概報 - Report

5万分の1地質図幅「鳥羽」地域における秩父累帯北帯の砂岩及び 三波川帯の砂質片岩から得られた砕屑性ジルコン U-Pb 年代

内野隆之^{1,*}

Takayuki Uchino (2017) U-Pb ages of detrital zircon grains from sandstones of the Northern Chichibu Belt and psammitic schists of the Sambagawa Belt in the Toba District (Quadrangle series 1:50,000), Shima Peninsula, Mie Prefecture, Southwest Japan. *Bull. Geol. Surv. Japan*, vol. 68 (2), p. 41–56, 4 figs, 6 tables, 3 appendixes.

Abstract: The Geological Survey of Japan is now making a geological map and its explanatory text of geology of the Toba District (Quadrangle series 1:50,000), Shima Peninsula, Mie Prefecture. During its study, detrital zircon U-Pb ages from sandstone in the Northern Chichibu Belt and from psammitic schist in the Sambagawa Belt were measured in order to reveal accretion ages of the accretionary complexes in the both belts.

The peak ages of the youngest clusters of the detrital zircon grains from the Osakatoge Complex and the Kochi Complex in the Northern Chichibu Belt are 204.4 ± 4.0 Ma and 183.4 ± 2.9 Ma, respectively. These ages are consistent to the depositional ages (Early and Middle Jurassic) of terrigenous deposits assumed from radiolarian fossils by a previous work.

The peak ages of the youngest clusters of the detrital zircon grains from two samples in the Miyakawa Formation in the Sambagawa Belt are 177.1 ± 1.6 Ma and 95.5 ± 2.5 Ma. The latter is acceptable according to 99–83 Ma phengite K-Ar ages (metamorphic or cooling age on a subduction zone) from psammitic schist shown by a previous work in the Ise District (west of the Toba District). On the other hand, the former is much older than the latter although the both samples may belong to a same unit. Therefore, more data such as phengite K-Ar ages or additional detrital zircon U-Pb ages are necessary to verify the scientific validity of the former (Early Jurassic age).

Keywords: U-Pb age, detrital zircon, Jurassic, Cretaceous, Osakatoge Complex, Kochi Complex, Miyakawa Formation, Northern Chichibu Belt, Sambagawa Belt, Shima Peninsula, Mie Prefecture

要 旨

地質調査総合センターでは現在,5万分の1地質図幅 「鳥羽」の作成を行っている.その研究過程で,志摩半島 に分布する秩父累帯北帯及び三波川帯の付加体の付加年 代を決定することを目的に,砂岩及び砂質片岩中の砕屑 性ジルコンのU-Pb年代を測定した.

秩父累帯北帯逢坂崎コンプレックスの砂岩中ジルコン の最若粒子集団は204.4±4.0 Ma (三畳紀末~ジュラ紀初 頭)を示し、また同帯河内コンプレックスの砂岩中のジ ルコンの最若粒子集団は183.4±2.9 Ma (前期ジュラ紀 中頃~前期ジュラ紀後半)を示すことが明らかになった. これらは放散虫化石から想定されている陸源性砕屑岩の 時代(付加年代)と矛盾しない.また、三波川帯宮川層の 砂質片岩中のジルコンの最若粒子集団は177.1±1.6 Ma (前期ジュラ紀後半)と95.5±2.5 Ma (後期白亜紀前半) を示すことが判明した.後者は,伊勢地域(図幅西隣)か ら得られている99-83 MaのフェンジャイトK-Ar年代(変 成・冷却年代)と調和的である.しかし,前者は後者よ りも有意に古い年代を示す結果となった.前者の妥当性 を検証するため,今後更なる砕屑性ジルコンU-Pb年代や フェンジャイトK-Ar年代などのデータ追加が必要である.

1. はじめに

地質調査総合センターでは、志摩半島に分布する三 波川帯、秩父累帯、四万十帯の3地体にまたがっている 5万分の1地質図幅「鳥羽」の作成を現在行っている(第1 図).

秩父累帯は北から「北帯」,「中帯(あるいは黒瀬川帯)」,

¹産業技術総合研究所 地質調査総合センター 地質情報研究部門 (AIST, Geological Survey of Japan, Research Institute of Geology and Geoinformation) *Corresponding author: T.Uchino, Central 7, Higashi 1-1-1, Tsukuba, Ibaraki 305-8567, Japan, Email: t-uchino@aist.go.jp

第1図 志摩半島の地質概略図. 南伊勢町周辺の秩父累帯の分布は坂(2009)に, 秩父累帯北帯の区分は山際・坂(1967)による. 緯度・経度は世界測地系に従った.

BTL:仏像構造線,GATL:五ヶ所-安楽島構造線.

Fig. 1 Geological map of Shima Peninsula. Distribution of the Chichibu Composite Belt around Minami Ise Town is from Saka (2009), Division of the Northern Chichibu Belt is after Yamagiwa and Saka (1967). Latitude and longitude follow the world geodetic system.

BTL: Butsuzo Tectonic Line, GATL: Gokasho-Arashima Tectonic Line.

「南帯」に区分される(例えば、山際・坂、1967;坂ほか、 1988;坂ほか、1999;坂、2009).北帯にはジュラ紀付 加体が分布し、中帯(坂ほか、1999以降、黒瀬川帯と呼 ばれることが多い)にはジュラ紀付加体及び中期ジュラ 紀~前期白亜紀浅海層のほか、蛇紋岩、深成岩、角閃 岩、デボン紀堆積岩、ペルム紀浅海層、200 Ma前後の 結晶片岩が分布する。南帯にはジュラ紀の付加体と後期 ジュラ紀~前期白亜紀の浅海層が分布している。そして、 四万十帯には白亜紀の付加体が分布し、三波川帯には超 苦鉄質~苦鉄質岩類(御荷鉾緑色岩類)と泥質片岩を主体 とした結晶片岩類が分布している。

本図幅地域を含め志摩半島の秩父累帯北帯の地質体 は、かつて石灰岩から得られた紡錘虫化石によって石炭 紀あるいはペルム紀に形成されたと考えられていた(例 えば、日下部・宮村、1958). 1970年代にプレートテク トニクス論が日本に導入され、古生層と考えられてい た地層の多くがジュラ紀の付加体であることが理解され た.そして.志摩半島でも菅野ほか(1980)の放散虫化石 報告を皮切りに、相次いでジュラ紀付加体の存在が確認 されてきた.しかし、北帯に関してはジュラ紀の付加体 と推測されることは多かったが、放散虫化石の報告はな かった.また、北帯の中央部ユニットについてはペルム 紀付加体と考えられた例(磯崎ほか、1992)もある. その ような中,都築・八尾(2006)によって漸く,中央部ユニッ トから前期ジュラ紀の放散虫化石が、北部ユニットから 中期ジュラ紀の放散虫化石がそれぞれ報告され、北帯に もジュラ紀の付加体が広く分布していることが明らかに なった.ただし、この報告は学会での講演であったため、 講演要旨からは標本写真や採取位置など詳細な情報を得 ることができず、検証が困難な状況にある.

本地域三波川帯の泥質片岩を主体とするユニットに関 しては、研究報告がほとんどない.近年、日本列島の三 波川帯の砕屑岩から砕屑性ジルコンU-Pb年代が相次い で報告されており、三波川帯の一部の原岩が四万十帯の "北帯"に相当する後期白亜紀の付加体であることが明ら かになってきた(例えば、青木ほか、2010).紀伊半島西 部でも、三波川帯中軸部の原岩は、四万十帯"北帯"相当 の付加体であるとされている(大藤ほか、2010).このよ うな状況から、本地域の三波川帯の原岩年代についても 解明が望まれている.

以上の背景を踏まえて,秩父累帯北帯及び三波川帯に 産する砕屑岩中の砕屑性ジルコンのU-Pb年代測定を行っ た.本論ではその結果についての報告と評価を行う.

2. 地質概説

本地域の秩父累帯北帯は北部ユニットの河内コンプ レックス(都築・八尾, 2006),中央部ユニットの逢坂峠 コンプレックス(都築・八尾, 2006),南部ユニットの白 未層群(山際・坂, 1967)からなり,放散虫化石に基づい て河内コンプレックスは中期ジュラ紀に、逢坂峠コンプ レックスは前期ジュラ紀にそれぞれ形成されたとされて いる(都築・八尾, 2006).一方、本地域の三波川帯は、 北部ユニットの営川層と南部ユニットの驚嶺層からなる (飯塚, 1929).以下に砕屑性ジルコン年代測定の対象と なった試料が所属する逢坂峠コンプレックス、河内コン プレックス及び宮川層について概要を記述する.

2.1 逢坂峠コンプレックス(秩父累帯北帯)

本地域秩父累帯北帯の中央部を南北に走る胴切断層 (第1図のtransverse fault)以西において,北側の河内コン プレックスと南側の白木層群に挟まれて分布する.層理 面は北東-南西ないし東北東-西南西走向で北あるいは南 の概ね低角傾斜を示す.玄武岩,石灰岩,チャート,泥岩, 砂岩,混在岩を主体とし,5万分の1地質図規模で混在 相を示す.石灰岩の卓越と低角な地質構造で特徴付けら れる.

石灰岩からは、前期ペルム紀の紡錘虫化石や珊瑚化 石が報告されている(加藤・杉、1927;日下部・宮村、 1958;山際・坂、1967;山際、2015).都築・八尾(2006) は、産地や標本写真を明示していないが、チャートから Albaillella sp.やoertlispongidsの放散虫化石を見出し、そ の時代をそれぞれペルム紀及び中期三畳紀と考えてい る.また、彼らは泥岩からBagotum sp., Lupherium sp., Pantanellium sp.及びStichocapsa sp.の放散虫化石を見出し、 その時代を前期ジュラ紀と考えている.

2.2 河内コンプレックス(秩父累帯北帯)

本地域秩父累帯北帯の北部に分布する(第1図). 層理 面は北東-南西ないし東北東-西南西走向で概ね中角の北 あるいは南傾斜を示す. 玄武岩,石灰岩,チャート,泥岩, 砂岩,混在岩を主体とし、5万分の1地質図規模で混在 相を示す. 玄武岩・チャート岩体の卓越と片岩~準片岩 の産出で特徴付けられる.

石灰岩からは、前期ペルム紀の紡錘虫化石や珊瑚 化石が報告されている(日下部・宮村、1958;山際・ 坂、1967).都築・八尾(2006)は、産地や標本写真 を明示していないが、チャートからAlbaillella sp.と Pseudostylosphaera sp.及びTriassocampe sp.の放散虫化石 を見出しており、前者を含むチャートの時代をペルム 紀、後二者を含むチャートの時代を中期三畳紀と考えて いる.また、彼らは泥岩からStichocapsa fusiformis Hinde, Parvicingula sp., Dictyomitrella sp.の放散虫化石を見出し、 その時代を中期ジュラ紀と考えている.

2.3 宮川層(三波川帯)

泥質片岩を主体とし,苦鉄質片岩,石灰質片岩,珪質 片岩,砂質片岩及び混在岩を僅かに伴う.層理面あるい は片理面は、西北西-東南東ないし東北東-西南西走向を 示し、また概ね中角の北あるいは南傾斜を示す.場所に よっては20~30°の低角傾斜を示す地層も認められる. Nakamura (1971)でも指摘されているように、大局的に は中央部に東西性の背斜軸を持つ背斜構造をなす.

坂野(1992)や上野(2001)による本地域西隣(伊勢地域) での研究で既に指摘されているように、本層の変成度は 四国中央部三波川帯の緑泥石帯低温部に相当する.また 伊勢地域では、Tomiyoshi and Takasu (2010)によって、御 荷鉾緑色岩類分布域中に産する泥質片岩から99.1±2.5, 97.1±2.4及び93.2±2.3 Ma(後期白亜紀初頭)、また 御荷鉾緑色岩類の北側に産する泥質片岩から84.2±2.1 と83.6±2.1 Ma(後期白亜紀中頃)のフェンジャイトK-Ar 年代が報告されている.

