Report

Geochemical mapping of remote islands around Kyushu, Japan

Atsuyuki Ohta^{1,*}

Atsuyuki Ohta (2018) Geochemical mapping of remote islands around Kyushu, Japan. Bull. Geol. Surv. Japan, vol. 69 (5), p. 233–263, 11 figs, 6 tables.

Abstract: This paper describes high-density geochemical mapping of isolated islands in southwest Japan. A total of 193 stream sediments and three volcanic ash deposits collected from isolated islands around Kyushu were analyzed to determine the content of 53 elements to supplement land and sea geochemical mapping of the Kyushu area and regional Sr isotope mapping. The relationship between the spatial distribution of elements in stream sediments and volcanic ash deposits and the geology was closely examined using geographical information system (GIS) software. Stream sediments derived from mafic volcanic and pyroclastic rocks and volcanic ash deposits were enriched with MgO, CaO, Sc, TiO₂, V, T-Fe₂O₃, Co, and Sr. The presence of alkaline mafic volcanic rock increased the concentration of Cr, Ni, Nb, La, Ce, Pr, Nd, and Ta in stream sediments. Stream sediments originating from granitic rock were abundant in Be, Na₂O, K₂O, CaO, Sr, Y, Sn, Ln, Th, and U. Accretionary and non-accretionary sedimentary rocks caused an increase in Nb and Ta concentrations in stream sediments, and a reduction in Na₂O, MgO, CaO, and Sr concentrations. These geochemical features could be explained by the relative abundance of major rock forming minerals (such as quartz, plagioclase, K-feldspar, and mafic minerals) and accessary minerals (such as apatite and monazite) derived from the host rocks. Also, Zn-Pb deposits increased Zn, Cd, and Pb concentrations in stream sediments on Tsushima Island, and Sb deposits enhanced the Sb concentration in stream sediments on Amakusa-Shimoshima Island.

Keywords: stream sediment; geochemical map; isolated island; Kyushu; multi-element analysis

1. Introduction

Geochemical maps showing the regional distribution of element concentration at the Earth's surface, provide fundamental information about elements in nature and are used for mineral exploration and environmental assessment (Darnley et al., 1995; Webb et al., 1978). The Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), has created nationwide geochemical maps of Japan and the surrounding sea mainly for environmental assessment (Imai et al., 2010; Imai et al., 2004). As a next step, high-density geochemical mapping was conducted in the Kanto and Tokai areas, which have high population densities and are important industrial zones (Imai et al., 2015). In addition, higherdensity geochemical mapping of remote islands has been ongoing in order to supplement previously published land and sea geochemical maps of Japan (Ohta, 2018). In the present study, stream sediments and volcanic ash deposits were collected from 23 remote islands around Kyushu and the concentration of 53 elements was analyzed (Fig. 1). Geochemical maps of remote islands around Kyushu are very important for evaluating the influence of terrigenous clastics on marine sediments in the Tsushima Strait and the East China Sea, which were collected far from mainland Kyushu, and for assessing the influence of specific rocks narrowly or sporadically distributed on the main islands of Japan on stream sediments. This study focuses on the geochemical features of stream sediments derived from Neogene-Quaternary alkaline volcanic rocks, Neogene granitic rocks, Paleogene sediments hosting coal deposits, and Cretaceous sedimentary rocks on remote islands. The results obtained in this study will contribute to future research on land and marine geochemical mapping and Sr isotope map in the Kyushu region.

2. Study area and samples

2.1 Geology

Figure 2 shows a geological map of the isolated islands in the Kyushu region, which has been simplified from a seamless digital geological map of Japan at a 1:200,000 scale (Geological Survey of Japan, AIST (ed.), 2015). Figure 2a shows that Paleogene-Neogene sediment is distributed mainly in the northern and southern parts of Tsushima Island. Neogene granitic rock and non-alkaline

¹AIST, Geological Survey of Japan, Institute of Geology and Geoinformation

^{*} Corresponding author: A. Ohta, Central 7,1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan. Email:a.ohta@aist.go.jp

Fig. 1 Study area of remote islands around the Kyushu mainland. (a) Tsushima Island, (b) Takashima, Fukushima, Ikitsushima, Hiradojima, Oshima, and Matsushima Islands, (c) Ikinoshima Island, (d) Goto Islands (Ukujima, Ojikajima, Nakadorijima, Wakamatsujima, Hisakajima, and Fukuejima Islands), (e) Uto Peninsula, and Amakusa Islands (Oyanojima, Amakusakamishima, Amakusa-shimoshima, Goshorajima, Shishijima, and Nagashima Islands), (f) Tanegashima Island, (g) Sakurajima Island, (h) Yakushima Island.

Fig. 2 Geological map for remote islands around the Kyushu mainland at a scale of 1:200,000 (Geological Survey of Japan, AIST (ed.), 2015). (a)-(h) same as Fig. 1. Star symbols indicate metalliferous deposits. N-Q Sed: Neogene and Quaternary sediment, Pg Sed: Paleogene sediment, K Sed: Cretaceous sedimentary rock, Acc: Paleogene Accretionary complex, a-Fv: Neogene alkaline felsic volcanic rock, Fv: Neogene non-alkaline felsic volcanic rock, a-Mv: Neogene and Quaternary alkaline mafic volcanic rock, Mv: Neogene and Quaternary non-alkaline mafic volcanic rock, Fi: Neogene non-alkaline felsic intrusive rock, Gr: Cretaceous and Neogene granitic rock, Mp: Cretaceous high-pressure metamorphic rock, Gb or U: Neogene gabbroic rock or ultramafic rock.

felsic volcanic rocks also are found in the southern part of Tsushima Island. Some metalliferous deposits, especially near the Taishu mine, yielding Cu, Zn, Pb, and Bi, are located around a granitic rock intrusion (Karakida *et al.*, 1992).

Figure 2b shows the geology in the northwest part of Kyushu Island. Neogene alkaline mafic volcanic rock and Paleogene-Neogene sediment are found on Takashima, Fukushima, and Ikitushima Islands. The northeast part of Hiradojima Island is covered by Neogene alkaline mafic volcanic rock. The rest of the region is underlain with Neogene non-alkaline mafic volcanic rock and pyroclastic rock. Paleogene-Neogene sediment is distributed on Oshima and Matsushima Islands. Ikinoshima Island is composed mainly of Neogene non-alkaline volcanic rocks and Quaternary alkaline volcanic rock (Fig. 2c).

The geology of the Goto Islands is shown in Fig. 2d. Ukujima Island and Ojikajima Island are underlain by Neogene alkaline volcanic rock and Quaternary alkaline volcanic rock (dominantly mafic rock), respectively. Nakadorijima and Wakamatsujima Islands are composed of Neogene sediments, Neogene non-alkaline felsic volcanic rock, Neogene non-alkaline pyroclastic rock, and Neogene non-alkaline felsic intrusive rocks. Hisakajima Island and Fukuejima Island contain Neogene-Quaternary unconsolidated sediments, Neogene non-alkaline felsic volcanic and intrusive rock, and Neogene granitic rock. Furthermore, Quaternary alkaline mafic volcanic rock erupted in the northwest and southeast parts of Fukuejima Island.

Amakusa-kamishima, Amakusa-shimoshima, Goshorajima, and Shishijima Islands are dominantly covered by Paleogene sedimentary rock associated with coal-field and Cretaceous sedimentary rock (Karakida et al., 1992) (Fig. 2e). Cretaceous high-pressure metamorphic rock (Nagasaki metamorphic rock) and Neogene gabbroic rock are found in the western portion of Amakusa-shimoshima Island and the south-central part of Amakusa-kamishima Island; however their exposed area is small. The star symbols on Amakusa-shimoshima Island are small Sb deposits (Karakida et al., 1992). By contrast, Nagashima Island is composed of Neogene non-alkaline mafic volcanic rock. Paleogene and Neogene sediments are widely distributed on Oyanojima Island. Uto Peninsula is composed mainly of Quaternary non-alkaline mafic volcanic rock.

The dominant deposits on Sakurajima Island consist of Quaternary non-alkaline mafic volcanic rock and pyroclastic rock (Fig. 2g). The Paleogene accretionary complex, composed mainly of sedimentary rock, is distributed mainly in the northern part of Tanegashima Island, and Neogene and Quaternary unconsolidated sediment outcrops are found mainly in the southern part of Tanegashima Island (Fig. 2f). The central part of Yakushima Island is intruded by Neogene granitic rock while the outer areas are composed mainly of a Paleogene accretionary complex (Fig. 2h). The star symbols in Fig. 2h indicate tungsten (W) deposits (Karakida *et al.*, 1992).

2.2 Samples

From 2013 to 2014, 191 stream sediment samples were collected from 23 islands, two stream sediments were collected from Uto Peninsula, and three volcanic ash deposits were collected from Sakurajima Island (Fig. 3). The sampling locations are summarized in Table 1. The sampling density was one sample per $6-31 \text{ km}^2$, with a mean of 15 km², which is approximately one-seventh of that used for nationwide geochemical mapping (100–120 km²). All rivers on the remote islands, except for Yakushima Island, are maintained with revetment walls on both banks. Stream sediments were collected from the river bed, air-dried at room temperature over 2 to 3 weeks, and sieved through an 83 mesh (180 μ m) screen. In addition, magnetic minerals were removed from the air-dried samples using a hand magnet to minimize the effect of magnetic mineral accumulation (Imai et al., 2004). Table 1 also shows the relative weight ratio of grains with sizes of less than 180 µm to stream sediments with grain sizes of less than 2 mm. The ratio is about 3-6% in the most cases, but is extremely low for samples from Yakushima Island (generally less than 2%), and high for samples from Fukushima Island (9-15%), Matsushima Island (20%), Sakurajima Island (22–60%),

and Tanegashima Island (3-60%).

In addition, samples SK03, Tn02, Tn09, Tn26, Yk01, and Yk17 were further sieved using seven types of screens: 2 mm, 1 mm, 500 µm, 250 µm, 125 µm, 63 µm, and 32 µm. Coarser grains larger than 2 mm (gravel fraction) were not used in the present study. The sieved samples were ground with an agate mortar and pestle. The relative weight ratio for the different grain sizes to stream sediments less than 2 mm is shown in Table 2. About 60-94% of stream sediments smaller than 2 mm was composed of medium to very coarse-grained sand (larger than 250 µm), but the proportion for Sk03 was just 26%. The modal center was very coarse sand (1-2 mm) for Tn09, coarse sand (0.5-1)mm) for Yk17, medium sand (250-500 µm) for Sk03, Tn26, and Yk01, and fine sand $(125-250 \mu m)$ for Tn02. The fine and very fine sand fractions (63–250 μ m) were 20-37% of stream sediments less than 2 mm for Sk03. Tn02, Tn26, and Yk01, and only 4-10% for Tn09 and Yk17.

2.3 Watershed analyses

Stream sediments consist of the products of weathering and erosion of soil and rocks in the watershed area upstream of the sampling site (Howarth and Thornton, 1983). Therefore, the geochemistry of stream sediments is determined by the dominant lithology distributed in their water catchment area (Ohta *et al.*, 2004). The watershed area for each sampling location was obtained using a digital elevation model (50 m mesh data) obtained from the Geospatial Information Authority of Japan (GSI). Geographic information system software (ArcGIS 10.5; Environmental Systems Research Institute) was used for the calculation.

The representative lithology for each sample was defined as the rock type exposed most widely in a drainage basin. The detailed process of Ohta et al. (2004) was followed carefully. In this study, a total of 196 samples were classified into 13 subgroups on the basis of the dominant geology: Neogene-Quaternary sediment (N-Q Sed), Paleogene sediment (Pg Sed), Cretaceous sedimentary rock (K Sed), Paleogene accretionary complex composed mainly of sedimentary rocks (Acc), Neogene and Quaternary alkaline felsic and mafic volcanic rocks (a-Fv and a-Mv, respectively), Neogene and Quaternary non-alkaline felsic and mafic volcanic rocks (Fv and Mv, respectively), Neogene and Quaternary non-alkaline pyroclastic rock (Py), Neogene non-alkaline felsic intrusive rock (Fi), Neogene granitic rocks (Gr), Neogene gabbroic rock (Gb), and Cretaceous metamorphic rock composed mainly of high-pressure metamorphic rock (Mp). If no representative rock was present in the watershed, the sample was classified as other (Oth). Tables 3 and 4 summarize the relative exposed areas of these lithologies in each drainage basin for the northern and southern regions, respectively.

Fig. 3 Stream sediment sampling locations on remote islands around Kyushu mainland. (a)-(h) are the same as Fig. 1.

3. Analytical methods

The analytical methods of Ohta (2018) were followed for 53 elements in stream sediment samples. The amount of moisture (H_2O^-) was determined with 0.1 g of stream sediment sample after drying at 110°C for 2 h. A thermallydried sample (0.1 g) was digested using an HF, HNO₃, and HClO₄ mixed solution at 125°C for 2 h and 145°C for 1 h. The digested product was evaporated to dryness at 190°C. The residue was dissolved in HNO₃ and diluted to 100 mL with double-deionized water. A solution of digested geochemical reference material JB-1a was used as a standard (Imai, 1990). In addition to the standard solution, a high concentration standard solution also was prepared from 1,000 mg/L solutions (Kanto Chemical Co. Inc.) for elemental analyses of samples having Li, Be, Cu, Zn, Cd, Mo, Sn, Sb, Cs, Tl, Pb, and Bi concentrations greater than ten times those of JB-1a (Ohta, 2018).

For As determination, 0.1 g of not thermally-dried

(undried) samples were digested using an HF, HNO₃, and HClO₄ mixed solution with KMnO₄ at 120°C for 20 min, a procedure modified from that reported by Terashima (1976, 1984). The degraded product was evaporated at 190°C until the solution was ca. 1 mL. HCl was added to the residual solution, which was then heated at 135°C for 30 min, and finally diluted to 100 mL with double-deionized water. A standard solution was prepared from a 1,000 mg/L arsenic atomic absorption standard solution (Kanto Chemical Co. Inc.).

Inductively coupled plasma atomic emission spectrometry (ICP-AES) (Thermo Fisher Scientific Inc., iCap 6300) was used to determine the Na, Mg, Al, P, K, Ca, Ti, Mn, Fe, Li, Be, V, Sr, and Ba concentrations. The major elements, Na, Mg, Al, P, K, Ca, Ti, Mn, and Fe, in stream sediments are expressed as oxides. The analytical wavelengths (nm) chosen were: Li (670.7), Be (313.1), Al (237.3), P (213.6), V (292.4), Ti (323.4), Mn (257.6), Sr (407.7), and Ba (455.4) using axial plasma viewing;

Sample	Island		River		Longitude	Latitude	Sampling	Width of	Depth of	Flow rate	Ratio of
Tc01	Tauchima	対軍自	Nain	内陸田	(JGD2000)	(JGD2000)	data	river (m)	river (cm)	of river $\frac{1}{1}$ m/2 s	<180 μm [*]
Ts02	Tsushima	対馬島	Asamo	浅蓮川	129°12'44 9"E	34°6'56 5"N	2013/10/9	8	20	1 m/2 s 1 m/6 s	3.7%
Ts03	Tsushima	対馬島	Segawa	瀬川	129°10'52.8"E	34°8'53.5"N	2013/10/9	20	n.d.	very slow	7.2%
Ts04	Tsushima	対馬島	Kotsuki	上槻川	129°11'4.8"E	34°11'31.9"N	2013/10/9	6	20	1 m / 2 s	9.9%
Ts05	Tsushima	対馬島	Asu	阿須川	129°17'4.1"E	34°13'8.5"N	2013/10/9	7	30	1 m / 4 s	10%
Ts06	Tsushima	対馬島	Kaidokoro	飼所川	129°21'20.7"E	34°31'43.5"N	2013/10/10	8	>50	1 m / 4 s	2.4%
1s0/ T=08	I sushima Tauchima	对馬島 対馬自	Nita	仁田川	129°21'10.5"E	34°31'59"N	2013/10/10	0	n.d.	1 m/5 s	15%
Ts08	Tsushima	対 対 馬島	Mine	三根川	129 20 3.2 E 129°19'59 6"E	34°28'28 1"N	2013/10/10	8 6	100	1 m/8 s	2.7%
Ts10	Tsushima	対馬島	Sago	佐護川	129°21'54.4"E	34°36'36.5"N	2013/10/10	5	35	1 m / 10 s	3.7%
Ts11	Tsushima	対馬島	Sago	佐護川	129°22'1.8"E	34°36'26.9"N	2013/10/10	8	30	1 m / 4 s	7.3%
Ts12	Tsushima	対馬島	Nakayama	中山川	129°21'20.9"E	34°36'36.6"N	2013/10/10	7	20	1 m / 2 s	1.8%
Ts13	Tsushima	対馬島	Toyokawa	豊川	129°27'27.5"E	34°41'16.8"N	2013/10/10	5	20	very slow	3.9%
Ts14 T-15	Tsushima	対馬島	Kusu	玖須川 丸 士 川	129°26'24.9"E	34°37′54.2″N	2013/10/10	20	40	1 m / 14 s	8.8%
Ts15	Tsushima	対馬島	Ashimi	ガルの川 吉良川	129 203.1 E	34°32'22 4"N	2013/10/10	8	20	1 m/8s	9.4%
Ts17	Tsushima	対馬島	Saga	佐賀川	129°22'33.9"E	34°27'47.8"N	2013/10/11	4	30	1 m / 7 s	4.5%
Ts18	Tsushima	対馬島	Sasu	佐須川	129°12'23.9"E	34°13'46.5"N	2013/10/11	20	>70	very slow	3.2%
Ts19	Tsushima	対馬島	Aren	阿連川	129°12'17.4"E	34°16'9.4"N	2013/10/11	8	20	$1\ m/3\ s$	2.4%
Ts20	Tsushima	対馬島	Kashi	加志川	129°13'58.7"E	34°17'11.2"N	2013/10/11	3	30	1 m/3 s	1.3%
Ts21	Tsushima	対馬島	Sumo	洲澡川	129°16'47.8"E	34°16'10.9"N	2013/10/11	12	30	1 m/4 s	6.2%
1 S22 Te23	I susnima Tsushima	为 局 対 王 自	NI-1 Voshida	1_1业川 吉田川	129°19'18"E	34°23'40.7"N 34°26'30 3"N	2013/10/11	5	30 40	1 m/6 s	3.9% 2.5%
Tk01	Takashima	鷹島	Tokonami	床浪川	129°44'19.5"E	33°24'31.8"N	2013/10/11	2.5	20	1 m/6 s	4.9%
Tk02	Takashima	鷹島	-	-	129°46'0.9"E	33°26'25.3"N	2014/10/10	0.7	3	1 m / 3 s	8.8%
Fks01	Fukushima	福島	-	-	129°49'52.3"E	33°23'59.7"N	2014/10/11	0.7	10	$1 \ m / 3 \ s$	13%
Fks02	Fukushima	福島	-	-	129°49'38.1"E	33°23'20.2"N	2014/10/11	2	10	1 m / 4 s	15%
Fks03	Fukushima	福島	-	-	129°49'56.5"E	33°22'36.6"N	2014/10/11	2.5	40	very slow	9.3%
Ikt01 Ikt02	Ikitsushima	生月島 七日皀	- Kaminogawa	- 神ノ川	129°25'33.2"E 129°25'16 9"E	33°24'25.6"N 33°21'36.8"N	2014/10/9	4.5	<1 10	1 m / 4 s 1 / 210 s	7.0% 9.3%
Hr01	Hiradoiima	王万 尚 平戸島	-	-	129°23'18 6"E	33°13'35 7"N	2014/10/9	2	10	1 m / 15 s	10%
Hr02	Hiradojima	平戸島	Kota	古田川	129°25'37.1"E	33°12'50.5"N	2014/10/9	2.5	20	1 m / 9 s	2.2%
Hr03	Hiradojima	平戸島	Shikisa	敷佐川	129°26'35.7"E	33°14'3.4"N	2014/10/9	2.5	15	1 m / 30 s	2.8%
Hr04	Hiradojima	平戸島	Nakatsura	中津良川	129°26'43.8"E	33°14'36.3"N	2014/10/9	3	40	1 m / 10 s	4.9%
Hr05	Hiradojima	平戸島	-	-	129°25'41.9"E	33°15'12.8"N	2014/10/9	5	35	1 m / 10 s	3.2%
Hr07	Hiradojima	平尸局 亚己自	Nagome	局込川 山川	129°2825.0 E	33°17'24 9"N	2014/10/9	5	20	1 m / 11 s 1 m / 15 s	2.0%
Hr08	Hiradojima	平戸島	Yasuman	安満川	129°28'34 3"E	33°17'40 2"N	2014/10/9	8	70	1 m / 13 s	2.0%
Hr09	Hiradojima	平戸島	Kozone	神曽根川	129°30'31.7"E	33°20'52"N	2014/10/9	14	20	1 m / 10 s	3.0%
Os01	Oshima	大島	-	-	129°36'42.4"E	33°3'3.6"N	2014/10/8	1.5	3	1 m / 4 s	6.4%
Os02	Oshima	大島	-	-	129°35'48.2"E	33°2'28.9"N	2014/10/8	3	12	1 m / 16 s	7.5%
Mt01	Matsushima	松島	- T	-	129°36'23.8"E	32°55'22.2"N	2014/10/8	0.7	6	1 m / 32 s	20%
1ki01 1ki02	Ikinoshima	它岐島 吉岐良	I anie Hataboko	谷江川	129°44'12.9"E	33°48'46.4"N 22°46'18 2"N	2013/10/7	40	n.d.	n.d.	11%
Iki02 Iki03	Ikinoshima	- E 岐 島	Hatahoko	邮金门	129°42'44 1"E	33°46'0 7"N	2013/10/8	3	25	1 m / 16 s	0.8%
Iki04	Ikinoshima	壱岐島	Tsunogawa	角川	129°44'6.9"E	33°49'40.5"N	2013/10/8	4	10	1 m / 6 s	6.7%
Iki05	Ikinoshima	壱岐島	-	-	129°41'50.3"E	33°43'33.2"N	2014/10/7	V.C.	n.d.	n.d.	8.4%
Iki06	Ikinoshima	壱岐島	Ikeda	池田川	129°44'45.9"E	33°45'46.1"N	2014/10/7	4	35	very slow	2.9%
Iki07	Ikinoshima	壱岐島	Hatahoko	幡鉾川	129°45'9.2"E	33°45'51.9"N	2014/10/7	10	10	1 m / 7 s	4.2%
Uk01	Ukujima	子人島 空 カ 良	-	_	129°7'57.6"E	33°17'24.7"N	2013/11/14	1	10	1 m / 3 - 4 s	4.7%
Uk02 Uk03	Ukujima	十八 <i>局</i> 字久 島	- Fhata	- 江端川	129°7'20.4 E 129°7'33 4"F	33°15'43 1"N	2013/11/14 2013/11/14	3	10	1 m/8 s	1.4%
Oi01	Oiikaiima	小値賀島	-	-	129°4'4.6"E	33°12'17.1"N	2013/11/14	3.5	35	>1 m/ 30 s	7.1%
Oj02	Ojikajima	小値賀島	-	-	129°3'31.7"E	33°11'38.5"N	2013/11/14	1.4	10	1 m / 4 s	3.1%
Nk01	Nakadorijima	中通島	-	福見川	129°4'35.6"E	32°51'53.3"N	2013/11/13	2	15	$1 \ m / 10 \ s$	5.3%
Nk02	Nakadorijima	中通島	-	-	129°5'13.2"E	32°55'40.7"N	2013/11/13	4	15	1 m / 11 s	2.7%
Nk03	Nakadorijima	中通島	-	-	129°10'22.7"E	32°59'23.4"N	2013/11/13	4	15	1 m / 7 s	5.8%
NK04 Nk05	Nakadorijima	中)通局 山涌自	Ukawa Kiba	大川 太堤川	129°/24./"E 129°7'7 9"E	32°58'45.5"N 32°58'40"N	2013/11/13	6	30 40	1 m/8 s 1 m/13 s	5.4% 3.2%
Nk06	Nakadorijima	中通島	Miyanogawa	宮ノ川	129°5'0.6"E	32°59'13.8"N	2013/11/13	5	5	1 m / 4 s	2.9%
Nk07	Nakadorijima	中通島	Tsurido	釣道川	129°4'21.6"E	32°59'6.8"N	2013/11/13	3	70	1 m / 15 s	6.4%
Nk08	Nakadorijima	中通島	Aiko	相河川	129°3'48.4"E	32°58'18.8"N	2013/11/13	8-10	40	very slow	21%
Nk09	Nakadorijima	中通島	Sanohara	佐野原川	129°3'43.1"E	32°57'11"N	2013/11/13	8	40-80	1 m / 25 s	1.9%
Nk10	Nakadorijima	中通島	-	-	129°4'20.4"E	33°0'58.2"N	2013/11/13	5	10	1 m / 7 s	5.3%
NKII Nk12	Nakadorijima	中)通局 山涌自	-	_	129°8'46.6"E 129°6'15 7"E	32°57'30"N 33°3'39 5"N	2013/11/15	2	10	1 m / 5 s 1 m / 6 s	0.3% 5.3%
Nk12	Nakadorijima	中通鳥	-	-	129°5'48.3"E	33°3'10.1"N	2013/11/15	3	6	1 m / 6 s	4.0%
Wk01	Wakamatsujima	若松島	Suzuki	鈴木川	129°1'9.2"E	32°54'4.7"N	2013/11/15	2	15-20	1 m / 13 s	1.8%
Wk02	Wakamatsujima	若松島	-	-	129°0'55.1"E	32°52'18.6"N	2013/11/15	1.7	10	1 m / 1 s	5.3%
Wk03	Wakamatsujima	若松島	-	-	128°59'34.6"E	32°54'56.9"N	2013/11/15	2	15	1 m / 8 s	5.8%
Hs01	Hisakajima	久賀島	- Tabilara	-	128°52'40.5"E	32°47'34.3"N	2013/11/12	6	50	very slow	5.8%
H\$02 H\$03	rusakajima Hisakajima	人 質 島	ıспікоді Inoki	□ 小不川	128°52'13.5"E 128°51'36 0"E	32°47'31.4"N	2013/11/12	10	20	1 m/4 s 1 m/8 s	5.1% 6.2%
Fke01	Fukueiima	へ貝両 福江島	-	7日/八八川	128°46'47 7"F	32°44'36 1"N	2013/11/12	7	20	1 m/ 0 s	1.2%
Fke02	Fukuejima	福江島	Ichinokawa	一ノ河川	128°46'45.3"E	32°43'15.6"N	2013/11/11	15	35	1 m / 4 s	0.8%
Fke03	Fukuejima	福江島	Uranogawa	浦ノ川	128°46'1.6"E	32°43'53"N	2013/11/11	8	45	1 m / 8 s	2.4%
Fke04	Fukuejima	福江島	Wanigawa	鰐川	128°45'56.1"E	32°44'39.1"N	2013/11/11	V.C.	n.d.	n.d.	25%

Table 1 Samples, places (islands), and rivers, along with locations and descriptions of samples and rivers.

Table 1 continued.

