塊状火山 ガラス片や黒曜石片が含まれるが、同様な火山ガラスは To-Ofの主部を構成する十和田大不動火砕流堆積物にも 比較的多く含まれる(工藤ほか、2019).そして、Os-3と 十和田大不動火砕流堆積物の火山ガラス主成分化学組成 は極めて良く一致し、両者に差異は認められない(第5 図).以上のことから、Os-3とTo-Ofは対比可能と判断さ れる.

Os-3は、正級化構造を示し、礫支持で淘汰が比較的良 く(第4図c),一定した厚さで分布を追跡できることから (第3図), 降下火砕物と判断される. To-Ofの噴火(噴火 エピソードN)では、最初に爆発的噴火が発生し降下火 砕物と火砕サージ堆積物が堆積した後、大規模な火砕流 の発生へと移行し、広域において十和田大不動火砕流堆 積物が堆積した(Hayakawa, 1985; 工藤ほか, 2019). 十 和田大不動火砕流堆積物に先行する降下火砕物は、前述 したようにビスケット浮石1(BP1)あるいは切田降下火 砕堆積物と呼ばれる. これらの降下火砕物は、分布軸 が十和田火山の東方・八戸方面を向いており(Hayakawa, 1985;中川ほか、1986)、本地域付近には分布しないと 考えられる.よって、Os-3はこれらには対比されない. 一方、十和田大不動火砕流堆積物は、本地域付近(盛岡 市北部)を南限として分布が確認されている(土井, 1993, 2000). Os-3は、十和田大不動火砕流堆積物の分布に近 接すること,構成物において十和田大不動火砕流堆積 物と多くの共通点が認められることから、十和田大不 動火砕流堆積物のco-ignimbrite ash-fall deposit (Sparks and Walker, 1977) に相当すると考えられる. 土井(2000) は, 岩手山東山麓に分布する「好摩沢ガラス質火山灰」(土 井, 1993) が大不動火砕流堆積物のco-ignimbrite ash-fall depositであると考えた. Os-3はこれに対比されると考え られる.

To-Ofについては、非常に多くの¹⁴C年代が公表されている(工藤ほか、2019).本論では、To-Ofの年代として、辻野ほか(2018)や工藤ほか(2019)に従い、最新の¹⁴C年代値である小岩ほか(2007)による31,930±210 BPを採用する.この年代値について、IntCal20データセット(Reimer *et al.*, 2020)、較正プログラムCALIB 8.2 (Stuiver *et al.*, 2020)を用いて暦年較正すると、36,096~36,482 cal BP (1*o*)となる.この結果より、本報告ではTo-Ofの年代を36 kaとする.

4.2 Os-2

Os-2は、厚さ3 cmの泥炭層を挟んでOs-3の上位にあ り、Os-3と層位が近接する(第3図). Os-2とOs-3は、前 者でごく微量の石英を含むほかは、構成物がほぼ同一で あり、構成物のみを見た場合には両者の区別が困難であ る. Os-2は、Os-3のすぐ上位に存在すること、Os-3と 構成物がほぼ同じであること、淘汰が悪く降下火砕物で ある積極的な証拠が見つからないことから、Os-3の再堆 積物である可能性が高いと判断される.つまり,Os-2は To-Ofの再堆積層と考えられる.