・砕屑性ジルコン U-Pb 年代測定

3.1 採取試料

逢坂峠コンプレックスからは逢坂峠北(志摩路トンネ ル伊勢側出口付近)(34°24′53.62″N, 136°45′46.00″ E)の1試料,河内コンプレックスからは鳥羽レストパー ク南(山神川上流部)(34°27′04.62″N, 136°49′16.54″ E)の1試料,宮川層からは鳴ヶ谷川(中流部)(34°28′ 07.13″N, 136°47′17.17″E)及び坂手島(北海岸)(34°29′ 25.62″N, 136°51′41.32″E)の計2試料を採取した(第2 図).いずれも変形の弱い中粒〜粗粒な石質の砂岩ある いは砂質片岩である.

3.2 分析手法

分析は株式会社京都フィッション・トラックに依頼した.分析に用いた装置は京都大学大学院理学研究科地 球惑星科学専攻地質学鉱物学教室の二重収束型及び四 重極型結合誘導プラズマ質量分析(ICP-MS)装置であり、 レーザーアブレーションのためのArFエキシマ及びフェ ムト秒レーザーシステムを搭載している(Yokoyama et al, 2011; Sakata et al., 2014; Maruyama et al., 2016).測 定前にジルコン表面の鉛汚染を避けるためにワンショッ トクリーニングを施した.レーザー照射に際しては、包 有物や割れ目を避けてジルコン粒子の中心部を狙った. レーザー照射後の最若年代集団を形成するジルコン粒子 (後述)の顕微鏡写真を付図1に、また、レーザー照射及 び ICP-MSの条件を第1表と第2表に示した.

なお、年代測定結果の正確性を評価するために、2次 標準試料の33 Ma のOD-3 (岩野ほか、2012; Iwano *et al.*, 2013; Lukács *et al.*, 2015)及び337 MaのPlešovice (Sláma *et al.*, 2008)も分析した(付表1, 2). 二重収束型 ICP-MS 装置で測定したOD-3及び Plešoviceのピーク年代(加重平 均値)はそれぞれ32.97±0.63 Ma (誤差2 σ) (mean square weight deviation:MSWD=1.4), 329.9±3.4 Ma (誤差2 σ) (MSWD=1.18)で,また,四重極型 ICP-MS装置で測定 したOD-3 及び Plešoviceのピーク年代(加重平均値)はそ れぞれ32.66±0.80 Ma(誤差2σ)(MSWD=0.51),338.3 ±3.2 Ma(誤差2σ)(MSWD=0.119)であり,いずれも2 次標準試料の文献値から2%以内のずれに収まっている.

3.3 年代分析結果

測定したジルコン粒子数は4地点の各試料とも60個で ある.各試料におけるジルコンの同位体比、²⁰⁶Pb/²³⁸U年 代及び²⁰⁷Pb/²³⁵U年代を第3表~第6表に示す.河内コン プレックスの試料中の1粒子を除いて、すべての粒子が コンコーディア年代を示している.なお、コンコーダン トの考え方は²⁰⁶Pb/²³⁸U年代がA±B Ma (A:年代値,B: 2 σ の誤差)、²⁰⁷Pb/²³⁵U年代がC±D Ma (C:年代値,D: 2 σ の誤差)として、²⁰⁷Pb/²³⁵U年代が²⁰⁶Pb/²³⁸U年代よりも 古く、式1(下記)が成り立つ場合、そして²⁰⁷Pb/²³⁵U年代 が²⁰⁶Pb/²³⁸U年代よりも若く、式2(下記)が成り立つ場合 をコンコーダントとみなした.

> $\frac{(A+B)-(C-D)}{A}$ × 100 > 0 式 (1) $\frac{(A-B)-(C+D)}{A}$ × 100 < 0 式 (2)

各試料のジルコン粒子のコンコーディア図及び ²⁰⁶Pb/²³⁸U年代分布図について,秩父累帯北帯のものを第 3図に,三波川帯のものを第4図に示した.これらの図は, 京都フィッション・トラック社による測定値(第3表~第 6表)を基に,マイクロソフト社の表計算ソフトExcel 用のアドインモジュールであるIsoplot/Ex 4.15 (Ludwig, 2008)を用いて作成した.また年代の議論には,²⁰⁷Pb^{/235}U 年代よりも誤差の小さい²⁰⁶Pb/²³⁸U年代を採用した.

3.3.1 逢坂峠北の砂岩[試料no.20140722L3 (登録標 本番号:GSJ R109160)](秩父累帯北帯逢坂峠コンプ レックス)

先カンブリア時代のジルコンは認められず,約370 Ma 付近に集中する粒子集団(計2個),約260 Ma付近に集中 する粒子集団(計56個),そして約200 Ma付近に集中す る粒子集団(計2個)が認められ,約260 Ma付近に集中す る粒子が一番多い(第3図a,b).一番若い集団(no.18と no.50)の加重平均を最若ピーク年代とした場合,その値 は204.4±4.0 Ma(誤差2σ)である.なお,最若の砕屑性 ジルコン(no.18)の年代は203.1±4.3 Maである(第3表).

3.3.2 鳥羽レストパーク南の砂岩[試料no.20140722 L1-1 (登録標本番号:GSJ R109161)](秩父累帯北帯 河内コンプレックス)

先カンブリア時代のジルコンは認められず、約400 Ma

- 第2図 砕屑性ジルコンのU-Pb年代測定が行われた試料地点. (a) 秩父累帯北帯逢坂峠コンプレックス の砂岩採取地点(試料番号:20140722L3). 逢坂峠北. 国土地理院の地理院地図(http://maps.gsi.go.jp/#18/34.415102/136.762793/)を使用. (b) 秩父累帯北帯河内コンプレックス の砂岩採取地点(試料番号:20140722L1-1). 鳥羽レストパーク南. 地理院地図(http://maps.gsi.go.jp/#18/34.415102/136.821163/)を使用. (c) 三波川帯宮川層の砂質片岩採取地点(試料番号:20140521L3). 鳴ヶ谷川. 地理院地図(http://maps.gsi.go.jp/#18/34.468813/136.788284/)を使用. (d) 三波川帯宮川層の砂質片岩採取地点(試料番号:20140522L5). 坂手島. 地理院地図(http://maps.gsi.go.jp/#18/34.490508/136.861608/)を使用.
- Fig. 2 Locations of samples for detrital zircon U-Pb dating. (a) Sandstone (sample no. 20140722L3) location from the Osakatoge Complex in the Northern Chichibu Belt, north of the Osaka Pass. Topographic map is from the GIS map (http://maps.gsi.go. jp/#18/34.415102/136.762793/) of the Geospatial Information Authority of Japan. (b) Sandstone (sample no. 20140722L1-1) location from the Kochi Complex in the Northern Chichibu Belt, south of the Toba Rest Park. Topographic map is from the GIS map (http://maps.gsi.go.jp/#18/34.451394/136.821163/). (c) Psammitic schist (sample no. 20140521L3) location from the Miyakawa Formation in the Sambagawa Belt, Narugadani River. Topographic map is from the GIS map (http://maps.gsi.go.jp/#18/34.468813/136.788284/). (d) Psammitic schist (sample no. 20140522L5) location from the Miyakawa Formation in the Sambagawa Belt, Sakate Island. Topographic map is from the GIS map (http://maps.gsi.go.jp/#18/34.490508/136.861608/).

- 第1表 20140521L3 試料, 20140522L5 試料及び20140722L1-1 試料を測定したレーザーアブレーション二重収束型 結合誘導プラズマ質量分析装置の条件.
- Table 1 LA-ICP-MS instrumentation using a double-focusing sector field mass spectrometer for the sample nos. 20140521L3, 20140522L5 and 20140722L1-1.

Laser ablation

Model	New Wave Research NWR Femto
Laser type	Femtosecond
Energy density	2.0 J/cm ²
Spot size	15 μ m
Repetition rate	5 Hz
Duration of laser ablation	20 s
Carrier gas (He)	0.5 L min ⁻¹
ICP-MS	
Model	Nu Instruments AttoM
ICP-MS type	Magnetic sector field
Scanning (Operation) mode	Deflector jump
Forward power	1300 W
Carrier gas (Ar)	0.76 L min ⁻¹
ThO ⁺ /Th (oxide ratio)	<1%
Data acquisition protocol	Batch
Data acquisition	28 s (20 s gas blank, 8 s ablation)
Monitor isotopes	²⁰² Hg, ²⁰⁴ Pb, ²⁰⁶ Pb, ²⁰⁷ Pb, ²⁰⁸ Pb, ²³² Th, ²³⁸ U
Dwell time	0.1 s for each
Primary standard	Nancy 91500 *1
Secondary standard	OD-3 ^{*2, 3, 4} , Plešovice ^{*5}

*1: Wiedenbeck *et al.* (1995); *2: Iwano *et al.* (2012); *3: Iwano *et al.* (2013); *4: Lukács *et al.* (2015); *5: Sláma *et al.* (2008).

付近の粒子(1個),約360 Ma付近の粒子(1個),約260 Ma付近に集中する粒子集団(計45個)そして約180 Ma付 近に集中する粒子集団(計12個)が認められ、逢坂峠北 の試料と同様に約260 Ma付近に集中する粒子が一番多 い(第3図c, d).若い集団のうち、最若粒子を中心とし た年代誤差範囲3σで年代一致の基準を設けた場合,11 粒子が基準内に該当し(第4表),それらのピーク年代(加 重平均値)は183.4±2.9 Ma(誤差2σ)である.なお、最 若年代を示す砕屑性ジルコン(no.46)は174.0±10.2 Ma である.

3. 3. 3 鳴ヶ谷川の砂質片岩[試料no. 20140521L3(登録標本番号:GSJ R109162)](三波川帯宮川層)

先カンブリア時代のジルコンが多数認められ,2300 Ma付近,1800~1500 Ma,1300 Ma付近の年代を示す粒 子が存在する.顕生代では、約360 Ma付近,約260 Ma 付近,180 Ma付近にピークを持つ粒子集団が認められ,約260 Maと180 Ma付近に集中する粒子が多い(第4図a, b).若い集団のうち,最若粒子を中心とした年代誤差範

- 第2表 20140722L3 試料を測定したレーザーアブレーショ ン四重極型結合誘導プラズマ質量分析装置の条件.
- Table 2 LA-ICP-MS instrumentation using a quadrupole mass spectrometer for the sample no. 20140722L3.

Laser ablation	
Model	New Wave Research NWR-193
Laser type (wave length)	Excimer ArF (193 nm)
Energy density	3.3 J/cm ²
Spot size	25 μ m
Repetition rate	5 Hz
Duration of laser ablation	20 s
Carrier gas (He)	0.53 L min ⁻¹
ICP-MS	
Model	Thermo Fisher Scientific iCAP-Qc
ICP-MS type	Quadrupole
Scanning (Operation) mode	Standard mode (no collision gas was used)
Forward power	1400 W
Carrier gas (Ar)	0.80 L min ⁻¹
ThO ⁺ /Th (oxide ratio)	<1%
Data acquisition protocol	Time-resolved analysis
Data acquisition	50 s (15 s gas blank, 35 s ablation)
Monitor isotopes	²⁹ Si, ²⁰² Hg, ²⁰⁴ Pb, ²⁰⁶ Pb, ²⁰⁷ Pb, ²⁰⁸ Pb, ²³² Th, ²³⁸ U
Dwell time	0.2 s for ^{206, 207} Pb, 0.1 s for others
Primary standard	Nancy 91500 *1
Secondary standard	OD-3 ^{*2, 3, 4} , Plešovice ^{*5}

*1: Wiedenbeck *et al.* (1995); *2: Iwano *et al.* (2012); *3: Iwano *et al.* (2013); *4: Lukács *et al.* (2015); *5: Sláma *et al.* (2008).

囲3σで年代一致の基準を設けた場合,18粒子が基準内 に該当し(第5表),それらのピーク年代(加重平均値)は 177.1±1.6 Ma (誤差2σ)である.なお,最若の砕屑性ジ ルコン(no.16)の年代は157.9±8.8 Maである.