Sample	Island		River		Longitude	Latitude	Sampling	Width of	Depth of	Flow rate	Ratio of
Eke05	Fukueiima	福江島	Okawabaru	大川厦川	(3GD2000)	(JGD2000) 32°44'8 1"N	2013/11/11	5	25	1 m/3 s	5.4%
Fke06	Fukuejima	(面)工助	-	-	128°40'54"E	32°44'6.1'N	2013/11/11	3	30	1 m/8 c	12%
Fke07	Fukueiima	福江島	- Wanigawa	體川	128°43'45 3"F	32°42'14 1"N	2013/11/11	7	40	1 m / 13 s	1.5%
Fke08	Fukueiima	福江島	Nanan-take	七岳川	128°40'47 4"E	32°40'19 2"N	2013/11/11	8	40	1 m / 8 s	5.4%
Fke09	Fukueiima	福江島	Arakawa	竜川川	128°40'51 6"E	32°40'2 4"N	2013/11/11	8	20	1 m / 15 s	0.8%
Fke10	Fukueiima	福江島	Nakasu	中須川	128°40'41.6"E	32°38'2.2"N	2013/11/11	10	50	1 m/6 s	1.4%
Fke11	Fukuejima	福江島	Ogawa	小川川	128°40'35.2"E	32°37'24.3"N	2013/11/11	6	65	1 m / 6 s	1.9%
Fke12	Fukuejima	福江島	Masuda	増田川	128°47'23.3"E	32°39'22.2"N	2013/11/11	6	25	1 m / 6 s	4.7%
Fke13	Fukuejima	福江島	Muta	牟田川	128°49'34.4"E	32°40'53.2"N	2013/11/12	2	15	1 m / 4 s	6.5%
Fke14	Fukuejima	福江島	Fukue	福江川	128°49'26.6"E	32°40'52.1"N	2013/11/12	16	50	1 m / 8 s	2.7%
Fke15	Fukuejima	福江島	Ichinokawa	一ノ河川	128°46'25.7"E	32°41'5.6"N	2013/11/12	15	20	1 m / 4 s	1.5%
Ut01	Uto Peninsula	宇土半島	Hatagawa	波多川	130°29'41.4"E	32°37'32.7"N	2013/12/9	4	15	1 m/3 s	3.0%
Ut02	Uto Peninsula	宇土半島	Kouno-ura	郡浦川	130°32'13.1"E	32°37'48.2"N	2013/12/9	1.5	5	1 m / 4 s	7.1%
Oy01	Oyanojima	大矢野島	-	-	130°25'30"E	32°35'58.6"N	2013/12/9	6	5	1 m / 6 s	0.9%
Am01	Amakusa-kamishima	天草上島	Aitsu	合津川	130°25'56.1"E	32°30'38.1"N	2013/12/9	3	10	1 m / 6 s	5.2%
Am02	Amakusa-kamishima	天草上島	Imaizumi	今泉川	130°24'10.4"E	32°30'3.3"N	2013/12/9	16	30	very slow	60%
Am03	Amakusa-kamishima	天草上島	Yokomichi	横道川	130°23'37"E	32°28'9.8"N	2013/12/9	1.5	35	1 m / 7 s	1.7%
Am04	Amakusa-kamishima	大阜上島	Kyoragi	教艮木川	130°23'25.1"E	32°28'8.8"N	2013/12/9	8	20	1 m / 16 s	3.1%
Am05	Amakusa-kamishima	大阜上島	Nishi-kawachi	西河内川	130°23'47.2"E	32°25'21.1"N	2013/12/9	10	15	very slow	3.6%
Am06	Amakusa-kamishima	大早上局	Urakawa) 	130°21'34.9"E	32°25'43.2"N	2013/12/9	12	35	1 m / 8 s	4.3%
Am07	Amakusa-kamishima	大早上局	I anasoko	棚底川	130°20'34.5"E	32°24'56./"N	2013/12/9	2	40	1 m / 40 s	6.1%
Am00	Amakusa-kamishima	人早上局 工世し自	Ohura	1111月11日 - 111日日	130 22 13.0 E	32 29 33.4 IN	2013/12/10	12	20	1 m / 16 a	1170 5 10/
Am10	Amakusa-kamishima	人早上局 王吉上良	Nishioi	入佣川 西泊川	130 21 28 E	32 31 12.0 IN 32°30'30 6"N	2013/12/10	2	30 40	1 m / 10 s	2 50/
Am11	Amakusa-kamishima	へ早上両 王甘上自	Kotsu-ura	10 追加 11 上海浦田	130°17'47 2"E	32°20'10 8"N	2013/12/10	1	25	1 m / 8 s	5.570 6.4%
Am12	Amakusa-kamishima	大平工両 天甘卜自	Shimoteu-ura	工律価川	130°17'34 5"E	32°28'40 3"N	2013/12/10	12	18	very clow	5.1%
Am13	Amakusa-kamishima	天苗上島	Fgawa	江川	130°14'21 5"E	32°27'19 3"N	2013/12/10	5	15	1 m/6 s	11%
Am14	Amakusa-kamishima	天草上島	Kawachi	河内川	130°17'14 1"E	32°25'44 6"N	2013/12/10	8	40	1 m / 4 s	4 2%
Am15	Amakusa-kamishima	天草上島	Kote	小手川	130°13'15"E	32°25'45.4"N	2013/12/10	3	15	1 m / 10 s	22%
Am16	Amakusa-shimoshima	天草下島	Shimovama	下山川	130°1'56.7"E	32°25'13.8"N	2013/12/13	15	30	1 m / 16 s	4.1%
Am17	Amakusa-shimoshima	天草下島	Shimotsu-fukae	下津深江川	130°2'1.1"E	32°25'16.9"N	2013/12/13	12	3	1 m / 3 s	3.4%
Am18	Amakusa-shimoshima	天草下島	Tororo	都呂々川	130°2'28.5"E	32°28'8.1"N	2013/12/13	8	10-15	1 m / 9 s	3.1%
Am19	Amakusa-shimoshima	天草下島	Shiki	志岐川	130°3'23.4"E	32°30'21.2"N	2013/12/13	3	30	1 m / 16 s	14%
Am20	Amakusa-shimoshima	天草下島	Kotsu-fukae	上津深江川	130°4'28.6"E	32°31'6.4"N	2013/12/13	4	10-20	1 m / 5 s	3.9%
Am21	Amakusa-shimoshima	天草下島	Kotsu-fukae	上津深江川	130°4'24.2"E	32°31'6.2"N	2013/12/13	2	10-15	1 m / 7 s	5.1%
Am22	Amakusa-shimoshima	天草下島	Matsubara	松原川	130°5'47.8"E	32°31'33.8"N	2013/12/13	5	10	1 m / 4 s	1.8%
Am23	Amakusa-shimoshima	天草下島	Uchino	内野川	130°8'19.8"E	32°32'9.5"N	2013/12/13	20	15	1 m / 10 s	12%
Am24	Amakusa-shimoshima	天草下島	Nakasu	中洲川	130°10'55.7"E	32°30'49.7"N	2013/12/13	12	30	1 m / 20 s	4.7%
Am25	Amakusa-shimoshima	天草下島	Sumida	隅田川	130°11'10.9"E	32°29'38.1"N	2013/12/13	14	5	1 m / 7 s	2.2%
Am26	Amakusa-shimoshima	大阜卜島	Hirose	広瀬川	130°10'59.1"E	32°28'20.3"N	2013/12/13	16	40	1 m / 8 s	2.5%
Am27	Amakusa-shimoshima	大阜卜島	Machiyamaguchi	町山口川	130°11'9.2"E	32°27'26.8"N	2013/12/13	16	>40	1 m/9 s	3.7%
Am28	Amakusa-shimoshima	大早下局	Hiratoko	半床川	130°/40.1°E	32°28'3''N	2013/12/13	3	20	1 m / 5 s 1 m / 16 s	4.4%
Am20	Amakusa-shimoshima	人早 「局 丁古下自	Kamagawa	ム (現)川	130 / 30.3 E	32 2743 IN 32°26'8 0"N	2013/12/13	8	25	1 m / 4 s	2.270 1 10/
Am31	Amakusa-shimoshima	八平 四 天甘下自	Hobaru	电/II 古 []]	130°11'30 //"E	32°24'37 6"N	2013/12/11	5	15	1 m / 4 s	9.5%
Am32	Amakusa-shimoshima	天甘下島	Nagare-ai	· 流合川	130°11'28 8"F	32°22'12 2"N	2013/12/11	4	15	1 m / 8 s	11%
Am33	Amakusa-shimoshima	天草下島	Omiyaji	大宮地川	130°10'57 4"E	32°23'23 6"N	2013/12/11	15	20	1 m / 5 s	6.3%
Am34	Amakusa-shimoshima	天草下島	Omivaji	大宮地川	130°8'27.8"E	32°22'46.8"N	2013/12/11	10	40	1 m / 2 s	4.0%
Am35	Amakusa-shimoshima	天草下島	Itchoda	一町田川	130°5'29.2"E	32°20'26.8"N	2013/12/11	10	25	1 m / 3 s	6.6%
Am36	Amakusa-shimoshima	天草下島	Imada	今田川	130°5'9.1"E	32°20'36.2"N	2013/12/11	8	30	1 m / 5 s	2.9%
Am37	Amakusa-shimoshima	天草下島	Katsuragochi	葛河内川	130°4'37.1"E	32°19'59.8"N	2013/12/11	26	30	1 m / 20 s	6.1%
Am38	Amakusa-shimoshima	天草下島	Kameura	亀浦川	130°1'35.2"E	32°16'10.9"N	2013/12/11	10	30	1 m / 14 s	4.2%
Am39	Amakusa-shimoshima	天草下島	Haya-ura	早浦川	130°3'32.3"E	32°16'6.5"N	2013/12/11	10	35-45	1 m / 11 s	5.5%
Am40	Amakusa-shimoshima	天草下島	Rogi	路木川	130°4'4.4"E	32°16'32.9"N	2013/12/11	5	15	1 m / 4 s	1.1%
Am41	Amakusa-shimoshima	天草下島	Imatomi	今富川	130°1'19.8"E	32°19'34"N	2013/12/11	6	80	1 m / 8 s	2.3%
Am42	Amakusa-shimoshima	天草下島	Oe	大江川	129°59'38.5"E	32°19'42.5"N	2013/12/11	7	5	1 m / 5 s	3.6%
Am43	Amakusa-shimoshima	天草下島	Takahama	高浜川	130°0'1.7"E	32°22'29.7"N	2013/12/11	10-15	20	1 m / 4 s	2.7%
Gs01	Goshorajima	御所浦島	Furuyashiki	古屋敷川	130°20'6"E	32°19'46.3"N	2013/12/10	1	5	N.D.	8.5%
Gs02	Goshorajima	御所浦島	Karakızakı	唐木崎川	130°20'15.8"E	32°20'14.3"N	2013/12/10	3	I	1 m/5 s	5.4%
Ss01	Shishijima	獅子島	-		130°14"/.3"E	32°17'17.6"N	2013/12/12	2.5	5	1 m/4 s	8.9%
Ng01	Nagashima	長島 国内	Urasoko	油底川	130°9'43.6"E	32°11'40.6"N	2013/12/12	3	15	1 m/6 s	4.9%
Ng02	Nagasnima	大局 「 「 「 「 」	Konama	小供川	130°6'56.8"E	32°10'3"N	2013/12/12	8	60	1 m / 11 s	2.2%
Ng03	Nagashima	天 局 目 自	Jakawa yahi	相任川	130 / 14.4 E	32 929.2 IN	2013/12/12	5	20	1 m / 10 c	4.9%
Ng04	Nagashima	天 両 毛 自	Shiomi	波目11	130°8'34 5"E	32 842.3 N 32°6'/3 3"N	2013/12/12	1.5	30	1 m / 5 s	3 0%
Ng06	Nagashima	反 向 長自	Akasaki	シル川 赤崎川	130°10'49 9"F	32°10'30 3"N	2013/12/12	4	40	1 m / 8 s	6.6%
Tn01	Tanegashima	へ ^四 種子鳥	Minato	·///··///////////////////////////////	131°3'30 1"F	30°48'11 9"N	2014/12/5	6	30	1 m/9 s	26%
Tn02	Tanegashima	種子鳥	Saikvo	西京川	131°3'49"F	30°46'2 9"N	2014/12/5	15	>60	1 m / 40 s	22%
Tn03	Tanegashima	種子島	An-no	安納川	131°3'40.7"E	30°43'30.3"N	2014/12/5	3	15	1 m/4 s	6.8%
Tn04	Tanegashima	種子島	Koume	甲女川	131°0'11.4"F	30°42'58.4"N	2014/12/5	20	>70	very slow	22%
Tn05	Tanegashima	種子島	Minatogawa	湊川	131°2'57.4"E	30°42'18.3"N	2014/12/5	10	45	1 m / 5 s	12%
Tn06	Tanegashima	種子島	Azako	浅川川	131°3'34.2"E	30°40'54.6"N	2014/12/5	4	30	1 m / 7 s	15%
Tn07	Tanegashima	種子島	-	-	130°56'55.4"E	30°40'10.5"N	2014/12/4	4	30	1 m / 9 s	7.5%
Tn08	Tanegashima	種子島	Kawa-waki	川脇川	131°2'41.8"E	30°38'45.4"N	2014/12/4	8	25	$1 \ m / 11 \ s$	3.5%
Tn09	Tanegashima	種子島	Okawada	大川田川	131°2'50.7"E	30°37'39.4"N	2014/12/4	10	40	1 m / 7 s	7.2%
Tn10	Tanegashima	種子島	-	-	130°57'2.8"E	30°37'18"N	2014/12/4	5	20-30	1 m / 4 s	7.9%
Inll	Lanegashima	柚子島	Waseda	早期田川	131°2'40 9"F	30°36'35 8"N	2014/12/4	6	60	1 m / 3 - 4 s	7.3%

Table 1	continued.
14010 1	commaca.

Sampla	Island		Diver		Longitude	Latitude	Sampling	Width of	Depth of	Flow rate	Ratio of
Sample	Island		River		(JGD2000)	(JGD2000)	data	river (m)	river (cm)	of river	$<180 \ \mu m^a$
Tn12	Tanegashima	種子島	-	-	131°1'52.1"E	30°35'16.1"N	2014/12/4	4	15	1 m / 3 s	6.8%
Tn13	Tanegashima	種子島	Owatase	大渡瀬川	130°57'17.3"E	30°34'22.4"N	2014/12/3	4	25	1 m / 4 s	7.3%
Tn14	Tanegashima	種子島	Mukai	向井川	131°0'12.9"E	30°33'21.3"N	2014/12/4	8	40-60	1 m / 5 s	5.0%
Tn15	Tanegashima	種子島	Tagiri	沸川	130°59'37.2"E	30°33'16.7"N	2014/12/4	8	35	1 m / 3 s	13%
Tn16	Tanegashima	種子島	-	-	130°59'18.2"E	30°32'2.8"N	2014/12/4	4	45	1 m / 5 s	11%
Tn17	Tanegashima	種子島	-	-	130°55'53.7"E	30°32'7.7"N	2014/12/3	4	20	1 m / 3 s	5.2%
Tn18	Tanegashima	種子島	Adakaiso	阿高磯川	130°55'21.9"E	30°30'59.8"N	2014/12/3	5	40-70	1 m / 15 s	9.8%
Tn19	Tanegashima	種子島	Kuhama	苦浜川	130°54'34.8"E	30°30'1"N	2014/12/3	15	60	very slow	18%
Tn20	Tanegashima	種子島	Imakumano	今熊野川	130°57'33.7"E	30°28'57.6"N	2014/12/4	5	15	1 m / 3 s	13%
Tn21	Tanegashima	種子島	Shimama	島間川	130°51'57.2"E	30°27'41.1"N	2014/12/3	5	35	1 m / 4 s	3.3%
Tn22	Tanegashima	種子島	Oura	大浦川	130°57'11.4"E	30°26'50.2"N	2014/12/4	20	N.D.	1 m / 4–5 s	60%
Tn23	Tanegashima	種子島	Okawa	大川	130°52'2.5"E	30°25'3.5"N	2014/12/3	6	35	1 m/3 s	6.1%
Tn24	Tanegashima	種子島	Abusuki	阿武鋤川	130°57'55.6"E	30°25'10.8"N	2014/12/4	20	>60	very slow	31%
Tn25	Tanegashima	種子島	Miyase	宮瀬川	130°56'21.4"E	30°23'28.5"N	2014/12/3	6	60	1 m / 8 s	16%
Tn26	Tanegashima	種子島	Korigawa	郡川	130°55'7"E	30°23'4"N	2014/12/3	8	25	1 m / 3 s	11%
Tn27	Tanegashima	種子島	Shikanaki	鹿鳴川	130°53'21.6"E	30°22'1.3"N	2014/12/3	4	60	1 m / 9 s	11%
Sk01	Sakurajima	桜島	-	-	130°37'44.7"E	31°35'56.3"N	2014/11/10	V.C.	n.d.	n.d.	38%
Sk02	Sakurajima	桜島	-	-	130°38'43.3"E	31°36'52.9"N	2014/11/10	V.C.	n.d.	n.d.	22%
Sk03	Sakurajima	桜島	-	-	130°37'9.4"E	31°33'52.8"N	2014/11/10	V.C.	n.d.	n.d.	59%
Yk01	Yakushima	屋久島	Anbo	安房川	130°39'4.1"E	30°18'57.1"N	2014/11/13	60-100	>100	n.d.	1.2%
Yk02	Yakushima	屋久島	Arakawa	荒川	130°34'16.1"E	30°18'16.9"N	2014/11/13	12	10-80	1 m / 3–5 s	0.4%
Yk03	Yakushima	屋久島	Anbo	安房川	130°34'43.2"E	30°21'8.3"N	2014/11/13	15	50	1 m / 5 s	0.7%
Yk04	Yakushima	屋久島	Menko	女川	130°38'46"E	30°23'38.4"N	2014/11/11	>16	>70	1 m / 4 s	13%
Yk05	Yakushima	屋久島	Ogako	男川	130°38'7.5"E	30°23'56.5"N	2014/11/15	3	25	1 m / 4 s	0.7%
Yk06	Yakushima	屋久島	Tabu	椨川	130°37'20.3"E	30°24'6.2"N	2014/11/11	>20	60	1 m / 5 s	0.4%
Yk07	Yakushima	屋久島	Jonogawa	城之川	130°35'38.2"E	30°24'27.7"N	2014/11/11	>3	40-50	1 m / 2–4 s	0.5%
Yk08	Yakushima	屋久島	Shiratani	白谷川	130°34'2.9"E	30°24'38"N	2014/11/14	8	50-70	1 m / 5 s	1.7%
Yk09	Yakushima	屋久島	Miyano-ura	宮之浦川	130°33'6.6"E	30°24'39.5"N	2014/11/11	>20	40	1 m / 5 s	2.7%
Yk10	Yakushima	屋久島	Miyano-ura	宮之浦川	130°32'46.9"E	30°24'45"N	2014/11/11	>30	60	1 m / 5 s	1.4%
Yk11	Yakushima	屋久島	Shidoko	志戸子川	130°31'11.6"E	30°26'47"N	2014/11/15	8	45	1 m/9 s	0.5%
Yk12	Yakushima	屋久島	Isso	一湊川	130°29'4.7"E	30°26'59.1"N	2014/11/14	50	20	1 m / 22 s	1.2%
Yk13	Yakushima	屋久島	Domen	土面川	130°25'51"E	30°24'0.8"N	2014/11/15	20	15	1 m / 5 s	2.4%
Yk14	Yakushima	屋久島	Nagata	永田川	130°25'44.4"E	30°23'47.8"N	2014/11/14	50	70	1 m / 12 s	1.5%
Yk15	Yakushima	屋久島	Takeno	嶽之川	130°24'54.3"E	30°23'39.4"N	2014/11/14	6-8	40-100	1 m / 4–5 s	1.3%
Yk16	Yakushima	屋久島	Okogawa	大川	130°24'59.1"E	30°18'6.9"N	2014/11/15	12	40-70	1 m / 3–6 s	7.0%
Yk17	Yakushima	屋久島	Koyoji	小揚子川	130°25'23.1"E	30°16'51.3"N	2014/11/12	>50	60	1 m / 11 s	3.2%
Yk18	Yakushima	屋久島	Kurio	栗生川	130°25'43.3"E	30°16'46.7"N	2014/11/12	30	70	1 m / 5 s	0.9%
Yk19	Yakushima	屋久島	Nakama	中間川	130°25'58.4"E	30°15'21.9"N	2014/11/12	16	25	1 m / 4 s	0.3%
Yk20	Yakushima	屋久島	Yukawa	湯川	130°28'57"E	30°14'3.2"N	2014/11/12	>20	50	1 m / 11 s	0.7%
Yk21	Yakushima	屋久島	Futamata	二又川	130°33'33.9"E	30°14'24.7"N	2014/11/15	4	45	1 m / 6 s	0.8%
Yk22	Yakushima	屋久島	Tainogawa	鯛ノ川	130°35'20.5"E	30°15'9.2"N	2014/11/12	>40	40	1 m / 3–4 s	0.4%
Yk23	Yakushima	屋久島	Kodakumi	小田汲川	130°36'54.4"E	30°16'23.6"N	2014/11/15	4	90	1 m / 4–5 s	2.2%

V.C.: Vacant channel, n.d.: not determined

 a Relative ratio by weight of the ${<}180\,\mu m$ fraction to sediments less than 2 mm

Table 2 Relative weight ratio of grain size to stream sediments less than 2 mm.

Grain size	Sk03	Tn02	Tn09	Tn26	Yk01	Yk17
<180 µm	59%	22%	7.2%	11%	1.2%	3.2%
Very coarse sand (1-2 mm)	0.3%	20%	39%	12%	5.5%	31%
Coarse sand (0.5-1 mm)	5.7%	19%	28%	14%	15%	44%
Medium sand (250-500 µm)	20%	23%	20%	43%	38%	19%
Fine sand (125-250 µm)	12%	26%	7.9%	28%	33%	4%
Very fine sand (63–125 µm)	8.1%	6.7%	2.4%	2.1%	4.1%	0.4%
Coarse silt (32–63 µm)	3.4%	2.3%	1.2%	0.6%	0.4%	0.2% ^a
Fine silt and clay (<32 µm)	3.1%	1.9%	0.8%	0.4%	0.2%	

 a Grain size less than 63 μm

	6
	ö
	ar
	5
	Ð,
	B
	SI
	o
	q
	-
	5
	ā
	5
•	Ē.
	an -
	Ē.
	ц
	5
	ğ
	Ľ
	0
	P
	ē
5	믑
	2
	Ħ
	2
•	+-
	ğ
	Ę
	2
	<u> </u>
	0
	ప
	S
_	e
	d
	E
	a
	ŝ
	H
<	¥
	d
	ŏ
	ä
	<u> </u>
	<u>e</u>
	b b
	≥
	0
	g
	2
	Ħ
	ŝ
	ğ
	rea
	area
	y area
	gy area:
	logy area:
	iology area:
-	thology area:
	lithology area:
	d lithology area:
	ed lithology area
	osed lithology area
	posed lithology area
	xposed lithology area
	exposed lithology area
	of exposed lithology area
	of exposed lithology area
	os ot exposed lithology area:
	tios of exposed lithology area
	atios of exposed lithology area
-	ratios of exposed lithology area
	ed ratios of exposed lithology area
	ted ratios of exposed lithology area
	nated ratios of exposed lithology area
	mated ratios of exposed lithology area
	stimated ratios of exposed lithology areas
	estimated ratios of exposed lithology area
	l estimated ratios of exposed lithology area
-	nd estimated ratios of exposed lithology area
-	and estimated ratios of exposed lithology area
-	a and estimated ratios of exposed lithology area
-	cea and estimated ratios of exposed lithology area
-	area and estimated ratios of exposed lithology area
	1 area and estimated ratios of exposed lithology area
	ed area and estimated ratios of exposed lithology area
-	shed area and estimated ratios of exposed lithology area
· · · · · · · · · · · · · · · · · · ·	rshed area and estimated ratios of exposed lithology area
•	tershed area and estimated ratios of exposed lithology area;
· · · · · · · · · · · · · · · · · · ·	atershed area and estimated ratios of exposed lithology area
	Watershed area and estimated ratios of exposed lithology area
	Watershed area and estimated ratios of exposed lithology area
	3 Watershed area and estimated ratios of exposed lithology area
	e 3 Watershed area and estimated ratios of exposed lithology area
	ble 3 Watershed area and estimated ratios of exposed lithology area
	able 3 Watershed area and estimated ratios of exposed lithology area

T_{s01} T_{s02}	~											al ca / MIII /									(goroth)
T_{s02}	5.0	74%							26%	Sed	Iki03	3.7	42%			37%	20%	1%			Mv+a-Mv
T03	4.9	74%							26%	Sed	Iki04	3.0	2%	2%		60%	36%			,	a-Mv
1505	16.4	48%	,	,	,	,	,	,	52%	Gr	Iki05	1.7		,	,	,	100%	,	,	,	Mv
T_{s04}	6.4	89%	•	6%		2%	,	,	3%	Sed	Iki06	2.7	22%	10%			68%		,	,	Mv
T_{s05}	5.7	100%		,					'	Sed	Iki07	22.0	39%	2%		27%	30%	2%		,	Mv+a-Mv
T_{s06}	25.9	%86	•	2%		<1%			•	Sed	Uk01	1.2	•			100%					a-Mv
T_{s07}	24.7	%96		4%		<1%			•	Sed	Uk02	1.7		1%		%66					a-Mv
T_{s08}	8.9	92%	•	7%		1.0%		•	'	Sed	Uk03	1.8	<1%	52%		48%					a-Fv
T_{s09}	8.9	97%		3%					•	Sed	Oj01	0.15				100%				,	a-Mv
T_{S10}	4.8	100%	,		,		,	,	'	Sed	Oj02	0.5		,	,	100%	,	,		,	a-Mv
Ts11	15.1	98%	,	,	,	2%	,	,	'	Sed	Nk01	0.8		,	,	,	25%	75%	,	,	Py
Ts12	21.9	100%		'	,	<1%	,	,	'	Sed	Nk02	0.8	71%	,	29%	,		,		,	Sed
Ts13	2.5	100%	,	,	,	,	,	,	'	Sed	Nk03	2.8	68%	,	16%	,	6%	,	10%	,	Sed
Ts14	5.5	100%		'	,	,	,	,	'	Sed	Nk04	3.9	70%	,	9%6	,		,	21%	,	Sed
Ts15	10.6	%96	,	4%	,				'	Sed	Nk05	4.0	74%	,			13%	,	13%		Sed
T_{S16}	3.2	100%	,	,	,	<1%	,	,	'	Sed	Nk06	1.2	85%	,	,	,	,	,	15%	,	Sed
Ts17	4.4	85%	,	15%	,	,	,	,	'	Sed	Nk07	4.2	%66	,	,	,	1%	,		,	Sed
Ts18	33.7	83%	,	7%	,	<1%	,	,	10%	Sed	Nk08	6.9	50%	,	48%	,	3%	,	,	,	Sed
Ts19	10.6	94%	,	5%	,		,	,	<1%	Sed	Nk09	6.2	25%	,	37%	,	,	37%	1%	,	Fv+Py
T_{S20}	5.6	94%	,	3%		<1%			2%	Sed	Nk10	1.7	98%				2%		<1%		Sed
Ts21	9.8	56%	,	27%	,	,	,	,	17%	Sed	Nk11	1.5	80%	,	13%	,	,	,	7%	,	Sed
Ts22	7.4	100%	,	,	,	,	,	,	,	Sed	Nk12	0.9	,	,	,	,	,	,	100%	,	E
Ts23	4.9	93%	,	7%	,	,	,	,	'	Sed	Nk13	0.8	13%	,	,	,	,	,	87%	,	E
Tk01	0.6	41%	,	,	59%		,	,	'	a-Mv	Wk01	1.9	68%	,	32%	,	,	,	,	,	Sed
Tk02	0.5	26%	•	,	74%	,	,	,	'	a-Mv	Wk02	0.5	23%		77%					,	Fv
Fks01	0.4	28%		•	72%				•	a-Mv	Wk03	0.8	60%						40%		Sed
Fks02	1.0	50%		•	50%	•			•	Sed	Hs01	3.9	14%		25%				60%	<1%	Ξ
Fks03	0.8	71%		,	19%				•	Sed	H_{s02}	3.5	15%		15%	,			70%	,	E
Ikt01	0.7	,	,		100%	,	,	,	'	a-Mv	Hs03	3.5	55%	,	,	,	,	,	21%	24%	Sed
Ikt02	1.1			,	100%				'	a-Mv	Fke01	6.3	43%		49%				8%	,	Oth
Hr01	1.6		•	•		44%	56%		•	Py	Fke02	26.5	62%		27%				12%		Sed
Hr02	3.8	17%		,		32%	51%		'	Py	Fke03	5.0	52%			,			48%	,	Sed
Hr03	4.3	5%	•	•		19%	76%		•	Py	Fke04	32.0	36%		19%	24%			21%		Oth
Hr04	7.3	16%		•		22%	62%		•	Py	Fke05	1.11	100%								Sed
Hr05	3.2	14%	,	,	,	15%	71%	,	'	Py	Fke06	4.1	21%	,	,	79%	,	,	,	,	a-Mv
Hr06	4.5	6%	'	'	,	22%	68%	,	'	Py	Fke07	23.8	53%	,	12%	,	,	,	35%	,	Sed
Hr07	3.8	23%	,	,	,	63%	14%	,	'	Mv	Fke08	6.3	,	,	100%	,	,	,	,	,	Fv
Hr08	6.0	20%	,	,	3%	34%	42%	,	•	Mv+Py	Fke09	5.2	72%	•	4%	,	,	,	23%	,	Sed
Hr09	7.1	42%	,	,	12%	33%	13%	,	'	Mv+Py	Fke10	14.5	46%	,	52%	,	,	,	2%	,	Fv
O_{s01}	0.8	100%	•	•				•	•	Sed	Fkel 1	5.1	39%	•	61%				<1%		Fv
O_{s02}	0.8	100%		•					•	Sed	Fke12	2.4	66%			3%			<1%	,	Sed
Mt01	0.3	100%	•	•	<1%			•	'	Sed	Fke13	2.1	14%			86%					a-Mv
Iki01	21.6	5%	3%	,	33%	59%	,	,	'	Mv	Fke14	12.1	%69	,	1%	21%	,	,	%6	,	Sed
Iki02	4.4	56%			27%	16%	2%		•	Sed	Fke15	16.0	79%		11%				10%		Sed
Sed: Paleo	zene-Neoge	ne-Ouate	rnarv seu	diment.	a-Fv: Ne	ngene al	caline fe	leic volc	onio roc	t Ev. Neogen	leile non e	ina falcio volo	ion oino	. a Mar	Noocon	Ountary	alla vara	line maf		in mode	MAU-

Table 4 Watershed area and estimated ratio of exposed area of lithology to watershed area for samples collected from the southern region of the study area.