4.3 Os-1

Os-1に含まれる鉱物の組み合わせは、斜長石+斜方輝 石+単斜輝石+鉄鉱物+普通角閃石である.本地域付近 では、36 kaよりも若く、普通角閃石を含むテフラは十 和田八戸テフラ(To-H)しか知られていない(土井, 2000). Os-1の鉱物組み合わせは、To-Hのそれと良く一致する. 土井(1993, 2000)は、To-Hの主部を構成する十和田八戸 火砕流堆積物(中川ほか, 1972; Hayakawa, 1985; 宝田・ 村岡, 2004)が、本地域付近(盛岡市北部)を南限として 分布することを示している. Os-1は, 白色軽石に加え て灰色軽石も含む特徴を持つ. この特徴は、十和田八戸 火砕流堆積物の特徴(工藤ほか、2019)と一致する. さら に、Os-1は塊状で淘汰が悪く、層厚が一定しない特徴を 示すが、これらの特徴はOs-1が火砕流堆積物だとすると 説明が付く.以上のことから、今後詳細を詰める必要は あるものの、現状ではOs-1はTo-Hに対比される可能性が 高いと判断される.なお、To-Hについては、非常に多く の¹⁴C年代が公表されている(工藤ほか, 2019).本論では、 To-Hの年代として、辻野ほか (2018) や工藤ほか (2019) に 従い, Horiuchi et al. (2007) による¹⁴C暦年代: 15.5 kaを 採用する.

4.4 Os-4

Os-4に関しては、現時点では情報が少なく、候補を絞り込むことができないため、対比は困難である.ただし、 36 kaより前であること、スコリア質であること、かんらん石を含み苦鉄質マグマ由来と推定されることから、岩 手火山あるいは秋田駒ヶ岳火山起源のテフラの可能性が 推定される.

5.まとめ

岩手県盛岡市薮川,大石川沿いの谷底低地を埋積す る礫層主体の第四紀堆積物中に,下位よりOs-4,Os-3, Os-2,Os-1の4枚のテフラを見出した.Os-4は岩手火山 あるいは秋田駒ヶ岳火山起源と推定されるが,詳細な対 比は今のところ困難である.Os-3は36 kaの十和田大不 動テフラに対比され,十和田大不動火砕流堆積物のcoignimbrite ash fall depositに相当する.Os-2は十和田大不 動テフラの再堆積層と考えられる.Os-1は15.5 kaの十和 田八戸テフラに対比される可能性が高い.

謝辞:編集担当の佐々木宗建氏,査読者の宝田晋治氏に は、本論を改善する上で有益なコメントをいただいた. 関係各位に深く感謝申し上げる.

文 献

- 土井宣夫(1993) 盛岡市付近に分布する十和田—大不動・ 八戸火砕流堆積物の産状.日本地質学会東北支部会 報, no. 22, 8–9.
- 土井宣夫(2000) 岩手山の地質—火山灰が語る噴火史—. 滝沢村文化財調査報告書第32集,岩手県滝沢村教 育委員会,234p.
- 藤縄明彦・巖嵜正幸・本田恭子・長尾明美・和知 剛・ 林信太郎 (2004) 秋田駒ヶ岳火山,後カルデラ活動期 における噴火史:火山体構成噴出物と降下テフラ層 の対比.火山,49,333–354.
- 古澤 明(2003)洞爺火山灰降下以降の岩手火山のテフラ の識別. 地質学雑誌, 109, 1–19.
- 古澤 明(2017)レーザーアブレーションICP質量分析装 置を用いた火山ガラスの分析による十和田カルデ ラ起源大不動テフラと八戸テフラの識別.地質学雑 誌, 123, 765-776.
- Hayakawa, Y. (1985) Pyroclastic geology of Towada volcano. Bulletin of the Earthquake Research Institute, 60, 507– 592.
- 早川由紀夫(1993)火山の地質巡検案内2:十和田湖.群 馬大学教育学部紀要 自然科学編,41,53–78.
- Horiuchi, K., Sonoda, S., Matsuzaki, H. and Ohyama, M. (2007) Radiocarbon analysis of tree rings from a 15.5– cal kyr BP pyroclastically buried forest: a pilot study. *Radiocarbon*, **49**, 1123–1132.
- 石川賢一・吉田武義・青木謙一郎 (1982) 岩手火山の地球 化学的研究. 核理研研究報告, 15, 257–264.
- 伊藤順一・土井宣夫(2005)岩手火山地質図.火山地質図, 13,産総研地質調査総合センター.
- 小岩直人・柴 正敏・葛西優貴(2007)青森県屛風山砂丘 地帯,館岡層中の十和田大不動テフラのAMS¹⁴C年 代.第四紀研究, **46**, 437–441.
- 工藤 崇(2005) 十和田地域の地質.地域地質研究報告(5 万分の1地質図幅).産総研地質調査総合センター. 79p.
- 工藤 崇・小林 淳(2013)十和田火山, 先カルデラ期〜カ ルデラ形成期テフラの放射年代測定. 地質調査研究 報告, 64, 305–311.
- 工藤 崇・内野隆之・濱崎聡志(2019)十和田湖地域の地 質.地域地質研究報告(5万分の1地質図幅).産総 研地質調査総合センター,192p.
- 町田 洋・新井房夫(1992)火山灰アトラス.東京大学出 版会,276p.
- 町田 洋・新井房夫(2003)新編火山灰アトラス.東京大 学出版会, 336p.
- 松山 力・大池昭二(1986) 十和田火山噴出物と火山活動. 十和田科学博物館, no. 4, 1-64.

