Online ISSN : 2186-490X Print ISSN : 1346-4272 CODEN : CCKHA7

地質調査研究報告

BULLETIN OF THE GEOLOGICAL SURVEY OF JAPAN

Vol. 63 No. 5/6 2012

平成24年

地質調査研究

報告

地質調査研究報告

BULLETIN OF THE GEOLOGICAL SURVEY OF JAPAN

Vol. 63 No. 5/6 2012

論文	
北海道石狩平野,石狩市親船地区で掘削された沖積層ボーリングコア (GS-HIS-1) の	
層序学的及び堆積学的解析	
川上源太郎・船引彩子・嵯峨山 積・中島 礼・仁科健二・	
廣瀬 亘・大津 直・磯前陽介・木村克己	129
資料・解説	
珪藻化石と岩相に基づく関東平野中央部で掘削されたボーリングコアの海成層準の認定	
納谷友規・八戸昭一・松島紘子・水野清秀	147

表紙の写真

石狩低地の沖積層基底面深度分布図

石狩低地の地下では、日本国内でも有数の規模で沖積層が発達している。国・北海道など自治体・ 民間企業の所有する地盤ボーリング調査結果をデータベース化し、 孔口深度や土質区分を再検証した うえで、沖積層基底深度分布図を作成した。

図の沖積層基底面深度分布に基づくと、最終氷期末期の石狩川は、石狩丘陵の南縁に沿って流 れていたようである. 札幌市付近では豊平川・発寒川が形成した埋没扇状地が明瞭に現れている. さ らに札幌市北部の地下には南北に延びる3列の高まりが現れた. これらは月寒背斜・茨戸背斜・西 札幌背斜などの伏在背斜にそれぞれ対応した位置にある.

(図・文:廣瀬 亘・川上 源太郎・大津 直・木村克己)

Cover page

Contour map of the basal horizon of the latest Pleistocene to Holocene incised-valley fill deposits (called the Chuseki-so in Japan) in the Ishikari lowland.

The Ishikari lowland is underlain by the thick Chuseki-so representing Japan. We have produced the contour map of the basal horizon of the Chuseki-so, based on the borehole database, which consists of borehole log data that a government organization and local self-governments such as Hokkaido Prefecture and Sapporo City. The elevation level and soil classification of each borehole data have been checked for the quality identification of data.

The contour map demonstrates that R. Ishikarigawa was flowing through the south margin of the Ishikari hill during the Last Maximum Glacial. In addition, it figures out the geomorphologic feature of buried fluvial fans formed by both R.Toyohiragawa and R. Hassamugawa, and north-directed three-lined rises in the northern Sapporo City. In respect of a position, these rises can be correlated to the Tsukisamu, Barato and NishiSapporo anticlines, respectively.

(Fig and Caption by Wataru Hirose, Gentaro Kawakami, Sunao Ohtsu and Katsumi Kimura)

論文 - Article

北海道石狩平野,石狩市親船地区で掘削された 沖積層ボーリングコア (GS-HIS-1)の層序学的及び堆積学的解析

川上源太郎^{1,*}・船引彩子²・嵯峨山 積¹・中島 礼³・ 仁科健二¹・廣瀬 亘¹・大津 直¹・磯前陽介⁴・木村克己³

Gentaro Kawakami, Ayako Funabiki, Tsumoru Sagayama, Rei Nakashima, Kenji Nishina, Wataru Hirose, Sunao Ohtsu, Yousuke Isomae and Katsumi Kimura (2012) Stratigraphic and sedimentologic analysis of the latest Pleistocene to Holocene sediment core GS-HIS-1 recovered from the Ishikari coastal plain, Oya-fune, Ishikari, Hokkaido, Japan. *Bull. Geol. Surv. Japan*, vol. 63(5/6), p. 129-146, 14 figs, 5 tables.

Abstract: The stratigraphy and sedimentary facies of the latest Pleistocene to Holocene incised-valley fills were analyzed at Oyafune, Ishikari, in the Ishikari coastal plain, Hokkaido, northern Japan. A core sample, named GS-HIS-1, was obtained at a site in the present strand plain, where the axis of the paleo-Ishikari River valley was located in the Last Glacial Age. The core sediments can be divided into seven stratigraphic units: flood-plain deposits (Unit 1), gravelly river deposits (Unit 2), meandering river and tidal river / salt marsh deposits (Unit 3), inner-bay deposits (Unit 4), lower-shoreface deposits (Unit 6), lagoonal deposits (Unit 7), and upper-shoreface to foreshore / backshore deposits (Unit 8), in ascending order.

The lower shoreface sands (Unit 6) erosively overlie the inner-bay deposits (Unit 4), and the erosive boundary is considered to be a wave ravinement surface. Delta-front / delta-plain deposits (Unit 5 in Kawakami *et al.*, 2012a; b) on inner-bay deposits in inland area are absent at the drilling site. Units 6–8 constitute a prograding sand body, which was formed after the mid-Holocene sea-level highstand. The muddy deposits (Unit 7) intercalated with this sand body yield abundant freshwater diatom species, and they were probably deposited in a lagoonal fluvial channel running parallel to the shoreline. The channel would have been rapidly buried as a result of shore progradation.