3. 3. 4 坂手島の砂質片岩[試料no. 20140522L5(登録 標本番号:GSJ R109163)](三波川帯宮川層)

先カンブリア時代のジルコンが多数認められ,2300 Ma付近,1800 ~ 1400 Ma,1200 Ma付近,1000 Ma付近 の年代を示す粒子が存在する.顕生代では、約260 Ma 付近,約180 Ma付近,100 Ma付近にピークを持つ粒子 (粒子集団)が認められ、鳴ヶ谷川の試料でもみられるよ うに約180 Ma付近に集中する粒子が一番多い(第4図d). 若い集団のうち、最若粒子を中心とした年代誤差範囲3σ で年代一致の基準を設けた場合、6粒子が基準内に該当 し(第6表)、それらのピーク年代(加重平均値)は95.5± 2.5 Ma(誤差2σ)である.なお、最若の砕屑性ジルコン (no.2)の年代は90.4±6.8 Maである.

- 第3表 秩父累帯北帯逢坂峠コンプレックスの砂岩(20140722L3 試料;逢坂峠北)の砕屑性ジルコンにおけるレーザーアブレー ション四重極型結合誘導プラズマ質量分析装置によるU-Pb同位体データ.*は最若年代集団のピーク年代(加重平均値) に採用されたジルコンを示す.
- Table 3U-Pb isotopic data determined by LA-ICP-MS using a quadrupole mass spectrometer for detrital zircon from sandstone (sample no.20140722L3) in the Osakatoge Complex, north of the Osaka Pass, Northern Chichibu Belt.The asterisks indicate the zircon adopted for the peak age (weighted mean) of the youngest cluster.

Grain	Isotopic	ratios					Age (Ma)			Th/U	Remarks
no.	²⁰⁷ Pb	Error	²⁰⁶ Pb	Error	²⁰⁷ Pb	Error	²⁰⁶ Pb	Error	²⁰⁷ Pb	Error	-	
	²⁰⁶ Pb	2σ	²³⁸ U	2σ	²³⁵ U	2σ	²³⁸ U	2σ	²³⁵ U	2σ		
1	0.0512	± 0.0109	0.0437	± 0.0025	0.3087	± 0.0802	275.8	± 16.3	273.1	± 78.3	0.23	
2	0.0515	± 0.0040	0.0422	± 0.0015	0.2995	± 0.0303	266.4	± 9.7	266.0	± 30.4	0.79	
3	0.0500	± 0.0058	0.0408	± 0.0017	0.2807	± 0.0403	257.5	± 10.7	251.2	± 40.1	0.66	
4	0.0439	± 0.0096	0.0458	± 0.0026	0.2770	± 0.0728	288.7	± 16.6	248.3	± 71.4	0.31	
5	0.053/	$\pm 0.00/3$	0.0408	± 0.0018	0.3020	$\pm 0.050/$	257.5	± 11./	268.0	± 50.2	0.51	
07	0.0521	± 0.0034 ± 0.0041	0.0448	± 0.0018 ± 0.0014	0.3210	± 0.0424 ± 0.0277	282.3	± 11.3 + 8.8	285.1	± 42.2 + 27.8	0.37	
8	0.0530	± 0.0041 ± 0.0090	0.0382	± 0.0014 ± 0.0022	0.2795	± 0.0277 ± 0.0643	241.0	+13.9	250.5	+ 63.3	0.58	
9	0.0547	± 0.00000 ± 0.0114	0.0389	± 0.0022 ± 0.0023	0.2936	± 0.0739	246.2	± 14.6	261.4	± 72.4	0.47	
10	0.0521	± 0.0033	0.0396	± 0.0014	0.2847	± 0.0245	250.3	± 8.8	254.4	± 24.6	0.59	
11	0.0533	± 0.0034	0.0407	± 0.0014	0.2993	± 0.0257	257.3	± 9.0	265.9	± 25.8	0.40	
12	0.0541	± 0.0050	0.0389	± 0.0015	0.2904	± 0.0337	246.2	± 9.5	258.8	± 33.7	0.66	
13	0.0501	± 0.0054	0.0409	± 0.0016	0.2826	± 0.0379	258.7	± 10.4	252.7	± 37.8	0.56	
14	0.0509	± 0.0068	0.0405	± 0.0018	0.2839	± 0.0463	255.9	± 11.3	253.8	± 45.9	0.77	
15	0.0497	± 0.0067	0.0392	± 0.0013	0.2689	± 0.0420	247.9	± 8.5	241.8	± 41.8	0.92	
16	0.0575	± 0.0069	0.0576	± 0.0019	0.4575	± 0.0691	361.3	± 12.1	382.5	± 67.8	0.50	
1/	0.0463	± 0.0089	0.0408	± 0.0018	0.2608	± 0.0580	257.8	± 11./	235.3	$\pm 5/.3$	0.52	*
10	0.0313	± 0.0033 ± 0.0054	0.0320	± 0.0007 ± 0.0012	0.2275	± 0.0162 ± 0.0367	203.1	± 4.3 + 7.0	208.0	± 10.3 ± 36.6	0.50	
20	0.0471	± 0.0034 ± 0.0070	0.0425	± 0.0012 ± 0.0013	0.2875	± 0.0307 ± 0.0464	256.7	+ 8 7	230.0	± 30.0 ± 46.0	0.03	
21	0.0548	± 0.0061	0.0404	± 0.0012 ± 0.0012	0.3056	± 0.0400	255.4	± 7.8	270.8	± 39.8	0.51	
22	0.0603	± 0.0127	0.0402	± 0.0022	0.3346	± 0.0848	254.2	± 14.0	293.1	± 82.7	0.30	
23	0.0597	± 0.0077	0.0394	± 0.0014	0.3249	± 0.0494	249.4	± 8.8	285.7	± 48.9	0.46	
24	0.0543	± 0.0095	0.0422	± 0.0018	0.3161	± 0.0657	266.7	± 11.8	278.9	± 64.6	0.48	
25	0.0561	± 0.0071	0.0407	± 0.0014	0.3151	± 0.0468	257.5	± 8.7	278.2	± 46.4	0.78	
26	0.0493	± 0.0041	0.0423	± 0.0010	0.2877	± 0.0277	267.2	± 6.5	256.7	± 27.7	0.65	
27	0.0543	± 0.0047	0.0444	± 0.0011	0.3324	± 0.0333	279.9	± 7.1	291.4	± 33.3	0.58	
28	0.0538	± 0.0043	0.0412	± 0.0010	0.3056	± 0.0279	260.2	± 6.2	270.8	± 27.9	0.75	
29	0.0501	± 0.0040 ± 0.0057	0.0599	± 0.0013 ± 0.0012	0.4629	± 0.0392 ± 0.0381	3/4.8	± 8.0 ± 7.7	380.3	± 39.1 ± 38.0	0.62	
31	0.0533	± 0.0037 ± 0.0075	0.0412	± 0.0012 ± 0.0019	0.3032	± 0.0381 ± 0.0512	262.6	± 1.7 + 12.3	208.9	± 50.0	0.41	
32	0.0327	± 0.0075 ± 0.0045	0.0410	± 0.0019 ± 0.0016	0.2763	± 0.0312 ± 0.0302	257.5	± 12.5 ± 10.0	247.7	± 30.7	0.09	
33	0.0512	± 0.0039	0.0404	± 0.0015	0.2851	± 0.0259	255.1	± 9.5	254.7	± 26.0	0.51	
34	0.0481	± 0.0068	0.0438	± 0.0020	0.2906	± 0.0493	276.6	± 12.8	259.0	± 48.9	0.44	
35	0.0511	± 0.0028	0.0398	± 0.0014	0.2809	± 0.0183	251.8	± 8.8	251.4	± 18.4	0.03	
36	0.0494	± 0.0045	0.0418	± 0.0016	0.2845	± 0.0308	263.8	± 10.3	254.2	± 30.8	0.65	
37	0.0498	± 0.0046	0.0402	± 0.0015	0.2757	± 0.0301	253.9	± 9.9	247.2	± 30.2	0.56	
38	0.0523	± 0.0097	0.0416	± 0.0022	0.3001	± 0.0668	263.0	± 14.4	266.5	± 65.6	0.61	
39	0.0466	± 0.0044	0.0398	± 0.0015	0.2561	± 0.0286	251.7	± 9.8	231.5	± 28.6	0.35	
40	0.0509	± 0.0036 ± 0.0020	0.0406	± 0.0015 ± 0.0015	0.2850	± 0.0244 ± 0.0257	256.0	± 9.4	254.6	± 24.4 ± 25.8	0.58	
41	0.0494	± 0.0039 ± 0.0041	0.0400	± 0.0013 ± 0.0015	0.2767	± 0.0237 ± 0.0280	250.7	± 9.0 + 9.7	246.0	± 23.0 + 28.1	0.04	
43	0.0528	± 0.0109	0.0415	± 0.0013 ± 0.0024	0.3021	± 0.0749	262.1	± 15.5	268.1	± 73.3	0.37	
44	0.0539	± 0.0070	0.0400	± 0.0018	0.2978	± 0.0462	253.1	± 11.4	264.7	± 45.9	0.83	
45	0.0527	± 0.0075	0.0418	± 0.0019	0.3037	± 0.0518	264.1	± 12.4	269.3	± 51.3	0.49	
46	0.0509	± 0.0036	0.0398	± 0.0021	0.2796	± 0.0280	251.6	± 13.8	250.3	± 28.0	0.47	
47	0.0499	± 0.0048	0.0420	± 0.0023	0.2892	± 0.0364	265.2	± 15.1	258.0	± 36.3	0.60	
48	0.0526	± 0.0033	0.0394	± 0.0021	0.2856	± 0.0264	249.1	± 13.5	255.1	± 26.5	0.51	
49	0.0572	± 0.0077	0.0432	± 0.0026	0.3407	± 0.0585	272.7	± 16.9	297.7	± 57.7	0.58	
50	0.0498	± 0.0046	0.0339	± 0.0019	0.2326	± 0.0277	214.8	± 12.1	212.4	± 27.7	0.46	*
51	0.0519	± 0.0070 ± 0.0072	0.0444	$\pm 0.002/$ ± 0.0025	0.31/7	± 0.0542 ± 0.0522	280.0	$\pm 1/.1$ + 16.0	280.1 272 7	± 53.6 + 51.9	0.76	
52 53	0.0543	± 0.0073 ± 0.0048	0.0412	± 0.0023 ± 0.0022	0.2081	± 0.0323 ± 0.0354	200.0 253 7	+ 14.3	212.1	+ 35 3	0.00	
55	0.0539	± 0.0048 ± 0.0079	0.0401	± 0.0022 ± 0.0026	0.2903	± 0.0554 ± 0.0562	255.7	± 14.5 ± 16.5	205.1	± 55.5	0.51	
55	0.0508	± 0.0077	0.0400	± 0.0025	0.2799	± 0.0521	252.8	± 15.9	250.6	± 51.6	0.66	
56	0.0560	± 0.0059	0.0403	± 0.0023	0.3113	± 0.0429	254.8	± 14.8	275.2	± 42.7	0.59	
57	0.0552	± 0.0042	0.0391	± 0.0021	0.2973	± 0.0311	247.1	± 13.7	264.3	± 31.1	0.48	
58	0.0499	± 0.0057	0.0383	± 0.0022	0.2633	± 0.0381	242.2	± 14.2	237.3	± 37.9	0.62	
59	0.0512	± 0.0088	0.0405	± 0.0026	0.2858	± 0.0604	255.9	± 16.9	255.2	± 59.5	0.72	
60	0.0554	± 0.0062	0.0396	± 0.0023	0.3022	± 0.0435	250.2	± 14.7	268.1	± 43.2	0.69	

- 第4表 秩父累帯北帯河内コンプレックスの砂岩(20140722L1-1 試料;鳥羽レストパーク南)の砕屑性ジルコンにおけるレーザー アブレーション二重収束型結合誘導プラズマ質量分析装置によるU-Pb同位体データ.*は最若年代集団のピーク年代 (加重平均値)に採用されたジルコンを示す.
- Table 4U-Pb isotopic data determined by LA-ICP-MS using a double-focusing sector field mass spectrometer for detrital zircon from
sandstone (sample no. 20140722L1-1) in the Kochi Complex, south of the Toba Rest Park, Northern Chichibu Belt.
The asterisks indicate the zircon adopted for the peak age (weighted mean) of the youngest cluster.