Dominant ithology	Acc	Acc	Acc	Vcc	Vec	lec	Acc	Acc	Acc	Acc	Acc	201	vic o	ed	led	led	ed	ed	ed	ed .	ed	ed ed	ed	2	, A	, v	ed ,	F /5	H	Acc	Acc	Acc	Acc	治之	ų ۲	JI.	, rc	5,4	: ,=	ĥ	Ŀ,	Ë,	Ë,	Ë,	Ĩ,	Å,	ج ج	ř		
Mp I	- 1	-	-					-	-					, x			' S	'	' N				0 00 1 1	Ч	- -	н. -				-	-	-	-																	:-1-J
Gb		,	•	,			,	,	,					,	,				,		,				,	,	,			,		,	,	,					,	,		,		,						
G	•	,					,	,	,					,	,				,		,				,	,	-020	%96	93%	6%		10%	27%	87%	96%	32%	0/ CC	%4% 06%	96%	97%	95%	%06	93%	84%	89%	93%	94%	93%		
Fi	<1%	2%	•	,		2%	ı	,	,					,	,				,		,				,	,	,			,		,	,	,					,	,		,		,						
Py	. 3	<1%	11%	ı ç	4%		,	,	,					,	,				,		,			100%	100%	100%	- 10	4%	2%	3%		<1%	' ;	3%	6% 6%	7%	50%	1%	2%	<1%	3%	6%	6%	<1%	<1%	<1%	4%	2%		-
Mv		,					,	,	,					,	,				,						,		,			,		,	,	,			•		,	,		,		,	•					1
Acc	%26	97%	89%	%17%	69% 80%	95%	92%	98%	94%	%66	97% 66%	20%	58%	5%	14%	16%	21%	7%	38%	3%	20%	- 707	2%		,	1 0	%	0/7		87%	92%	87%	72%	10%	%1>	5%6 6/0/2	2007	- 1/10	,	,	3%	4%	2%	16%	7%	6%	2%	5%		
K Sed		,					,	,	,					,	,				,						,		·			,			,	,					,	,		,	,	,	•					¢
Sed	3%	2%	<1%	24%	21%	3%	8%	2%	%9	%I	3%0	30%	42%	95%	86%	84%	79%	93%	62%	97%	80%	010%	%66		,		92%	° '	1%	4%	8%	2%	1%	<1%		%1> 2%2	0/ 7 70 C	0/7	1%	3%		,	,	<1%	4%	<1%				
Watershed area (km ²)	5.7	16.7	3.8	18.8	4.01	3.5	17.4	12.7	3.2	0.9 0.1	4./ 2 0	2.2 2.5	6.9 6.4	4.2	2.6	7.6	10.3	3.7	10.7	8.5	7.0	4.0 1)./ 12.6	N.D.	N.D.	ND.	6.4 0.1	04.1 13.2	29.5	7.9	1.9	5.7	3.8	12.7	د.» د تر	513	0.0	4.5	30.5	7.3	11.3	28.1	20.7	11.8	10.5	2.7	17.2	5.9		4
Sample	Tn01	Tn02	Tn03	Tn04	50u1 700d	Tn07	Tn08	Tn09	Tn10	I I I I	Tn12	Tn14	Tn15	Tn16	Tn17	Tn18	Tn19	Tn20	Tn21	Tn22	Tn23	1n24 Tn25	Tn26	Sk01	Sk02	Sk03	Th27	Vk02	Yk03	Yk04	Yk05	Yk06	Yk07	Y k08	Y K U9	YK10 VI-11	VED	Yk13	Yk14	Yk15	Yk16	Yk17	Yk18	Yk19	Yk20	Yk21	Yk22	Yk23		v
y v	l																																																	
Domina litholog	M٧	Mv	Sed	K Sed	Sed K Sed	Sed	K Sed	Sed	Sed	Sed	Sed	Sed	Sed	Sed	Sed	Sed	Sed	Sed	Sed	Sed	Sed	Sed	Sed	Sed	Sed	Sed .	Sed	Sed	Sed	Sed	Sed	Sed	Sed	Sed	Sed	Sed V Sad	N Sou	K Sed	Sed	Мр	Sed	K Sed	K Sed	K Sed	Mv	Mv	Mv	Mv	γž	
Mp Domine Iitholog	- Mv	- Mv	- Sed	- K Sed	- Sed - K Sed	- Sed	- K Sed	- Sed	- Sed	- Sed	- Sed	- Sed	- Sed	- Sed	- Sed	- Sed	- Sed	- Sed	- Sed	- Sed	- Sed	- Sed	- Sed	- Sed	- Sed	- Sed	- Sed	- Sed	- Sed	- Sed	- Sed	- Sed	- Sed	- Sed	- Sed	- Sed	- N Scu	- K Sed	- Sed	69% Mp	1% Sed	- K Sed	- K Sed	- K Sed	- Mv	- Mv	- Mv	- Mv	- Mv	- NIVI
Gb Mp Domina litholog	Mv	Mv	Sed	K Sed	Sed K Sed	<1% - Sed	K Sed	4% - Sed	37% - Sed	<1% - Sed	<1% - Sed 1% - Sed	1% - 3cu 1% - Sed	1.% - Sed <1% - Sed	2% - Sed	11% - Sed	Sed	Sed	Sed	Sed	Sed	<1% - Sed	Sed	 3cu 1% - Sed 	Sed	Sed	<1% - Sed	Sed		Sed	Sed	Sed	Sed	Sed	Sed	Sed	Sed	V Sed	KSed	Sed	- 69% Mp	- 1% Sed	K Sed	K Sed	K Sed	Mv	Mv	Mv	Mv	Mv	
Gr Gb Mp Domins litholog	Mv	Mv	Sed	KSed	Sed K Sed	- <1% - Sed	1% KSed	- 4% - Sed	- 37% - Sed	- <1% - Sed	- <1% - Sed		- <1% - Sed	- 2% - Sed	- 11% - Sed	Sed	Sed	Sed	Sed	Sed	- <1% - Sed	Sed	- ~1.% - Sed	Sed	Sed	- <1% - Sed	Sed	Sed	Sed	Sed	Sed	Sed	Sed	Sed	Sed	Sed		KSed	Sed	69% Mp	1% Sed	K Sed	K Sed	K Sed	Mv	Mv	Mv	Mv	Mv	AIAI
Fi Gr Gb Mp Domins litholog	Mv	Mv	Sed	KSed	Sed K Sed	<1% - Sed	- 1% KSed	4% - Sed	37% - Sed	<1% - Sed	<1% - Sed 0% 1% - Sed	- 7/0 1/0 - 3cu	Sed	2% - Sed	11% - Sed	Sed	2% Sed	Sed	<1% - Sed	<1% Sed	<1% - Sed	560		Sed	Sed	<1% - Sed	Sed		Sed	Sed	Sed	Sed	Sed	Sed	<1% Sed	1% Sed	-10/2 N.364	-1.00 K Sed	Sed	69% Mp	3% 1% Sed	K Sed	KSed	KSed	Mv	Mv	Mv	Mv	Mv	AM
Py Fi Gr Gb Mp Domins litholog	Mv	Mv	Sed	KSed	Sed	<1% - Sed	1% KSed	Sed	37% - Sed	Sed	<1% - Sed		Sed	2% - Sed	11% - Sed	Sed	- 2% Sed	Sed	- <1% Sed	- <1% Sed	Sed	Sed		11% Sed	Sed	<1% <1% - Sed	Sed		Sed	Sed	Sed	Sed	Sed	Sed	- <1% Sed	- 1% Sed		$\frac{1}{2} = \frac{1}{2} = \frac{1}$	Sed	69% Mp	- 3% 1% Sed	K Sed	K Sed	K Sed	Mv	Mv	Mv	Mv	Mv	AM
Mv Py Fi Gr Gb Mp Domins litholog	50% Mv	89% Mv	Sed	K Sed	Sed	Sed	1% KSed	Sed	Sed	Sed	Sed 004 104 Sed		Sed	2% - Sed	11% - Sed	Sed	2% Sed	Sed	<1% Sed	<1% Sed	Sed	-10/2 560	-1.0 5.00 - 3% <1% - Sed	- 11% Sed	Sed	- <1% <1% - Sed	Sed	Sed	Sed	Sed	<1% Sed	Sed	Sed	<1% Sed	<1% Sed	<1% - 1% - Sed - Sed - Sed		K Sed	Sed	69% Mp	<1% - 3% - 1% Sed	K Sed	K Sed	KSed	92% Mv	89% Mv	93% Mv	95% Mv	88% Mv	VM 0/64
Acc Mv Py Fi Gr Gb Mp Domini litholog	- 50% Mv	- 89% Mv	Sed	K Sed		Sed	1% KSed	Sed	S7% - Sed	Sed	Sed		Sed	Sed	Sed	Sed	2% Sed	Sed	<1% Sed	<1% Sed	Sed		- ~1/0	11% Sed	Sed	<1% <1% - Sed	Sed		Sed	Sed	- <1% Sed	Sed	Sed	- <1% Sed	<1% Sed	- <1% - 1% Sed	$- \times 1/0$ $$	K Sed	Sed	69% Mp	- <1% - 3% 1% Sed	K Sed	KSed	K Sed	- 92% Mv	- 89% Mv	- 93% Mv	- 95% Mv	- 88% MV	VM 0/2/2 -
K Sed Acc Mv Py Fi Gr Gb Mp Domins litholog	11% - 50% Mv	89% Mv	Sed	64% K Sed	45% Sed 51% K Sed	Sed	81% KSed	Sed	Sed	Sed	Sed		Sed	Sed	Sed	Sed	35% 2% Sed	<1% Sed	<1% Sed	<1% Sed	Sed			Sed	Sed	<1% <1% - Sed	Sed			Sed	<1% Sed	Sed	Sed	6% - <1% Sed	<1% Sed	<1% - 1% - Sed - Sed Sed - Sed	2170	97% K.Sed	31% Sed	28% 69% Mp	19% - <1% - 3% - 1% Sed	100% K Sed	100% KSed	99% K Sed	92% Mv	89% Mv	93% Mv	95% Mv	88% Mv	VM 0/CC
Sed K Sed Acc Mv Py Fi Gr Gb Mp Domins	39% 11% - 50% Mv	11% 89% My	100% Sed	36% 64% K Sed	25% 45% Sed 40% 51% K Sed	100% Sed	18% 81% K Sed	96% Sed	63% S7% - Sed	100% Sed	100% Sed 0.0% - Sed	90% 00%	77% Sed	98% Sed	89% Sed	100% Sed	63% 35% 2% Sed	99% <1% Sed	100% <1% Sed	100% Sed	100% Sed	100% Sed	97% $3%$ $1%$ - Sed	89% 11% Sed	100% Sed	100% <1% - Sed	100% Sed	100% Seu 100% Sed	100% Sed	100% Sed	100% <1% Sed	100% Sed	100% Sed	94% 6% - <1% Sed	100% Sed	99% <1% - 1% - 56d ∆0% 5102 ∠102 - 102 26d	49/0 J1/0 N JCH 1/201/ 500/2 500/2	42/0 30/0 K Sed	69% 31% Sed	2% 28% 69% Mp	77% 19% - <1% - 3% - 1% Sed	- 100% K Sed	- 100% K Sed	1% 99% KSed	8% 92% Mv	11% 89% Mv	7% 93% Mv	5% 95% Mv	12% 88% Mv	VM 0/26 0/1
Watershed Sed K Sed Acc Mv Py Fi Gr Gb Mp Dominic area (km^2)	8.1 39% 11% - 50% Mv	3.9 11% 89% Mv	2.5 100% Sed	3.2 36% 64% K Sed	0.0 23% 42% Sed 61 40% 51% K Sed	17.4 100% Sed	3.0 18% 81% KSed	8.7 96% Sed	3.2 63% Sed	5.4 100% Sed	3.2 100% Sed 3.0 00% - Sed	5.0 20% 500 5.0 00%	9.1 100% Sed	3.3 98% Sed	18.6 89% Sed	3.9 100% Sed	11.8 63% 35% Sed	19.0 99% <1% Sed	14.0 100% Sed	8.7 100% Sed	5.0 100% Sed	2.8 100% Sed 6.4 100% Sed	0.4 100/0	4.4 89% 11% Sed	3.9 100% Sed	25.8 100% <1% - <1% - Sed	12.3 100% Sed	8.1 100% Seu 8.1 100% Seu	22.5 100% Sed	9.9 100% Sed	11.1 100% <1% Sed	31.1 100% Sed	19.2 100% Sed	17.8 94% 6% - <1% Sed	1/./ 100% Sed	12.1 99% <1% - 1% Sed 5.7 A0% 51% -1%	101 4970 0170 N. JOU 101 4902 5002 N. JOU	12.1 42.0 30.0	8.8 69% 31% Sed	4.9 2% 28% 69% Mp	18.3 77% 19% - <1% - 3% - 1% Sed	0.9 - 100% K Sed	0.8 - 100% KSed	0.8 1% 99% KSed	3.4 8% 92% Mv	11.3 11% 89% Mv	4.2 7% 93% Mv	3.7 5% 95% Mv	12.2 12% 88% Mv 3.0 7% 02%	W

and Na (589.5), Mg (202.5), K (766.4), Ca (315.8), and Fe (259.9) using radial plasma viewing. An ICP mass spectrometer (ICP-MS) (Agilent Technologies Inc., 7500ce) equipped with a He collision cell was used to determine the concentration of 38 elements. The elements and isotopes chosen for analysis were: Sc (45), Cr (53), Co (59), Ni (60), Cu (63), Zn (66), Ga (71), As (75), Rb (85), Y (89), Zr (90), Nb (93), Mo (95), Cd (111), Sn (120), Sb (121), Cs (133), La (139), Ce (140), Pr (141), Nd (146), Sm (147), Eu (151), Gd (157), Tb (159), Dy (163), Ho (165), Er (167), Tm (169), Yb (173), Lu (175), Hf (178), Ta (181), Tl (205), Pb (208), Bi (209), Th (232), and U (238). Although Pb isotope ratios in stream sediments change depending on the source rock, the quantitative values of Pb concentration obtained by ICP-MS were consistent with those determined by ICP-AES (Ohta, 2018).

The mercury concentration in undried samples was determined using an atomic absorption spectrometer that measured the quantity of Hg vapor generated from direct thermal decomposition of samples (Nihon Instruments Corp.; MA-2000). A standard solution prepared from a 1,000 mg/L mercury standard solution (Kanto Chemical Co. Inc.) was used to obtain the calibration curve. A wavenumber of 253.7 nm was used for determining the Hg concentration.

Quality control for the ICP-AES and ICP-MS analyses involved two geochemical reference samples, JB-1a and JB-3 (Imai et al., 1995), which were inserted at the rate of 1 for every 5 and 10 samples, respectively. The geochemical reference sample JSI-1 (Imai et al., 1996) was used for quality control of As and Hg determination and inserted at a rate of 1 for every 10 samples. Table 5 summarizes the analytical results for 53 elements in fine stream sediments (<180 µm) collected from remote islands around Kyushu. Element concentrations for SK03, Tn02, Tn09, Tn26, Yk01, and Yk17 samples, grouped into 7 grain sizes, are shown in Table 6. The As and Hg concentrations were recalculated as concentration per 1 kg of the thermally dried samples. The Zr and Hf concentrations were used only as a guide because the heavy mineral fraction, especially zircon, was not digested by the HF-HNO₃-HClO₄ solution.

The relative standard deviation (RSD) of the element concentration obtained from repeated measurements (n = 3) for Ts02, Fke07, Hr04, Am23, Tn02, and Yk01 samples was within $\pm 2\%$ for major elements, within $\pm 5\%$ for many minor elements, within $\pm 10\%$ for H₂O⁻, Li, Be, V, Cu, Zn, As, Nb, Ta, and Bi, and within $\pm 15-20\%$ for Sc, Cr, Mo, Cd, and Sb. The largest RSDs for Sn and Hg were within $\pm 100\%$ and $\pm 40\%$, respectively, perhaps due to heterogeneity of the Sn minerals (such as cassiterite) and Hg minerals (such as native Hg and cinnabar).

4. Results and discussion

4.1 Dependence of element concentration in stream sediments on grain size

Figure 4 shows the grain size dependence of the Al_2O_3 , K_2O , CaO, TiO₂, T-Fe₂O₃, Cr, Cu, Y, Cd, Cs, La, and Pb concentration for Sk03, Tn02, Tn09, Tn26, Yk01, and Yb17. The Sk03 sample originated from Quaternary mafic pyroclastic rock, Tn02 and Tn09 originated from a Paleogene accretionary complex, Tn26 originated from Neogene sediment, and Yk01 and Yk17 originated from Neogene granitic rock. The concentration of most elements in Sk03 was similar regardless of grain size, which suggests that sand-sized particles formed the agglutinate of silty-sized volcanic ash fall in Sk03.

The chemical composition variations for Tn02, Tn09, and Tn26 were similar across grain size. Concentrations of many elements in Tn02, Tn09, and Tn26 decreased with decreasing grain size from the very coarse sand fraction (1-2 mm) to the fine sand fraction $(125-250 \text{ }\mu\text{m})$, and then increased with a further decrease in grain size. This is called a V-shaped pattern. The CaO and Sr concentrations were largest in the coarse sand fractions (500–1000 μ m), and then sharply decreased in the fine fractions ($<250 \,\mu m$). Their systematic variation across grain size was controlled dominantly by the abundance of plagioclase in clastics. The coarse and medium sand fractions $(250-1000 \ \mu m)$ in Tn09 and the very fine fraction $(63-125 \,\mu\text{m})$ in Tn26 had the greatest concentrations of MgO, Sc, TiO₂, V, MnO, T-Fe₂O₃, and Co. These concentrations were influenced by the abundance of mafic minerals (olivine, pyroxene, amphibole, and biotite) and opaque minerals (magnetite and ilmenite). Enrichment of many elements in the finer stream sediments has been reported by Imai (1987) and Terashima et al. (2008), and was caused mainly by an increase in layer silicates (mainly clay minerals) containing Al₂O₃ and alkali metal elements, an increase in organic compounds bonding with heavy metals, and a less effective dilution effect with quartz that was less abundant in the finer fraction.

In contrast, the Be, Na₂O, Al₂O₃, CaO, and Sr concentrations in Yk01 and Yk17 samples increased gradually with decreasing grain size. These element concentrations, except for Al₂O₃, reached a maximum for the very fine sand fraction (63–125 μ m) or the coarse silt fraction (32-63 µm). Systematic variations in CaO and Sr in these samples were opposite to those in Tn02, Tn09, and Tn26. Plagioclase appeared to be abundant in the fine sand fraction originating from granitic rock in Yakushima Island. The variations in the Li, K₂O, Rb, and Cs concentrations with grain size show a V-shaped pattern: the fine sand fraction (125–250 μ m) or the very fine fractions $(63-125 \text{ }\mu\text{m})$ had the lowest concentration. The steep decreases in K₂O and Rb concentrations with decreasing grain size can be explained by resistance of K-feldspar to weathering because the physical disruption of quartz and K-feldspar produced little fine-grained material in the silty size fraction and was likely preserved in the coarser fractions (Minami et al., 2017). The concentrations of heavy metals, such as Cu, Zn, Cd, Sn, and Pb, increased dramatically in fractions smaller than

region.
yushu
e K.
in th
spu
isla
note
ren
from
ted
ollec
n) c
тп 03
(≤18
sediments (
stream s
line
for
ysis
anal
Elemental
Table 5