The sediment accumulation curve provides information on the timing of periods of environmental change at the studied site. As the sea level rose, the sedimentary system changed from a gravelly river to a meandering sandy river at about 13,000 cal BP. The river was influenced by marine water intrusion after 10,600 cal BP, and the inner-bay environment was generated around 8,900 cal BP. The shallow marine sands prograded onto the wave ravinement surface after 5,300 cal BP.

Keywords: stratigraphy, sedimentary facies, physical property, latest Pleistcene to Holocene, incisedvalley fills, Ishikari coastal plain, Hokkaido

要 旨

北海道石狩平野の石狩市親船地区において,沖積層の 層序と堆積環境を検討した.ボーリングコア GS-HIS-1 の掘削地点は現在の海岸平野に位置し,最終氷期の古石 狩川の谷筋にあたる.堆積相,珪藻化石並びに貝化石か ら,沖積層は下位より礫質河川堆積物(ユニット2,深 度 68.5-56.1 m),蛇行河川~河川の感潮域及び塩水湿地 の堆積物 (ユニット3, 深度 56.1-24.0 m), 内湾の堆積物 (ユニット4, 深度 24.0-20.6 m), 外浜~海浜の堆積物 (ユ ニット6, 深度 20.6-11.0 m 及びユニット8, 深度 7.7-0.4 m) とそれに挟在する淡水成の泥質堆積物 (ユニット7, 深 度 11.0-7.7 m) からなると解釈された.沖積層の下位に は上部更新統の氾濫原堆積物 (ユニット1) が確認され た.より内陸部において,内湾堆積物の上位に見られる デルタプレーンの堆積物 (川上ほか, 2012a; bのユニッ

¹北海道立総合研究機構 地質研究所 (Hokkaido Research Organization, Geological Survey of Hokkaido, Nishi-12, Kita-19, Kita-ku, Sapporo, Hokkaido 060-0819, Japan)

²日本大学工学部機械工学科 (Mechanical Engineering Department, College of Engineering, Nihon Univ.)

³ 地質情報研究部門 (AIST, Geological Survey of Japan, Institute of Geology and Geoinformation)

⁴株式会社建設技術研究所 (CTI Engineering Co., Ltd.)

^{*}Corresponding author: G. Kawakami, E-mail: kawakami-gentaro@hro.or.jp

ト5)は親船地区では認められず,ユニット4とユニッ ト6の間の侵食性の境界は海進ラビンメント面と考えら れる.ラビンメント面を覆うユニット6〜ユニット8は, 縄文海進高頂期以降に海側に成長した浅海の砂体である. この砂体に挟在する淡水成の泥質堆積物(ユニット7)は, 海岸線に平行に偏向するラグーン状の河道に堆積し,砂 体の海側への急速な成長に伴って埋積・保存されたと推 定される.堆積曲線によれば,海進に伴い礫質河川から 蛇行河川環境へ転換するのは13,000 cal BP 頃,河川が海 水の影響を受け始めるのが10,600 cal BP 頃,内湾環境に 転換するのは8,900 cal BP 頃である.また下部外浜の砂 層が海進ラビンメント面を介して内湾泥層を覆いはじめ たのは5,300 cal BP 頃である.

1. はじめに

日本海に面する北海道の石狩湾沿岸は潮位差が小さく 波浪が卓越する海洋環境にあり,石狩平野を構成する沖 積層は典型的な波浪卓越型の incised-valley system (Boyd et al., 2006) からなると考えられる.この石狩沖積層の層 序と堆積環境,並びにその三次元的な分布を明らかにす るため,独立行政法人産業技術総合研究所(以下,産総 研)と地方独立行政法人北海道立総合研究機構地質研 究所(以下,地質研)は、平成20年度から平成22年度 までの3年間,共同研究「石狩低地の浅層地下地質・構 造の解明に関する研究」を行った.

これまでに、縄文海進高頂期に形成された紅葉山砂丘 (上杉・遠藤, 1973)の分布域から3 km ほど陸側に位置 する当別町太美地区 (GS-HTF-1 コア), 及び7 km ほど 内陸に位置する当別町川下地区 (GS-HTB-1 コア及び GS-HTB-2 コア)で得たボーリングコアを用い、紅葉山砂丘 の陸側における沖積層の層序と堆積環境を明らかにした (川上ほか, 2012a; 2012b)(第1表, 第1図). その結果, 紅葉山砂丘の陸側には内湾の泥層(屯田泥層(西浜層上 部)) が厚く発達し (川上ほか, 2012a), また紅葉山砂丘 に近い太美地区では内湾に張り出す湾口砂体(前田砂層) が形成されていたことが確認された (川上ほか, 2012b). 紅葉山砂丘陸側に分布する内湾泥層や湾口砂体は後背湿 地堆積物に覆われているが、海側では地表から深度20 m付近まで浅海性の砂層(花畔砂層)が分布することが 知られている(第1表). すなわち沖積層最上部の層相・ 層序は、バリアー砂体である紅葉山砂丘の陸側と海側で 大きく異なる. そこで平成 22 年度は、バリアーの海側 における沖積層の層序及び堆積システムを明確にするこ とを目的として、現在の石狩川河口付近の河川敷地(石 狩市親船)においてボーリングコア(コア名:GS-HIS-1) の掘削調査を行った.