Grain	Isotopic	ratios					Age (Ma)			Th/U	Remarks
no.	²⁰⁷ Pb	Error	²⁰⁶ Pb	Error	²⁰⁷ Pb	Error	²⁰⁶ Pb	Error	²⁰⁷ Pb	Error	_	
	²⁰⁶ Pb	2σ	238U	2σ	²³⁵ U	2σ	²³⁸ U	2σ	²³⁵ U	2σ		
1	0.0598	± 0.0110	0.0413	± 0.0027	0.3405	± 0.0681	260.6	± 17.4	297.5	± 66.9	0.37	
2	0.0706	± 0.0157	0.0394	± 0.0030	0.3833	± 0.0929	248.9	± 19.1	329.5	± 90.2	0.45	
3	0.0501	± 0.0120	0.0449	± 0.0032	0.3106	± 0.0802	283.4	± 20.9	274.6	\pm 78.3	0.39	
4	0.0567	± 0.0118	0.0404	± 0.0028	0.3159	± 0.0707	255.2	± 17.9	278.7	± 69.4	0.47	
5	0.0464	± 0.0078	0.0382	± 0.0023	0.2448	± 0.0440	241.9	± 14.9	222.3	± 43.7	0.39	
6	0.0517	± 0.0069	0.0391	± 0.0022	0.2793	$\pm 0.040^{\prime}$	247.5	± 14.4	250.1	± 40.5	0.51	
8	0.0538	± 0.0121 ± 0.0084	0.0396	± 0.0028 ± 0.0028	0.2944	± 0.0708 ± 0.0572	230.0	± 18.1 ± 17.7	202.0	± 69.4 + 56.5	0.92	
9	0.0318	± 0.0084 ± 0.0059	0.0404	± 0.0028 ± 0.0022	0.3242	± 0.0372 ± 0.0360	255.3	± 17.7 + 14.3	265.1	± 30.3 + 35.9	0.45	
10	0.0522	± 0.0051	0.0303	± 0.0016	0.2182	± 0.0233	192.5	± 10.3	200.4	± 23.4	0.37	*
11	0.0530	± 0.0105	0.0408	± 0.0027	0.2977	± 0.0636	257.6	± 17.4	264.6	± 62.6	0.76	
12	0.0474	± 0.0075	0.0410	± 0.0024	0.2683	± 0.0455	259.1	± 15.6	241.3	± 45.2	0.55	
13	0.0558	± 0.0103	0.0426	± 0.0028	0.3280	± 0.0656	268.8	± 17.8	288.0	± 64.5	0.61	
14	0.0569	± 0.0100	0.0400	± 0.0025	0.3134	± 0.0599	252.6	± 16.4	276.8	± 59.1	0.47	
15	0.0443	± 0.0161	0.0369	± 0.0034	0.2253	± 0.0864	233.4	± 21.6	206.3	± 84.2	0.44	
16	0.0475	± 0.0092	0.0421	± 0.0027	0.2756	± 0.0567	265.6	± 17.6	247.1	± 56.0	0.79	
17	0.0514	± 0.0043	0.0384	± 0.0020	0.2719	± 0.0243	242.7	± 13.0	244.2	± 24.4	0.49	*
18	0.0494	± 0.0113	0.0281	± 0.0020 ± 0.0027	0.1920	± 0.0454 ± 0.0601	1/9.0	± 12.8 ± 17.2	1/8.3	± 45.1	0.83	*
20	0.0011	± 0.0119 ± 0.0120	0.0392	± 0.0027 ± 0.0020	0.3300	± 0.0091 ± 0.0003	248.1	$\pm 1/.5$ ± 25.2	290.0	$\pm 0/.8$ ± 87.7	0.55	
20	0.0541	± 0.0139 ± 0.0158	0.0440	± 0.0039 ± 0.0030	0.2291	± 0.0903 ± 0.0834	201.4	± 23.3 + 19.5	209.5	± 87.7 ± 81.3	0.51	
21	0.0576	± 0.0092	0.0314	± 0.0030 ± 0.0020	0.2494	± 0.0034 ± 0.0418	199.4	± 12.6	245.1	± 41.6	0.45	*
23	0.0574	± 0.0049	0.0573	± 0.0030	0.4536	± 0.0425	358.9	± 19.6	379.8	± 42.2	0.39	
24	0.0553	± 0.0065	0.0282	± 0.0016	0.2152	± 0.0265	179.3	± 10.2	197.9	± 26.5	0.45	*
25	0.0547	± 0.0053	0.0401	± 0.0022	0.3026	± 0.0316	253.5	± 14.0	268.4	± 31.6	0.70	
26	0.0398	± 0.0071	0.0444	± 0.0027	0.2438	± 0.0461	280.2	± 17.5	221.5	± 45.8	0.45	
27	0.0485	± 0.0047	0.0423	± 0.0023	0.2831	± 0.0293	267.3	± 14.7	253.1	± 29.3	0.25	
28	0.0414	± 0.0095	0.0428	± 0.0029	0.2445	± 0.0596	270.5	± 18.9	222.1	± 58.8	0.55	
29	0.0584	± 0.0071	0.0277	± 0.0016	0.2235	± 0.0285	176.4	± 10.2	204.8	± 28.5	0.43	*
30	0.0492	± 0.0110	0.0432	± 0.0030	0.2932	± 0.0698	2/2.5	± 19.5	261.0	± 68.5	0.//	4:
22	0.0352	± 0.0114 ± 0.0086	0.0427	± 0.0029 ± 0.0010	0.1955	± 0.0094 ± 0.0483	209.0	± 18.9 ± 12.2	181.2	± 08.2 ± 47.0	0.00	discordant
32	0.0400	± 0.0080 ± 0.0050	0.0393	± 0.0019 ± 0.0014	0.2327	± 0.0483 ± 0.0277	240.7	± 12.2 + 9.3	220.7	± 47.9 + 27.8	0.02	
34	0.0363	± 0.0095	0.0419	± 0.0024	0.2099	± 0.0572	264.8	± 15.5	193.4	± 56.5	0.35	
35	0.0559	± 0.0093	0.0390	± 0.0018	0.3010	± 0.0515	246.9	± 11.8	267.2	± 50.9	0.84	
36	0.0580	± 0.0074	0.0404	± 0.0016	0.3229	± 0.0417	255.1	± 10.4	284.1	± 41.5	0.47	
37	0.0532	± 0.0048	0.0473	± 0.0016	0.3468	± 0.0296	297.6	± 10.1	302.3	± 29.6	0.14	
38	0.0451	± 0.0138	0.0429	± 0.0030	0.2671	± 0.0861	270.7	± 19.5	240.3	± 83.9	0.61	
39	0.0505	± 0.0046	0.0385	± 0.0013	0.2683	± 0.0230	243.7	± 8.3	241.3	± 23.1	0.32	
40	0.0506	± 0.0053	0.0289	± 0.0010	0.2019	± 0.0204	183.8	± 6.6	186.7	± 20.5	0.39	*
41	0.0500	± 0.0083	0.0420	± 0.0019	0.2892	± 0.0497	265.0	± 12.3	258.0	± 49.2	0.83	
42	0.0466	± 0.0080	0.0409	± 0.0019 ± 0.0016	0.262/	± 0.0465 ± 0.0258	258.1	± 12.0 ± 10.5	236.9	± 46.1	0.58	
43	0.0493	± 0.0000 ± 0.0062	0.0430	± 0.0010 ± 0.0017	0.2930	± 0.0338 ± 0.0360	271.4	± 10.3 ± 10.8	201.4	± 35.7 ± 36.7	0.48	
44	0.0483	± 0.0002 ± 0.0132	0.042)	± 0.0017 ± 0.0026	0.2602	± 0.0307 ± 0.0753	249.1	± 10.0 + 16.7	236.7	± 30.7 ± 73.7	0.28	
46	0.0509	± 0.0097	0.0274	± 0.0020 ± 0.0016	0.1922	± 0.0392	174.0	± 10.7 ± 10.2	178.5	± 39.0	0.53	*
47	0.0499	± 0.0059	0.0636	± 0.0030	0.4376	± 0.0603	397.5	± 19.2	368.6	± 59.5	0.34	
48	0.0463	± 0.0064	0.0278	± 0.0014	0.1777	± 0.0266	177.0	± 8.8	166.1	± 26.7	0.45	*
49	0.0559	± 0.0071	0.0310	± 0.0015	0.2387	± 0.0336	196.7	± 9.7	217.4	± 33.6	0.77	*
50	0.0810	± 0.0222	0.0438	± 0.0038	0.4887	± 0.1498	276.2	± 24.1	404.0	± 141.8	0.40	
51	0.0468	± 0.0074	0.0401	± 0.0021	0.2587	± 0.0447	253.4	± 13.3	233.6	± 44.4	0.57	
52	0.0473	± 0.0053	0.0330	± 0.0015	0.2157	± 0.0271	209.5	± 9.7	198.3	± 27.1	0.38	
53	0.0410	± 0.0156	0.0455	± 0.0040	0.2574	± 0.1048	286.8	± 25.5	232.6	± 101.2	0.46	
54	0.0778	± 0.0245	0.0395	± 0.0037	0.4242	± 0.1472	250.0	± 24.1	359.0	± 139.4	0.51	
33 56	0.0545	± 0.0058 ± 0.0092	0.0392	± 0.0018 ± 0.0015	0.2943	± 0.0362 ± 0.0248	247.7	± 11.0 ± 0.6	201.9	± 30.1 ± 31.7	0.70	*
57	0.0550	± 0.0082 ± 0.0072	0.0205	± 0.0013 ± 0.0019	0.2007	± 0.0340 ± 0.0442	250.8	± 12.5	274.6	± 43.9	0.05	
58	0.0440	± 0.0056	0.0420	± 0.0020	0.2551	± 0.0363	265.4	± 12.8	230.7	± 36.2	0.52	
59	0.0459	± 0.0062	0.0290	± 0.0014	0.1839	± 0.0271	184.6	± 9.1	171.4	± 27.2	0.49	*
60	0.0541	± 0.0067	0.0405	± 0.0019	0.3021	± 0.0423	255.7	± 12.5	268.0	± 42.1	0.77	

- 第3図 秩父累帯北帯砂岩の砕屑性ジルコンの分析データ.(a)コンコーディア図で表した20140722L3 試料(逢坂峠コン プレックス)の全ジルコン粒子(60個)のデータ.(b)確率頻度曲線及びヒストグラムで表した20140722L3 試料の コンコーディアを示すジルコン粒子(60個)のデータ.最若年代粒子集団(対象は2個)のピーク年代(加重平均値) は204.4 ± 4.0 Ma(誤差は2σ)を示す.(c)コンコーディア図で表した20140722L1-1 試料(河内コンプレックス)の 全ジルコン粒子(60個)のデータ. 灰色点線楕円はディスコーダントデータを示す.(d)確率頻度曲線及びヒスト グラムで表した20140722L1-1 試料のコンコーディアを示すジルコン粒子(59個)のデータ.最若年代粒子集団(対 象は11個)のピーク年代(加重平均値)は183.4 ± 2.9 Ma(誤差は2σ)を示す.
- Fig. 3 Analytical data for detrital zircon grains from sandstones in the Northern Chichibu Belt. (a) Concordia diagram for all data (N = 60) of the sample (no. 20140722L3) from the Osakatoge Complex. (b) Probability density plot and histogram for the concordia data (N = 60) of the sample no. 20140722L3. Peak age (weighted mean) of grains with the youngest cluster (N = 2) is 204.4 ± 4.0 Ma (2σ). (c) Concordia diagram for all data (N = 60) of the sample no. 20140722L1-1, Kochi Complex. A dotted gray ellipse is the discordant data. (d) Probability density plot and histogram for the concordia data (N = 59) of the sample no. 20140722L1-1. Peak age (weighted mean) of grains with the youngest cluster (N = 11) is 183.4 ± 2.9 Ma (2σ).