Hr03	0.645	3.61	15.05	0.135	1.02 2.74	4.61	0.287	14.4	8.13	19.5	1.25	39.1 264	45.8	35.2	13.3	26.5 162	16.8	5.58	44.6	137	13.8	14.7	0.949	0.268	2.18	61C.U	459	11.5	23.4 2 %0	10.7	2.44	0.625 2 20	0.356	2.23	0.480	0.215	1.54	0.232	0.c 0.676	0.056	0.288 713	0.188	4.98	CC.1
Hr02	0.919	2.11	16.89	0.207	3 25	0.99	0.338	9.77	8.26	15.7	1.01	26.0	65.1	30.2	20.6	40.9 25.4	17.9	6.34	35.1	156	16.0	6.98	1.03	0.392	2.49	2 14 3 14	360	11.8	27.3	11.6	2.69	0.749 2 54	0.394	2.46	0.535	0.230	1.57	0.232	2.0 0.525	0.151	0.274	0.280	4.33	1.09
Hr01	0.697	5.18	15.45	0.115	3 32	1.34	0.249	12.3	10.1	16.3	0.953	40.9	109	50.3	21.6	43.4 176	16.6	12.0	28.6	138	101	8.84	0.761	0.295	1.74	336	348	12.5	25.9 2.17	2.12 12.2	2.69	0.674	0.410	2.68	0.565	0.260	1.83	0.278	0.607	0.661	0.290	0.218	4.58	C7-1
Ikt02	0.928	2.06	18.71	0.317	0.965 1 58	2.03	0.399	12.1	4.54	22.7	1.83	23.0	241	48.7	74.1	31.6	21.8	7.27	44.5	175	22.2	29.5	1.21	0.375	2.56	2.71	472	30.5	67.1	0.91 25.1	4.71	1.26	0.591	3.69	0.775	0.334	2.26	0.322	2.03	0.078	0.331	0.232	7.70	1./0
Ikt01	0.893	2.04	17.87	0.377	1.23	2.13	0.538	11.9	6.33	22.2	2.04	1.22	181	46.1	71.2	46.1 217	24.0	7.04	48.4	183	20.8 240	28.5	1.31	0.599	3.35	2.57	585	45.3	94.8	36.8	6.44	1.51	0.671	3.78	0.730	0.284	1.84	0.287	1.83	0.063	0.362	0.320	11.7	1.04
Fks03	1.29	0.826	10.14	0.093	2.34 0.748	0.686	0.088	3.34	8.74	19.2	1.38	56.7	59.7 53.3	10.7	22.1	12.9	12.1	4.40	79.5	143	14.1 ۲	10.1	0.416	0.133	1.84	3 28	624	35.1	70.5	0.07 29.2	5.32	0.756 3 07	0.488	2.57	0.489	0.195	1.29	0.183	2.1 0 785	0.048	0.456 os e	0.128	12.4	1./0
Fks02	1.19	1.00	11.14	0.149	2.31	0.772	0.102	4.56	6.78	22.4	1.63	8.34	73.8	14.3	29.2	15.1 60 5	13.1	4.53	81.6	143	13.5 01	14.0	0.523	0.136	1.51	3 47 /	620	25.2	49.0	cc.c 19.9	3.66	0.837	0.396	2.32	0.450	0.203	1.31	0.192	01 101	0.040	0.436	0.142	7.18	1.41
Fks01	1.38	0.975	10.80	0.130	2.24	0.821	0.069	4.63	2.81	18.9	1.42	5/./	52.5	12.7	21.3	12.0	13.3	3.94	79.0	146	13.9 on	16.3	0.577	0.101	1.25	2.87 2.87	612	26.3	51.8 5 00	21.4	4.03	0.846 3.16	0.447	2.38	0.463	0.199	1.25	0.184	1.14	0.037	0.410	0.134	6.48	1.29
Tk02	0.575	0.995	16.44	0.219	1.18 0.543	2.07	0.182	11.9	4.02	21.2	1.87	101	317	36.0	105	36.0	21.2	5.90	51.8	71.8	18.1	32.5	1.14	0.201	2.08	3 28	358	28.5	62.9 6 43	0.45 24.0	4.88	1.21	0.568	3.26	0.637	0.256	1.66	0.244	2.11 2.11	0.055	0.337	0.187	8.07	4C.1
Tk01	0.864	1.76	16.33	0.252	0.766	1.77	0.295	11.8	6.83	26.0	1.93	18.1	104 234	44.1	92.8	28.9	20.4	6.64	48.0	86.8	20.2	27.5	1.49	0.130	1.95	69 E	256	32.9	68.1 7 20	0C.1 27.6	5.43	1.22	0.642	3.64	0.696	0.274	1.78	0.260	د.د 180	0.077	0.269	0.187	10.0	C7:7
T_{S23}	0.907	1.04	12.90	0.117	2.04	0.736	0.069	4.92	2.17	40.6	1.96	0.00	78.4	13.9	35.5	28.1	16.8	9.19	109	67.9	8.25 3.5	13.9	0.659	0.246	2.68	7 08	391	22.0	45.3	19.3 19.3	3.76	0.728	0.313	1.70	0.292	0.129	0.751	0.115	1 17	0.057	0.589	0.369	8.84	1.42
Ts22	0.932	0.966	11.02	0.119	1.81	0.635	0.088	4.13	1.72	37.0	1.75	8.03	64.7	14.3	32.0	43.4	13.9	6.31	90.1	63.6	6.61 75	11.5	0.455	0.227	2.41	0.714 6.78	363	16.9	35.0	4.14 15.7	3.27	0.589 7.46	0.302	1.43	0.241	060.0	0.557	0.087	0.95 0	0.091	0.503 76.0	0.294	7.94	1.24
Ts21	0.715	1.13	12.32	0.159	2.02	0.679	0.073	4.78	4.09	41.4	2.34	0.01 05.7	66.7	17.5	34.0	33.0	17.0	12.3	113	62.4	16.2	13.6	0.900	0.429	3.78	7.58	433	34.9	0.07 مره	0.40 31.3	5.87	1.04	0.591	3.08	0.553	0.186	1.27	0.178	1.17	0.097	0.647 36.4	0.494	11.2	1.00
T_{s20}	0.945	1.22	13.62	0.153	2.24	0.743	0.082	5.45	1.79	44.6	2.16	1.11	6113 81.3	14.1	38.6	39.4	17.6	11.2	120	66.6	11.0	14.2	0.939	0.336	3.15	c1.1 8 41	415	24.9	53.2	0.29 23.8	4.67	0.859 3 30	0.412	2.23	0.391	0.158	1.05	0.161	1 26	0.063	0.649 58.6	0.431	10.3	1./2
Ts19	0.966	1.39	14.28	0.106	2:45	0.779	0.131	5.67	1.03	56.0	2.26	102	10/ 84.4	15.2	41.4	25.8 156	1.61	11.2	125	63.3	11.3	15.2	1.102	0.294	2.88	7.84 7.84	439	33.6	72.1 8 77	30.3	5.52	0.925 3 57	0.430	2.18	0.417	0.161	1.07	0.162	1.28	0.041	0.655	0.316	11.4	07.7
Ts18	0.712	1.40	12.83	0.149	2.04	0.853	0.157	5.62	2.99	41.7	2.17	1.11	74.0	17.3	36.5	49.2	18.0	25.0	109	64.8	15.0 28	14.8	0.773	16.6	9.22	7 14	414	35.8	72.2	0.45 31.4	5.77	1.10	0.581	2.97	0.528	0.184	1.15	0.159	0.78	0.103	0.629	0.650	10.7	<u>+</u>
Ts17	0.912	1.09	13.14	0.141	2.09	0.808	0.111	5.10	3.17	41.6	2.08		77.0	14.9	36.6	31.5	17.6	9.71	112	75.0	12.8	15.0	0.899	0.335	3.09	8 22	411	29.3	61.6 7.03	26.4 26.4	5.07	0.993 3 71	0.464	2.41	0.440	0.168	1.11	0.168	1 23	0.092	0.636 30.5	0.405	10.2	1.09
Ts16	0.957	1.05	12.82	0.107	2.16	0.801	0.073	4.92	1.91	40.0	2.02	10.8 00 6	82.9	13.6	36.2	26.2	17.2	9.88	112	67.7	9.72 15	14.9	0.652	0.218	2.83	7.68	409	25.0	52.7	22.4	4.14	0.810	0.360	1.91	0.367	0.133	1.02	0.139	121	0.057	0.602	0.378	9.92	C0.1
Ts15	0.850	0.876	11.84	0.105	19.1	0.747	0.085	4.67	1.61	37.6	1.88	9.20	91.4 69.3	12.9	32.1	23.3	15.6	8.92	98.0	62.8	9.37	14.4 4.4	0.581	0.194	2.36	6.57	363	29.3	61.8 6 76	0.70 24.7	4.54	0.810	0.369	1.87	0.341	0.140	0.958	0.131	116	0.056	0.531	0.317	10.4	1.04
Ts14	1.00	1.40	13.72	0.108	2.22	0.796	0.110	5.69	2.52	55.5	2.20	1.11	88.7	16.4	42.0	27.0	17.3	11.5	117	71.1	8.35 3.6	14.6	0.750	0.101	2.76	467.0 7 93	353	24.5	50.6 5 76	21.1	4.13	0.758	0.354	1.71	0.324	0.117	0.777	0.122	00	0.067	0.593	0.411	9.85	1.0/
Ts13	0.806	0.970	12.52	0.106	2.02	0.768	0.109	4.56	3.09	40.4	1.88	0.01	79.2	15.1	35.4	23.4	16.1	9.92	107	67.6	8.00 36	00 4.4	0.676	0.168	2.64	06/.0 7.07	361	24.2	49.5 5 50	20.4	3.77	0.700	0.311	1.63	0.304	0.122	0.830	0.117	ce.u 91.1	0.076	0.549 26.5	0.398	9.15	46.1
Ts12 ^a	1.04	1.18	14.01	0.122	0.299	0.848	0.073	5.73	1.42	57.7	2.34	11.2	8.88	14.8	39.9	29.2	18.1	10.5	117	75.4	10.7	15.9	0.736	0.354	2.95	7.85	420	28.8	58.2	0.02 24.3	4.52	0.847 3.00	0.383	2.08	0.371	0.155	1.06	0.152	1 33	0.079	0.625	0.375	10.4	1.00
Ts11	0.893	1.12	13.96	0.115	2.33	0.805	0.080	5.58	2.37	53.0	2.19	5.11 5.11	91.4	15.3	39.6	26.5	17.9	10.1	120	72.6	9.70	15.1	0.687	0.211	2.84	006.0 85.8	414	26.4	54.5 6 04	0.04 22.5	4.17	0.767 2 07	0.358	1.91	0.326	0.143	0.956	0.140	1.1	0.088	0.637	0.399	10.0	1.49
Ts10	0.898	1.00	13.03	0.120	2.13	0.800	0.083	5.11	1.65	54.5	2.03	1.01	79.9	14.3	35.3	26.0	16.5	11.9	108	75.3	10.1	14.5	0.635	0.189	2.63	0.945 778	384	29.0	60.4 6 61	0.01 24.1	4.42	0.827	0.390	2.06	0.371	0.138	1.00	0.141	1 24	0.094	0.586	0.359	10.7	5. -
T_{s09}	0.914	0.845	12.07	0.102	2.01	0.761	0.057	4.63	1.64	39.3	1.82	9.41	72.1	11.3	31.7	21.6	15.0	8.31	99.3	68.7	8.78	13.8	0.576	0.163	2.61	cc/.0	387	26.4	54.6	22.5	4.22	0.748	0.324	1.68	0.326	0.130	0.912	0.125	1.17	0.047	0.532	0.290	9.54	1.40
T_{s08}	0.941	1.10	13.00	0.130	2.10	0.791	0.097	5.22	2.86	48.0	2.01	10.9	84.5	14.5	39.0	29.2	16.6	9.58	108	77.4	10.1	f 4	0.777	0.336	2.88	7.54	403	23.3	49.6 5 7.1	21.4	4.12	0.812	0.382	1.97	0.370	0.139	0.985	0.141	1 16	0.084	0.608 20.6	0.398	9.60	00.1
T_{s07}	0.916	0.996	11.76	0.110	0.217	0.730	0.083	4.68	1.25	49.4	1.79	9/.6	74.9 74.8	12.3	34.2	23.5	15.2	9.55	97.4	71.4	9.43 41	13.3	0.971	0.108	2.33	635	328	31.1	62.7	25.8	4.57	0.840	0.347	1.81	0.325	0.136	0.933	0.130	1.1	0.063	0.506	0.282	9.53	7:40
T_{s06}	0.936	1.08	13.80	0.111	0 199	0.823	0.080	5.37	1.06	43.8	2.10	5.11 5.11	85.4	13.2	37.4	27.0	17.7	9.97	117	70.3	12.1	15.0	0.711	0.154	3.00	0.841 7 49	411	38.3	77.2 8 04	o. <i>y</i> 4 32.5	5.96	0.874	0.512	2.63	0.432	0.159	1.03	0.144	1.1	0.041	0.621	0.335	15.4	07.7
T_{s05}	0.689	1.48	13.95	0.121	2.21	0.850	0.107	5.42	2.42	42.6	2.54	00.0	79.5	14.8	38.5	38.2	18.7	29.0	124	59.5	17.1	15.5	0.586	0.702	4.61	8 07	446	40.3	83.4	33.8	6.33	0.980	0.640	3.37	0.614	0.206	1.28	0.169	1 35	0.035	0.764	0.794	11.9	00-1
$T_{S}04$	0.563	1.33	13.03	0.143	2.00	0.846	0.106	5.18	3.89	42.2	2.24	11.4	79.6	15.9	37.9	29.3 124	17.7	12.3	Ξ	62.5	13.1	15.3	0.620	0.827	3.13	7.59	418	35.7	76.2 8 76	0.20 30.5	5.62	0.951	0.547	2.70	0.460	0.167	1.04	0.144	1 32	0.077	0.631	0.642	11.1	n=3).
T_{s03}	1.32	1.06	10.63	0.087	2.35	1.83	0.116	5.06	8.96	26.3	1.56	13.7	23.7 23.7	8.30	11.1	12.0	14.2	5.60	91.6	89.0	24.4 8.4	26.6	0.336	0.157	4.22	0.429 4 17	526	38.7	80.2	9.04 36.2	6.99	0.920 5 74	0.796	4.60	0.844 2.24	0.328	2.18	0.315	دد.u 1.68	0.024	0.472	0.204	15.4	alyses (i
T_{s02}	1.60	0.81	9.05	0.084	86.1 23	2.52	0.121	4.65	0.72	22.5	1.41	02.2	24.42	5.80	10.4	7.45	12.7	3.81	63.4	97.5	20.7 6.3	35.8	0.230	0.130	4.59	2.43 2.43	405	52.1	103	39.5	6.80	0.849	0.658	3.66	0.694	0.268	1.74	0.250	2.29	0.021	0.344	0.197	8.38	ated an
Ts01	1.24	1.07	10.60	0.093	2.29	1.08	0.092	5.09	1.45	26.9	1.54	0.11	04.7 29.4	9.64	12.0	01.2	14.4	9.62	96.6	86.3	7 7	15.3	0.468	0.422	5.25	5 16	534	40.4	82.6	35.3	6.32	0.928	0.648	3.69	0.680	0.264	1.66	0.238	C7-0	0.029	0.496 32.0	0.314	9.08	s of repe
Unit	wt%	wt%	wt%	wt%	wt%	wt%	wt%	wt%	wt%	mg/kg	mg/kg	mg/kg	mg/kg mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg mø/kø	mg/kg	mg/kg	mg/kg	mg/kg mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg mø/kø	mg/kg	mg/kg	mg/kg	mg/kg	m values
Element	Na_2O	MgO	Al_2O_3	P_2O_5	K ₂ U CaO	TiO ₂	MnO	$T-Fe_2O_3$	H_2O^-	Li	Be	s s	- 5	Co	Ni	Cu Z	Ga	As	Rb	Sr	Y,	n dg	Мо	Cd	Sn	S S	Ba	La	e C	PN	Sm	Eu	n fi	Dy	Ho Er	H H	Yb	Lu	II EL	Hg	E 4	Bi	ų :	a The me

continued.	
Ś	
е	
Tab	

lk12	-94	.83	1.59	.175	/o. 17	.930	.204	.49	.74	6.5	.13	6.19	/ .0 s	.46	1.3	13.0	253 2,53	40	54.0	189	3.6	43	5.08	374 374	11	.681	50	376	10.0	1.22	6.8	1.06	.05 1.05	.618	8.84 806	.19	308	20.2	1.3	.725	.028 777	1.2	343	767 767	
JK11 N	824	996	8.22 1	.148 0	cc.1	479 0	0.067 0	3.09	1.85	18.6	60.	7.58 1	8.5.8 8.4 8.4	10.8	14.7	26.4	160	10.	28.0	86.8	10.1	99 - 30	4. f	0 272.0	58	.984 0	t.34	378	0.61	34	12.2	2.33	80.3	.278 0	334 0	. 46.(.134 0	2040	, 10 96.(.552 0	.030 0	6.7.9	.325 0	- 01 01 01	
Ik10 N	.23 0	.805 0	0.05	.106 0	6C.1	0 909	.088 0	3.29	3.20	21.2	.20	202	2 Y	5.45 8	4.7	33.7	135	212	20.7	111	=	5 50	26.	.82/ U 146 0	68	.840 0	5.64	360	2.5	27	1.8	2.54	000	.306 0	380 0	0.10	.150 0	145 0	0 18.0	.632 0	.025 0 307 0	23.3	.283 0	1.61	
Ik09 N	.03	.681 0	87 9	0.000	06.0	. 593 0	.092 0	32 3	.37 3	5.0 2	38	80.8	1.81	5.6	2.3	8.5	- 197	- 1- - 1-	5.5	74.1	2.6 1	39	213 213	941 0 581 0	94	.34 0	4 9.	416 7 5		.52	6.5 1	550 2	.65	388 0	1.20 - 439 - 1 439 - 0	.15	.167 0	- 166 D	2011 11	702 0	.051 0 756 0	001 - 20 20 20 20 20 20 20 20 20 20 20 20 20 2	429 0	5.70 66 1 1	1
Ik08 N	899 1	931 0	1.70 5	080 0	037	636 0	.100 0	5 67.9	.49 1	5.1 2	22	1.0	67.7 7 1 2	. 20	5.3 1	1.7	- 106 2,5		9.98	5.2 7	3.8	1 2	2 3	0 707 0 707 0	56	.76 1	.26	418 7 7	0.1	58.	4.7	5 096 3 650 0	53	385 0	471 0	4	.198 0	10	1.5	.675 0	.063 0 842 0	9.2 8	441	2 50 2 50	
Ik07 N	.785 0	.759 0	7.85 1	0.060	4 S	0 80	.127 0	3.79	5 62.0	6.6	62	5.01	/ 00 / 7	7.36	11.2	0.57	843 2	5.6	1.42	17.8	9.8	26 26	5.94 2.0	.368 0 001	45	60.1	1.37	349	C.D. 10	53	1 61.0	190 0		273 0	354 0	. 86.0	.139 0	- 121 -	. 76 .76	.634 0	.019 0 300 0	0 4.3	218 0	3.77 : 745 :	1
Ik06 N	.70 0	1.32 0	0.96 7	.128 0	/ 02	571	.084 0	3.76 3	.49 (23.7 1	25	113 113	5.7 2.7 2.7	228	1.9	0.71	183	1.20	1.7	160	3.9	35	87.0	0 02/. 138 0	.080	.756 1	3.76 4	00		3.55	13.4 9	2.72 604 0	.46 J	371 0	2.35 1 470 0		.188 0	180 0	1.0	.614 0	041 0	0 4 10	264 0	5.42 143 0	
Ik05 N	. 16	177.	0.10 1	.068 0	635	0 10L	0.59 0	3.12	16.1	22.4	36	333	0.0	60.7	2.9	50.5	21.0	2.37	8.69	39.5	1.6	64 <u>5</u>	151	.426 U 176 D	18.1	0.04 0	5.84	818	- 25	. 080.2	8.3	5.00	2.52	.343 0	66. 10404	12	.160 0	150		.776 0	.034 0 184 0	22.8	273 0	3.44 12	
uko4 N	10.1	1.26 0	0.66 1	088 0	/0.1	.637 0	0.089_0	3.89	2.64	21.7	1.33	0.1	2.0	: - : -:	21.1	9.6	611	21.3	56.0	33.8 8	13.3	5 5	5.24	0 606.0	2.30	1.03	5.62	389	0.11 24.2	10.4	15.3	3.16	2.58	371 0	2.26	1.25	181 0	181	1.2	.686 0	.042 0	38.5	.646 0	2.62 1.06	
Vk03 N	.557	699.	7.54 1	054 0	60.1	522 0	.068 0	2.71	1.63	20.4	16.0		02.0 06.8	66.9	9.01	10.5	1.73	101	59.0	57.6	6.8	44 5	6C.0	177 0	140	.459	5.63	101	1.00	2.13	7.63	1.51	1.23	.180 0	229 0	686	108 0	100		505 0	.040 222	14.4 0	.142 0	864	
Vk02 P	1.96 0	.930 0	2.25	083 0	06.1	.580 0	.095 0	3.33	3.10	34.6	1.53	9.56	- F	5.16	11.0	14.0	86.4	0.4	78.5	125	17.3	80	/.T8	0 202 0	5.06	1.22 0	8.56	391	0.11	80.4	15.4 `	3.19	2.89	441	2.65	1.65 0	248 0	1.73 0	2.2	.589 0	.043 0 481 0	22.7	246 0	6.71 2.18 0	
VK01 N	1.71	.947 0	2.61 1	102 0	1./1	0 210-0	0.076 0	3.72	4.04	22.6	1.38	8.0	0.70	7.89	96.6	18.5	132	16.2	75.8	100	13.5	5 2	80.0	./63 U	2.23	1.54	60.2	476	4.61	4.34	15.6	3.11	2.50	376 0	2.18	1.34	201 0	1.45	2.0	.569 0	055 0	27.4 2	.238 0	7.35	
7 20jC	.560	1.26 0	0.11 1	304 0	678.1	2.47 0	338 0	16.6	5.94	23.8	1.86	26.0	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	20.0	56.4	48.2	201	0.07	42.8	98	18.3	186	20.0 20.0	2.10 0 283 0	67 E	.752	3.52	42 24 22	51 4 51 4	2.08	19.5	4.10	3.79	572 0	5.44 638 0	1.93	269 0	1.86	6.4 6.4	2.40 0	0000	20.3	.248 0	7.83 1 76	
) 10įc	.442 0	1.28	0.21 2	399 (0 171	2.49	.432 0	17.6	7.30	32.6	1.35	29.2	120	46.0	68.1	58.6	390		36.9	98	13.8	178	21.2	1.37	3.01	.631 0	3.41) 313 201	1.02		16.5	3.57	3.02	0.466 0	2.68	1.51	0.210 0	1.49 1.210 f	4.1.4 1.4	2.09	0 000 0	212	0.297 0	6.94 1.57	
Jk03 (1.62 (1.17	7.47 2	0.290 (- 1 00 1	2.24	.196 (13.5	4.91	24.9	1.99	16.5	11/	28.4	38.9	4.6	280	212	40.5	171	24.6	158	0.74	2.06	14.1	.496 (1.51	393	0.07 23 0	5.96	24.2	5.52	5.28	.800	4.45 859 (2.33	.300 (1.97	3.9	3.15	0.075 (95.2	0.196 (5.85	
Jk02 1	.951	1.21	4.58).380 (1 44	2.22	.220 (16.6	4.75	29.3	2.46	16.6	33.8	26.4	15.9	27.6	227	1.07	39.1	125	35.6	241	27.1	2.63 0.168 (5.52	.425 (1.61	310	6.67	7.15	29.8	6.99	7.13	1.12	6.48 2.62 (3.40).458 (3.01	5.8	3.24	0.102 (23.4	0.103	6.05 2.12	
Uk01 1).459 (1.05	18.29	0.713 () 002.U	2.14	0.216 (15.9	8.44	27.2	2.56	21.8	4.0.04	26.8	19.5	41.6	363	9.52	49.0	119	50.4	312	69.9 10	3.10 0.448 (5.31	0.726 (3.67	421	4.0.4 0.00	11.2	47.2	11.4 2.20	12.2	1.78	185	5.01).646 (4.13 0.551 (7.5	4.63	0.085 (42.3	0.395 (10.3 2.46	l
lki07 l	1.80 (2.23	16.00	0.292 (- 64 2 05	3.31	0.179 (12.0	4.29	32.1	2.28	19.7	151	33.4	66.4	19.5	188	6 68	55.2	235	22.6	209	1.80	6/11 0 11 0	2.65	0.487 (2.07	428	7.7C	9.32	32.7	5.88	5.26	0.745	4.37 789	2.22	0.308 (1.97	4.6	3.40	0.065 (14.3	0.107 (9.53 1.86	
lki06	1.77	1.47	17.45	0.318 (1.78	3.35	0.209 (12.2	6.34	24.2	2.93	18.2	195	34.1	59.3	18.2	167	5.52 6.76	71.0	183	25.1	253	1.61	2.14	3.44).665 (3.41	574	101	10.8	37.8	7.00	5.93	0.868 (4.88) 895 (2.50	0.360 (2.30	5.6	4.79	0.054 (20.6	0.163 (14.1 2.30	
Iki05	0.59	1.40	19.86	0.310 (C/.U 811	2.66	0.300	16.2	10.9	19.8	1.70	26.4	244 261	62.4	112	53.3	168	6.85	33.8	106	18.7	204	33.2	1.20 1414 (2.95	0.558 (2.21	450	512	5.05	20.1	4.31	4.00	0.617 (3.58	1.96	0.280 (1.82	4.6	2.21	0.075 (18.9	0.223 (6.11 1.64	
lki04	0.77	1.55	20.01	0.423	1.24	2.46	0.332	13.7	10.6	24.0	2.90	25.7	199	48.0	124	42.9	316	5 74	47.6	142	29.8	287	54.9	2.65 0.474	3.40	0.693	3.23	592	41./ 83.1	8.98	33.8	6.72 1.05	6.13	0.874	5.18 0.967	2.67	0.382	2.42	6.4.9	3.87	0.066	21.7	0.246	10.9 2.48	ł
Iki03	1.49	2.09	14.06	0.261	1 00	3.34	0.325	11.5	3.73	25.2	2.55	18.2	1/2	38.7	62.5	21.7	196 27 4	13.1	68.9	156	22.6	194	1.20	1.80	4.00	0.915	3.59	569	c01	15.1	46.4	6.94 1 42	5.50	0.752	4.22 0.803	2.16	0.305	2.01	4.5	6.29	0.231	25.9	0.226	21.8 2.24	
Iki02	1.38	1.83	15.33	0.322	1.60	3.82	0.292	13.0	4.33	24.8	2.75	20.0	061	40.2	57.6	25.9	186	6.77	73.0	161	23.4	249	69.3	6777	3.70	0.915	4.10	538	1.00	10.2	34.8	6.27	5.41	0.756	4.41 0.823	2.28	0.317	2.13	5.4	3.46	0.043	31.2	0.208	15.0 2.10	1
Iki01	1.88	1.94	17.74	0.289	1.42 2.23	2.08	0.131	10.6	5.99	63.8	2.11	20.4	160	31.7	68.0	35.7	183	14.9	61.3	161	22.9	222	0.44.0	100.01	3.47	0.764	4.46	272	C.0C	8.01	29.5	5.90	5.09	0.720	4.17 0.797	2.19	0.304	1.94	5.1	3.24	0.075	25.0	0.304	10.5 2.49	1
Mt01	1.80	0.94	10.84	0.078	1.30	1.08	0.107	5.67	2.56	24.5	1.01	11.2	930	20.2	48.3	18.4	80.0	14.0 4 43	52.4	81.1	13.4	08 ç	10.6	050.0	1.67	0.501	3.04	265	12.8 28.4	3.07	11.4	2.28	2.15	0.339	2.13 0.458	1.36	0.205	0.208	2.0	0.812	0.058	14.7	0.205	4.87 1.55	
Os02	1.35	1.18	12.39	0.093	2.34 0.866	0.527	0.068	3.46	15.48	33.5	1.58	8.31	6./C	8.20	15.6	17.0	118	7 43	87.5	103	15.8	06 [1.01	0.177	2.30	0.772	5.38	343	18.2	3.89	13.8	2.65 0.560	2.15	0.334	2.28 0.494	1.63	0.259	1.7.1	2.4	0.698	0.058	21.4	0.262	6.93 2.16	
Os01	1.34	1.42	11.08	0.108	21.12 1.36	0.581	0.267	3.96	3.88	24.1	1.42	8.70	03.0 58 0	12.1	20.8	16.1	139	5 85	73.0	129	16.3	8/ 1	9/./	0.059	2.14	0.654	3.69	572	2.61 2.84	4.58	16.9	3.40	2.76	0.395	2.58	1.58	0.254	21.1 0.764	2.1	0.724	0.046	17.9	0.216	7.27 1.62	
Hr09	1.05	1.89	13.27	0.105	1 77	1.18	0.174	8.4	6.36	18.1	1.38	20.9	191 413	16.3	12.4	13.2	115	C.01	66.8	137	19.8	102	9.22	0.686	2.15	0.543	4.67	480	C.U2	4.90	18.7	3.92	3.61	0.543	3.29 0.693	2.00	0.298	1.93	2.6	0.672	0.070	20.4	0.229	6.49 1.43	1
Hr08	0.641	3.02	16.95	0.107	961.0 27 C	1.23	0.234	12.1	8.45	19.4	Ξ.	33.6	211	27.2	9.8	40.6	132	9 12	34.0	115	17.9	94 5	0.31	0.217	2.30	0.691	6.02	289	4.01 20.8	3.17	12.3	2.83	2.76	0.437	2.80 0.606	1.84	0.261	1.74	2.5	0.510	0.798	21.3	0.211	4.89 1.20	
Hr07	0.465	1.65	13.85	0.180	1 20	1.14	0.269	9.42	6.13	24.1	1.18	23.2	C61 257	23.9	13.5	25.2	180	42.9	53.1	80.5	15.3	81	8.18	0.291	2.59	4.08	9.42	401	14.4	3.11	12.3	2.78	2.67	0.413	2.54 0.548	1.60	0.236	1.55 Acc 0	2.2	0.687	0.139	22.9	0.836	5.35 1.27	=3).
Hr06	0.506	1.91	16.65	0.125	1.65	1.08	0.223	9.74	7.46	17.8	1.07	26.4	251 212	20.6	7.83	23.4	166	7 19	44.0	91.1	18.6	66 j	62.0 200 0	0.806	1.94	1.05	4.16	310	12.4 28.2	3.11	12.3	2.89	2:90	0.460	2.94 0.642	1.95	0.287	56.1 0 288	2.7	0.503	0.236	20.5	0.237	4.72	lyses (n
Hr05	0.515	2.33	17.26	0.126	0.908 0.00	1.22	0.217	10.7	10.7	18.8	1.02	28.9	65 0	30.7	21.4	57.3	154	5 59	39.6	121	12.3	46 (0.45	0.856	1.86	0.626	2.94	399	10.8 23.6	2.57	9.8	2.21	2.05	0.320	2.00	1.27	0.195	0.100	2.5	0.522	0.069	24.8	0.228	4.68 1.23	ited ana
Hr04 ^a	0.632	2.14	17.45	0.138	2 1.UZ	1.28	0.301	10.2	8.62	19.9	1.32	27.0	6 C 77	28.8	14.5	48.9	139	7.56	46.2	129	16.0	102	05.0	0.275	4.63	0.806	4.10	419	6.61 9.86	3.20	12.5	2.77	2.62	0.413	2.59 0.543	1.62	0.242	1.62	2.73	0.538	0.252	24.6	0.226	5.64 1.52	of repe
Unit	wt%	wt%	wt%	wt%	WT%0	wt%	wt%	wt%	wt%	mg/kg	mg/kg	mg/kg	mg/kg ma/ba	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg mo/ko	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg ma/ka	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg mø/kø	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg mg/kg	1 values
Element	Na_2O	MgO	Al_2O_3	P_2O_5	N20	TiO,	MnO	$T-Fe_2O_3$	$\rm H_2O^-$	Li	Be	Sc	> č	රී	Ni	ı Cu	u S	As	Rb	Sr	Y	Zr	qN 2	e Po	Sn Sn	Sb	Cs	Ba L	P Ta	망문	PN	Sm Eu	e Ba	dT d	Dy Ho	Er	Tm	4b 1	Η	Та	Нg	Pb	Bi	ff 1	^a The mean