2. 調査地点の概要

調査地点は国道231 号線石狩河口橋橋脚の北側の河 川敷地(石狩川左岸)で,石狩市ヤウスバ運動公園とし て利用されている区画の中である(第1図). 掘削作業 は(株)ダイヤコンサルタントに依頼し,平成22年6 月に行った. 掘削孔(コア名 GS-HIS-1)の世界測地系に よる緯度経度及び孔口標高は,北緯43°13'41.83'',東 経141°20'55.45'', T.P. 2.56 mで,現海岸線からは1.3 km内陸に,紅葉山砂丘からは5 kmほど海側に位置する. 地盤ボーリングデータベース(廣瀬ほか,2011)によれば, この付近では沖積層の基底礫層上面深度が標高-50 mに 位置し,沖積層の厚さは60 mを超えると想定された(第 1 図 B).

現在の石狩川は, 掘削地点付近で石狩砂丘に遮られて, その流下方向が北西から海岸線に沿う北東へと大きく変 わる(第1図B, C). 掘削地点はこの蛇行の攻撃面側に あたることから, 表層部が現河川堆積物で占められる可 能性は小さいものと判断した.河川堤防の西側の住宅地 及びその南西延長には, 紅葉山砂丘の海側に広がる花畔 低地帯を特徴づける浜堤列地形が確認される(上杉・遠 藤, 1973;松下, 1979;村瀬ほか, 1991).

3. 研究手法

3.1 掘削方法

GS-HIS-1 コアは全長 72 mで, 深度 2 m までは固定ピ ストン式サンプラーで,以深はロータリー式スリーブ内 蔵二重管サンプラーにより,径 70 mm,長さ 1 m 単位の オールコアで採取した.泥水は採取コアの化学特性への 影響(内山ほか,2011)を避けるため,礫層からなる深 度 59 m 以深を除きイージードリルを使用した.深度 17-18 m 区間,及び砂礫からなる深度 56 ~ 68.5 m 区間を除 くと,コア採取率は 90 % を超えている.なお表層から 深度 0.4 m までは盛土/人工改変土である.

3.2 コアの解析手法

コアの解析手法と手順は、川上ほか (2012a) に準じて いる.まず得られたコアに対し、コアパック及び塩ビ管 に封じた状態のまま、産総研所有の Geotek 社製 Multi-Sensor Core Logger (MSCL)を用いて透過ガンマ線強度 及び帯磁率を測定した.ガンマ線源は¹³⁷Cs (370Bq)、計 測条件は測定間隔2 cm、測定時間 10 秒である.MSCL による解析データは山口ほか (2009) を参考に補正及び 密度換算し、ガンマ線換算密度と補正帯磁率を求めた. MSCL による測定後にコアを半裁し、半分を各種サンプ リングに、残りの半分を記載に供した.

コアの記載は半裁直後の一次記載(縮尺 1/5 での柱状 図作成)を基本とし、半裁直後のコア写真、軟 X 線写真、 剥ぎとり標本を併用して二次記載を行った(第2,3図). 第1表 石狩平野沖積層の層序(松下, 1979;北川, 1990;添田ほか, 2010;川上ほか, 2012a; bを元に作成). Table 1. Stratigraphy of the Latest Pleistocene to Holocene incised valley-fill ("Chyuseki-so") in the Ishikari coastal plain (compiled after Matsushita, 1979; Kitagawa, 1990; Kawakami *et al.*, 2012a; b).

- 第1図 GS-HIS-1コアの掘削地点位置図. 第1図 B のコンター(細い破線)は石狩平野における基底礫層上面深 度(標高)の等値線(廣瀬ほか,2011),黒色の太い波線は第9図の断面線を示す.第1図 B の地形図は国 土地理院が公開する電子国土を用いた.
- Fig.1 Location of the GS-HIS-1 drillhole. Dashed contour lines in B show the base of alluvium beneath the Ishikari coastal plain (Hirose *et al.*, 2011). Black-colored thick dashed line shows the location of sectional profile in Fig. 9. The topographic map in C is after "Denshi Kokudo" by the Geospacial Information Authority of Japan.

第2表 AMS ¹⁴C 年代測定結果.較正カーブは植物片に IntCal04 (Reimer *et al.*, 2004), 貝殻片及びウニ片に Marine04 (Hughen *et al.*, 2004) を用いた.

Table 2. Results of AMS ¹⁴C dating. Calibration database: IntCal04 (Reimer *et al.*, 2004) for plant fragments, Marine04 (Hughen *et al.*, 2004) for shell and echinoid fragments.