4. 得られた砕屑性ジルコン年代の評価

4.1 秩父累帯北帯

都築・八尾(2006)は学会講演要旨ではあるが、逢坂峠 コンプレックスの泥岩からBagotum sp., Lupherium sp., Pantanellium sp.及びSichocapsa sp.の放散虫化石を見出し、 その時代を前期ジュラ紀と考えている.この報告は、現 時点で逢坂峠コンプレックスの付加年代を示す唯一の根 拠となっている.逢坂峠コンプレックスの砂岩から今回 得られた砕屑性ジルコンのU-Pb年代のうち,最若粒子 集団のピーク年代(加重平均値)は204.4±4.0 Maである. 204.4±4.0 Maは地質年代表(Geologic Time Scale 2012) (Gradstein *et al.*, 2012)では三畳紀末~ジュラ紀初頭に相 当し,本砂岩は少なくともその時代以降に堆積したとい える.したがって,都築・八尾(2006)が放散虫化石から 判断した前期ジュラ紀という逢坂峠コンプレックスの付 加年代は,今回の砕屑性ジルコン年代からも支持できる. 都築・八尾(2006)はまた,河内コンプレックスの

- 第5表 三波川帯宮川層の砂質片岩(20140521L3 試料;鳴ヶ谷)の砕屑性ジルコンにおけるレーザーアブレーション二重収束型 結合誘導プラズマ質量分析装置によるU-Pb同位体データ.*は最若年代集団のピーク年代(加重平均値)に採用された ジルコンを示す.
- Table 5U-Pb isotopic data determined by LA-ICP-MS using a double-focusing sector field mass spectrometer for detrital zircon from
psammitic schist (sample no. 20140521L3) in the Miyakawa Formation, Narugadani River, Sambagawa Belt.
The asterisks indicate the zircon adopted for the peak age (weighted mean) of the youngest cluster.

Grain	Isotopic	ratios					Age (Ma)				Th/U	Remarks
no.	²⁰⁷ Pb	Error	²⁰⁶ Pb	Error	²⁰⁷ Pb	Error	²⁰⁶ Pb	Error	²⁰⁷ Pb	Error		
	²⁰⁶ Pb	2σ	238U	2σ	235U	2σ	238U	2σ	235U	2σ		
1	0.0606	± 0.0112	0.0407	± 0.0025	0.3452	± 0.0684	257.2 ±	16.3	301.1	± 67.2	0.46	
2	0.0563	± 0.0071	0.0588	± 0.0031	0.4629	± 0.0631	368.4 ±	20.0	386.3	± 62.1	0.64	
3	0.0513	± 0.0156	0.0373	± 0.0030	0.2677	± 0.0860	236.0 ±	19.5	240.9	± 83.8	0.56	
4	0.0427	± 0.0095	0.0398	± 0.0025	0.2378	± 0.0558	$251.6 \pm$	16.4	216.6	± 55.1	0.75	
5	0.0532	± 0.0084	0.0415	± 0.0024	0.3090	± 0.0523	$262.4 \pm$: 15.2	273.4	± 51.8	0.61	
6	0.0565	± 0.0115	0.0406	± 0.0026	0.3211	± 0.0697	256.6 ±	: 16.9	282.7	± 68.4	0.64	
7	0.0519	± 0.0052	0.0397	± 0.0020	0.2877	± 0.0306	250.7 ±	: 12.6	256.7	± 30.6	0.65	ste
8	0.0446	± 0.0088	0.0286	± 0.0017	0.1783	± 0.0365	181.8 ±	: 11.2	166.6	± 36.4	0.44	*
9	0.0536	± 0.0084	0.0281	± 0.0016	0.2106	± 0.0346 ± 0.0214	$1/8.6 \pm 170.5 \pm$	10.3	194.1	± 34.0 ± 21.4	0.30	*
10	0.0452	± 0.0081 ± 0.0066	0.0208	± 0.0010 ± 0.0016	0.1018	± 0.0314 ± 0.0207	$1/0.3 \pm 102.7 \pm 102.7$	10.2	202.1	± 31.4 ± 20.7	0.77	
12	0.0510	± 0.0000 ± 0.0101	0.0303	± 0.0010 ± 0.0023	0.2202	± 0.0297 ± 0.0583	$193.7 \pm 244.5 \pm$	15.0	202.1	± 29.7 + 57.5	0.55	
13	0.0451	± 0.0101 ± 0.0058	0.0346	± 0.0023 ± 0.0018	0.2183	± 0.0303 ± 0.0299	2191 +	11.0	200.5	+29.9	0.62	
14	0.1658	± 0.0050 ± 0.0162	0.4239	± 0.0010 ± 0.0216	9.8329	± 1.2983	$219.1 \pm 2278.3 \pm 2278.3$	137.8	2419.2	± 845.0	1.08	
15	0.0534	± 0.0116	0.0386	± 0.0026	0.2883	± 0.0668	$244.3 \pm$	16.5	257.2	± 65.7	0.68	
16	0.0517	± 0.0079	0.0248	± 0.0014	0.1830	± 0.0243	157.9 ±	8.8	170.6	± 24.4	0.40	*
17	0.0529	± 0.0091	0.0350	± 0.0020	0.2640	± 0.0417	221.6 ±	13.1	237.9	± 41.5	0.75	
18	0.0440	± 0.0068	0.0344	± 0.0019	0.2158	± 0.0295	217.9 ±	12.1	198.4	± 29.5	0.57	
19	0.0467	± 0.0088	0.0350	± 0.0021	0.2332	± 0.0412	221.9 ±	13.5	212.9	± 41.0	0.56	
20	0.0470	± 0.0102	0.0333	± 0.0021	0.2231	± 0.0471	$211.0 \pm$	13.8	204.5	± 46.7	0.55	
21	0.1105	± 0.0142	0.2991	± 0.0158	4.7157	± 0.5557	$1686.9 \pm$	100.8	1770.0	± 448.7	0.20	
22	0.0504	± 0.0083	0.0387	± 0.0022	0.2781	± 0.0421	244.7 ±	: 14.2	249.2	± 41.9	0.64	
23	0.0476	± 0.0085	0.0283	± 0.0017	0.1924	± 0.0319	179.9 ±	10.7	178.7	± 31.9	0.30	*
24	0.0493	± 0.0121	0.0288	± 0.0020	0.2029	± 0.0489	$183.0 \pm$	12.9	187.5	± 48.4	0.60	*
25	0.0461	± 0.0080	0.0266	± 0.0015	0.1750	± 0.0277	$169.3 \pm$	9.9	163.8	± 27.8	0.41	*
26	0.0499	± 0.0123	0.0298	± 0.0021	0.2125	± 0.0515	$189.5 \pm$	13.5	195.7	± 51.0	0.48	*
27	0.1072	± 0.0134	0.2233	± 0.0115	3.4155	± 0.3450	1299.3 ±	: 73.8	1508.0	± 300.9	0.07	
28	0.0663	± 0.0181	0.0281	± 0.0023	0.2659	± 0.0725	$1/8.6 \pm$	14.6	239.4	± /1.1	0.89	*
29	0.046/	± 0.0080	0.0398	± 0.0023	0.2651	± 0.0424	$251.7 \pm$: 14./	238.8	± 42.1	0.55	
30	0.1125	± 0.0142	0.2765	± 0.0144	4.4392	± 0.4816 ± 0.0520	$15/3.5 \pm 240.0 \pm$	92.1	240.6	± 399.2	0.18	
22	0.0511	± 0.0098 ± 0.0106	0.0379	± 0.0013 ± 0.0044	0.2074	± 0.0539 ± 0.5200	$240.0 \pm$	9.8 . 28 1	240.0	± 33.3 ± 421.8	0.49	
32	0.1124	± 0.0100 ± 0.0070	0.5294	± 0.0044 ± 0.0007	0.1721	± 0.3299 ± 0.0240	$1853.3 \pm 161.3 \pm 161.3$	20.1	161.3	± 431.0 ± 25.0	0.42	*
34	0.0492	± 0.0070 ± 0.0066	0.0255	± 0.0007 ± 0.0010	0.1721	± 0.0249 ± 0.0371	250.4 +	-63	237.3	+369	0.34	
35	0.0547	± 0.0000 ± 0.0136	0.0405	± 0.0010 ± 0.0022	0.2055	± 0.0371 ± 0.0805	$256.1 \pm 256.1 \pm 256.$	14 5	271.0	± 78.6	0.53	
36	0.0525	± 0.0111	0.0325	± 0.0015	0.2352	± 0.0519	$206.2 \pm$	9.5	214.5	± 51.3	1.14	
37	0.0511	± 0.0127	0.0430	± 0.0023	0.3026	± 0.0801	271.2 ±	15.0	268.4	± 78.2	0.54	
38	0.0498	± 0.0069	0.0375	± 0.0010	0.2574	± 0.0369	237.3 ±	6.2	232.6	± 36.8	0.37	
39	0.0546	± 0.0074	0.0283	± 0.0007	0.2130	± 0.0296	179.7 ±	4.7	196.1	± 29.6	0.52	*
40	0.0487	± 0.0087	0.0281	± 0.0010	0.1889	± 0.0347	$178.8 \pm$	6.5	175.7	± 34.7	0.52	*
41	0.1074	± 0.0099	0.2937	± 0.0033	4.3509	± 0.4158	1659.8 ±	21.2	1703.1	± 353.1	0.12	
42	0.0460	± 0.0055	0.0298	± 0.0006	0.1893	± 0.0228	189.3 ±	3.7	176.0	± 22.9	0.49	*
43	0.0455	± 0.0063	0.0417	± 0.0010	0.2617	± 0.0378	263.3 ±	6.7	236.1	± 37.7	0.59	
44	0.0437	± 0.0071	0.0278	± 0.0008	0.1678	± 0.0280	176.9 ±	5.4	157.5	± 28.0	0.40	*
45	0.1126	± 0.0106	0.2962	± 0.0040	4.5988	± 0.4755	$1672.3 \pm$: 25.5	1749.0	± 395.0	0.08	
46	0.0516	± 0.0099	0.0292	± 0.0014	0.2077	± 0.0409	185.5 ±	9.1	191.6	± 40.7	0.57	*
4/	0.0531	± 0.0144	0.0402	$\pm 0.002/$	0.2948	± 0.0849	$254.2 \pm$	= 1 / .2 5 5	262.3	± 82.8	0.49	*
48	0.0474	± 0.0044	0.0280	± 0.0008	0.1808	± 0.0109 ± 0.0252	$181.5 \pm 107.4 \pm 107.$	2.5	1/5.9	$\pm 1/.1$	0.50	
49 50	0.0494	± 0.0038 ± 0.0101	0.0311	± 0.0011 ± 0.0021	0.2117	± 0.0233 ± 0.0580	$197.4 \pm 254.8 \pm 197.4$	13.8	224.7	± 23.3 + 58.1	0.05	
51	0.0443	+0.0101	0.0405	+ 0.0021	0.2477	± 0.0389 ± 0.1187	254.0 ±	21.0	418 5	+ 113.9	0.01	
52	0.0450	± 0.0051	0.0339	± 0.0033 ± 0.0011	0.2105	± 0.0242	214.8 +	7.2	194.0	± 24.3	0.54	
53	0.0508	± 0.0098	0.0270	± 0.0013	0.1888	± 0.0374	$171.4 \pm$	8.5	175.6	± 37.3	0.38	*
54	0.0495	± 0.0083	0.0321	± 0.0014	0.2189	± 0.0380	203.5 ±	9.0	201.0	± 37.8	0.61	
55	0.0439	± 0.0050	0.0271	± 0.0009	0.1639	± 0.0185	172.3 ±	5.7	154.1	± 18.6	0.65	*
56	0.0533	± 0.0153	0.0375	± 0.0026	0.2758	± 0.0836	237.5 ±	16.9	247.3	± 81.5	1.06	
57	0.0564	± 0.0063	0.0403	± 0.0014	0.3135	± 0.0358	254.6 ±	8.8	276.9	± 35.7	0.87	
58	0.0575	± 0.0082	0.0280	± 0.0011	0.2223	± 0.0323	$178.3 \pm$	7.2	203.8	± 32.2	0.42	
59	0.0478	± 0.0057	0.0296	± 0.0010	0.1952	± 0.0236	$188.1 \pm$	6.5	181.1	± 23.7	0.85	
60	0.0394	± 0.0142	0.0446	± 0.0034	0.2422	± 0.0918	281.1 ±	21.7	220.3	± 89.1	0.73	

- 第6表 三波川帯宮川層の砂質片岩(20140522L5試料;坂手島)の砕屑性ジルコンにおけるレーザーアブレーション二重収束型 結合誘導プラズマ質量分析装置によるU-Pb同位体データ.*は最若年代集団のピーク年代(加重平均値)に採用された ジルコンを示す.
- Table 6U-Pb isotopic data determined by LA-ICP-MS using a double-focusing sector field mass spectrometer for detrital zircon from
sandstone (sample no. 20140522L5) in the Miyakawa Formation, Sakate Island, Sambagawa Belt. The asterisks indicate the zircon
adopted for the peak age (weighted mean) of the youngest cluster.