Am08	1.29	0.916	12.06	0.108	1.85	0.420	0.072	4.16	1.86	47.1	1.87	8.06	75.2	53.9	10.0 23.4	16.2	114	15.0	5.02	86.6	84.1	10.9	56	11.0	200.0	0.240 2 12	0.606	5.19	363	25.8	51.1	5.80	3.79	0.710	2.91	200.0	0.376	1.05	0.155	0.150	1.5	0.919	0.055	0.482 20.9	0.255	8.78	1.01
Am07	1.24	1.08	13.06	0.136	2.32	0.632	0.064	3.68	2.09	44.3	2.10	8.36	61.6	62.2	10.0 23.0	21.0	91	16.8	5.92	108	103	12.1	51	10.8	0.105	01.10 0.18	0.597	7.80	450	29.8	57.1	6.71 24.3	4.38	0.880	3.28	2.22	0.405	1.10	0.158	0.157	1.4	0.906	0.066	0.040 25.7	0.366	9.06	1.09
Am06	1.50	1.27	11.58	0.170	2.17	0.548	0.081	3.95	2.62	41.3	1.70	7.94	72.0	69.69	763	35.9	114	14.4	6.07	87.7	92.6	11.7	57	10.0	C07.0	0.130 2.13	0.720	5.54	346	24.2	47.0	5.44 10.7	3.61	0.718	2.67	2.02	0.389	1.15	0.166	0.163	1.5	0.828	0.088	25.7	0.277	7.69	c1.2
Am05	1.32	184	13.52	0.134	2.20	0.984	0.095	5.03	2.64	50.7	1.61	12.5	101	80.5	0.71 41 3	27.2	132	15.8	7.12	0.66	103	19.4	62	10.2	106.0	- 57 c	0.936	9.18	277	20.9	41.7	5.03	3.77	0.821	3.38	3.08 3.08	0.615	1.81	0.272	0.269	2.2	0.884	0.136	210.0 38.9	0.458	8.05	cc.2
Am04	1.41	0.96	10.93	0.091	1.96	0.540	0.046	3.79	1.88	43.3	1.57	7.01	62.6	61.8 o 5 o	0C.0 24.6	13.8	92	12.6	6.26	76.1	91.4	10.0	50	9.56	0.102	158	0.849	4.41	410	21.7	43.7	4.95 18 2	3.27	0.647	2.48	0.22.0 1.81	0.344	0.916	0.145	0.141	1.3	0.824	0.058	0.414 19.5	0.201	8.11	1.41
Am03	1.51	1.36	11.12	0.091	1.93	1.14 0.640	0.122	4.36	1.59	33.7	1.10	10.3	75.0	140	68.9	20.0	106	11.7	8.06	63.3	122	12.1	41	7.87	0.004	1 70	0.885	4.81	398	16.8	31.7	3.73	2.72	0.638	2.38	0.540 2.02	0.405	1.14	0.163	0.158	1.2	0.746	0.079	0.240 18.0	0.198	5.79	77.1
Am02	1.82	1.55	12.45	0.120	1.92	0.533	0.024	4.59	2.90	46.2	1.47	10.7	71.8	107	53.7	31.7	252	14.8	5.61	6.06	98	19.2	62	10.6	CU.1	0.420 2.57	0.879	7.22	249	24.9	49.7	5.87	4.37	0.875	3.76	3.17	0.621	1.76	0.247	0.244	2.2	0.931	0.162	24.7 24.7	0.357	8.43	2.52
Am01	1.45	1.70	12.53	0.111	1.77	1.61	0.106	5.92	1.95	32.8	1.47	15.8	93.5	161	4. CL	26.7	154	15.4	6.09	81.2	149	19.2	73	11.6	0.024	407.0 2 7 7 2	1.05	5.89	318	25.3	49.6	5.76 21.8	21.0 3.93	0.880	3.33	. 205.0	0.635	1.79	0.261	0.259	2.0	0.928	0.065	0.42/ 23.4	0.292	96.6	c <i>V</i> .1
0y01	2.28	3 82	14.48	0.229	0.832	5.18	0.209	10.1	1.86	20.3	1.23	21.7	262	97.7 9.1 c	28.3	21.5	202	18.0	2.86	34.1	315	25.6	55	14.0	150.0	217.0	0.448	4.46	260	15.9	38.7	4.61 10 5	4.49	1.28	4.28	4.10	0.871	2.40	0.356	0.343	1.8	0.811	0.031	13.9 1	0.124	5.99	0.844
Ut02	1.16	2.91	20.16	0.140	0.653	3.30 1.18	0.231	10.6	3.11	24.6	1.34	23.0	202	29.9 21.5	C-17	14.1	154	22.3	2.95	28.3	264	22.5	124	9.94	0.855	0.22.U	0.239	2.57	444	19.4	44.3	4.91	4.24	1.34	4.15	3.62	0.749	2.29	0.331 2 20	0.363	3.1	0.709	0.031	0.22.0 15.3	0.157	4.72	1.00
Ut01	1.42	1.90	12.26	0.112	1.28	1.61	0.174	11.4	2.10	25.4	1.15	14.1	235	63.3 1 ° °	171	15.9	157	17.4	3.55	51.5	145	15.0	75	12.9	0.884	1 80	0.447	3.29	301	41.6	82.7	9.33 22.6	5.83	0.804	4.16	0.409 2.64	0.505	1.47	0.205	0.212	2.0	0.871	0.043	0.20/ 15.0	0.176	11.6	c/.1
Fke15	0.336	0.617	8.47	0.070	1.14	0.369	0.101	2.59	1.28	20.6	1.27	7.84	44.3	28.9	1.00	26.6	6.69	9.38	15.4	42.9	48.0	25.3	12	6.88	7.57 102	0.120 0.68	0.924	4.70	291	21.4	45.4	5.73	5.18	1.27	5.06	u. /00 4.55	0.856	2.30	0.299	0.228	0.3	0.650	0.022	14.1 14.1	0.936	4.63	c4/.0
Fke14	0.555	1.27	10.93	0.187	1.16	1.16 0.847	0.118	5.96	2.81	20.8	1.00	12.1	85.4	95.4 16.0	47.8	25.2	127	12.4	10.5	46.8	86.7	10.9	63	12.6	0.985	017.0	0.882	3.12	389	13.0	28.9	3.05	2.52	0.594	2.13	02C.U	0.388	1.14	0.162	0.147	1.5	0.902	0.041	0.420 15.4	0.298	4.71	1.10
Fke13	0.631	1.70	20.58	0.385	0.95	1.53	0.232	13.4	7.97	25.7	1.84	23.3	169	182	7.60 100	46.8	266	22.7	10.1	50.9	151	23.2	167	31.6	0.202	2.05 2.05	0.868	4.23	537	25.6	64.9	5.97 73.7	5.25	1.40	4.69	4.20 4.20	0.819	2.33	0.341	0.308	3.8	2.12	0.075	0.402 23.9	0.337	7.81	1.77
Fke12	0.415	0.975	11.46	0.152	1.48	0.814	0.110	5.89	2.46	21.8	1.33	11.0	84.5	64.8 16 1	10.1	20.9	140	13.8	35.6	66.6	75.1	10.9	60	15.5	1.4/	/0C-0	138	6.92	405	16.6	38.7	3.82	2.91	0.674	2.30	2.01	0.387	1.06	0.160	0.140	1.4	1.05	0.045	0.25.0 25.0	0.687	5.66	1.07
Fke11	0.738	0.904	10.50	0.106	1.49	0.997	0.091	4.56	2.20	26.8	1.35	14.1	65.6	52.1 10.5	14.5	29.6	82.9	13.4	14.8	60.0	78.9	15.6	31	8.06	0.808	101	121	7.41	410	14.2	29.1	3.49 12 0	3.13	0.788	2.83	2.71	0.542	1.53	0.209	0.171	0.93	0.641	0.025	19.6	1.41	4.66	0.65.0
Fke10	0.873	0.887	9.51	0.100	1.45	1.19	0.093	4.20	1.80	21.1	1.20	12.6	65.4	32.8	ور.ه 111	13.5	7.9T	11.2	15.8	54.2	88.1	14.0	23	7.48	890.0	0/1/0	2.25	5.50	422	14.2	28.2	3.45 13 5	3.02	0.765	2.71	0.420 2.58	0.502	1.32	0.203	0.158	0.67	0.597	0.027	0.40.0 17.8	0.634	4.56	0.//1
Fke09	1.29	0.728	10.59	0.063	2.13	0.665	0.052	3.05	1.37	24.3	1.34	10.0	41.5	21.5	0.00	13.7	56.4	12.0	7.98	83.6	L. L.L	10.3	9.4	8.54	1.05	/c1.0	1.46	7.23	450	22.5	44.5	5.17	3.86	0.695	2.91	2.10	0.386	1.06	0.149	0.134	0.27	0.719	0.018	20.7	0.329	6.26	1.41
Fke08	0.564	0.653	10.30	0.074	2.54	0.324	0.033	2.51	1.46	28.3	1.51	6.56	39.9	23.4	9.54 0.54	10.7	6.69	11.2	23.9	124	49.9	8.79	10	7.81	2.20	CC1.0	1.94	9.14	468	28.1	54.8	5.95	3.88	0.542	2.85	1.70	0.318	0.807	0.129	0.125	0.30	0.793	0.028	1.20 21.9	0.277	7.56	2.10
Fke07 ^a	<i>LT</i> 0.077	0.943	14.95	0.150	2.46	0.746	0.122	5.61	2.58	26.6	1.74	13.3	67.5	34.6	0.04	14.2	88.7	16.2	26.7	120	80.2	19.9	29.7	9.24	107	0.197 2.55	1.69	10.0	581	22.1	45.7	5.18 10.8	4.28	1.01	3.84	2000 244 24	0.675	1.85	0.263	0.244	0.837	0.835	0.028	26.0	0.549	8.44 8.4	1.48
Fke06	0.285	0.615	7.00	0.119	0.949	0.536	0.209	3.41	3.20	18.7	0.78	5.77	45.6	50.2 17 5	19.3	10.1	53.6	9.28	5.52	40.8	46.3	6.35	43	9.66	0.455	1 27	0.654	2.84	279	25.0	57.2	6.44 24 6	4.58	0.696	2.75	1.41	0.241	0.620	0.091	0.087	1.1	0.704	0.023	0.200 12.5	0.154	7.60	1.08
Fke05	0.282	0.570	7.90	0.087	1.52	0.274	0.064	2.86	1.15	21.5	1.05	6.49	49.8	33.6 ° 07	0.0/	14.0	78.8	9.33	12.1	62.4	41.8	7.22	29	9.43	0.400	/c1.0	0.754	5.05	363	16.3	36.7	3.82	2.46	0.480	1.83	0.240 1.34	0.269	0.751	0.106	0.104	0.77	0.744	0.015	ە، د. ט 16.6	0.175	6.78 2.232	0.882
Fke04	1.17	1 40	10.68	0.141	2.02	1.23	0.079	4.41	1.63	27.2	1.16	10.4	59.8	31.1	24.5	11.0	64.3	11.2	9.31	81.4	133	13.4	48	15.7	1.04	177	0.947	4.54	451	26.2	50.9	5.56	3.69	0.777	3.13	2.40	0.470	1.29	0.186	0.170	1.1	1.15	0.014	0.004 12.7	0.221	6.94	1.10
Fke03	0.994	0.865	11.70	0.080	1.63	1.51	0.240	4.79	2.06	24.9	1.52	15.0	64.8	27.5	01.7 11 6	11.8	93.5	14.8	6.16	65.1	101	21.3	38	10.8	0.746	0+C.U	0.991	3.38	484	18.6	42.7	44.4 7 2 2	3.79	1.08	3.60	3.61	0.709	1.98	0.272	0.225	1.1	0.770	0.026	26.2 26.2	0.457	4.41	1.00
Fke02	0.573	0.563	9.31	0.068	1.32	0.593	0.170	2.79	1.49	23.3	1.87	9.10	40.8	23.2	40 5 04	24.6	127	10.5	13.4	49.2	55.5	43.9	18	7.59	2:41	0.00.U	0.970	4.29	359	33.5	55.0	77.7 20.4	6.29	1.72	7.05	6.39	1.278	3.35	0.436 2 51	0.355	0.52	0.618	0.019	25.9	0.914	4.60	216.0
Fke01	0.862	0.732	11.11	0.085	1.99	0.829	0.111	3.78	1.95	29.2	1.82	9.82	49.8	31.5	14.2	16.1	93.0	13.4	8.69	79.8	84.4	15.1	39	9.63	1.09	400.0 95.0	1.15	6.48	496	15.9	30.6	3.76	2.88	0.715	2.72	0.424 2.62	0.501	1.46	0.204	0.181	1.2	0.798	0.045	0.722 30.4	0.434	5.63	c1.1
Hs03	0.925	0.792	9.99	0.085	1.83	1.13	0.073	3.29	1.48	33.4	1.12	8.80	57.3	35.2	CL./	24.8	116	11.5	6.07	72.8	93.7	11.7	13	7.57	0.496	2.40 /	1.35	6.26	408	12.8	24.7	3.04	2.35	0.588	2.06	CIC.0	0.378	III	0.147	0.140	0.38	0.627	0.029	0./.0 22.1	0.517	4.51	0.894
Hs02	1.73	0.860	13.09	0.084	2.26	2.32 0.589	0.114	4.17	1.82	32.4	1.35	13.3	67.6	35.2	0.14 10 3	13.3	118	15.8	11.8	92.1	116	21.3	19	7.13	96/.0	CU2.U	2.38	4.67	433	18.5	36.9	4.25	3.51	0.852	3.28	3.33	0.669	1.89	0.280	0.250	0.62	0.603	0.032	0.0.0 34.9	0.592	6.41 2.20	67.7
Hs01	1.30	0.700	12.00	0.080	1.82	1.28	0.098	4.05	2.22	25.8	1.30	12.5	60.9	30.1 ° ° °	C7.0	15.8	128	14.7	7.67	77.5	83.6	17.7	31	6.53	609.0	407.0	1.68	8.12	410	14.0	28.4	3.46 13.5	2.96	0.708	2.91	2.85	0.585	1.65	0.231	0.197	0.89	0.545	0.032	167.0 36.7	0.495	4.51	0.912
Wk03	1.02	0.710	10.04	0.057	1.82	0.699	0.095	3.19	2.59	27.3	1.57	8.08	49.7	30.0	14.7	16.3	80.1	11.8	6.96	71.4	90.0	13.7	42	8.20	CI0.0	1 76	0.890	5.49	465	16.2	30.6	3.58 13.3	2.68	0.595	2.38	2.18	0.446	1.30	0.182	0.180	1.2	0.682	0.039	29.6	0.261	5.29	cu.1 =3).
Wk02	0.728	0.614	9.46	0.111	1.77	0.649	0.122	3.03	3.64	25.0	1.60	7.43	37.4	24.4	00.0	19.0	116	11.4	21.8	82.4	65.2	13.4	4	6.38	1.12	2 87	1.94	7.53	380	13.6	25.7	3.06	2.53	0.548	2.25	2.13	0.449	1.30	0.180	0.179	1.2	0.589	0.073	26.7 26.7	0.468	5.40	r) cz.1
Wk01	0.873	0.833	10.69	0.056	1.70	0.980	0.091	3.61	1.26	24.5	1.29	8.88	59.7	36.7	15.1	17.0	71.6	12.2	12.7	71.2	73.9	10.4	40	10.7	0.042	1 88	1.13	6.23	352	12.1	21.1	2.73	1.99	0.477	1.81	C/770	0.352	1.03	0.144	0.150	::	0.583	0.015	0.400 20.8	0.250	5.17	ated ana
Nk13	1.05	113	7.93	0.067	1.25	1.50	0.248	5.15	8.74	14.8	0.97	13.3	59.2	31.0	1C./	7.25	116	9.51	3.39	43.0	88.5	14.9	33	14.5	0.150	001.U	0.860	2.37	333	13.3	28.4	3.29	2.99	0.614	2.81	2.52	0.519	1.48	0.216	0.193	1.1	0.589	0.017	74.2	0.503	3.35	0.0/1 of repea
Unit	wt%	wt%	wt%	wt%	wt%	wt%	wt%	wt%	wt%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mo/ka	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg mg/ba	me/ke	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg mg/kg	mg/kg	mg/kg	mg/kg 1 values
Element	Na ₂ O	MgO	Al_2O_3	P_2O_5	K_2O	CaO TiO	MnO	$T-Fe_2O_3$	H_2O^-	Li	Be	Sc	>	చర	3 iz	Cu	Zn	Ga	\mathbf{As}	Rb	Sr	Y	Zr	qn 2	M0	5 5	r ds	Cs S	Ba	La	Ce	Pr	Sm	Eu	Gd	D VD	Ho	Er	Tm A	Lu	Hf	Та	Нg	Pb	Bi	f :	U ^a The mear

Am41	1 5.1	10000	13.17	0.089	2.18	0.537	0.652	0.067	4.10 1 93	34.4	1.10	9 U2	61.5	45.9	9.27	16.8	16.2	83.4	15.5	8.72	93.9	117	15.3	85	14.1	0.455	0.120	2.17	0.960	6.29	488	27.8	51.0	0.01	3.97	0.785	3.09	0.428 252	0.497	1.4	0.215	1.48	0.217	2.2	1.14 0.070	0.522	20.4	0.263	8.92	1./0
Am40	158	00.1	15.08	0.065	2.32	0.790	0.707	0.080	2.58	0.00	1 60	10.0	78.9	32.4	9.92	11.8	14.8	85.7	16.6	9.06	93.5	152	17.0	107	9.59	0.623	0.147	1.78	0.707	6.96	587	20.8	32.5	4.00 164	3.08	0.778	2.84	0.417 2.70	0.570	1.69	0.253	1.71	0.262	2.8	0.813	6/0.0 0 526	21.1	0.181	7.70	1.85
Am39	1 / 1	141	12.52	0.094	1.95	0.538	0.657	0.055	4.10 1 96	32.0	0.70	0C-1	600	40.6	8.50	17.4	13.9	91.3	14.6	6.34	80.9	114	12.6	74	10.1	0.392	0.149	1.87	0.810	5.62	464	29.1	53.8	0.10	3.60	0.691	2.82	0.385 2 15	0.433	1.23	0.183	1.23	0.194	2.0	0.854	0.450	20.5	0.179	9.05	1./U
Am38	1 26	0.2.1	10.53	0.078	1.90	0.305	0.779	0.045 3.75	c/.5	361	1.00	1.40 6 00	0.20 583	35.8	8.37	14.5	11.4	70.8	13.3	6.17	81.2	82.4	11.3	76	10.9	0.693	0.074	1.62	0.636	4.94	340	26.7	49.7	24.c	2.98	0.543	2.48	0.548 2.06	0.398	1.16	0.183	1.17	0.181	2.0	0.889	C0U.U	17.2	0.172	8.91	2.19
Am37	1 37	76.1	11.80	0.103	1.99	0.558	0.567	0.059 7 80	3.80 1.60	41.7	715 216	01.2	40.4 60.6	58.0	14.9	33.0	18.0	129	15.1	5.23	86.8	106	13.1	58	10.8	0.479	0.210	1.85	0.645	5.23	431	33.2	64.8	27 0	4.99	0.846	3.92	20C.U	0.456	1.19	0.168	1.10	0.160	1.5	0.914	0.481	21.5	0.241	9.93	1.04
Am36	1 2/	1001	11.12	0.095	1.90	0.558	0.582	0.052 7.77	5.7 144	37.0	02.10	1.79 6 02	57.6	49.8	9.50	24.7	13.3	95.7	13.9	4.65	79.7	100	11.1	4	10.4	0.503	0.151	1.81	0.581	4.25	431	31.2	62.4 7.00	۶0./ 25.3	4.33	0.760	3.20	0.404 2.06	0.396	1.10	0.164	1.08	0.167	1.6	0.891	0.447	19.8	0.258	10.3	1.40
Am35	1 60	2775	12.68	0.117	1.84	1.71	1.34	0.079	0.32 1.63	30.3	02.60	0/11	176	156	17.2	44.6	15.3	93.3	15.9	6.44	84.5	125	13.0	81	15.4	0.516	0.122	1.98	0.605	5.06	360	27.5	53.2	CI.0	4.21	0.902	3.42	0.442 2 42	0.476	1.27	0.191	1.28	0.200	2.1	1.05 0.10	0.468	18.6	0.203	8.19	1.5U
Am34	1 16	0.000	11.51	0.095	1.92	0.427	0.600	0.055	4.12	30.7	1.60	10.1	67.1	51.2	8.36	22.4	16.8	104	14.4	4.73	76.3	82.6	12.3	81	10.4	0.542	0.168	1.94	0.534	4.11	466	23.1	46.5	40.0 193	3.46	0.665	2.75	0.584 0 10	0.442	1.20	0.180	1.21	0.183	2.0	0.917	0.420	19.5	0.204	8.06	1.01
Am33	1 18	001	11.36	0.115	2.12	0.261	0.608	0.041	2.09 1.55	201	0.74 17	1.11	60.6	60.6	8.27	21.8	15.6	7.99	14.6	5.36	88.7	88.2	10.7	68	11.4	0.645	0.076	1.97	0.478	4.51	394	24.4	49.5 5 5 6	00.0 20.3	3.71	0.720	2.66	0.354 1 95	0.373	1.05	0.141	1.05	0.162	1.7	0.929	0.476	18.2	0.190	8.27	1.92
Am32	1 /2	1 02 1 02	13.23	0.163	2.21	0.743	0.731	0.102	07.c	1.01	1.74	00.7	03.4	150	16.5	41.7	22.4	126	17.6	6.66	103	105	13.7	81	14.3	1.00	0.171	2.31	0.577	60.9	498	30.2	62.2 7 00	7.57	4.91	0.955	3.76	0.48U 2.55	0.501	1.39	0.196	1.33	0.208	2.1	1.11	0.501	22.2	0.273	10.1	C0.1
Am31	1 36	00.1	10.39	0.100	1.92	0.395	0.515	0.084	3.03 1.65	31.2	7.16	1.40	295	38.5	7.55	17.7	14.2	199	12.3	3.12	71.0	80.0	11.3	70	9.6	0.556	0.323	1.83	0.502	3.45	504	21.3	43.0	4.82 174	3.00	0.607	2.37	1 80	0.379	1.07	0.163	1.09	0.156	1.8	0.020	960.0	19.6	0.249	7.08	1.20
Am30	1 53	CC-1	13.71	0.154	2.36	0.525	0.655	0.058	4.0/ 1.84	45.4	t. c	11.2	78.0	66.7	10.4	26.9	21.0	118	17.1	7.05	105	109	12.8	68	12.9	0.663	0.158	2.25	0.616	5.87	475	30.5	61.7	0.92 25 1	4.53	0.895	3.49	0.452 2 38	0.457	1.31	0.184	1.22	0.185	8 : :	1.11	COU.U	24.3	0.285	96.9	1.02
Am29	1 17	1.42	11.62	0.082	1.93	0.424	0.637	0.046	5.0/ 1.84	38.4	1.52	CC.1	10.1 64.4	47.0	7.60	19.7	17.1	88.5	14.2	4.31	78.1	79.8	13.1	82	10.0	0.616	0.159	2.02	0.546	4.45	477	20.7	42.7	4.84 17.5	3.12	0.619	2.50	٥ <i>دد.</i> ٥ ۱۱ د	0.454	1.32	0.197	1.28	0.194	2.2	0.824	0.045	18.7	0.235	7.43	1.04
Am28	1 11	+ 70	11.76	0.156	2.09	0.905	0.619	0.056	4.03 173	26.7	1.00	0/11	70.1	614	9.26	22.4	33.4	201	14.7	5.20	85.9	118	12.2	77	11.0	1.16	0.283	2.29	0.866	4.67	487	27.3	53.6	0.00	4.18	0.795	3.17	0.414 2 21	0.427	1.19	0.170	1.15	0.167	1.9	0.050	750.U	25.7	0.255	8.97	1.4 y
Am27	1 68	1 42	11.39	0.118	1.75	0.835	0.723	0.062	67.4 163	28.7	1.00	10.01	80.6	66.2	9.16	24.2	21.2	120	14.1	4.46	6.69	110	14.3	79	10.2	1.06	0.088	2.41	0.656	3.97	349	20.3	41.6	4. /4 17 4	3.19	0.661	2.63	0.25.0 75.0	0.485	1.43	0.211	1.37	0.213	2.1	07870	0 351	19.9	0.226	6.92 2.20	2.39
Am26	1 17	1 1 7	11.69	0.116	1.92	0.640	0.764	0.057	4.30 176	30.1	1.60	0.36	2 8L	59.0	8.83	22.2	27.5	111	15.0	3.52	81.0	94.2	14.2	78	11.2	0.540	0.177	3.05	0.576	4.77	517	26.7	53.2	0.20	3.97	0.702	3.04	0.418 231	0.482	1.39	0.207	1.36	0.208	2.0	1.88.0	0.002	19.8	0.230	9.50	1.82
Am25	168	1 70	14.25	0.262	1.28	1.72	0.773	0.216	0.82 3.80	32.0	C-70	7071	98.8	76.1	18.6	28.1	278	436	16.1	34.1	56.5	177	20.1	110	9.56	51.4	1.01	22.7	7.19	4.15	313	21.6	43.8	cc.c	4.25	0.981	3.81	0/C.0 3 29	0.677	1.94	0.282	1.92	0.291	2.9	1.07	0.416 0.416	222	0.675	8.28	1.97
Am24	1 87	70.1	13.90	0.160	1.69	1.20	0.766	0.086	05.c 2.91	43.0	0.04	00.1	05.0	849	12.8	26.7	27.4	123	17.0	5.98	78.7	137	19.1	114	11.6	0.891	0.167	2.48	0.643	5.79	278	24.6	48.9	60.0 9.22	4.65	0.985	3.87	3 23	0.656	1.89	0.280	1.85	0.287	2.9	0.988	0.070	24.4	0.289	8.95	7.01
Am23 ^a	1 70	1 40	10.74	0.085	1.53	0.891	0.642	0.065	4.12 1 48	35.0	7.00 17 1	0 27	7C.6	551	11.0	24.9	12.7	80.2	12.8	4.38	64.8	118	12.7	68.2	9.34	0.49	0.09	1.99	0.57	3.89	280	25.6	45.9	5.24 18.3	3.19	0.670	2.47	0.545 0.6	0.417	1.26	0.188	1.27	0.192	1.77	0.757	150.0	15.6	0.169	6.50	1.41
Am22	1 40	1.05	12.27	0.101	2.03	0.559	0.594	0.050	4.04 2.02	30.8	0.60	1/1	60.7	63.5	9.33	23.4	19.5	109	14.8	4.69	85.7	89.9	14.9	84	9.64	0.648	0.228	2.25	0.655	5.80	482	19.6	38.4	4.00 171	3.25	0.686	2.63	165.0 2 47	0.500	1.49	0.217	1.44	0.220	2.1	161.0	0/0/0	1.61	0.295	7.06	1.6U
Am21	1 20	67.1	13.81	0.107	2.47	0.421	0.695	0.057	1.89	40.5		00 0	000	63.5	11.8	26.3	23.0	102	17.8	6.83	108	97.0	12.9	72	13.4	0.710	0.167	2.33	0.724	6.50	492	33.7	67.3	66./	4.78	0.856	3.42	0.44/ 2 35	0.456	1.31	0.192	1.22	0.183	1.8	1.14 0.060	0.000	25.3	0.306	10.9	1./3
Am20	1 38	301	12.27	0.129	2.06	0.643	0.677	0.065	4.10 2.07	36.3	C.UC	10.1	0.00	575	9.27	22.5	21.4	116	15.1	5.83	86.1	94.0	13.3	75	10.9	0.747	0.242	2.35	0.770	5.72	429	22.7	44.4	07.c	3.53	0.704	2.79	0.400 25 25	0.439	1.32	0.203	1.27	0.191	1.9	0.918	0.482	21.7	0.249	8.37	C0.1
Am19	1 1/	1 2	12.53	0.133	2.00	0.871	0.629	0.085	c1.4	20.2	0.60	0.1 0.07	67.6	57.4	11.4	24.3	22.4	139	15.5	6.44	87.1	118	14.4	68	11.2	0.807	0.199	2.54	0.803	5.95	464	27.8	54.6	0.40 23.8	4.42	0.843	3.36	0.44/ 0.50	0.487	1.34	0.202	1.33	0.202	1.7	0.924	0.487	24.9	0.277	9.49	1.01
Am18	1 60	1 12	11.64	0.201	1.66	1.06	0.651	0.063	2.85	32.0	0.70	0 0 0	0.00 64 1	59.6	9.47	21.1	27.7	136	13.3	6.91	68.3	144	14.2	65	10.1	0.708	0.374	2.62	1.29	5.07	407	22.8	41.8	01.c	3.50	0.791	2.92	0.414 2 40	0.466	1.34	0.203	1.31	0.205	1.7	6/8/0	0.126	28.6	0.284	7.38	1.03
Am17	1 18	1.05	14.15	0.084	2.04	0.647	0.693	0.048	2.18	46.0	0.04	70.1	78.0	55.1	10.2	21.3	21.2	85.9	16.5	8.99	92.5	121	15.0	75	11.4	0.603	0.119	13.0	1.13	7.36	4	26.8	51.1	7 1 C	3.99	0.876	3.07	0.428 2.56	0.506	1.49	0.218	1.49	0.224	2.0	0.964	0.0.0	23.7	0.281	8.69	1.02
Am16	1 7 2	0990	12.51	0.064	2.00	0.573	0.544	0.092	96.6 21.2	6 09	1 78	0.00	503	29.4	9.22	12.3	11.6	71.3	14.9	19.0	87.8	100	15.0	77	9.03	0.569	0.140	2.43	4.18	9.00	389	22.7	42.6	181	3.46	0.764	2.93	0.429 2.51	0.498	1.43	0.235	1.47	0.220	2.1	0/8/0	70514	21.6	0.345	6.92	1.90
Aml 5	1 18	1 02	12.29	0.090	1.84	0.401	0.628	0.043	4.19 2.05	201-	. 5 -	0.1	+C.0	543	9.57	23.8	20.1	116	15.2	6.07	83.4	75.2	12.7	81	10.7	1.039	0.179	2.25	0.628	5.10	404	21.6	45.5	4.80 17.6	3.13	0.633	2.49	0.549 2 09	0.427	1.25	0.187	1.28	0.194	2.1	106.0	960.0	21.3	0.254	7.87	7.47
Am14	1 36	0001	13.46	0.111	2.17	0.502	0.679	0.051	4.96 1 70	47.6	4/.0	0.00	D 7- C	72.4	12.0	28.1	22.2	100	17.0	7.75	104	91.1	11.0	53	12.5	0.668	0.174	2.24	0.674	6.89	429	25.9	52.8	2.60 2.14	4.02	0.808	2.99	0.382 2 10	0.392	1.06	0.155	1.00	0.145	1. 4. 5	1.03	400.0	26.2	0.304	8.77	1.4/
Am13	1 30	201	12.34	0.098	1.94	0.416	0.712	0.050	4.40 1 78	416	101	16.1	01-0	613	11.5	23.2	16.4	87.7	15.8	6.17	90.2	82.9	11.6	64	13.0	0.625	0.149	2.10	0.585	5.66	394	27.5	56.6	0.17	4.04	0.765	2.97	0.385 2 14	0.414	1.17	0.173	1.13	0.163	1.7	1.07	0.517	23.0	0.274	10.2	۶c.1
Am12	1 37	701	13.85	0.116	2.09	0.311	0.715	0.063	4.82 1 99	48.1	1.01 2 16	017	78.5	60.8	11.4	26.6	21.5	102	17.1	7.13	101	88.6	12.6	59	13.3	0.657	0.181	2.36	0.674	6.45	402	30.4	60.0	0./8	4.31	0.882	3.24	0.419 2.75	0.420	1.14	0.168	1.09	0.169	1.6	1.12	8CU.U	25.3	0.635	9.83	=3).
Am11	1 25	9200	11.31	0.147	1.65	0.419	0.591	0.092	4.03	43.7	7.01	0 03	6.0 29	543	9.66	22.3	20.0	121	13.6	6.17	75.7	82.1	12.4	63	10.2	0.717	0.215	2.10	0.925	4.83	315	21.9	43.7	17.7	3.24	0.660	2.53	0.549 2 01	0.393	1.09	0.164	1.08	0.165	0.000	0.120	0.150	20.4	0.298	7.56	lyses (n
Am10	1 2 1	151	12.69	0.119	2.06	1.01	0.689	0.080	4.61 1 99	45.7	4.04 2.02	CU.2	1.01	75.5	12.4	31.4	24.6	106	16.2	19.3	92.5	7.06	13.5	54	11.1	0.686	0.317	2.37	1.55	6.98	425	25.0	49.3	21.5	4.06	0.835	3.22	0.410 234	0.454	1.27	0.175	1.18	0.170	1.5	0.9/3	4c0.0	23.6	0.284	8.05	ted ana
Am09	1 1 2	0.070	12.24	0.136	1.82	0.612	0.612	0.066	2.13	43.3	C.C+ L0 -	1.04	40.0 73.5	62.9	9.32	24.0	18.9	100	15.0	9.99	87.1	88.7	12.2	55	11.3	0.622	0.249	2.04	1.22	5.95	373	27.8	54.5	0.19	3.94	0.759	2.99	0.581 2 13	0.403	1.17	0.167	1.11	0.163	1.5	0.969	960.0	23.5	0.271	9.19	of repe
Unit	1140/c	WL/0	wt%	wt%	wt%	wt%	wt%	wt%	WT%0 W1%6	ma/ba	mg/kg	mg/kg ma/ba	ma/ka	mo/ko	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg mø/kø	mg/kg	mg/kg	mg/kg	mg/kg mo/ko	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg ma/ba	mg/kg	mg/kg	mg/kg	mg/kg 1 values														
Element	Na.O	Ma2O	AhO	P_2O_5	K_2O	CaO	TiO_2	MnO T Fe O	$1-re_{2}O_{3}$ $H_{*}O^{-}$	11	1 0	e e	20	- L	S	Ni	Cu	Zn	Ga	As	Rb	Sr	Υ	Zr	ЧN	Mo	Cd	Sn	\mathbf{Sb}	cs	Ba	La	° -	Nd	Sm	Eu	Gd	01 A	He e	Er	Tm	Yь	Lu	Hf.	Ia II	gH F	Pb	Bi	Th	U ^a The mear