Sample No.	Depth (m)	Elevation (m)	Material	Measured ¹⁴ C age (yr BP)	δ ¹³ C (‰)	Conventional ¹⁴ C age (yr BP)	2σ calibrated age range(s) (cal BP)	Lab. No.
HIS-01	4.08	-1.52	plant fragments	2700±40	-21.7	2750±40	2940-2760	Beta-282981
HIS-02	9.90	-7.34	echinoid fragments	2730±40	+0.8	3150±40	3050-2840	Beta-282982
HIS-03	12.93	-10.37	shell fragments (Cryptomya busoensis)	2830±40	-0.3	3240±40	3190-2940	Beta-282983
HIS-04	19.84	-17.28	shell fragments (Macoma sp.)	3960±40	-0.7	4360±40	4600-4400	Beta-282984
HIS-05	20.60	-18.04	shell fragments (Raetellops pulchellus)	4550±40	-1.3	4940±40	5330-5220	Beta-282985
HIS-06	23.48	-20.92	shell fragments (Potamocorbula sp.)	7970±40	-1.9	8350±40	9010-8840	Beta-282986
HIS-07	29.54	-26.98	plant fragments	9770±50	-25.8	9760±50	11240-11130	Beta-282987
HIS-08	38.95	-36.39	plant fragments	9460±50	-28.8	9400±50	10740-10510	Beta-282988
HIS-09	44.87	-42.31	plant fragments	9540±50	-27.6	9500±50	11080-10940 10870-10650 10620-10600	Beta-282989
HIS-10	55.15	-52.59	plant fragments	10860±50	-29.8	10780±50	12860-12780	Beta-282990
HIS-11	68.65	-66.09	plant fragments	40540±330	-28.1	40490±330		Beta-282991

色調は、日本色研事業(株)発行の標準土色帖を用い湿 潤状態の色調を記録した.軟X線写真は、内寸が厚さ1 cm,幅6cm,長さ25cmまたは20cmの透明アクリル ケースに採取したスラブ試料を、試料が乾かないうちに 撮影した.X線の強度条件は管電圧40kVp,電流3mA, 照射時間は20~30秒の範囲で変えた.剥ぎとり標本は、 湿潤状態の半裁コアに裏打ちとなる不織布を当て、その 上から5~6倍の水で溶いた親水性ポリウレタン樹脂(東 邦化学工業(株)製のハイセルOH-1AX)を塗布し、樹脂 の固化後に引き剥がすという手順で採取した.

珪藻: 珪藻化石の分析には、乾燥重量測定を終えた キューブ試料(後述)を用いた. 鑑定用プレパラートの 作成手順は嵯峨山ほか (2010) に従った. プレパラートは 173 枚作成し、その中から層厚 0.5~1 m 間隔となるよ うに、かつ珪藻殻を多く含む45 試料を選別し、珪藻種 の同定を行った. 同定は Hustedt (1930a; 1930b; 1959; 1961-1966) 及び Kramer and Lange-Bertalot (1986; 1988; 1991a; 1991b) に従い, 1250 倍の生物用光学顕微鏡で1 試料につき100個体を目処としてカウントした. 第4図 に、同定した種のうち代表的なものを選んで深度ごとの 産出頻度を示したほか、小菅 (1972)、濁川·西片 (1975)、 野尻湖珪藻グループ (1980),小杉 (1988),安藤 (1990), 長谷川・濁川(1993), 工藤(1997), 濁川・長谷川(1999; 2002;2005)を参考に、海生種、海生~汽水生種、汽水 生種, 汽水生~淡水生種, 淡水生種, 絶滅種及び不明種 に7区分して整理し、その構成を個数百分率で示した. ¹⁴C 年代測定:年代測定試料のうち深度 23.48 ~ 12.93 m の4 試料は貝殻片,深度9.90 mの1 試料はウニの破片, 残りの6試料は植物片である(第2表). 測定試料は堆

積物中から拾い出した植物片・生物片をイオン交換水で 洗浄後に乾燥させ、そのうち植物片は葉片の集合状のも のを優先して選び測定に供した。AMS による¹⁴C 年代測 定及び暦年較正は、(株)地球科学研究所に依頼した. 植 物片の暦年較正には IntCal04 (Reimer *et al.*, 2004)を, 貝 殻及びウニ片の較正には Marine04 (Hughen *et al.*, 2004) を用い、後者の較正では $\Delta R=0$,海洋効果100%とした. 本文では、特に断らない限り誤差2 σ をとって較正した 暦年代を表記する.

密度及び含水比: MSCL によるコアの透過ガンマ線強度 を,測定日ごとの1 cm, 2 cm, 3 cm 厚のアルミ板(密度 2.71 g/cm³)の測定値をもとに換算し,ガンマ線換算密度 (山口ほか,2009)として求めた.それとは別に,半裁直 後のコアから深度 5 cm おきに 7 cc のポリカーボネート 製キューブ容器に詰めて連続採取した堆積物試料(以下 キューブ試料)を用い,採取直後の湿潤重量及び 60 $^{\circ}$ で 48 時間乾燥させた後の乾燥重量を計測して,湿潤か さ密度,乾燥かさ密度を求めた.なお透過ガンマ線強度 に認められる 1 m ごとの規則的な値の増加は,コアの継 ぎ目によるものである.含水比はキューブ試料の湿潤重 量と乾燥重量から求めた.