- 中川久夫・中馬教允・石田琢二・松山 力・七崎 修・ 井出慶司・大池昭二・高橋 一(1972)十和田火山発 達史概要. 岩井淳一教授退官記念論文集, 7-18.
- 中川久夫・松山 力・大池昭二(1986)十和田火山噴出物 の分布と性状.東北農政局計画部,48p.
- 中川光弘・吉田武義・青木謙一郎(1985)東北日本,秋田 駒ヶ岳火山噴出物の地球化学的研究—島弧型ソレ アイト系列の化学組成変化—.核理研研究報告,18, 351–365.
- 柴 正敏・佐々木 実(2006)十和田火山噴出物のガラス 組成変化. 月刊地球, 28, 322–325.
- 宝田晋治・村岡洋文(2004)八甲田山地域の地質.地域地 質研究報告(5万分の1地質図幅),産総研地質調査 総合センター,86p.
- 東北地方第四紀研究グループ(1969)東北地方における第 四紀海水準変化.地団研専報, no. 15, 37-83.
- 辻野 匠・工藤 崇・中江 訓・近藤玲介・西岡芳晴・ 植木岳雪(2018)一戸地域の地質.地域地質研究報 告(5万分の1地質図幅),産総研地質調査総合セン ター,161p.
- Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A.,
 Blackwell, P. G., Ramsey, C. B., Butzin, M., Cheng,
 H., Edwards, R. L., Friedrich, M., Grootes, P. M.,
 Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G.,
 Hughen, K. A., Kromer, B., Manning, S. W., Muscheler,
 R., Palmer, J. G., Pearson, C., van der Plicht, J., Reimer,
 R. W., Richards, D. A., Scott, E. M., Southon, J. R.,

Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A. and Talamo, S. (2020) The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). *Radiocarbon*, **62**, 725–757.

- 産業技術総合研究所地質調査総合センター (2019) 20万分 の1日本シームレス地質図V2. https://gbank.gsj.jp/ seamless/(閲覧日:2020年12月31日).
- Stuiver, M., Reimer, P. J., and Reimer, R. W. (2020) CALIB 8.2 [WWW program]. http://calib.qub.ac.uk/calib (Accessed:2020-12-21).
- Sparks, R. S. J. and Walker, G. P. L. (1977) The significance of vitric-enriched air-fall ashes associated with crystalenriched ignimbrites. *Journal of Volcanology and Geothermal Research*, 2, 329–341.
- 沢田順弘・中村唯史・楳田禎久・Yoon Sun・徳岡隆夫(1997) 島根県大田市の掘削コアから発見された鬱陵島の 完新世初期火山活動由来の漂着軽石.第四紀研究, 36, 1–16.
- Yamamoto, T., Kudo, T. and Isizuka, O. (2018) Temporal variations in volumetric magma eruption rates of Quaternary volcanoes in Japan. *Earth, Planets and Space*, 70:65, doi:10.1186/s40623-018-0849-x.
- (受付:2021年1月7日;受理:2021年4月12日)