Grain	Isotopic	ratios					Age (Ma)				Th/U	Remarks
no.	²⁰⁷ Pb	Error	²⁰⁶ Pb	Error	²⁰⁷ Pb	Error	²⁰⁶ Pb	Error	²⁰⁷ Pb	Error	-	
	²⁰⁶ Pb	2σ	238U	2σ	²³⁵ U	2σ	²³⁸ U	2σ	²³⁵ U	2σ		
1	0.0623	± 0.0132	0.0191	± 0.0011	0.1644	± 0.0345	122.1 ±	= 6.9	154.5	± 34.5	1.00	
2	0.0517	± 0.0164	0.0141	± 0.0011	0.1007	± 0.0318	90.4 ±	= 6.8	97.4	± 31.8	1.13	*
3	0.0475	± 0.0067	0.0277	± 0.0011	0.1815	± 0.0248	176.1 ±	= 6.9	169.4	± 24.9	0.22	
4	0.1134	± 0.0091	0.3294	± 0.0099	5.1530	± 0.4012	1835.6 ±	= 63.7	1844.9	± 342.5	0.38	
5	0.0381	± 0.0177	0.0272	± 0.0025	0.1431	± 0.0679 ± 0.0616	172.9 ±	= 16.4	135.8	± 66.7	0.91	
7	0.0307	± 0.0104 + 0.0093	0.0413	± 0.0020 ± 0.0096	0.3244 4 9444	± 0.0010 ± 0.4073	201.9 = 1761 5 +	- 61 7	283.5	± 00.0 + 347.0	0.33	
8	0.1052	± 0.0093 ± 0.0082	0.3030	± 0.0090 ± 0.0089	4.3976	± 0.2900	1706.4 ±	= 56.9	1711.9	± 258.6	0.03	
9	0.1046	± 0.0093	0.1752	± 0.0057	2.5295	± 0.2344	1040.8 ±	= 36.5	1280.5	± 213.8	0.48	
10	0.1233	$\pm \ 0.0099$	0.1678	± 0.0050	2.8536	± 0.2053	999.8 ±	= 32.4	1369.8	± 189.6	0.12	
11	0.1139	± 0.0093	0.3102	± 0.0095	4.8723	± 0.4094	1741.7 ±	= 61.2	1797.5	± 348.4	0.35	
12	0.0554	± 0.0088	0.0349	± 0.0015	0.2671	± 0.0427	221.3 ±	= 9.8	240.4	± 42.4	0.96	
13	0.0668	± 0.0107	0.0212	± 0.0010	0.1957	± 0.0307	135.5 ±	= 6.3	181.5	± 30.7	0.95	
14	0.0525	± 0.0061 ± 0.0003	0.0249	± 0.0009 ± 0.0013	0.1804	$\pm 0.019/$ ± 0.0328	158.5 ±	= 5.0 - 8 1	168.4	± 19.8 ± 32.7	0.30	
15	0.0437	± 0.0093 ± 0.0066	0.0230	± 0.0013 ± 0.0095	4 4667	± 0.0328 ± 0.3636	1602.0 +	- 60 7	1724.8	± 32.7 + 314 9	0.33	
17	0.1196	± 0.0072	0.2982	± 0.00000 ± 0.0102	4.9199	± 0.4348	1682.3 ±	= 65.2	1805.7	± 366.6	0.15	
18	0.0477	± 0.0120	0.0223	± 0.0014	0.1466	± 0.0382	142.1 ±	= 8.9	138.9	± 38.1	0.79	
19	0.1154	± 0.0075	0.2684	± 0.0095	4.2700	± 0.4259	1532.7 ±	= 60.7	1687.6	± 360.3	0.28	
20	0.1443	$\pm \ 0.0089$	0.3267	± 0.0114	6.5012	± 0.6288	1822.3 ±	= 72.9	2046.1	± 495.3	0.13	
21	0.0482	± 0.0047	0.0240	± 0.0009	0.1598	± 0.0177	153.1 ±	= 5.8	150.6	± 17.8	0.34	
22	0.0451	± 0.0110	0.0154	± 0.0009	0.0954	± 0.0238	98.2 ±	= 5.8	92.6	± 23.9	0.61	*
23	0.1128	± 0.0084	0.3291	± 0.0123	5.1192	± 0.6362	1833.8 ±	= 78.8	1839.3	± 500.0	0.55	
24	0.0583	± 0.0084 ± 0.0075	0.02/4	± 0.0012	0.2207	$\pm 0.034/$	1/4.5 ±	= 8.0	202.5	± 34.6	0.43	
25	0.0510	± 0.0073 ± 0.0101	0.0285	± 0.0013 ± 0.0009	0.2006	± 0.0321 ± 0.0217	181.3 =	= 8.2 - 5.6	185.7	± 32.1 + 21.8	0.55	*
20	0.0420	± 0.0101 ± 0.0077	0.0132	± 0.0007 ± 0.0015	0.0877	± 0.0217 ± 0.0404	217.7 +	- 9.8	236.1	+ 40.2	0.66	
28	0.1131	± 0.0072	0.3284	± 0.0012	5.1226	± 0.5003	1830.4 ±	= 73.3	1839.9	± 411.9	0.38	
29	0.1554	± 0.0093	0.4191	± 0.0145	8.9771	± 0.8729	2256.2 ±	92.8	2335.7	± 637.1	0.88	
30	0.1370	± 0.0077	0.3310	± 0.0110	6.2550	± 0.4965	1843.2 ±	= 70.7	2012.2	± 409.3	0.11	
31	0.0502	± 0.0099	0.0298	± 0.0016	0.2061	± 0.0427	189.0 ±	= 10.5	190.3	± 42.5	0.63	
32	0.0459	± 0.0177	0.0152	± 0.0013	0.0961	± 0.0374	97.0 ±	= 8.6	93.2	± 37.3	2.05	*
33	0.0492	± 0.0127	0.0284	± 0.0019	0.1926	± 0.0518	180.4 ±	= 11.9	178.8	± 51.2	0.51	
34	0.0543	± 0.0101	0.0332	± 0.0018	0.2489	± 0.0489	210.6 ±	= 11.5	225.7	± 48.5	0.54	
33 36	0.0492	± 0.0050 ± 0.0055	0.0209	± 0.0011 ± 0.0011	0.1824	± 0.0197 ± 0.0225	170.9 =	- 7 2	1/0.1	± 19.8 ± 22.6	0.22	
37	0.0324	± 0.0033 ± 0.0098	0.0279	± 0.0011 ± 0.0122	5 4007	± 0.0223 ± 0.5429	17861 +	- 7.2 - 78 ?	1885.0	± 22.0 + 440.3	0.11	
38	0.1143	± 0.0086	0.2800	± 0.0122 ± 0.0104	4.4117	± 0.3767	1591.3 ±	= 66.5	1714.5	± 324.6	0.09	
39	0.0508	± 0.0069	0.0305	± 0.0014	0.2135	± 0.0307	193.4 ±	= 8.7	196.5	± 30.7	0.94	
40	0.1154	± 0.0086	0.2869	± 0.0106	4.5657	± 0.3785	1625.8 ±	= 67.7	1743.0	± 326.0	0.03	
41	0.0444	± 0.0078	0.0265	± 0.0013	0.1621	± 0.0296	168.6 ±	= 8.4	152.5	± 29.6	0.71	
42	0.1346	± 0.0103	0.3140	± 0.0118	5.8277	± 0.5344	1760.2 ±	= 75.5	1950.5	± 434.7	0.19	
43	0.1126	± 0.0094	0.2565	± 0.0100	3.9847	± 0.4218	1471.9 ±	= 64.0	1631.1	± 357.4	0.16	
44	0.0604	± 0.0241	0.0159	± 0.0016	0.1323	± 0.0536	101.6 ±	= 10.3	126.2	± 53.0	1.58	*
45	0.0518	± 0.0084 ± 0.0102	0.0261	± 0.0013 ± 0.0110	0.1864	± 0.0316 ± 0.5321	1652.4	= 8.2	1742.8	± 31.0 ± 422.2	0.21	
40	0.1134	± 0.0102 ± 0.0054	0.2922	± 0.0110 ± 0.0011	4.3098	± 0.3321 ± 0.0234	181.6 +	- 73	1/45.8	± 433.2 + 23.5	0.09	
48	0.0400	± 0.0094 ± 0.0098	0.0280	± 0.0011 ± 0.0111	4 8562	± 0.0234 ± 0.5038	1726.2 ±	- 7.5	1794 7	± 23.3 ± 414.3	0.33	
49	0.0452	± 0.0049	0.0278	± 0.0011	0.1737	± 0.0207	177.0 ±	= 6.9	162.6	± 20.8	0.20	
50	0.1141	± 0.0099	0.3062	± 0.0112	4.8191	± 0.5190	1722.2 ±	= 71.8	1788.2	± 424.5	0.37	
51	0.1099	± 0.0094	0.3144	± 0.0113	4.7662	± 0.4890	1762.2 ±	= 72.7	1779.0	± 404.2	0.52	
52	0.0482	± 0.0082	0.0172	± 0.0008	0.1144	± 0.0205	109.9 ±	= 5.3	110.0	± 20.6	0.62	
53	0.1079	± 0.0098	0.2090	± 0.0079	3.1115	± 0.3562	1223.7 ±	= 50.5	1435.5	± 309.3	0.08	
54	0.0572	± 0.0079	0.0305	± 0.0013	0.2407	± 0.0362	193.6 ±	= 8.7	219.0	± 36.1	1.02	
55	0.1632	± 0.0144	0.4481	± 0.0168	10.0851	± 1.2213 ± 0.4847	2386.7 ±	= 10/.5	2442.6	± 810.4	1.14	
50 57	0.1103	± 0.0101 ± 0.0124	0.2819	± 0.0103 ± 0.0020	4.5202	$\pm 0.484 /$ ± 0.0582	202.2	- 12 7	1/34./	± 401.3 + 57.5	0.29	
58	0.0327	± 0.0124 + 0.0054	0.0320	± 0.0020 ± 0.0011	0.2529	± 0.0383 ± 0.0233	203.3 ⊐ 180.7 ⊣	- 12.7	212.0 179.8	+ 23.4	0.13	
59	0.0480	± 0.0105	0.0300	± 0.0017	0.1990	± 0.0255 ± 0.0460	190.8 ±	= 11.0	184.2	± 45.7	0.89	
60	0.0428	± 0.0077	0.0146	± 0.0007	0.0861	± 0.0161	93.4 ±	4.5	83.9	± 16.2	0.31	*

- 第4図 三波川帯宮川層砂質片岩の砕屑性ジルコンの分析データ.(a) コンコーディア図で表した 20140521L3 試料の全ジルコン粒子(60個)のデータ.(b) 確率頻度曲線及びヒストグラムで表した 20140521L3 試料のコンコーディアを示すジルコン粒子(60個)のデータ.最若年代粒子集団(対象は 18個)のピーク年代(加重平均値)は177.1 ± 1.6 Ma(誤差は2の)を示す.(c) コンコーディア図で表 した 20140522L5 試料の全ジルコン粒子(60個)のデータ.(d) 確率頻度曲線及びヒストグラムで表 した 20140522L5 試料のコンコーディアを示すジルコン粒子(60個)のデータ.最若年代粒子集団(対 象は6個)のピーク年代(加重平均値)は95.5 ± 2.5 Ma(誤差は20)を示す.
- Fig. 4 Analytical data for detrital zircon grains from psammitic schists in the Miyakawa Formation in the Sambagawa Belt. (a) Concordia diagram for all data of the sample no. 20140521L3. (b) Probability density plot and histogram for concordia data of the sample no. 20140521L3. Inset is probability density plot and histogram for the Phanerozoic dataset. Peak age (weighted mean) of grains with the youngest cluster (N = 18) is 177.1 ± 1.6 Ma (2σ). (c) Concordia diagram for all data of the sample no. 20140522L5.
 (d) Probability density plot and histogram for the Phanerozoic dataset. Peak age (weighted mean) of grains with the youngest cluster is probability density plot and histogram for the Phanerozoic dataset. Peak age (weighted mean) of grains with the youngest cluster (N = 6) is 95.5 ± 2.5 Ma (2σ).