帯磁率:MSCLを用い1 cm 間隔で連続計測した.ルー プセンサーは径125 mm である.測定した値をコア径及 びループセンサーの内径に応じて補正し,補正帯磁率を 求めた.

粒度分析:分析試料は、コア深度33mより上位の層準 から97層準を選び、軟X線撮影のために採取したスラ ブ試料またはキューブ試料から分取した.およそ0.2g (泥質試料)~6.0g(砂質試料)の試料に対し、酢酸(20

10 cm

←

- 第3図 GS-HIS-1コアの層序ユニットの代表的写真. A:ユニット1の不明瞭に成層するシルト層及び粘土層, B:粗粒砂基質に支持されるユニット2の中礫~大礫. C:ユニット3-aのトラフ状斜交層理砂層(軟X線写真). 木片(黒色部分)を伴う. D:ユニット3-aの粘土・シルトの細互層. トラフ状斜交層理砂層を覆う. 黒く見えるのは植物片. E:ユニット 3-bの弱く生物擾乱を受けた細粒砂層とシルト層の細互層~葉理互層. F:巣穴状生痕による強い擾乱を受けたユニット 3-bの砂質層準. G:ユニット6の淘汰の良い細粒砂がユニット4の塊状の泥を侵食的に覆う. 境界面上には小さな中礫 が見られる. 写真下部の大型の巣穴状生痕は貝殻片を含む細粒砂により充填されている. H:トラフ状, またはハンモッ ク状~スウェール状斜交層理を示すユニット6の砂層(軟X線写真). I:粗粒砂層を挟在するユニット7の褐色の泥層. J:ユニット7の褐色の泥層を覆うユニット8の中粒砂層.
- Fig.3 Representative photographs and radiographs of stratigraphic units in the GS-HIS-1 core. A: Slightly stratified silty and clayey beds in Unit 1. B: Cobbles and pebbles in Unit 2, supported by coarse-grained sand matrix. C: Radiograph of trough cross-bedded sands in Unit 3-a. Black parts are wood fragments. D: Thinly stratified clayey and silty beds of Unit 3-a, overlying trough cross-bedded sands. Scattered black materials are plant fragments. E: Weakly bioturbated, thinly stratified to laminated sand and silt of Unit 3-b. F: Strongly burrowed sandy interval of Unit 3-b. G: Well sorted fine-grained sands of Unit 6 erosively overlie massive muds of Unit 4. Note a fine pebble occurred on the erosive contact. A large ellipsoidal burrow at the bottom of the photo is filled by shell-fragments bearing sands. H: Radiograph of trough cross-bedded, or hummocky to swaly cross-bedded sands in Unit 6. I: Brownish muds in Unit 7 intercalate coarse-grained sand beds. J: Medium-grained sands of Unit 8 overlie brownish muds of Unit 7.

第4図 GS-HIS-1 コアから産出した珪藻化石群集. 柱状図の凡例は第2図を参照.

Fig. 4 Diatom assemblages of the GS-HIS-1 core. See Fig. 2 for the explanation of the columnar section.

vol%)により炭酸塩を、更に過酸化水素水(6%)により 有機物を除去した後、超音波分散させた、測定レンジを 超える礫サイズの粒子は、-0.5 Φ (1.41 mm)のふるいを 用いて除去し、残りを地質研所有のレーザー回折式粒度 分析装置 (coulter 社製 LS230)により分析した.なお礫サ イズの砕屑粒子は重量を測定して細粒分との重量比とし て割合を求めたが、最大でも5%を下回る.得られた結 果は、粘土(8Φ以上)、シルト(8~4Φ)、極細粒砂(3Φ)、 細粒砂(2Φ)、中粒砂(1Φ)、粗粒砂(0Φ)、極粗粒砂(-1Φ)、 礫に区分して割合を示した.なおサブミクロンオーダー の測定は偏光の散乱理論(ミュー散乱理論)により算出 しており、光学条件は屈折率実数部を1.45、虚数部を0.01 とした.得られた粒度組成からモーメント法によって平 均粒径及び最頻径値を求めた.なお、最頻径値はモード 径を含む粒径階の平均値とした.

水素イオン濃度指数 (pH)・電気伝導度 (EC):層厚1m 毎に泥質な層準を選んで試料 (層厚10 cm 相当)を採取 し,分析に供した.測定手順は,地盤工学会による土 懸濁液の作成法を改良した内山ほか (2011)の方法にし たがっている.すなわち試料にその乾燥重量の5倍の 蒸留水を加え十分に攪拌し,30分以上~3時間以内で 静置させたあと遠心分離・ろ過した溶液のpH,ECを, HORIBA 製コンパクト電気伝導率計 Twin cond B-173及 びコンパクト pH メータ Twin pH B-212を用いて計測し た.なお電気伝導度の値は,含水比の値から希釈率を求 めて測定値を補正したものである.