Tn22	1.38	0.510	6.93	0.051	1.68	0.180	0.014	2.08	0.602	27.9	0.945	1.80	31.4	21.2	4.40 8.47	5.54	33.7	6.55	4.89	56.7	80.5	7.01	44	0.77	67C.0	600.0	0.370	2.15	350	16.1	32.4	3.59 17 8	2.27	0.419	0.214	1.19	0.246	0.000	706 0.706	0.108	1.2	0.588	0.051	10.3	0.122	4.86	1.01
Tn21	1.14	1 09	10.02	0.075	1.80	0.689	0.082	4.62	1.53	31.1	1.26	10.2	83.3	34.7	7.51	11.9	81.0	12.1	5.38	72.7	82.2	12.2	9 ;	11.5	045.0	1.75	0.505	3.84	460	29.1	61.7	7.25 27 1	5.12	0.873	co.c 0 431	2.34	0.440	1.28	0.18U 1.24	0.193	1.6	0.933	0.040	15.0	0.163	9.62 1 37	40.1
Tn20	1.59	1.63	9.41	0.037	1.32	1.42	0.109	5.31	0.890	25.6	1.03	12.6	86.9	21.6	7.30	3.87	64.6	9.43	3.34	51.0	122	10.4	; 45	13.5	900 0	070.0	0.284	2.40	312	13.4	26.5	3.19 11 9	2.28	0.601	2.02	1.76	0.355	0.164	1.12	0.170	1.3	0.479	0.282	9.68	0.080	4.69 0.840	0.0 ⁻⁰
Tn19	1.31	2 36	9.35	0.069	1.39	1.50	0.129	5.72	1.46	30.1	1.06	17.1	88.4	30.5	11.7	7.73	75.3	10.7	8.98	53.0	104	14.6	19	12.6	0.060	1 36	0.453	2.57	324	20.8	41.5	5.03 18 7	3.62	0.674	0.415	2.56	0.525	0000	U.22U 1.53	0.226	1.6	0.598	0.0314	11.1	0.151	6.84 1 1 1	
Tn18	1.20	1.70	11.19	0.114	1.44	1.15	0.114	5.09	2.46	31.9	1.13	14.7	77.2	31.0	13.5	12.0	79.3	11.7	8.06	58.1	97.0	14.6	F ;	10.3	0.074	1.55	0.615	3.42	364	16.1	33.5	3.93 15.0	3.20	0.733	2772 0 384	2.47	0.497	70200	ucz.u 1.47	0.230	1.9	0.798	0.056	13.7	0.256	5.69	1.47
Tn17	1.20	1.76	9.70	0.073	1.54	1.09	0.118	4.89	1.91	30.1	1.09	13.0	77.2	27.6	10.7	10.9	70.7	10.4	5.55	59.1	94.3	12.2	57	10.8	0.040	1 31	0.433	4.59	330	18.2	37.9	4.38 16.0	3.16	0.694	2.49 0 348	2.16	0.422	0.100	U.100 1.25	0.195	1.6	0.680	0.030	12.1	0.144	5.07	1.14
Tn16	1.57	1.20	10.28	0.062	1.49	1.34 0.875	0.079	4.11	1.58	29.4	1.08	10.6	62.7	23.2	0.27 8 82	6.14	61.3	11.0	4.57	57.4	129	11.5	20	10.3	0.044	1.25	0.388	2.66	359	16.1	32.0	3.78 14 1	2.64	0.658	0 33 1	1.99	0.398	01120	0.178 1.16	0.173	1.4	0.745	0.335	11.5	0.106	5.23	1.04
Tn15	1.04	0.847	11.22	0.123	1.63	0.757	0.075	4.04	2.94	31.1	1.18	9.28	62.3	28.8	8.29 17 4	12.2	67.3	12.1	6.26	64.8	93.4	14.5	76	9.18	946.0	0/0/0	0.522	3.49	446	18.2	37.1	4.32 16 1	3.15	0.710	0.392	2.45	0.489	70100	0.215 1.48	0.227	2.0	0.786	8c0.0	15.8	0.193	6.35	11
Tn 14	1.28	1 00	9.87	0.077	1.85	0.689	0.077	4.25	1.51	27.2	1.15	8.36	77.7	30.8 9.50	8.05 8.11	66.6	59.9	10.8	4.62	71.9	93.6	10.2	56	10.7	0.044	1.47	0.435	3.50	445	17.2	35.5	4.01 14 7	2.80	0.573	0318	1.80	0.346	1.04	1.05	0.153	1.5	0.832	0.044	14.4	0.175	6.60 1 23	1.40
Tn13	1.30	1 79	10.20	0.078	1.84	1.04	0.108	5.04	1.38	33.3	1.34	13.8	85.0	39.1	11.4	13.1	87.6	12.2	7.46	76.3	96.8	13.3	99	13.4	7000	200.0	0.581	4.58	437	19.6	39.8	4.56 16 7	3.12	0.664	0.381	2.25	0.462	96.1 2050	cu2.0 1.30	0.213	1.7	1.04	0.041	14.7	0.251	6.63 1 26	1.40
Tn12	1.16	0.812	9.32	0.056	2.31	0.283	0.043	3.05	1.09	27.9	1.37	4.84	64.2	38.1	151	11.2	45.7	10.7	5.03	87.6	80.7	10.3	62	10.4	707.0	1.48	0.538	3.94	530	22.4	44.5	5.00	3.09	0.576	40.74 0 311	1.84	0.357	11.11	101.0	0.158	1.6	0.928	0.043	15.2	0.148	7.00	1.74
Tn11	0.98	0.817	8.80	0.058	1.96	0.446	0.053	3.30	1.84	27.3	1.17	5.45	64.4	32.0	0.90	13.4	47.2	10.3	4.58	73.2	77.5	<i>71.6</i>	62	9.24	227.0	1 33	0.563	3.26	471	20.9	39.4	4.37 14 9	2.56	0.529	0.270	1.65	0.341	C0.1	1.02 to 1.02	0.159	1.6	0.769	0.045	15.6	0.164	5.94	1.4.1
Tn10	1.12	0.899	10.43	0.059	2.07	0.418	0.068	3.94	2.14	33.1	1.41	68.9	74.0	37.8	61.8 15.6	13.6	60.5	11.9	5.77	82.7	79.1	10.6	67	10.9	C 000	1 48	0.572	4.33	479	21.8	43.2	4.74 16.6	2.78	0.563	0 301	1.85	0.373	1.14	1.14	0.180	1.7	0.922	0.035	15.2	0.189	6.93 1 30	1.77
Tn09	1.22	1.08	10.51	0.073	2.13	0.457	0.060	4.20	2.01	30.5	1.43	7.37	80.3	54.1	0.02 19 5	12.4	61.5	12.5	5.03	83.4	84.7	12.1	; ۲	10.5	0.067	100.0	0.507	3.99	489	23.0	46.0	5.25 18 7	3.27	0.667	0 347	2.01	0.396	0.107	1.17	0.182	1.8	0.927	0.052	16.9	0.201	7.17	1.01
Tn08	1.16	1 00	10.78	0.066	2.30	0.382	0.068	3.46	1.73	29.7	1.53	6.74	63.9	43.4	0.81	14.1	56.5	12.7	5.51	90.7	80.9	11.2	59	10.8	0.047	1 70	0.578	4.68	493	24.2	49.8	5.62 20.3	3.69	0.712	0 369	1.97	0.404	1.12	1.04	0.159	1.5	0.954	0.037	15.9	0.260	12.4	Ę
Tn07	1.02	0.952	10.23	0.080	1.75	0.594	0.071	4.38	1.86	29.3	1.31	7.85	86.1	35.4	8.99 14 1	12.2	57.5	11.4	6.03	69.8	84.4	11.7	192	11.5	0.050.0	1 55	0.714	3.74	402	20.8	41.2	4.65 16.8	2.95	0.622	0 335	2.00	0.388	1210	1.18	0.183	1.9	1.02	0.384	15.0	0.201	6.45 1 2 1	17.1
Tn06	1.01	0.984	9.27	0.073	1.70	0.573	0.068	4.47	2.05	25.1	1.15	8.58	88.4	31.5	1 01	10.4	56.2	10.5	4.33	64.5	82.2	11.8	67	9.02	140.0	1 34	0.423	2.98	431	20.0	39.4	4.49 16 1	2.98	0.604	2:42 0 337	1.95	0.398	1.12	0.1/4 1.12	0.174	1.7	0.768	0.046 0.362	14.3	0.151	6.45 1 2 4	1.i.T
Tn05	1.13	0.823	10.11	0.181	1.69	0.703	0.083	3.64	2.23	26.4	1.10	7.71	60.4	27.2	cc./	11.8	62.7	10.5	4.49	63.9	91.1	12.5	69	8.85	607.0	139	0.436	3.03	409	19.8	39.5	4.55 16 3	2.95	0.642	2.49 0 349	2.12	0.416	1.29	1.25	0.184	1.9	0.785	0.380 0.380	14.4	0.171	6.41 1 2 3	1.04
Tn04	0.886	1 03	6.98	0.048	1.36	0.610	0.055	2.93	0.796	24.1	0.82	7.09	42.5	21.9	0. /4 9 4 2	201L	39.7	7.58	3.28	48.7	71.1	8.42	43 197	7.92	0.034	+co.o	0.356	2.16	350	17.2	34.2	3.94 14 0	2.51	0.441	0.246	1.42	0.281	70210	0.120	0.128	1.2	0.638	0.279	10.4	0.123	6.16 1.04	1.11
Tn03	1.17	1.21	13.83	0.219	1.71	1.17	0.113	5.47	4.96	31.3	1.48	13.7	94.9	40.7	16.9	22.0	108	15.7	7.79	72.9	110	20.6	106	10.9	0.162	201.02 2 81	0.742	4.55	463	24.2	49.7	5.88 223	4.43	0.986	0 552	3.41	0.674	CU.2	1.96 1.96	0.313	2.8	0.952	0.08/	23.0	0.383	8.47 1.83	1.02
$Tn02^{a}$	1.10	0.959	10.46	0.077	1.88	0.558	0.078	3.87	2.57	30.6	1.39	8.26	62.1	35.8	0.0/ 154	13.4	59.2	12.5	5.30	75.5	82.7	13.1	۲2 و د	10.3	0.420	160.0	0.516	3.79	388	21.8	44.5	5.11	3.40	0.690	2.00 0 370	2.20	0.439	1.50	0.130 1.30	0.198	1.9	0.87	0.431	16.4	0.182	7.08	2-1
Tn01	0.955	0.780	9.25	0.084	1.69	0.650	0.056	3.05	1.80	26.1	1.10	7.08	50.4	29.6	1.10	10.3	48.0	10.6	4.57	64.5	82.9	11.5	67	8.53	COC.U	1 27	0.435	3.04	351	20.2	39.5	4.52 16 4	3.05	0.624	0 314	1.99	0.384	CL.1	1.12	0.175	1.8	0.745	0.375	15.0	0.165	5.92	40.1
Ng06	1.11	2.73	19.68	0.202	0.731	2.86	0.173	10.4	3.57	26.7	1.47	28.6	226	Ξ	0.55	28.9	225	23.3	4.02	32.5	168	27.4	158	1.57	0.374	3 07	0.592	3.81	379	22.2	49.2	5.44 20.9	4.61	1.27	0 711	4.38	0.907	20102	cu+.0 2.67	0.416	4.1	1.20	0.353	22.5	0.269	6.99 1 55	1.00
Ng05	0.814	2.04	21.74	0.262	0.708	1.98	0.209	10.1	4.48	23.5	1.43	26.5	208	54.3	74.7 15 4	30.2	212	24.2	4.06	32.5	136	26.7	155	13.0	1771	162.U	0.667	3.09	324	22.1	48.6	5.41 20.8	4.59	1.31	4.32 0.664	4.28	0.888	10.2	2.62 2.62	0.407	3.9	0.978	0.302	44.7	0.268	6.01 1.45	2-11
Ng04	1.05	2.13	22.28	0.172	0.621	2.58 1.45	0.238	10.8	5.15	26.6	1.54	26.9	236	48.9	10.0	16.1	140	25.3	3.71	27.4	178	25.8	165	11.4	CU.1	60 C	0.417	2.70	386	19.6	44.9	4.91 19 2	4.22	1.26	4.18 0.663	4.11	0.867	10.2	2.55 2.55	0.403	4.0	0.867	0.060	16.9	0.235	5.88	1-7-1
Ng03	0.970	1 94	22.78	0.196	0.757	2.29	0.241	10.0	4.03	26.5	1.66	24.6	201	38.2	4.02 7.5	19.9	155	24.6	4.83	34.9	160	25.2	164	11.7	10.1	0.241 2 31	0.624	3.39	392	20.2	45.6	5.04 19.4	4.43	1.24	4.10	4.14	0.853	996 U	0.55 2.55	0.384	4.0	0.920	0.050	20.7	0.213	6.26 1 35	1.0
Ng02	0.581	1.73	23.05	0.311	0.542	1.57	0.246	10.8	4.57	26.1	1.61	28.6	215	54.1	9991	23.9	170	26.2	4.46	29.5	112	29.7	161	13.5	0.302	70C.0	0.498	3.76	379	23.9	55.3	5.84 22.8	4.93	1.40	4.07 0753	4.71	1.01	2.70	0.428 2.92	0.448	4.7	1.05	0.378	22.7	0.271	7.42	1.00
Ng01	1.37	2.90	21.14	0.239	0.589	3.91	0.246	9.25	4.82	22.7	1.16	31.2	168	73.0	6.12 18.6	25.7	166	23.2	3.07	25.1	229	27.2	134	10.2	0.275	C7 C 0 C	0.503	2.85	278	22.6	46.7	5.41 21 3	4.67	1.35	4.07 0 694	4.28	0.890	2020	2.52	0.392	3.4	0.764	0.071	16.9	0.220	5.35	1.47
Ss01	1.19	1 22	8.80	0.093	1.45	0.844	0.048	3.24	1.54	30.9	0.94	8.38	58.8	85.4	48.3	27.3	125	9.4	4.23	52.2	92.9	6.7	53	8.18	4.0.188	0.100	1.17	3.11	290	10.0	17.4	2.23 8.4	1.68	0.416	0.250	1.51	0.341	866.0	0.971	0.151	1.3	0.627	67.0.0 0.270	17.1	0.163	4.27	1:04
Gs02	1.29	1 84	11.14	0.133	1.59	0.674	0.070	4.08	9.57	36.1	1.25	9.37	77.0	125	14.5 77 0	47.3	144	11.6	6.68	64.1	94.3	12.7	09	8.67	0.165 291 0	201.0	1.20	3.94	254	15.4	24.3	3.18	2.32	0.561	CL.2 0 297	1.95	0.400	CL.1	c/1.0 1.15	0.166	1.6	0.728	0.343	21.3	0.263	5.70	=3).
Gs01	1.55	188	12.11	0.139	2.06	1.08	0.070	4.70	8.83	38.9	1.34	11.3	86.7	103	C/1	31.0	377	12.6	6.53	73.1	120	14.4	35 7 50	7.52	0.212	3 10	1.43	5.29	369	15.3	25.6	3.83 14.6	3.16	0.760	0.405	2.44	0.481	1.57	0.184 1.23	0.175	1.0	0.633	0.124 0.419	279	0.249	4.80	yses (n
Am43	1.58	1 02	12.24	0.145	1.93	0.914	0.132	4.25	1.77	59.1	1.63	8.62	62.7	52.5	9.49 19.3	17.5	93.4	14.1	18.8	83.8	119	15.4	84	9.75	0.00/	7 26	6.32	7.85	341	22.3	42.6	5.09 18.8	3.47	0.735	2.72 0 403	2.53	0.503	2011	0.22.0 1.43	0.222	2.3	0.877	0.173	18.3	0.229	8.08 1 06	ted anal
Am42	2.92	1.59	13.39	0.198	1.60	1.62 0.746	0.138	4.56	1.16	26.8	1.34	10.6	84.2	79.5	29.8 29.8	32.8	129	13.4	5.74	65.6	146	14.0	34	9.16 0.270	0/5.0	+01.0	1.41	4.91	381	16.8	33.0	3.89 14 4	2.88	0.671	2.44 0 355	2.19	0.445	16.1	0.190 1.29	0.190	0.98	0.746	0.366	19.1	0.179	6.37	of repea
Unit	wt%	wt%	wt%	wt%	wt%	wt%	wt%	wt%	wt%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg mo/ko	me/ke	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ma/ka	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg mo/ko	mg/kg	mg/kg	mg/kg mø/kø	mg/kg	mg/kg	mg/kg	mg/kg mg/kg	mg/kg	mg/kg	mg/kg	mg/kg me/ke	mg/kg	mg/kg	mg/kg	values
ment	0	ç	ő)5	0	0 4	ç 0	e,0,	·	1	1	-	1				-	-	1	1	-	-	1	- '	- •			-	-	-	-			- 1			- 1	'		1	-	-			-	- *	ie mean
Eleı	Na_2	M	Al ₂ (P_2C	K_2C	CaC TiO	Mn	T-F	H_2C	Ľ	Be	Sc	>	చర	3 ž	Ū	Zn	Ga	\mathbf{As}	Rb	\mathbf{Sr}	> 1	72	qu X	NIC N	3 5	s ds	Cs	Ba	La	ပိ	Pr Nd	Sm	Εu	₿É	Dy	Ho F-	ΞĔ	π ΥP	Lu	Ηf	Ta	βΗ	Pb	Bi	ft =	aTt