泥岩から Stichocapsa fusiformis Hinde, Parvicingula sp., Dictyomitrella sp.の放散虫化石を見出し、その時代を中 期ジュラ紀と考えている.この報告も、現時点で河内コ ンプレックスの付加年代を示す唯一の根拠となっている. 河内コンプレックスの砂岩から今回得られた砕屑性ジル コンのU-Pb年代のうち、最若粒子集団のピーク年代(加 重平均値)は183.4±2.9 Ma(最若ジルコンの年代は174.0 ±10.2 Ma)である.183.4±2.9 Maは前期ジュラ紀中頃 ~前期ジュラ紀後半に相当し、本砂岩は少なくともその 時代以降に堆積したといえる.したがって、都築・八尾 (2006)が放散虫化石から判断した中期ジュラ紀という河 内コンプレックスの付加年代は、今回の砕屑性ジルコン 年代からも概ね支持できる.

4.2 三波川帯

これまで本地域の三波川帯の泥質岩からは年代は報告 されていない.本地域西隣(伊勢地域)ではTomiyoshi and Takasu (2010)によって,御荷鉾緑色岩類分布域中に産す る泥質片岩から99.1±2.5,97.1±2.4及び93.2±2.3 Ma (後期白亜紀初頭)の,また御荷鉾緑色岩類の北側に産す る泥質片岩から84.2±2.1と83.6±2.1 Ma(後期白亜紀中 頃)のフェンジャイトK-Ar年代がそれぞれ報告されてい る.

今回行った年代測定では、坂手島の砂質片岩の砕屑性 ジルコンU-Pb年代(最若粒子集団のピーク年代)は95.5 ±2.5 Ma (後期白亜紀前半)を示している. 宮川層の変成 度は四国三波川帯の緑泥石帯低温部に相当するため、沈 み込み帯での変成作用でジルコンは生じていないと考え られる.また、ジルコン粒子の中心部を測定している ため、その年代は基本的に火成起源のジルコン年代を示 すとみなせる. これらのことから、本試料のジルコン 年代は砂質片岩の原岩の堆積年代に近似できる. すなわ ち、95 Ma以降に堆積した可能性を示す.これは、大藤 ほか(2010)で示された紀伊半島西部の結果と同様である. そして, 概ね同層準とみなせる伊勢地域の泥質片岩が 示す99-83 MaのフェンジャイトK-Ar年代(Tomivoshi and Takasu, 2010)を参考にすれば、宮川層の付加年代は95 Ma (堆積年代)と99-83 Ma (変成・冷却年代)の間, すな わち後期白亜紀中頃とみなせる.

一方,鳴ヶ谷の砂質片岩の砕屑性ジルコンU-Pb年代 (最若粒子集団のピーク年代)は177.1±1.6 Ma (前期ジュ ラ紀後半)であり,本砂質片岩の原岩は177 Ma以降に堆 積したといえる.しかし,坂手島の試料とは80 m.y.程度 の有意な年代差がある.鳴ヶ谷の試料の一番若い砕屑性 ジルコンでも157.9±8.8 Ma (後期ジュラ紀前半)であり, やはり坂手島のものよりも有意に古い.両者の年代差に ついて,鳴ヶ谷と坂手島の試料とが異なる堆積(付加)年 代を示すのか,それとも鳴ヶ谷の試料が偶然白亜紀以降 の砕屑性ジルコンを含んでいない(本研究では抽出でき なかった)のか,あるいは他の原因によるものなのかは, 現時点では不明である.ちなみに,坂手島と鳴ヶ谷の試 料採取地点は宮川層中央部に存在する背斜軸の南翼に属 しており(第1図),層準は異なるものの岩相には全く差 異はない.また,両試料採取地点間に順序外スラストの 存在など大きな構造変位を示す野外事実は認められてい ない.

今後,坂手島と鳴ヶ谷の試料の年代差について議論す るために,鳴ヶ谷の試料あるいは同層準から更なる砕屑 性ジルコンU-Pb年代測定やフェンジャイトK-Ar年代測 定を行い,鳴ヶ谷試料の年代の妥当性を検証する必要が ある.

5. まとめ

秩父累帯北帯逢坂峠コンプレックスの砂岩中ジルコン の最若粒子集団は204.4±4.0 Ma (三畳紀末~ジュラ紀初 頭)を示し,河内コンプレックスの砂岩中のジルコンの 最若粒子集団は183.4±2.9 Ma (前期ジュラ紀中頃~前期 ジュラ紀後半)を示す.これらは放散虫化石から想定さ れている陸源性砕屑岩の堆積年代と矛盾しない.

三波川帯宮川層の砂質片岩中のジルコンの最若粒子集 団は177.1±1.6 Ma (前期ジュラ紀後半)と95.5±2.5 Ma (後期白亜紀前半)を示す.後者は,周辺地域から得られ ているフェンジャイトK-Ar年代から想定される変成(冷 却)年代と矛盾しない.しかし,前者は後者よりも有意 に古い年代を示す結果となった.

謝辞:株式会社京都フィッション・トラックの檀原 徹 氏及び岩野英樹氏には分析手法についての記述について 意見をいただいた.原 英俊氏(地質情報研究部門)には 砕屑性ジルコンU-Pb年代測定について情報をいただいた. 査読者の野田 篤氏(地質情報研究部門)及び昆 慶明氏 (地圏資源環境研究部門)と編集委員の高橋 浩氏(地質 情報研究部門)には原稿改善に有益な指摘をいただいた. 記して感謝の意を表する.

文 献

- 青木一勝・大藤 茂・柳井修一・丸山茂徳(2010) 三波 川変成帯中の新たな独立した広域変成帯の存在– 白亜紀から第三紀の日本における造山運動–.地学 雑誌, 119, 313–332.
- 坂野靖行(1992) 紀伊半島東部,御荷鉾緑色岩類に伴う 蛇紋岩礫岩中の青色片岩. 岩鉱, **87**, 207–220.
- Gradstein, F. M., Ogg, J. G., Schmitz, M. D. and Ogg, G. M., eds. (2012) *The Geologic Time Scale 2012*. Elsevier, 1144p.
- 飯塚保五郎(1929) 7万5千分の1「鳥羽」図幅および同

説明書. 商工省地質調査所, 28p.

- 磯崎行雄・橋口孝泰・板谷徹丸(1992) 黒瀬川クリッペ の検証. 地質雑, 98, 917-941.
- 岩野英樹・折橋裕二・檀原 徹・平田岳史・小笠原正継 (2012) 同一ジルコン結晶を用いたフィッション・ トラックとU-Pbダブル年代測定法の評価ー島根県 川本花崗閃緑岩中の均質ジルコンを用いてー.地質 雑,118,365-375.
- Iwano, H., Orihashi, Y., Hirata, T., Ogasawara, M., Danhara, T., Horie, K., Hasebe, N., Sueoka, S., Tamura, A., Hayasaka, Y., Katsube, A., Ito, H., Tani, K., Kimura, J., Chang, Q., Kouchi, Y., Haruta, Y. and Yamamoto, K. (2013) An inter-laboratory evaluation of OD-3 zircon for use as a secondary U-Pb dating standard. *Island Arc*, **22**, 382–394.
- 加藤武夫・杉 健一(1927) 日本西南部外帯の推し被せ 構造(予報).地質雑, 34, 249-252.
- 日下部吉彦・宮村 学(1958) 伊勢市南方の古生層につ いて. 地質維, **64**, 269–280.
- Ludwig, K. R. (2008) Isoplot 3.70: Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 4, 77p.
- Lukács, R., Harangi, S., Bachmann, O., Guillong, M., Danišík, M., Buret, Y., von Quadt, A., Dunkl, I., Fodor, L., Sliwinski J., Soós, I. and Szepesi, J. (2015) Zircon geochronology and geochemistry to constrain the youngest eruption events and magma evolution of the Mid-Miocene ignimbrite flare-up in the Pannonian Basin, eastern central Europe. *Contributions to Mineralogy and Petrology*, **170**, 1–26.
- Maruyama, S., Hattori, K., Hirata, T. and Danhara, T. (2016) A proposed methodology for analyses of wide-ranged elements in volcanic glass shards in the Quaternary widespread tephras. *Quaternary International*, **397**, 267–280.
- Nakamura, Y. (1971) Petrology of the Toba ultrabasic complex, Mie Prefecture, Central Japan. Jour. Fac. Sci. Univ. Tokyo, Sec. II, 18, 1–51.
- 大藤 茂・下条将徳・青木一勝・中間隆晃・丸山茂徳・ 柳井修一(2010) 砂質片岩中のジルコンの年代分 布に基づく三波川帯再区分の試み.地学雑誌, 119, 333–346.
- 坂 幸恭(2009) 中·古生界,紀伊半島東部地域.日本 地質学会編,日本地方地質誌5:近畿地方,朝倉書店, 134-140.
- 坂 幸恭・手塚茂雄・岡田洋一・市川昌則・高木秀雄(1988) 蛇紋岩メランジュ帯としての志摩半島, 五ヶ所-安

楽島構造線. 地質雑, 94, 19-34.

- 坂 幸恭・加藤 潔・津村善博・大場穂高(1999) 志摩 半島の秩父帯と黒瀬川帯.日本地質学会第106年学 術大会見学旅行案内書,163-186.
- Sakata, S., Hattori, K., Iwano, H., Yokoyama, T. D., Danhara, T. and Hirata, T. (2014) Determination of U-Pb ages for young zircons using laser ablation-ICP-mass spectrometry coupled with an ion detection attenuator device. *Geostand. Geoanal. Res.*, 38, 409–420.
- Sláma, J., Košler, J., Condon, J. D. Crowley, J. L., Gerdes, A. Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N. and Whitehouse, M. J (2008) Plešovice zircon — A new natural reference material for U-Pb and Hf isotopic microanalysis. *Chemical Geology*, 249, 1–35.
- 菅野耕三・中世古幸次郎・脇本礼子(1980) 志摩半島東 部に分布する築地層群から産する放散虫化石につ いて、大阪教育大紀要,Ⅲ,28,111-121.
- Tomiyoshi, S. and Takasu, A. (2010) K-Ar ages of lawsonitebearing pelitic schists from the Sambagawa metamorphic belt in the Ise district, eastern Kii Peninsula, southwest Japan. *Earth Science (Chikyu Kagaku)*, 64, 193–200.
- 都築 宏・八尾 昭(2006) 志摩半島東部地域の秩父北 帯のジュラ紀付加コンプレックス.日本地質学会第 113年学術大会講演要旨,45.
- 上野貴司(2001) 紀伊半島東部,伊勢地方三波川帯から 産する含ローソン石泥質片岩.岩石鉱物科学,30, 255-264.
- Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., von Quadt, A., Roddick, J. C. and Spiegel,
 W. (1995) Three natural zircon standards for U–Th– Pb, Lu–Hf, trace element and REE analyses. *Geostand. Newslett.*, 19, 1–23.
- 山際延夫(2015) 三重県志摩半島産出のペルム紀前期四 放珊瑚化石*Ivanovia*属の1種について.大阪教育大 紀要, III, **63**, 23–29.
- 山際延夫・坂 幸恭(1967) 志摩半島東部の中・古生界. 日本地質学会第74年年会地質見学案内書, 24p.
- Yokoyama, T. D., Suzuki, T., Kon, Y. and Hirata, T. (2011) Determinations of rare earth element abundance and U-Pb age of zircons using multispot laser ablationinductively coupled plasma mass spectrometry. *Anal. Chem.*, 83, 8892–8899.