4. 層序区分と層相, 化石, 年代値

掘削されたコアのうち深度 56 ~ 68.5 m は礫層からな り、その下位には植物片を伴う泥層とそれに挟在される 薄い砂層が確認された.後述する¹⁴C年代値から、この 礫層が沖積層の基底礫層で、下位の泥層・砂層は上部更 新統である.層相からコアは7つの層序ユニットに区 分される(第2図).なお後述するが、既報の当別町川 下地区(GS-HTB-1, -2:川上ほか,2012a)及び太美地区 (GS-HTF-1:川上ほか,2012b)とは、沖積層最上部の層 相が大きく異なる.すなわち親船地区では川下・太美両 地区の最上位ユニット(ユニット5)に相当する層相を 欠き、代わりに3つの層序ユニットが新たに識別される. そこで対比上の混乱を避けるため、7つの層序ユニット を下位よりユニット1~4、6~8とする(第1表).

ユニット1 [深度 72.0 m~68.5 m]

記載:本ユニットは不明瞭に成層する粘土層とシルト層 からなり(第3図A),リップル斜交葉理とともに逆級化 構造をもつ数 cm ~ 10 cm の厚さの細粒砂層を伴う.砂 層は主にユニット下部に挟在し、ユニット上部は粘土層 の割合が増えて上方細粒化をなす.明瞭な生物擾乱は認 められず、植物片がわずかに散在する.粘土の色調は灰 (7.5Y 6/1 ~ 4/1, 10Y 6/1 ~ 5/1), シルトは灰 (7.5Y5/1 ~ 4/1, 5Y4/1) や暗オリーブ灰 (2.5GY4/1), 細粒砂は暗オリーブ灰 (2.5GY 4/1 ~ 3/1, 5GY 4/1 ~ 3/1) を呈する.

珪藻化石の主要産出種は淡水生種の Cymbella silesiaca Bleisch や Fragilaria vaucheriae Kütz. である.

ユニット最上部 (深度 68.65 m) に含まれていた植物片 の¹⁴C 年代値は 40,490±330 y BP (conventional age) であっ た.

解釈:厚さが3mほどで十分な解釈は難しいが,層相や 産出する珪藻化石種などが後述するユニット3-aとよく 類似する.したがって堆積年代は異なるものの,ユニッ ト3-a同様に蛇行河川の氾濫原で堆積したものと考えら れる.およそ4万年前の¹⁴C年代値を示すことから,本 ユニットは沖積層の下位の上部更新統に相当する.

ユニット2 [深度 68.5 m ~ 56.1 m]

記載:本ユニットは全体に不淘汰な礫層からなり,成層 構造や上方細粒化あるいは粗粒化などの系統的な粒径変 化が認められないが,掘削時の乱れによって本来の層相 を保持していない可能性がある.基質は細礫を混じえる 粗粒~極粗粒砂,礫は中礫~大礫サイズでコア径を超え るものが少なくない(第3図B).礫の形状は主に亜円礫 であり,礫種はデイサイト質~安山岩質の火山岩が卓越 する.

本ユニットからは年代試料は得られていない.また珪 藻化石の分析は行っていない.

解釈:本ユニットには貝化石や生痕化石は認められず, 不淘汰な礫層のみからなる.上位及び下位のユニットが 河川の氾濫原で堆積したと考えられること,本ユニット を境に大きな時間間隙が認められることから,下位層を 侵食的に覆う礫質河川の堆積物と解釈される.また分布 深度から,松下 (1979)の埋没谷礫層 — すなわち沖積層 の基底礫層に対比される.

ユニット3 [深度 56.1 m~24.0 m]

記載:本ユニットは成層する粘土層,シルト層及び砂層 からなり,層理に沿って集合する植物片がしばしば認め られる.下半部は生物擾乱をほとんど受けていないのに 対し上半部は生物擾乱を受けている.それらを深度 39.3 mを境に,3-a,3-bの2つのユニットに細分して記述する. ユニット3-a (56.1 m~39.3 m)本ユニットは,厚 さが最大1.5 mに達する粘土層と,細粒砂層及び粘土~ シルト層からなる葉理互層(数 mm~1 cm 程度の厚さ で葉理状に成層するもの)~細互層(1~5 cm 程度の厚 さで互層するもの),並びに厚さが10 cm~最大1 m程 度のトラフ状や平板状の斜交層理砂層から構成される. これらは下位層を侵食的に覆う斜交層理砂層にはじまり, 細互層~葉理互層,粘土層の順に累重する厚さ1~4 m の規模の上方細粒化サクセッションを示す.

斜交層理砂層はセット高が1~10 cm で, 主に細粒~ 中粒砂からなる. 深度 53~52 mの斜交層理砂層は極

第5図 GS-HIS-1 コアから産出した貝化石. 1. *Mactra chinensis* Philippi, バカガイ, 深度 12.86-13.00 m. 2. *Cryptomya busoensis* Yokoyama, ヒメマスオガイ, 深度 12.86-13.00 m. 3. *Ringiculina doliaris* (Gould), マメウラシマガイ, 深度 19.20-19.30 m. 4. *Potamocorbula* sp., ヌマコダキガイ類, 深度 23.48-23.50 m. 5. *Corbicula japonica* Prime, ヤマトシジミ, 深度 27.14-27.15 m.