continued.	
Table 5	

Yk23	3.20	1.08	16.05	0.155	3.18	2.37	0.633	3 26	0.5.60	39.4	4.30	8.14	32.0	12.2	5.94	6.20	61.8 2.55	0.00	15.9	131	140	36.6	18	11.5	0.319	0.106	4.00	10.5	274	174	255	40.7	148	8.62	18.0	1.93	8.66	2.84	0.340	1.86	0.247	0.54	1.09	0.675	30.9	0.793	4.17	
Yk22	3.05	0.967	15.63	0.136	3.42	2.16	0.551	0.069 3 13	0.655	433	4.33	7.02	36.5	16.2	5.98	7.39	9.80	1.00	C.C.7	146	144	28.0	8.6	11.5	0.430	0.075	86.C	120.0	332	126	267	29.4	106	18.9	13.2	1.43	6.39 0.060	2.15	0.256	1.37	0.185	0.29	1.08	0.723	41.1	1.03	4.09	
Yk21	3.54	0.728	16.95	0.145	2.85	2.53	0.462	0.062 2 00	1 25	417	4.86	6.04	36.7	13.6	6.03	6.74	07.6	0.7t	50.4	125	163	25.0	15	11.9	0.512	0.139	10.50	010.0	258	102	218	23.8	87.1	8.61	Ξ	1.24	5.78	2.02	0.239	1.36	0.180	0.49	1.07	0.659	31.5	0.626	41.5 3.51	
Yk20	3.63	0.765	17.56	0.147	3.05	2.43	0.498	0.061 3.04	0.607	48.4	5.13	6.18	30.7	15.7	5.61	7.46	40.7 2 C L 3	0.70	60 8	138	156	26.9	Ξ	13.0	0.233	0.079	4.10	13.3	277	119	255	28.2	103	C.81	12.9	1.40	6.27 0.056	2.12	0.239	1.37	0.176	0.33	1.84	0.678	30.4	0.462	3.47	
Yk19	4.09	0.809	17.44	0.216	2.78	3.04	0.453	0.056	0.458	40.6	5.12	6.10	24.4	10.6	4.70	5.15	6/./	41.5 71.0	454	123	181	39.5	6.9	11.6	0.046	0.072	61.0	107.0	233	167	356	39.1	45	8.62	18.3	2.01	8.90	00 8	0.347	1.83	0.251	0.25	1.00	0.601	29.7	0.355	69.6 3.65	
Yk18	3.67	0.866	17.39	0.181	3.10	2.66	0.548	0.070 3.04	0.469	46.9	4.93	6.83	35.9	11.0	5.79	5.53	9.58 10 0	0.04	t:27	136	162	34.9	8.6	12.4	0.220	0.081	4C.4	C1770	270	153	326	35.7	130	111	16.4	1.79	8.03	2.61	0.301	1.70	0.242	0.29	1.85	0.010.0	29.6	0.783	63.6 4.62	1
Yk17	3.27	1.34	14.99	0.247	3.05	2.57	1.05	0.102 3.76	0.559	35.2	4.42	9.78	43.6	10.1	7.21	4.96	1.47	6.00	13.3	121	146	70.8	14	13.5	0.174	0.078	4.55 421 0	0.1.0 8.48	267	685	1430	97.2	355	60.0 1 30	40.3	4.12	17.91 15 C	5.23	0.552	2.90	0.371	0.45	1.95	0.578	29.8	0.378	7.41	
Yk16	3.43	0.933	16.95	0.154	3.41	2.40	0.490	0.070	0.779	45.6	4.67	6.20	34.4	13.3	5.96	6.48	95.9 56.0	20.0	151	152	158	25.0	8.2	12.3	0.190	0.119	4.17	111	316	86.6	184	20.2	74.2	1.03	9.47	1.09	5.38	2.03	0.254	1.50	0.203	0.30	1./2	0.746	30.8	0.576	34.8 3.23	
Yk15	3.93	0.929	17.51	0.161	3.27	2.73	0.472	0.068 2 00	0.800	51.2	5.37	5.67	32.1	1.1	5.64	5.86	8.40 55 0	6.00	641 641	152	171	27.4	9.6	12.3	0.065	0.150	201.0	C 61.0	280	106	227	25.3	92.6	C.01	11.4	1.27	6.16 0.05.6	2.17	0.265	1.50	0.210	0.32	1./8	0.768	32.9	0.591	44.y 3.28	
Yk14	4.34	0.801	18.49	0.191	3.15	2.92	0.478	0.070 2 03	0.684	61.6	6.00	4.83	30.9	13.0	5.16	6.49	8.9/ 02 6	0.00	6 11	158	191	28.4	7.2	14.7	0.269	0.124	0100	15.0	271	T.T.	165	18.3	66.5	C.21	8.90	1.11	5.70	2.34	0.308	1.81	0.244	0.28	217	0.793	36.1	0.588	29.6 3.31	1
Yk13	2.68	0.897	14.35	0.195	3.25	1.71	0.481	0.069 2 75	0 715	49.5	2.94	4.80	30.9	9.8	5.22	5.42	17.1	0.00	0.07	134	137	36.0	7.3	11.9	0.084	0.152	4.49	10C.0	349	180	619	41.5	150	1.020	17.7	1.90	8.56	2.71	0.310	1.61	0.207	0.25	1.89	0.676	28.0	0.994	74.8 4.40	1
Yk12	3.00	1.68	17.91	0.185	3.57	2.13	1.06	0.114 5 00	1 20	79.2	4.97	12.6	49.9	18.6	9.30	9.11	0.21	0.70	165	182	137	41.3	14	21.2	0.292	0.076	0.19	00000 18.8	313	188	662	44.6	162	1.06	19.1	2.05	1.47	3.24	0.376	2.13	0.289	0.54	5.10	0.917	30.0	0.849	81.0 5.89	
Yk11	2.23	1.34	15.36	0.159	2.90	1.92	0.781	0.088	2.38	43.3	3.39	11.6	79.8	27.0	9.46	13.3	0.1	1.16	167	120	126	19.4	42	11.1	0.841	0.250	18.2	28.8	383	61.0	131	14.4	52.6	9.49 0.036	6.92	0.810	4.09	1.68	0.226	1.35	0.193		0.027	0.656	28.3	11.4	24.6 2.19	
Yk10	3.36	0.882	15.53	0.179	3.23	2.34	0.499	0.066 2 75	0.462	493	4.30	4.93	30.8	11.3	5.37	5.20	60.7	0.20	14.9	136	152	32.3	7.0	10.6	0.086	0.094	C8.4	177.0	307	164	566	38.1	138	1.00	16.1	1.76	1 17	2.49	0.277	1.58	0.203	0.23	1100	0.698	30.4	1.55	67.9 4.80	
Yk09	3.56	0.834	16.67	0.182	3.45	2.39	0.492	0.065 3.03	co.c 0.695	62.8	5.24	5.59	27.5	13.1	6.00	6.86	CC.6	0.00	17.8	159	152	29.7	5.8	14.2	0.292	0.096	00C 0	171	317	Ξ	238	26.4	96.7	C/1	12.4	1.41	6.72 1.06	2.39	0.288	1.76	0.220	0.24	CU.2	0.816	31.1	2.27	4/.2	
Yk08	2.80	0.958	16.03	0.142	3.42	1.99	0.564	0.072 3 30	798 0	553	4.56	6.63	42.3	18.4	6.75	8.71	0.21	0.70	151	153	133	24.0	9.9	12.9	0.346	0.118	/1.0	coc.0	332	97.4	210	23.4	84.8	1.61	10.5	1.20	0.870	1.88	0.220	1.31	0.169	0.33	1.13	0.803	31.5	0.907	41.2 3.31	1
Yk07	1.78	1.25	14.37	0.128	2.67	1.32	0.629	0.090	2.12	49.1	3.47	8.05	6.99	35.9	9.41	17.4	18.5	C. 601	18.81	123	100	13.1	25	11.2	0.683	0.359	4.92	13.0	336	33.7	74.3	8.11	29.9	C/.C	4.42	0.541	2.73		0.149	0.958	0.123	0.67	0.051	0.742	33.4	0.727	1.5.1 1.94	
Yk06	1.06	1.39	12.19	0.110	2.30	0.904	0.757	0.082	1 93	46.0	2.54	8.69	73.3	42.1	9.2	19.8	19.4	1.04	417	100	76.2	13.2	22	12.1	0.563	0.236	977 C	10.4	393	56.4	121	13.3	48.7	0.057	6.21	0.707	3.27	111	0.141	0.839	0.112	0.61	1.07	0.584	23.9	0.701	18.2	
Yk05	0.757	1.53	11.99	0.102	1.91	0.743	0.838	0.104	195	414	2.31	9.95	78.1	51.0	12.1	24.3	207	15 2	31.6	82.8	72.1	11.6	29	11.0	0.821	0.511	4.81	10.2	421	26.7	55.0	6.19	22.8	0.800	3.29	0.448	2.34	1.06	0.140	0.840	0.119	0.79	0.051	0.602	21.4	0.688	6.65 1.10	
Yk04	0.934	1.42	13.75	0.101	1.98	0.757	0.741	0.081	2.42	47.7	1.90	11.3	84.0	58.1	12.1	25.1	0.07	101	0.11	88.7	72.6	12.3	53	11.9	1.38	0.212	21.0	0.720	419	21.7	53.7	5.16	19.0	5.94 0.780	3.03	0.409	2.36	1.20	0.172	1.14	0.154	4.1.	0.054	0.587	27.0	0.564	8.77 1.53	
Yk03	4.06	0.864	18.96	0.150	3.36	2.68	0.532	0.078 3.43	0 934	62.8	5.57	5.98	33.9	14.3	6.07	7.28	0.101	0.00 2.4.5	13.8	163	174	24.0	7.9	14.6	0.304	0.104	02.0	173	316	68.0	146	15.9	57.6	1 0.7	7.69	0.943	4.81	2.01	0.259	1.61	0.218	0.27	2.04	0.855	36.2	0.595	3.88	
Yk02	3.90	1.09	17.20	0.132	3.24	2.87	0.582	0.074 3.16	01.0	43.2	4.94	7.58	32.9	16.8	5.81	7.82	77.1	1.20	5 17	137	168	29.8	9.3	10.5	0.170	0.087	0/10	112.0	259	124	424	28.6	104	1 12	12.3	1.38	6.46 1.00	2.37	0.290	1.58	0.226	0.34	00.1	0.700	33.5	0.271	49.0 3.30	į
$Yk01^{a}$	3.43	1.00	14.95	0.108	3.09	2.55	0.452	0.058	0.65	37.1	3.93	6.89	28.3	7.98	4.64	3.90	5. (5 2 0 A	C.04	9 41	116	152	18.3	9.0	7.45	0.502	0.055	C8.C	c04-0	251	66.8	142	15.6	57.1	0.018	7.30	0.825	3.97	1.55	0.194	1.15	0.156	0.28	C10.0	0.56	36.7	0.314	2.47	: i
Sk03	2.95	3.57	16.88	0.150	1.30	7.33	0.820	0.158	0.200	17.0	1.05	29.1	201	13.6	19.4	5.44	00.00	0.00	4 54	47.2	279	24.7	105	4.83	0.735	0.134	10.1	0.200 2 84	236	13.6	29.7	3.62	15.1	5.74	3.73	0.609	3.92	2.49	0.353	2.47	0.371	2.7	0.000	0.315	10.4	0.249	4.51 0.979	
Sk02	2.78	4.76	15.51	0.139	1.21	7.46	0.981	0.196	0 986	161	1.03	34.9	285	19.9	24.2	6.65	5.4 <u>1</u>	17.0	3 33	42.2	262	23.8	96	4.62	0.624	0.141	0212	21C.U	215	12.2	26.8	3.36	14.0	5C.5 970 0	3.54	0.584	3.83	2.40	0.346	2.32	0.358	2.4	0.000	0.263	10.2	0.134	5.80 0.872	
Sk01	3.04	3.28	16.93	0.153	1.36	7.30	0.776	0.150	0.398	17.3	1.15	27.3	181	12.2	17.5	4.98	10.8	7.4.6	4 18	48.7	278	24.7	106	4.98	0.676	0.134	052.0	78.C	245	13.9	30.4	3.72	15.4	7.87	3.82	0.608	3.97	2.47	0.351	2.42	0.362	2.7	0.000	0.328	10.5	0.202	4.45 1.01	;
Tn27	1.02	0.880	10.29	0.128	1.47	0.658	0.581	0.070	2.84	28.0	1.09	9.13	67.4	30.0	7.97	14.1	1/1	C.0/	6 48	58.2	76.9	14.9	73	8.67	0.610	0.124	/ 21	3.06	407	18.3	37.4	4.28	16.4	5.18	2.76	0.401	2.45	149	0.223	1.42	0.217	1.9	0.062	0.369	16.6	0.215	6.12 1.37	}
Tn26	1.03	0.527	6.70	0.036	1.54	0.222	0.851	0.035	0 755	24.9	0.93	5.35	51.8	24.4	5.73	99.66	0./1	1.04	5.03	55.2	71.3	7.90	52	10.8	0.291	0.056	1.07	0.400 0 19	458	15.8	31.7	3.50	12.4	2772	1.70	0.242	0.771	0.800	0.118	0.769	0.115	1.3	C///0	0.286	11.5	0.107	0.992 0.992	n=3).
Tn25	1.23	0.612	6.84	0.050	1.62	0.237	0.484	0.035	0.653	24.8	0.95	4.87	42.4	21.4	6.20	9.40	16.0	0.00	5.03	54.4	81.7	8.21	45	8.23	0.260	0.058	CU.1	c04-0 41 C	363	17.0	33.6	3.72	13.1	2.42	1.76	0.235	0.282	0.819	0.129	0.855	0.122	1.2	0.028	0.277	10.5	0.104	5.24 1.03	alyses (
Tn24	1.53	0.577	7.58	0.034	1.77	0.273	0.387	0.027	0.852	30.8	0.897	4.15	39.1	19.9	4.03	7.96	4.7	+ - t 7 7 7	4 83	59.2	101	7.56	44	6.74	0.202	0.038	CU.1	000 C	362	17.3	34.6	3.79	13.8	2.55	1.83	0.239	0.254	0.783	0.113	0.778	0.119	1.2	000.0	0.303	11.3	0.107	۶۶.۶ 1.06	cated an
Tn23	1.23	1.28	12.38	0.114	2.09	0.634	0.885	0.139	2.03	379	1.69	11.6	105	52.2	12.7	22.2	5.67	0071	6.64	89.9	76.1	14.3	72	11.8	0.634	0.154	17.7	00.9	486	21.7	45.9	5.24	18.9	3.68	2.94	0.405	2.42	1.36	0.198	1.41	0.203	1.7	0.120	0.497	17.8	0.351	1.41	s of rep(
Unit	wt%	wt%	wt%	wt%	wt%	wt%	wt%	wt%	w1%	mø/kø	mg/kg	BN/SIII	mo/ko	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mo/ka	me/ke	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	me/ke	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg mg/kg	in value:						
lement	a_20	1gO	1_2O_3	205	² 0	aO	<u>,</u> 2	InO -Fe-O-	5 ² -0) 21	. 0	0		г	0	-		= •	<u> </u>	م و	L -		L	ą	. <u>1</u> 0	9	_ <i>,</i>	o "	, a		e	L	P	e -	ч 1	ą	<u>z</u>	3.	E	و	р,	÷	. 5	ao	4	. .	<u>д</u> .	The mea
Ш	z	2	A	Ч,	X	01	- ;	2 F	- #	1	цщ	Ň	>	0	C	Z	ې ر	10		2	S	Υ	Ν	z	2	U d	00	άČ	ם (Ľ.	0	P.	Z	йй	10	H	בר	Ē	H	Υ	Ц,	Ξf	- 7	ΞE	Р	Ш	- D	8

categories.
size
grain
500
È.
Ξ.
grouped
sediments
stream
.Ц
concentrations
Element
9
Table

			S	k03						Tn02						Τ	60u						Tn2(6		
nent Unit	В	С	D	Е	F	Ð	Α	В	С	D	Е	F	Ð	A	В	С	D	Ш	F O	V I	В	С	D	Е	F	G
) wt%	3.19	3.01	2.93	3.03	3.07	3.08	1.43	2.22	1.54	0.913	1.13	1.37	1.28	1.30	1.56 1	.0 0.	773 1.	23 1.	67 1.4	1.3	1.3	1 1.0	6 0.86	6 1.08	1.72	1.94
wt%	3.06	3.89	4.22	3.60	3.07	2.46	1.32	11.11	1.47	0.988	0.894	1.11	1.32	1.23	1.63 3	.49 20	.51	92 I.	08 7. 1.	15 0.7	53 0.7	58 0.68	3 0.48	7 0.583	0.655	0.871
3 WU%	1210	16.01	16.01	16.98	0.154	0 160	0112	0.000	0.066	0.8.0	0.075	14.04	150	1 68.21	3./8 2 086 0	- 06. 06. 0		17 17	./2 10.	60 9.6 36 01	16 10.	76./ 61	8 0.0C	87.1 0 87.1 0	9.80	0.087
W1/0	1/1/0	141	001.0	761.0	4CT.0	1 26	211.U	1.02	0.000	1 47	00 1	1 2 C	601.0 0 2 C	1 2 C	10 01	-002 U.	140 (40		1.0 66	1.0 00	5 0.0 5	HO'O 66	1 25	1 1 5 7	200.0	201.U
wt%	6.73	6.97	7.24	7.50	7.53	7.13	1.09	3.57	2.60	0.848	0.524	0.547 (0.351	- 10 - 89 - 2	20	662 t	906 4. 396 0.	101 0.4	14 0.3	02 0.5	73 0.53	4 0.30	6 0.186	0.222	0.263
wt%	0.808	0.824	0.848	0.823	0.780	0.778	0.576	0.469	0.451	0.579	0.757	0.762 ().804	0.630 0	507 1	.06 1	.24 0.	733 0.	540 0.8	03 0.4	26 0.39	99 0.30	9 0.44	3 2.05	0.526	0.667
wt%	0.149	0.170	0.178	0.159	0.142	0.124	0.072	0.068	0.094	0.070	0.079	0.109 (0.140	0.067 0	.076 0.	.173 0.	100 0.	0.0	0.0 290	92 0.0	29 0.0	34 0.03	1 0.02	4 0.078	0.029	0.046
2O3 wt%	7.59	8.46	9.05	8.31	7.69	7.43	6.07	4.83	4.12	3.72	4.59	5.16	5.99	5.89	5.39 5	9.71 8	.19 4.	12 4.	08 5.4	13 7.0	6.3	4 3.4	0 2.51	7.85	3.43	4.45
wt%	0.099	0.098	0.294	0.199	0.200	0.589	2.27	1.80	1.24	0.865	1.65	3.82	4.53	1.65	1.36 0.	.727 0.	679 1.	16 2	14 3.(9 1.3	1.2	2 0.87	3 0.67	1 0.63	1.08	1.49
mg/kg	17.6	17.0	16.6	16.9	17.1	17.5	43.1	33.9	25.7	23.3	31.0	39.3	46.1	44.5	39.2 2	34.4 2	2.6 2	9.0 3:	5.8 45	.3 43	.6 41.	5 30.	4 22.7	7 24.9	33.2	40.8
mg/kg	1.14	1.12	1.04	1.08	1.10	1.10	2.10	1.84	1.18	0.98	1.37	1.85	2.25	2.02	1.79 1	.10 1	.02	30 1.	74 2.3	0 1.6	6 1.6	0 1.0	7 0.78	7 1.11	1.46	1.81
mg/kg	26.6	29.7	31.4	28.5	26.5	23.5	9.95	9.43	10.92	7.22	8.21	11.0	13.8	8.96	11.0 2	1.0 1	0.5 7.	05 8.	01 12	8 5.5	57 6.0	8 4.80	5 3.66	8.47	5.19	7.90
mg/kg	173	197	224	201	188	177	80.4	64.8	56.8	62.9	90.5	90.5	101	87.3	73.3 1	192 2	04 9	2.7 7.	2.9 93	2 54	.1 54.	5 40.2	2 37.9	185	51.0	61.1
me/kg	10.3	13.0	14.6	14.0	12.8	12.4	56.8	42.8	26.6	23.2	35.2	48.0	64.7	58.2 4	19.4 3	7.4 3	4.7 4	1.9 5	2.7 73	9 41	.0 36.	7 22.	8 17.3	37.5	34.7	50.5
mg/kg	17.1	19.3	21.1	18.9	17.1	15.6	9.89	8.78	8.95	7.47	9.45	11.8	14.9	9.04	9.58 1	8.2 1	4.0 8	45 8	94 12	0 10	0.9.8	7 6.3	5 4.77	11.0	7.67	11.6
me/ke	4.66	5.22	5.76	5.36	4.86	5.56	24.3	18.4	12.9	10.3	15.4	20.9	27.7	25.1	1 1.12	4.2	4.1	8.7 2	3.0 31	7 22	3 20	3 11.6	9 8.02	11.7	15.3	22.5
me/ke	17.3	17.6	16.9	17.4	19.2	28.6	24.0	18.2	11.3	8.3	12.8	19.5	26.4	21.2	1 1.7.1	0.6	8	2.2	5.8 24	8 16	2 14	7 8.4	9 5.20	8.36	11.4	15.5
me/ke	85.5	89.2	92.0	85.4	81.1	79.0	80.3	66.7	58.2	48.9	64.5	80.0	96.1	71.3	70.4 1	9 01	4.5 6	2.6 7.	1.1 97	3 77	0 76	9 48.	7 36.1	93.8	60.7	74.2
me/kg	17.4	16.6	16.6	17.4	18.3	18.2	17.4	18.7	12.7	9.2	12.5	17.2	20.4	15.6	5.6 1	1.8	0.8	2.6 1:	5.4 20	2 11	6 11	9.1	6.8	11.2	12.2	14.9
mg/kg	3.86	3.54	3.88	4.24	4.92	7.96	10.2	7.66	5.85	3.95	5.41	8.16	10.2	14.8	3.84 4	.69 3	84	90	47 9.8	81 15	9 15.	3 7.5	7 4.10	5.58	7.89	10.5
mg/kg	55.3	50.3	46.9	47.2	47.8	46.2	113	84.0	54.7	53.8	73.9	94.0	116	106 8	38.7 5	0.5 5	4.4 7	9.0	5.7 12	8 70	7 72.	1 58.9	9 47.1	55.9	75.5	92.4
mg/kg	263	259	262	280	289	284	117	236	164	81.2	84.0	95.0	94.8	86.4	143 Ì	107 6	5.3 8.	4.1 9	7.4 98	.8 82	.7 92.	0 82.0	0 66.9	75.5	96.3	III
mg/kg	27.3	26.2	25.0	24.8	24.6	23.5	15.1	12.7	9.69	7.60	12.2	21.3	25.1	13.6	11.8 1	0.1 7	.66 10	0.5 10	3.9 21	2 11.	92 11.	5 7.4'	7 5.59	9.77	12.0	15.6
mg/kg	121	111	103	103	104	106	77	60	42	37	65	117	132	89	58	36	39 (300	10	7 4:	54	32	25	72	69	79
mg/kg	5.59	5.13	4.73	4.83	4.82	5.14	11.0	8.63	5.74	6.57	9.72	12.5	14.4	11.2	9.07 6	5.13 7	.40 9.	95 1	1.6 14	-8 6.	1.5	9 5.3	8 6.03	19.6	10.3	13.4
mg/kg	0.790	0.656	0.647	0.702	0.700	0.993	0.710	0.631	0.459	0.298	0.479	0.732	1.04	0.814 0	.610 0.	.400 0.	372 0.4	148 0.5	55 0.9	56 0.7	93 0.80	56 0.48	8 0.23	3 0.669	0.470	0.767
mg/kg	0.127	0.116	0.121	0.123	0.119	0.129	0.099	0.102	0.081	0.058	0.094	0.146 (0.177	0.113 0	.105 0.	.101 0.	0.78 0.	00	38 0.1	79 0.0	69 0.0	73 0.04	9 0.03	7 0.058	0.069	0.096
mg/kg	1.41	1.36	1.30	1.37	1.33	1.73	2.08	1.65	1.14	0.993	1.62	2.19	3.23	2.09	1.64	1 1	25	45	93 3.4		66 I 3	0 0.98	0 0.73	5 1.85	1.73	2.36
mg/kg	0.360	0.275	0.254	0.245	0.254	0.364	0.840	0.751	0.469	0.430	0.527	0.672	0.918 7.54	0.870 6	(708 0. . 24 3.	421 0.	389 0.1	-0 -5 	518 0.7	93 0.8	32 0.7	79 0.61	1 0.37	9 0.539	0.624	0.739
mg/kg	9.70	5.01	1877	2.80	2.95	21.2	16.9	17.6	3.08 797	2.34	3.69 405	70.0	4C./	06.0	10.0	104	.43 . 5 . 4 . 4	10 10 10	80 80 12 80 12 12 12 12 12 12 12 12 12 12 12 12 12	4 c 5 c	1.5 90	8 2.1	1.84	1001	5.40	5.12
mg/Kg	0/7	748	677	252	252	107	477	675	/87	079	405 7 01	434	402	180	410	2 8/2	00 4 0 4		3/ 3C	2	0 0 1 0	0 342 1 342	000	498	000	000
mg/kg	2.01	31.1	10.4 20.2	0.01	30.1	0.CI	57.6	70.7	0.41 28.0	9.61 0.77	30.0	0.05 73.5	20.2	- 6.07 571	1 C C I		4 V 7 V 7 V	7 7 0 7 0 7	00 000 27 000	- 19 0 40	. 4 6 37. 7	0 I J	2	0.07 1	51.4 65.6	5.05 C.05
me/kg	418	3.85	3.64	3.66	3.68	3.70	6.26	4.66	3 23	3.17	4.52	8.35	8.51	6.46 z	1.79 2	4 68 1 7 89	30 6	22 6	818		2 8 2 4 2 4	3 20.	3 2.57	6.08	7.43	7.04
mø/kø	171	16.0	15.0	15.2	15.1	15.3	22.4	17.0	8 11	113	16.6	30.5	31.2	22.9	1 4 1	0.9	21 2	10	19 32	1 17	5 16	4 11 (026 0	21.5	26.9	25.6
mg/kg	4.01	3.86	3.66	3.63	3.67	3.55	4.10	2.98	2.27	2.05	3.07	5.68	5.85	3.86	3.06 2	17 2	12	06	36 5.7	4 3.2	3.1	3 2.1	17.1	3.88	4.93	4.82
mg/kg	1.07	1.01	1.01	1.02	1.05	1.02	0.844	0.939	0.692	0.473	0.659	J.981	1.19	0.755 0	.798 0.	570 0.	471 0.8	304 0.	78 1.1	3 0.7	21 0.7	16 0.47	7 0.39	0 0.595	0.734	0.895
mg/kg	4.09	3.93	3.85	3.80	3.71	3.76	3.07	2.48	1.91	1.61	2.46	4.46	4.88	2.84	2.41 1	.90	.64	73 3.	30 4.5	50 2.8	32 2.6	0 1.63	2 1.32	2.66	3.31	3.67
mg/kg	0.67	0.64	0.61	0.60	0.59	0.60	0.428	0.367	0.277	0.229	0.350	0.627 ().692	0.420 0	351 0.	.284 0.	237 0.	346 0.4	132 0.6	11 0.3	65 0.30	51 0.21	8 0.17:	2 0.326	0.426	0.484
mg/kg	4.30	4.07	3.95	3.86	3.78	3.81	2.55	2.13	1.68	1.36	2.11	3.62	4.11	2.36	2.10 1	.71 1	.37 1.	88	41 3.5	53 2.0	9 2.0	1 1.3	1 0.97	7 1.78	2.25	2.77
mg/kg	0.91	0.88	0.84	0.83	0.80	0.80	0.526	0.433	0.337	0.264	0.416	0.714 (.838	0.477 0	.412 0.	373 0.	272 0.	377 0.4	195 0.7	21 0.4	09 0.3	96 0.25	4 0.19	4 0.343	0.419	0.523
mg/kg	2.65	2.55	2.47	2.49	2.42	2.39	1.52	1.26	0.98	0.75	1.21	2.10	2.45	1.38	1.20	.06	80	03 2 1	40 2.0	1.1 20 21	0 1.0	7 0.71	4 0.53	6 0.968	1.17	1.52
mg/kg	0.38 7.55 7.55	15.0 14 c	0.36	0.36	0.54 777	0.50 25 C	0.220	0.185	0.148	0.114	0.184	305	195.U	0 507.0	-1 /0	0 861.	123 0.	- 6 7 7	5.0 812 2 C	1.0 20	20 U.I.	01.0 00	10.0 2	2 0.00 0 5	0.1.0	077.0
Ba/Bm	CC-7	+ 17 O	CC:7	46.7	177	0350	0.770	0.187	0.151	0.117	0.187	214 C	0.1260	0.218 0	183 0	173 0	1.0 201	1 28	12 03	10 10	011 C	C/ 0 2		0.151.0 5	1.14	912.0
me/ke	3.0	2.8	2.6	2.6	2.6	2.8	2.0	1.6	1.1	0.98	1.7	31	34	23	1.6	101		.6	2 2	5 8	2 1.1	2 0.9	0.7	01.0	1.81	2.1
mg/kg	0.476	0.446	0.419	0.416	0.420	0.436	0.966	0.729	0.501	0.538	0.815	1.20	1.23	0.953 0	.770 0.	418 0.	402 0.	807 1	10	6 0.7	14 0.6	37 0.47	0 0.42	4 1.01	0.867	1.14
mg/kg	n.d.	n.d.	n.d.	n.d.	n.d.	0.005	0.084	0.061	0.049	0.038	0.063	0.095 (0.118	0.062 0	.051 0.	034 0.	028 0.0)42 0.0	0.0 0.0	81 0.0	42 0.0	53 0.03	4 0.02	1 0.034	0.052	0.073
mg/kg	0.286	0.273	0.278	0.302	0.329	0.407	0.597	0.449	0.318	0.299	0.426	0.556 ().682	0.566 0	.453 0.	276 0.	298 0.4	129 0.5	533 0.6	92 0.3	47 0.3(50 0.29	3 0.23	4 0.286	0.394	0.470
mg/kg	10.6	9.87	9.65	10.2	10.8	12.8	20.4	17.2	12.8	11.6	16.5	26.3	28.6	22.1	17.2 1	1.9 1	3.4 1:	5.4	9.3 26	.5 18	.5 18.	8 13.	1 9.59	14.8	20.5	25.9
mg/kg	0.144	0.125	0.150	0.194	0.260	0.544	0.269	0.246	0.148	0.108	0.168	0.270 (.391	0.257 0	.215 0.	.125 0.	120 0.	183 0.7	236 0.3	55 0.1	63 0.18	85 0.13	9 0.10	2 0.12(0.151	0.224
mg/kg	4.97	4.52	4.29	4.29	4.28	4.46	9.18	6.79	4.71	4.25	6.53	12.4	12.7	9.70	7.21 4	1.02	51 6.	20	0.6 12	.8 6.6	58 6.3	9 4.5	9 3.53	8.52	11.9	10.4
mg/kg	1.13	1.03	0.972	0.974	0.967	1.00	1.67	1.23	0.849	0.836	1.32	2.26	2.56	1.76	1.28 0	.74 0.	841 1.	27 1.	83 2.3	1.3 1.3	32 1.2	5 0.85	8 0.65	9 1.32	1.76	2.04
1 mm. B:	1-0.5 mn	n. C: 500)-250 µI	m, D: 250	λ-125 μ	n. E: 125-	-63 µm, 1	F: 63-32	um G: ,	<32 um																

Bulletin of the Geological Survey of Japan, vol. 69 (5), 2018

Table 6 continued.