(受付:2016年7月25日;受理:2017年1月30日)

付録

Zircon grains composing the youngest cluster of the sample no. 20140722L3, Osakatoge Complex

Laser spot diameter: 25 µm

Zircon grains composing the youngest cluster of the sample no. 20140722L1-1, Kochi Complex

Laser spot diameter: 15 µm

Zircon grains composing the youngest cluster of the sample no. 20140521L3, Miyakawa Formation

Laser spot diameter: 15 µm

Zircon grains composing the youngest cluster of the sample no. 20140522L5, Miyakawa Formation

Laser spot diameter: 15 μ m

付図1 レーザー照射位置を示した最若粒子集団を構成するジルコンの顕微鏡写真.
 Figure A1 Photomicrographs of the zircon grains with laser radiation points composing the youngest cluster in each sample.

付表1 二重結合型LA-ICP-MSで測定した2次標準試料(OD-3及びPlešovice)のU-Pb同位体データ.

Table A1 U-Pb isotopic data for secondary zircon standards determined by LA-ICP-MS using a double-focusing sector field mass spectrometer.

Sample	Isotopic	ratios							Age (N	1a)					U	Th	Th/II
name	²⁰⁷ Pb	Error	²⁰⁶ Pb	Error	²⁰⁷ Pb	Error	²⁰⁸ Pb	Error	²⁰⁶ Pb	Error	²⁰⁷ Pb	Error	²⁰⁸ Pb	Error	(ppm)	(ppm)	111/0
	²⁰⁶ Pb	2σ	238U	2σ	²³⁵ U	2σ	²³² Th	2σ	238U	2σ	²³⁵ U	2σ	²³² Th	2σ			
Plešovice	(337 Ma):	Sláma et a	l.(2008)														
PSV 1-1	0.0547	± 0.0036	0.05086	± 0.00255	0.3894	± 0.0438	0.0159	± 0.0015	320	± 16	334	± 43	319	± 31	812	119	0.15
PSV 1-2	0.0507	± 0.0033	0.05242	± 0.00263	0.3722	± 0.0424	0.0162	± 0.0016	329	± 17	321	± 42	324	± 32	758	118	0.16
PSV 2-1	0.0522	± 0.0031	0.05259	± 0.00277	0.3772	± 0.0429	0.0156	± 0.0013	330	± 18	325	± 43	313	± 27	694	109	0.16
PSV 3-1	0.0527	± 0.0048	0.05228	± 0.00081	0.3602	± 0.0387	0.0156	± 0.0010	329	± 5	312	± 39	312	± 21	724	110	0.15
PSV 4-1	0.0513	± 0.0027	0.05330	± 0.00145	0.3643	± 0.0261	0.0155	± 0.0017	335	± 9	315	± 26	311	± 33	766	118	0.15
PSV 5-1	0.0529	± 0.0041	0.05538	± 0.00172	0.4006	± 0.0331	0.0164	± 0.0014	347	± 11	342	± 33	330	± 27	730	102	0.14
PSV 6-1	0.0529	± 0.0029	0.05200	± 0.00182	0.3851	± 0.0357	0.0162	± 0.0013	327	± 12	331	± 36	326	± 25	705	85	0.12
PSV 7-1	0.0546	± 0.0040	0.05204	± 0.00200	0.3926	± 0.0384	0.0142	± 0.0013	327	± 13	336	± 38	286	± 26	710	91	0.13
PSV 8-1	0.0558	± 0.0047	0.05125	± 0.00191	0.3849	± 0.0421	0.0163	± 0.0014	322	± 12	331	± 42	327	± 28	771	110	0.14
PSV 8-2	0.0549	± 0.0046	0.05142	± 0.00192	0.3798	± 0.0418	0.0162	± 0.0014	323	± 12	327	± 42	325	± 28	748	103	0.14
PSV 10-1	0.0573	± 0.0028	0.05277	± 0.00267	0.4049	± 0.0322	0.0163	± 0.0015	332	± 17	345	± 32	326	± 31	787	116	0.15
PSV 11-1	0.0556	± 0.0027	0.05324	± 0.00277	0.3945	± 0.0316	0.0148	± 0.0014	334	± 18	338	± 32	296	± 29	601	79	0.13
PSV 12-1	0.0536	± 0.0036	0.05257	± 0.00169	0.3787	± 0.0286	0.0157	± 0.0014	330	± 11	326	± 29	315	± 29	870	126	0.14
PSV 13-1	0.0555	± 0.0032	0.05267	± 0.00223	0.3926	± 0.0363	0.0156	± 0.0009	331	± 14	336	± 36	313	± 19	842	120	0.14
PSV 14-1	0.0544	± 0.0031	0.05252	± 0.00222	0.3834	± 0.0358	0.0160	± 0.0010	330	± 14	330	± 36	321	± 21	807	97	0.12
OD-3 (33	Ma): Iwan	o et al .(20	12), Iwano	et al .(2013)	. Lukács a	et al . (2015))										
OD3 1-1	0.0498	± 0.0032	0.00520	± 0.00044	0.0363	± 0.0119	0.0017	± 0.0002	33	± 3	36	± 12	34	± 4	234	307	1.31
OD3 2-1	0.0445	± 0.0026	0.00466	± 0.00033	0.0285	± 0.0072	0.0014	± 0.0001	30	± 2	29	± 7	29	± 3	501	607	1.21
OD3 2-2	0.0582	± 0.0034	0.00506	± 0.00036	0.0405	± 0.0090	0.0014	± 0.0001	33	± 2	40	± 9	28	± 3	475	576	1.21
OD3 3-1	0.0471	± 0.0043	0.00490	± 0.00023	0.0302	± 0.0071	0.0014	± 0.0001	31	± 2	30	± 7	29	± 2	484	611	1.26
OD3 4-1	0.0430	± 0.0023	0.00526	± 0.00027	0.0301	± 0.0066	0.0014	± 0.0002	34	± 2	30	± 7	28	± 3	489	623	1.27
OD3 5-1	0.0522	± 0.0040	0.00507	± 0.00027	0.0362	± 0.0075	0.0015	± 0.0001	33	± 2	36	± 8	30	± 3	504	601	1.19
OD3 6-1	0.0437	± 0.0024	0.00521	± 0.00028	0.0319	± 0.0069	0.0016	± 0.0001	34	± 2	32	± 7	32	± 3	548	676	1.23
OD3 7-1	0.0454	± 0.0034	0.00501	± 0.00029	0.0314	± 0.0072	0.0017	± 0.0002	32	± 2	31	± 7	34	± 3	489	589	1.20
OD3 8-1	0.0484	± 0.0040	0.00522	± 0.00029	0.0340	± 0.0073	0.0016	± 0.0001	34	± 2	34	± 7	32	± 3	523	656	1.26
OD3 10-1	0.0535	± 0.0026	0.00544	± 0.00035	0.0390	± 0.0075	0.0017	± 0.0002	35	± 2	39	± 8	34	± 4	522	644	1.23
OD3 10-2	0.0358	± 0.0018	0.00520	± 0.00033	0.0249	± 0.0056	0.0016	± 0.0002	33	± 2	25	± 6	33	± 3	577	609	1.06
OD3 11-1	0.0481	± 0.0023	0.00517	± 0.00034	0.0332	± 0.0068	0.0017	± 0.0002	33	± 2	33	± 7	34	± 3	557	564	1.01
OD3 12-1	0.0521	± 0.0035	0.00519	± 0.00027	0.0363	± 0.0072	0.0015	± 0.0002	33	± 2	36	± 7	31	± 3	545	551	1.01
OD3 13-1	0.0463	± 0.0026	0.00525	± 0.00031	0.0326	± 0.0071	0.0015	± 0.0001	34	± 2	33	± 7	31	± 3	540	552	1.02
OD3 14-1	0.0423	± 0.0024	0.00524	± 0.00030	0.0298	± 0.0063	0.0014	± 0.0001	34	± 2	30	± 6	28	± 2	640	683	1.07

付表2 四重極型LA-ICP-MSで測定した2次標準試料(OD-3及びPlešovice)のU-Pb同位体データ.

Table A2 U-Pb isotopic data for secondary zircon standards determined by LA-ICP-MS using a quadrupole mass spectrometer.

Sample	Isotopic	ratios							Age (N	Ma)					U	Th	TEL (LI
name	²⁰⁷ Pb	Error	²⁰⁶ Pb	Error	²⁰⁷ Pb	Error	²⁰⁸ Pb	Error	²⁰⁶ Pb	Error	²⁰⁷ Pb	Error	²⁰⁸ Pb	Error	(ppm)	(ppm)	Th/U
	²⁰⁶ Pb	2σ	238U	2σ	²³⁵ U	2σ	²³² Th	2σ	²³⁸ U	2σ	²³⁵ U	2σ	²³² Th	2σ			
Plešovice	Plešovice (337 Ma): Sláma <i>et al</i> . (2008)																
PSV 1-1	0.0549	± 0.0030	0.05322	± 0.00179	0.4032	± 0.0313	0.0174	± 0.0008	334	± 12	344	± 31	349	± 16	1549	177	0.11
PSV 1-2	0.0527	± 0.0029	0.05356	± 0.00180	0.3893	± 0.0302	0.0179	± 0.0008	336	± 12	334	± 30	359	± 17	1577	180	0.11
PSV 2-1	0.0536	± 0.0028	0.05383	± 0.00102	0.3979	± 0.0228	0.0164	± 0.0018	338	± 7	340	± 23	329	± 36	1057	150	0.14
PSV 2-2	0.0514	± 0.0027	0.05417	± 0.00102	0.3837	± 0.0220	0.0167	± 0.0018	340	± 7	330	± 22	334	± 37	1072	146	0.14
PSV 3-1	0.0521	± 0.0025	0.05397	± 0.00184	0.3879	± 0.0233	0.0155	± 0.0014	339	± 12	333	± 23	311	± 28	1557	231	0.15
PSV 3-2	0.0543	± 0.0027	0.05374	± 0.00183	0.4023	± 0.0245	0.0157	± 0.0014	337	± 12	343	± 25	314	± 28	1421	175	0.12
PSV 4-1	0.0543	± 0.0023	0.05396	± 0.00282	0.4041	± 0.0303	0.0159	± 0.0016	339	± 18	345	± 30	319	± 33	1050	166	0.16
PSV 4-2	0.0541	± 0.0023	0.05417	± 0.00283	0.4044	± 0.0303	0.0155	± 0.0016	340	± 18	345	± 30	310	± 32	1057	170	0.16
PSV 5-1	0.0535	± 0.0023	0.05397	± 0.00282	0.3983	± 0.0299	0.0161	± 0.0017	339	± 18	340	± 30	323	± 34	1033	155	0.15
PSV 5-2	0.0548	± 0.0023	0.05462	$\pm \ 0.00286$	0.4125	± 0.0310	0.0158	± 0.0016	343	± 18	351	± 31	318	± 33	1001	148	0.15
00.2 (22)	Ma). Iwan	o at al (201	12) Iwana	at al. (2012)	Lubáce	at al. (2015)											
00-3 (33 1	0 0468	± 0.0060	0.00500	+ 0.00023	0.0220	± 0.0051	0.0014	+ 0.0001	22	+ 1	22	+ 5	20	+ 2	700	1140	1.44
0D2 2 1	0.0468	± 0.0009 ± 0.0086	0.00309	± 0.00023 ± 0.00021	0.0329	± 0.0031 ± 0.0050	0.0014	± 0.0001 ± 0.0002	22	± 1 ± 1	22	± 5 ± 6	20	± 2 + 4	217	200	1.44
0D3 2-1	0.0405	± 0.0086	0.00493	± 0.00021	0.0310	± 0.0039	0.0015	± 0.0002	32	± 1	32	± 0	20	± 4	107(309	0.98
0D3 3-1	0.049/	± 0.0054	0.00517	± 0.00021	0.0354	± 0.0040	0.0016	± 0.0001	33	± 1	35	± 4	32	± 3	12/6	1/45	1.37
0D3 4-1	0.0470	± 0.0051	0.00503	± 0.00028	0.0327	± 0.0040	0.0016	± 0.0002	32	± 2	33	± 4	33	± 3	898	1211	1.35
OD3 5-1	0.0428	± 0.0056	0.00509	± 0.00021	0.0300	± 0.0040	0.0016	± 0.0001	33	± 1	30	± 4	32	± 3	675	785	1.16