Fig. 5 Molluscan fossils from the GS-HIS-1 core. 1. Mactra chinensis Philippi, 12.86-13.00 m below the ground surface. 2. Cryptomya busoensis Yokoyama, 12.86-13.00 m. 3. Ringiculina doliaris (Gould), 19.20-19.30 m. 4. Potamocorbula sp., 23.48-23.50 m. 5. Corbicula japonica Prime, 27.14-27.15 m.

粗粒砂からなり,木片を伴う(第3図C).細互層をな す細粒砂層にも低角の平板状斜交層理やリップル斜交 葉理が認められ、しばしば逆級化構造を示す.細互層や 厚い泥層には植物片が含まれ(第3図D),軟X線写真 では根痕が認められる.また藍鉄鉱と思われる径数ミリ メートルの青色~青白色の鉱物粒が点在する.泥層の色 調は灰(7.5Y4/1,10Y4/1~5/1),暗オリーブ灰(5GY4/1, 2.5GY4/1),オリーブ黒(7.5Y3/1,10Y3/1)などで,植物 片に富むものはオリーブ黒~灰(2.5GY3//1~5/1)を帯び る.

珪藻化石は, 淡水生や汽水~淡水生の Athnanthes lanceolata Bréb., Fragilaria vaucheriae, Synedra ulna (Nitzsch) Ehr. などを多く産する. A. lanceolata は中~下 流性河川指標種群に属する (安藤, 1990). また深度 43.8 m の試料からは Aulacoseira ambigua (Grun.) Simonsen や Diploneis smithii (Bréb.) Cleve が多産し, このうち A. ambigua は湖沼沼沢湿地指標種群に属する (安藤, 1990). 植物片を用い, 2 層準で¹⁴C 年代測定を行った. 年代 値は、下底付近(深度 55.15 m) が 12,860-12,780 cal BP, 中部層準(深度 44.87 m) が 11,080-10,940 / 10,870-10,650 / 10,620-10,600 cal BP である.

ユニット3-b(深度 39.3 m ~ 24.0 m) 本ユニットは厚 さ1m程度以下の粘土層と、細粒~中粒砂層及び粘土 ~シルト層からなる葉理互層や細互層からなり、下位ユ ニットに見られるような厚い斜交層理砂層は見られな い.厚さが1~4mの規模の上方粗粒化サクセッショ ンが発達し、細互層をなす砂層には逆級化構造や、一部 にリップル斜交葉理が見られる.層理に沿って集合する 植物片はユニット全体に見られるほか、根痕も認められ る.全体に生物擾乱を受けており(第3図E)、特に深 度 27.5 m以浅は擾乱が強く巣穴状生痕も認められる(第 3 図 F).また深度 30.12~24.46 mには貝殻片が認めら れ、同定不能のものを除くと全てヤマトシジミ(Corbicula japonica Prime)であった(第5図、第3表).

珪藻化石は、下位ユニットと同様に淡水生や汽水~ 淡水生の Athnanthes lanceolata, Fragilaria vaucheriae,

第3表 GS-HIS-1 コアから産出した貝化石群集. "*"は破片の存在を示す.

Table 3. Molluscan fossil assemblages from the GS-HIS-1 core. The symbol "*" indicates a presence of fragments.

Specific name	Depth in core $(m) \rightarrow$	30.12	29.50	27.60	27.14	26.33	25.68	25.25	24.59	24.46	23.50	21.95	21.85	21.36	21.08	20.62	19.84	19.25	18.95	18.40	17.48	16.60	16.25	15.20	14.62	14.28	13.45	12.93	9.90
Corbicula japonica 1	Prime	1*			1*	1*		2*	1*	3*																			
Potamocorbula sp.											5*																		
Batillaria? sp.												*																	
Raetellops pulchellus	(Adams and Reeve)														*	*		*	*							*			
Macoma sp.																	1*		1			1							
Ringiculina doliaris	(Gould)																	1											
Cryptonatica sp.	< / /																	1	1										
Cryptomya busoensis	Yokoyama																											2	
Mactra chinensis Ph	ilippoi																											2	
Yoldia sp.																								1					
Shell fragments			*	*			*							*						*	*		*		*		*	*	
Bryozoan fragments													*																
Echinoid fragments																													*
Specific name			Jap	ane	se n	ame	•					Н	abit	at					•										
$a \rightarrow b \rightarrow $	D .					~		1	1 . 1		1.0	1	1						-										

specific name	Japanese name	11at	itat
Corbicula japonica Prime	ヤマトシジミ	brackish, sand & mud	
Potamocorbula sp.	ヌマコダキガイの仲間	brackish, mud	intertidal
Batillaria? sp.	ウミニナの仲間?		
Raetellops pulchellus (Adams and Reeve)	チヨノハナガイ	sand & mud	subtidal-100m
Macoma sp.	シラトリガイの仲間		
Ringiculina doliaris (Gould)	マメウラシマガイ	fine sand & mud	5-150m
Cryptonatica sp.	タマガイの仲間		
Cryptomya busoensis Yokoyama	ヒメマスオガイ	mud	intertidal-170m
Mactra chinensis Philippoi	バカガイ	sand & mud	lower tidal-50m
Yoldia sp.	ソデガイの仲間		

Synedra ulna などを多く産するが、生物擾乱の強い深度 27.5 m 以浅の試料からは海生種である Diploneis smithii, Paralia sulcata (Ehr.) Cleve, Thalassionema nitzschioides (Grun.) Mereschkowsky が多く共産する. このうち P. sulcata は内湾指標種群の代表種, T. nitzschioides は外洋 指標種群及び内湾指標種群の主要構成種 (小杉, 1988) である.