					Yk01						Yk	:17		
Element	t Unit	Α	В	С	D	Е	F	G	А	В	С	D	Е	F+G
Na ₂ O	wt%	1.13	1.54	2.44	3.14	3.48	3.41	2.80	1.20	1.49	1.97	2.35	3.27	3.33
MgO	wt%	0.987	1.15	1.10	1.04	0.965	1.01	1.25	0.896	1.05	2.49	2.58	1.10	0.816
Al_2O_3	wt%	9.67	11.73	13.82	14.08	14.91	16.77	18.49	9.38	10.54	10.93	11.27	14.82	18.11
P_2O_5	wt%	0.053	0.048	0.045	0.057	0.142	0.271	0.196	0.056	0.049	0.054	0.106	0.282	0.214
K_2O	wt%	4.14	4.48	4.06	3.28	2.83	2.63	2.50	4.05	3.83	3.06	2.42	2.86	3.09
CaO	wt%	0.49	1.04	1.87	2.36	2.54	2.29	1.50	0.545	1.14	2.23	2.30	2.45	2.17
TiO ₂	wt%	0.577	0.601	0.478	0.503	0.761	0.922	0.902	0.507	0.469	1.00	2.63	1.67	0.94
MnO	wt%	0.063	0.069	0.064	0.060	0.070	0.084	0.075	0.058	0.064	0.141	0.204	0.119	0.091
T-Fe ₂ O ₃	3 wt%	3.90	4.13	3.49	3.41	4.18	5.00	5.27	3.33	3.34	8.05	17.2	8.34	4.42
H_2O^-	wt%	0.502	0.535	0.741	0.513	0.656	1.64	3.87	0.381	0.487	0.365	0.324	0.546	1.36
Li	mg/kg	95.4	97.4	67.5	40.7	34.9	53.2	73.2	79.2	70.8	47.9	30.0	34.1	48.0
Be	mg/kg	2.09	2.18	2.67	3.41	4.02	4.81	4.50	2.13	2.12	2.25	2.84	4.45	5.77
Sc	mg/kg	7.98	8.83	8.17	7.25	8.00	8.80	11.8	5.39	7.30	16.5	20.0	9.65	7.98
V	mg/kg	33.7	33.8	38.8	50.5	77.8	78.6	69.6	33.2	31.2	153	416	190	76.0
Cr	mg/kg	18.8	18.0	12.2	8.6	10.4	20.0	43.5	14.4	12.7	13.4	17.4	13.6	22.8
Co	mg/kg	5.86	6.42	5.64	5.65	6.90	7.64	8.98	5.20	5.65	13.6	24.7	11.8	8.21
Ni	mg/kg	6.93	7.17	5.18	3.94	4.89	8.95	18.2	5.80	5.93	5.76	6.30	5.57	10.4
Cu	mg/kg	6.62	6.49	5.04	4.42	6.39	13.9	24.5	4.98	5.32	5.49	7.68	6.94	15.0
Zn	mg/kg	67.8	73.0	57.7	46.5	61.2	83.1	107	59.8	58.1	94.8	176	101	101
Ga	mg/kg	13.9	16.1	16.3	16.1	23.4	41.5	29.7	13.0	13.1	14.7	24.4	50.4	31.4
As	mg/kg	7.86	6.49	6.42	6.63	9.09	20.5	32.8	6.59	8.63	5.71	7.37	13.8	22.4
Rb	mg/kg	195	211	176	128	113	120	134	185	176	130	93.5	113	151
Sr	mg/kg	/0.4	94.7	132	145	148	145	122	/1.0	90.4	110	115	148	156
Y	mg/kg	9.07	8.82	/.38	/.86	25.3	65.0	33.8	9.14	9.23	10.6	25.1	84.3	42.8
Zr	mg/kg	3.8	3.9	6.0	6.4	12	34	3/	2.1	2.7	6./	16	20	1/
IND Mo	mg/kg	15.5	10.8	0.124	/.11	8.20	15.4	20.0	13.2	12.1	9.18	9.30	13.5	10.5
Cd	mg/kg	0.233	0.170	0.134	0.151	0.307	0.832	0.000	0.000	0.030	0.057	0.244	0.237	0.018
Cu Sn	mg/kg	6.00	6.71	5 20	2.61	4.42	6.74	12.1	5.08	4 70	2 70	2 /0	4 25	8.40
Sh	mg/kg	5.42	0.207	0.465	0.200	0.475	1.20	1 0 9	0.116	4.70	0.121	0.110	4.55	0.40
Ce	mg/kg	14.8	16.3	13.1	8.87	8 30	11.20	1.50	12.1	11.6	8 33	6.02	8.04	12.0
Ba	mg/kg	470	381	303	253	246	273	315	422	315	235	194	264	358
La	mg/kg	22.1	19.6	14.8	16.4	102	323	92.8	21.5	17.5	18.0	108	513	164
Ce	mg/kg	45.4	40.3	30.1	33.5	217	691	204	45.0	36.0	37.4	230	1086	351
Pr	mg/kg	5.17	4 62	3 36	3 70	23.6	75.8	221	5 15	4 12	4 28	25.1	119	38.8
Nd	mg/kg	19.2	17.1	12.4	13.7	87.1	278	82.2	18.9	15.2	15.8	92.9	438	142
Sm	mg/kg	3.74	3.36	2.39	2.68	15.5	49.8	15.8	3.63	3.08	3.08	16.1	74.5	25.5
Eu	mg/kg	0.487	0.573	0.752	0.840	0.997	1.34	1.24	0.484	0.517	0.627	0.768	1.43	1.28
Gd	mg/kg	2.76	2.53	1.93	2.17	11.1	34.1	11.3	2.81	2.36	2.58	11.1	49.7	17.6
Tb	mg/kg	0.350	0.319	0.259	0.274	1.19	3.56	1.43	0.354	0.316	0.329	1.22	5.17	2.06
Dy	mg/kg	1.81	1.73	1.36	1.49	5.73	16.2	7.64	1.85	1.71	1.96	5.69	21.8	9.62
Ho	mg/kg	0.302	0.301	0.251	0.277	0.910	2.35	1.24	0.310	0.307	0.363	0.893	3.07	1.50
Er	mg/kg	0.768	0.769	0.658	0.721	2.01	4.98	3.13	0.773	0.751	0.997	2.04	6.07	3.44
Tm	mg/kg	0.098	0.104	0.093	0.097	0.251	0.574	0.415	0.109	0.109	0.146	0.251	0.662	0.429
Yb	mg/kg	0.606	0.657	0.590	0.633	1.42	2.99	2.56	0.656	0.674	0.863	1.50	3.25	2.40
Lu	mg/kg	0.084	0.089	0.085	0.089	0.194	0.389	0.351	0.085	0.090	0.139	0.219	0.451	0.342
Hf	mg/kg	0.13	0.13	0.14	0.19	0.33	1.1	1.1	0.08	0.11	0.22	0.49	0.69	0.57
Та	mg/kg	1.46	1.74	1.41	0.91	1.09	2.07	2.52	1.19	1.14	0.97	1.08	1.75	2.19
Hg	mg/kg	0.004	0.004	0.003	0.005	0.010	0.044	0.121	0.002	0.002	0.003	0.005	0.009	0.028
Tl	mg/kg	0.987	1.09	0.881	0.616	0.544	0.635	0.795	0.895	0.853	0.626	0.451	0.552	0.782
Pb	mg/kg	42.9	34.3	34.8	35.0	43.4	69.5	115	22.5	22.5	24.9	31.3	34.4	50.7
Bi	mg/kg	0.337	0.287	0.265	0.282	0.363	0.794	1.30	0.268	0.370	0.337	0.359	0.887	0.945
Th	mg/kg	8.97	7.64	5.17	5.87	41.8	141	37.7	8.95	6.75	6.01	44.2	215	67.7
U	mg/kg	1.74	1.72	1.48	1.44	3.25	9.77	9.74	1.52	1.39	1.37	3.05	14.7	7.71

A: 2-1 mm, B: 1-0.5 mm, C: 500-250 μm, D: 250-125 μm, E: 125-63 μm, F: 63-32 μm, G: <32 μm

the coarse silt fraction (32–63 μ m), as with the Tn02, Tn09, and Tn26 samples. The concentrations of P₂O₅, Y, lanthanide (Ln: La–Lu), Th, and U were significantly high for Yk01 and Yk17 in the fine sand fractions of 63–250 μ m. The steep slope of the riverbed in Yakushima Island (3/100–1/50) (Shimazu and Nishi, 2004) and the high river discharge due to heavy rainfall (about 3,250–4,480 mm/year) (Meteorological Agency, http://www.jma.go.jp/jma/menu/menureport.html, accessed 2018-9-4) caused the accumulation of accessary minerals with a greater specific gravity than quartz, plagioclase, and K-feldspar in the fine sand fraction. Mafic elements, such as MgO, TiO₂, and Fe₂O₃ in Yk17, were very abundant in the fine sand fraction (125–250 μ m). Their systematic variations reflect

the relative abundance of magnetic minerals in clastics. Actually, the relative weight ratio of magnetic minerals removed using a hand magnet to the total <180 μ m fraction is extremely high in Yk12 (26%) and Yk17 (31%), but low for other samples (< 6%). The concentrations of mafic elements in the <180 μ m fraction were comparable to those for the coarse sand fraction (A, B, and C) and those for silty size fractions (F and G) (Tables 5 and 6). Thus, the procedure to remove excessive magnetic minerals from the fine sand fraction using a magnet was validated (Imai *et al.*, 2004).

Minami *et al.* (2017) reported that stream sediments derived from granitic rocks have variation patterns similar to that shown in Fig. 4: A V-shaped pattern and the

Fig. 4 Element concentrations in stream sediments by grain size category.

systematic decrease or increase in SiO₂, K₂O, CaO, Rb, Sr, and Ba concentrations. The element concentrations in the fine sand fraction (300–75 μ m) of stream sediments were comparable to those of the host rocks. This is because quartz, K-feldspar, and plagioclase in stream sediments are more abundantly preserved in the coarse sand fraction (>300 μ m) and finer grained accessary minerals have higher concentrations in the silty size fraction (<75 μ m) than in the host rocks. Therefore, the fine sand fraction of <180 μ m was less likely accumulate rock-forming minerals and was suitable for use in geochemical mapping.

4. 2 Element concentrations in fine stream sediments collected from remote islands around Kyushu

Figures 5–9 show geochemical maps for Al₂O₃, K₂O, CaO, T-Fe₂O₃, Cr, Zn, Nb, Cd, La, and Yb on remote islands around the Kyushu mainland. The maps were prepared using the ArcGIS 10.5 software. The geochemical maps were created following the method of Ohta *et al.* (2004). Element concentration intervals in the color image maps were categorized into 8 classes according to the percentile range: $0 \le x \le 5$, $5 < x \le 10$, $10 < x \le 25$, $25 < x \le 50$, $50 < x \le 75$, $75 < x \le 90$, $90 < x \le 95$, and $95 < x \le 100\%$, where x represents the element concentration, according to Reimann (2005).

Enrichment with Li, Be, Na₂O, K₂O, CaO, Rb, Y, Nb, Sn, Cs, Ln, Ta, Tl, Pb, Th, and U was found in stream sediments collected from Yakushima Island, which is underlain mainly by Neogene granitic rock (Figs. 5-8). Stream sediments derived from Paleogene-Neogene sediment on Tsushima Island and stream sediments from Paleogene and Cretaceous sedimentary rocks on Amakusa Islands had abundant Li, Be, K₂O, Rb, Cs, La, Ce, Pr, Nd, Tl, and Th (Figs. 5 and 8). Stream sediments from Tanegashima Island had average chemical compositions for all samples but were poor in MgO, CaO, Sc, TiO₂, V, T-Fe₂O₃, Co, and Sr (Fig. 6). Islands with mafic volcanic and pyroclastic rocks outcrops, such as Ikinoshima, Hiradojima, Nagashima, and Sakurajima Islands, contained high amounts of Al₂O₃, MgO, CaO, P₂O₅, Sc, TiO₂, V, MnO, T-Fe₂O₃, Co, Cu, Zn, and Sr (Figs. 5 and 6). Their spatial distributions were influenced by the abundance of mafic minerals (olivine, pyroxene, and hornblende) in stream sediments. Stream sediments derived from alkaline mafic volcanic rocks on Ikinoshima, Ikitsushima, Takashima, Ukujima, and Ojikajima Islands were also highly enriched with Cr, Ni, Zn, Nb, Ln, and Ta. These elements are relatively uncommon in stream sediments derived from non-alkaline mafic volcanic and pyroclastic rocks distributed on Hiradojima, Nagashima, and Sakurajima Islands (Figs. 7 and 8). However, the reason for the lack of abundance of Na₂O and K₂O in stream sediments derived from alkaline mafic volcanic rocks is unclear because the host rock is enriched with Na₂O and K₂O.

The Cu, Zn, As, Mo, Cd, Sn, Sb, Hg, Pb, and Bi in stream sediments were influenced strongly by mineral

deposits. They were abundant in stream sediments from the south part of Tsushima Island, Ikinoshima Island, Ikitsushima Island, Takashima Island, Ukujima Island, and Ojikajima Island (Fig. 9). The Ts18 sample, in particular, had extremely high concentrations of Zn (1,855 mg/kg), Cd (16.6 mg/kg), and Pb (1,452 mg/kg) due to the Taishu Mine containing Zn and Pb in its drainage basin. The Am25 sample also had very high concentrations of Mo (51.4 mg/kg) and Sn (22.7 mg/kg) and rather high amounts of Cu (278 mg/kg), Zn (436 mg/kg), and Pb (222 mg/kg). However, no metalliferous mines or contaminant sources were found in the sampling location. In contrast, the Am42 and Am43 samples had the highest concentrations of Sb (1.41 mg/kg and 6.32 mg/kg, respectively) because of the Takahama Mine containing Sb located in the drainage basin of Am42 and near the sampling location of Am43. The W mines in the Yakushima Islands did not elevate concentrations of heavy metals in stream sediments. The high concentrations of Sn and Pb on Yakushima Island appear to be caused not by a W mine, but by the parent lithology (granitic rock).

4. 3 Abundance patterns for elements in stream sediments normalized to Japanese stream sediments

Figures 10 and 11 display median element concentrations for stream sediments normalized to the median concentrations of Japanese stream sediments (Imai et al., 2004). Stream sediment samples were classified based on the dominant lithology in the watershed (Tables 2 and 3). Ikinoshima Island is mostly covered by both alkaline and non-alkaline mafic volcanic rock (Fig. 2c). The chemical compositions of sediments samples derived from alkaline mafic volcanic rock (a-Mv) and non-alkaline rock (Mv) were mutually consistent. Thus, Ikinoshima samples were classified as a mixture type of a-Mv and Mv (a-Mv+Mv). Similarly, stream sediment samples collected from Hiradojima Island were classified as a mixture of nonalkaline pyroclastic (Py) and mafic volcanic (Mv) rocks (Py+Mv) because these rock types are distributed together in the drainage basins (Table 3).

Geochemical abundance patterns for stream sediments derived from alkaline mafic volcanic rock (a-Mv) were similar among samples collected from the northern islands (Fig. 10a). Stream sediments were enriched with P_2O_5 , TiO₂, Cr, MnO, T-Fe₂O₃, Co, Ni, Nb, La, Ce, Pr, Nd, Sm, and Ta, but were poor in Na₂O and CaO compared to Japanese stream sediments. In contrast, some differences were found in the geochemical abundance patterns for stream sediments from Hiradojima, Nagashima, and Sakurajima Islands, where non-alkaline mafic volcanic (Mv) and pyroclastic (Py) rock outcrops were present (Fig. 10b). In contrast with stream sediments derived from alkaline mafic volcanic rock (a-Mv), the abundance ratios relative to Japanese stream sediments were nearly constant among mafic elements (Sc, TiO₂, V, MnO, T-Fe₂O₃, and Co) and among Y and Ln. Volcanic ash deposits on Sakurajima Island were extremely poor in

Fig. 5 Spatial distribution of Al₂O₃ and K₂O concentrations on remote islands. (a)-(h) are the same as Fig. 1.

Fig. 6 Spatial distributions of CaO and T-Fe₂O₃ concentrations on remote islands. (a)-(h) are the same as Fig. 1.

Fig. 7 Spatial distributions of Cr and Nb concentrations on remote islands. (a)-(h) are the same as Fig. 1.

Fig. 8 Spatial distributions of La and Yb concentrations on remote islands. (a)-(h) are the same as Fig. 1.

Fig. 9 Spatial distributions of Zn and Cd concentrations on remote islands. Star symbols indicate metalliferous deposits. (a)-(h) are the same as Fig. 1.

Fig. 10 Chemical composition of stream sediments on isolated islands located in the northern Kyushu region, classified by parent lithology and normalized to median concentrations for Japanese stream sediments, expressed as "Jp stream sed." Stream sediments (a) on Ikinoshima, Takashima, Ikitsushima, and Goto Islands derived from a-Mv; (b) on Hiradojima, Nagashima, and Sakurajima Islands derived from Mv and Py; (c) on Goto Islands derived from a-Mv, Fv, Fi, and N-Sed. [Abbreviations: a-Mv (alkaline mafic volcanic rock), Mv (non-alkaline mafic volcanic rock), Py (pyroclastic rock), Fi (non-alkaline pyroclastic rock), N-Sed (Neogene sediment)]

Fig. 11 Chemical composition of stream sediments on (a) Tsushima, Fukushima, Matsushima, Oshima, and Amakusa Islands; (b) Tanegashima Island; and (c) Yakushima Island. Values are classified by parent lithology and normalized to median concentration in Japanese stream sediments, expressed as "Jp stream sed." [Abbreviations: N-Q Sed (Neogene-Quaternary sediment), Pg-N Sed (Paleogene-Neogene sediment), Pg Sed (Paleogene sedimentary rock), K Sed (Cretaceous sedimentary rock), Acc (accretionary complex), and Gr (granitic rock)]

Cr, Ni, Cu, and Zn, but enriched in Na₂O, MgO, CaO, and Sr, and had a low La/Yb ratio compared to stream sediments from Hiradojima Island and Nagashima Island. These different geochemical abundance patterns in stream sediments are caused by the differences in the chemical and mineralogical compositions of the host rocks.

The Goto Islands (Ukujima, Ojikajima, Nakadorijima, Wakamatsujima, Hisakajima, and Fukuejima) are composed of various lithologies (Fig. 2d and Table 2). Stream sediments derived from Neogene non-alkaline felsic volcanic (Fv) and felsic intrusive (Fi) rocks and Neogene sediment (N Sed) have similar abundance patterns (Fig. 10c). Neogene sediments (Sed) in the Goto Islands were deposited in the Late Oligoene to earliest Middle Miocene, and predate the volcanic activity that occurred during the middle to late Middle Miocene. Therefore, the similar abundance patterns indicate that stream sediments in the Goto Islands are simply a mixture of clastic materials derived from the above three lithologies, although the stream sediments were classified into groups according to their representative lithologies. However, stream sediments derived from alkaline mafic volcanic rock (a-Mv) had an abundance pattern different from those for the other lithologies (Fv, Fi, and N Sed) (Fig. 10c) because alkaline mafic volcanic rocks are geographically separated on Ojikajima and Ukujima Islands and are located at separate ends of Fukuejima Island (Fig. 2d).

Stream sediments derived from unconsolidated sediment and sedimentary rock were collected from isolated islands located in distant places (Fig. 11a). However, their geochemical abundance patterns were similar; they all were poor in Na₂O, MgO, CaO, Sc, and V, and rich in Nb and Ta, and had high La/Yb ratios. On the Amakusa Islands, stream sediments derived from Cretaceous sedimentary rock (K Sed) had a chemical composition very similar to that for Paleogene sedimentary rock (Pg Sed), although there was a lower La/Yb ratio in the former. On Tanegashima Island, the geochemical abundance patterns for stream sediments derived from Paleogene accretionary complex (Acc) resembled those for Neogene-Quaternary sediment (N-Q Sed) (Fig. 11b). These results suggest that sediments deposited during the Neogene-Quaternary age originated from the Paleogene accretionary complex, which is found on both Tanegashima and Yakushima Islands. Stream sediments derived from the accretionary complex (Acc) on Yakushima Island had abundance patterns similar to those for the accretionary complex in Tanegashima Island but at greater concentrations (Figs. 11b, c). Sandstone and alternating sandstone and mudstone, a mélange matrix, are the dominant facies on both Tanegashima Island and Yakushima Island (Kawanabe et al., 2004; Saito et al., 2007). However, the exposed areas of mudstone and mud-dominated turbidite in the drainage basins for the Tanegashima and Yakushima samples were 6–27% (10%) of median value) and 15–61% (30% of median value), respectively. Consequently, the lower concentrations of elements in the Tanegashima samples must be caused by the dilution effect of quartz because sandstone is more abundant in quartz than in mudstone. Neogene granitic rock that had intruded into the central part of Yakushima Island greatly elevated the Li, Be, Na₂O, CaO, Sr, Y, Ln, Th, and U concentrations in stream sediments, and reduced the MgO, Sc, TiO₂, V, Cr, MnO, T-Fe₂O₃, Co, Ni, Cu, and Zn concentrations (Fig. 11c). The enrichment by Na₂O, CaO, and Sr can be explained by the large amount of plagioclase in stream sediments. The extreme enrichment with Li, Be, Y, Ln, Th, and U was caused by excess accumulation of accessary minerals, such as beryl and monazite, in the fine sand fraction as shown in Fig. 4.

5. Summary

A total of 193 stream sediments were collected from 22 remote islands around Kyushu Island and Uto Peninsula, and 3 volcanic ash deposits were collected from Sakurajima Island. The concentrations of 53 elements in these samples were determined using ICP-AES, ICP-MS, and AAS. The results indicated that 12, 9, 31, 20, and 19 of the stream sediments were derived predominantly from alkaline mafic volcanic rock, Cretaceous sedimentary rock, Paleogene sedimentary rock associated with coal mines, and Neogene granitic rock, respectively. These rock types represent a limited number of outcrops on mainland Japan. The remainder of the samples originated from Neogene-Quaternary sediments, non-alkaline mafic volcanic and pyroclastic rocks, and Paleogene accretionary complexes.

The variation in element concentration with grain size was determined for Sk03, Tn02, Tn09, Tn26, Yk01, and Yk17. The concentrations of many elements in Sk03 showed little change with grain size because sand-sized particles were composed of agglutinated silt-sized volcanic ash. The concentrations of many elements in the remainder of the samples decreased with decreasing grain size from the very coarse sand fraction, reached a minimum for the fine sand fraction, and then increased as the grain size further decreased, resulting in a V-shaped pattern.

Stream sediments derived from mafic volcanic and pyroclastic rocks and volcanic ash deposits were enriched with Al₂O₃, MgO, CaO, P₂O₅, Sc, TiO₂, V, MnO, T-Fe₂O₃, Co, Cu, Zn, and Sr. Alkaline mafic volcanic rock contained highly elevated concentrations of Cr, Ni, Nb, La, Ce, Pr, Nd, and Ta in stream sediments. The stream sediments from Yakushima Island, which are mostly underlain by Neogene granitic rock, were extremely abundant in Be, Na₂O, K₂O, CaO, Sr, Y, Ln, Th, and U. These enrichments can be explained by the large amount of plagioclase and K-feldspar and by accumulation of accessary minerals such as apatite and monazite. Cretaceous-Paleogene sedimentary rocks and Paleogene-Neogene sediments were distributed discretely on Tsushima, Fukushima, Matsushima, Oshima, and Amakusa-kamishima, Amakusashimoshima, Goshorajima, and Shishijima Islands.

Nevertheless, stream sediments derived from these rocks had similar geochemical abundance patterns. Furthermore, except for Cr, Ni, and heavy metals, the geochemical abundance patterns for stream sediments originating from Cretaceous-Paleogene sedimentary rocks and Paleogene-Neogene sediments resembled those from Paleogene accretionary complex distributed on Tanegashima and Yakushima Islands. These results suggest that the accretionary and non-accretionary sedimentary rocks have a common origin. Thus, geochemical features of stream sediments on isolated islands are strongly influenced by the parent lithology in their watershed. Finally, although a number of a large-scale metalliferous deposits were limited to remote islands, enrichment with Zn, Cd, and Pb in stream sediments was found near the Zn-Pb mine on Tsushima Island. Similarly, Sb concentrations were significantly greater in stream sediments collected near the Sb mine on Amakusa-shimoshima Island.

Acknowledgement

Sampling in Yakushima Island National Park was conducted with the permission and cooperation of the Yakushima Ranger Office, Ministry of the Environment, Yakushima Forest Management Office, Kyushu Regional Forest Office, and Yakushima Forest Ecosystem Conservation Center.

References

- Darnley, A. G., Björklund, A., Bølviken, B., Gustavsson, N., Koval, P. V., Plant, J. A., Steenfelt, A., Tauchid, M., Xie, X., Garrett, R. G. and Hall, G. E. M. (1995) A global geochemical database for environmental and resource management: recommendations for international geochemical mapping. UNESCO Publishing, Paris, 122p.
- Geological Survey of Japan, AIST (ed.) (2015) Seamless digital geological map of Japan 1: 200,000. May 29, 2015 version. Geological Survey of Japan, AIST.
- Howarth, R. J. and Thornton, I. (1983) Regional Geochemical Mapping and its Application to Environmental Studies. *In* Thornton, I., ed., *Applied Environmental Geochemistry*, Academic Press, London, 41–73.
- Imai, N. (1987) Multielement analysis of stream sediment by ICP-AES. *Bunseki Kagaku*, **36**, T41–T45 (in Japanese with English abstract).
- Imai, N. (1990) Multielement analysis of rocks with the use of geological certified reference material by inductively coupled plasma mass spectrometry. *Anal. Sci.*, 6, 389–395.
- Imai, N., Terashima, S., Itoh, S. and Ando, A. (1995) 1994 compilation of analytical data for minor and traceelements in 17 GSJ geochemical reference samples, igneous rock series. *Geostand. Newsl.*, 19, 135–213.
- Imai, N., Terashima, S., Itoh, S. and Ando, A. (1996) 1996 compilation of analytical data on nine GSJ geochemical reference samples, "Sedimentary rock

series". Geostand. Newsl., 20, 165-216.

- Imai, N., Terashima, S., Ohta, A., Mikoshiba, M., Okai, T., Tachibana, Y., Togashi, S., Matsuhisa, Y., Kanai, Y., Kamioka, H. and Taniguchi, M. (2004) *Geochemical map of Japan*. Geological Survey of Japan, AIST, 209p.
- Imai, N., Terashima, S., Ohta, A., Mikoshiba, M., Okai, T., Tachibana, Y., Togashi, S., Matsuhisa, Y., Kanai, Y. and Kamioka, H. (2010) *Geochemical Map of Sea and Land of Japan*. Geological Survey of Japan, AIST, 207p.
- Imai, N., Okai, T., Ohta, A., Mikoshiba (Ujiie), M., Kanai, Y., Kubota, R., Tachibana, Y., Terashima, S., Ikehara, K., Katayama, H. and Noda, A. (2015) *Geochemical Map of Kanto Region*. Geological Survey of Japan, AIST, 217p.
- Karakida, Y., Hayasaka, S. and Hase, Y. (1992) Regional Geology of Japan Part 9 (KYUSHU). Kyoritsu Shuppan Co., 354p.
- Kawanabe, Y., Sagaguchi, K., Saito, M., Komazawa, M. and Yamazaki, T. (2004) *Geological Map of Japan* 1:200,000, Kaimon Dake and a part of Kuro Shima. Geological Survey of Japan, AIST.
- Minami, M., Jomori, Y., Suzuki, K. and Ohta, A. (2017) Grain-size variations in ⁸⁷Sr/⁸⁶Sr and elemental concentrations of stream sediments in a granitic area: Fundamental study on ⁸⁷Sr/⁸⁶Sr spatial distribution mapping. *Geochem. Jour.* **51**, 469–484.
- Ohta, A. (2018) Evaluation of straightforward and rapid multi-element analyses of stream sediments for geochemical mapping in the remote islands of Japan Seto Inland Sea region —. *Bull. Geol. Surv. Japan.* 69, 1–30.
- Ohta, A., Imai, N., Terashima, S., Tachibana, Y., Ikehara, K. and Nakajima, T. (2004) Geochemical mapping in Hokuriku, Japan: influence of surface geology, mineral occurrences and mass movement from terrestrial to marine environments. *Appl. Geochem.*, 19, 1453–1469.
- Reimann, C. (2005) Geochemical mapping: technique or art? *Geochem.: Explor. Environ. Anal.*, **5**, 359–370.
- Saito, M., Ogasawara, M., Nagamori, H., Geshi, N. and Komazawa, M. (2007) *Geological Map of Japan* 1:200,000, Yaku shima. Geological Survey of Japan, AIST.
- Shimazu, H. and Nishi, K. (2004) Distribution of maximum diameter of riverbed sediments and debris transport processes in Yakushima Island, Southern Jap. *Bull. Geo-environmental Sci.* 6, 131–137 (in Japanese).
- Terashima, S. (1976) The determination of arsenic in rocks, sediments and minerals by arsine generation and atomic absorption spectrometry. *Anal. Chim. Acta*, **86**, 43–51.
- Terashima, S. (1984) Determination of arsenic and antimony in geological-materials by automated hydride generation and electrothermal atomicabsorption spectrometry. *Bunseki Kagaku*, **33**,

561–563 (in Japanese with English abstract).

- Terashima, S., Imai, N., Ikehara, K., Katayama, H., Okai, T., (Ujiie) Mikoshiba, M., Ohta, A. and Kubota, R. (2008) Variation of elemental concentrations of river and marine sediments according to the grain size classification. *Bull. Geol. Surv. Japan*, **59**, 439–459 (in Japanese with English abstract).
- Webb, J. S., Thornton, I., Thompson, M., Howarth, R. J. and Lowenstein, P. L. (1978) *The Wolfson Geochemical Atlas of England and Wales*. Clarendon Press, Oxford, 69p.

Recieved December 26, 2017 Accepted October 23, 2018

九州離島域の地球化学図作成

太田充恒

要 旨

本論文では、西南日本離島域を対象とした高密度地球化学図についての報告を行う.九州地方の陸海域地球化学図や現 在作成中の広域Sr同位体図における研究調査を補完し強化する事を目的として、193試料の河川堆積物および3試料の火山 灰降下堆積物を主に九州周辺の離島から採取し、53元素の分析を行った.堆積物試料中の元素広域分布と地質との関係を 地理情報解析ソフトウェアを用いて詳細に調べた.非アルカリ苦鉄質火山岩や火砕岩由来の河川堆積物や火山灰降下堆積 物はマグネシウム、カルシウム、スカンジウム、チタン、バナジウム、鉄、コバルト、ストロンチウムに富んでいた.ア ルカリ苦鉄質火山岩はさらに河川堆積物中のクロム、ニッケル、ニオブ、ランタン、セリウム、プラセオジム、ネオジ ム、タンタル濃度も増加させた.花崗岩由来の河川堆積物は、ベリリウム、ナトリウム、カリウム、カルシウム、スト ロンチウム、イットリウム、スズ、ランタノイド元素、トリウム、ウランに富んでいた.付加帯・非付加帯堆積岩は河 川堆積物中のニオブやタンタル濃度を増加させたが、ナトリウム、マグネシウム、カルシウム、ストロンチウム濃度を 低下させた.これらの地球化学的な特徴は、砕屑物中の母岩から供給された主要造岩鉱物(例えば石英、斜長石、カリ 長石、苦鉄質鉱物)や副成分鉱物(例えば、アパタイトやモナザイト)の相対的な存在量によって説明が可能である. また、亜鉛・鉛鉱床が対馬の河川堆積物中の亜鉛、カドミウム、鉛濃度を高め、アンチモン鉱床が天草下島の河川堆積 物中のアンチモン濃度を高めたことが確認された.