植物片を用い2層準で¹⁴C年代測定を行った.下底 付近(深度38.95 m)が10,740-10,510 cal BP,上部(深度 29.54 m)が11,240-11,130 cal BPの年代値を示し,上部の 方が古い逆転した値であった.

解釈:ユニット 3-aには貝化石は全く確認されず,産出 する珪藻化石は淡水生種が優勢であり,特に中~下流性 河川指標種群や湖沼沼沢湿地指標種群に属する種を含む. 斜交層理砂層にはじまる上方細粒化サクセッションは, 河川の流路充填堆積物の特徴である (Collinson, 1996). またサクセッション上部の細粒層には根痕が発達し,河 川の氾濫原で堆積したもの (例えば Bridge, 2006) と考え られる. 流路充填堆積物と氾濫原堆積物の繰り返しは主 河道の移動に伴い形成されたもので,本ユニットは蛇行 河川の堆積物と考えられる.

ユニット 3-b においても、生物擾乱が弱い深度 27.5 m 以深では淡水環境を示す珪藻化石が優勢である。しかし 上部ほど汽水生や汽水~淡水生種の割合が増える傾向を 示し、堆積場が次第に海水の影響を受けやすい河川の感 潮域や塩水湿地などへ移行したことを示す。とくに深度 27.5 m 以浅では海生の珪藻種が 30 % に達し、またヤマ トシジミを産するなど海水の影響がより強くなったこと を示唆する. ユニット 3-b に見られる上方粗粒化サクセッ ションは、河川の氾濫にともなうスプレイ (Smith and Pérez-Arlucea., 1994; Collinson, 1996; Nichol *et al.*, 1997; Bridge, 2006)の堆積物と考えられる.

ユニット4 [深度 24.0 m~20.6 m]

記載:本ユニットは主に塊状の粘土からなり,最下部は ややシルト質である.粘土の色調は暗オリーブ灰(5GY 4/1)を呈する.厚さ数mmのレンズ状のシルト層が,わ ずかに挟在される.またシルトで充填された小さな斑状 の巣穴状生痕が点在し,ユニット上部の深度20.9mに は貝殻片を混じえる細粒砂により充填された大型の巣穴 状生痕が認められる(第3図G).貝殻片は本ユニットの 粘土中にも散在し,深度23.5m付近にはヌマコダキガ イ類(Potamocorbula sp.),深度22.0mにはウミニナ類と 思われるもの(Batillaria?sp.),深度21.0mにはチヨノハ ナガイ(Raetellops pulchellus (Adams and Reeve))が認めら れた(第5図,第3表).

珪藻化石は海生種である Thalassionema nitzschioides を 多産し,海生種のみで 50 % 程度を占める.

深度 23.5 m のヌマコダキガイ類を用いて測定した¹⁴C 年代値は, 9,010-8,840 cal BP であった.

解釈:本ユニットは全体に生物擾乱を受け,珪藻化石は 海生種が優勢である.またユニット下半部からヌマコダ キガイ類,中部からウミニナ類,上部からチヨノハナガ イを産出するなど,汽水~海水域で堆積したものと考え られる.ほぼ泥質堆積物のみから構成されることから, 波浪や河川の影響をほとんど受けない静穏な内湾の泥底 環境に堆積したものと解釈される.

ユニット6 [深度 20.6 m ~ 11.0 m]

記載:本ユニットは,異地性と考えられる破片状の貝殻 を散在する淘汰の良い細粒砂から構成され,泥層は伴わ ない.ユニット基底は明瞭な境界を介して下位ユニット に接しており,径1 cm 程度以下の礫及び貝殻片をラグ 状に混じえる(第3図G).ユニット全体としては,下 部から上部に向かってゆるやかに粗粒化する傾向を示す. 砂層内には平行~低角で斜交する葉理が発達し(第3図 H),形態を特定するのは難しいがセット高10~30 cm の平板状またはトラフ状斜交層理や,ハンモック状ある いはスウェール状斜交層理の一部と推定される.同定さ れた貝は,主に潮下帯に生息するものである(第3表). なお本ユニットは砂質堆積物のみからなるため,珪藻化 石は検討していない.

ユニット基底のチョノハナガイが 5,330-5,220 cal BP, 深度 19.84 m のシラトリガイ類が 4,600-4,400 cal BP, ユニット上部 (深度 12.93 m) のヒメマスオガイが 3,190-2,940 cal BP の¹⁴C 年代値を示した.

解釈:本ユニットと下位ユニットの¹⁴C 年代値には時間 間隙が認められ、基底にはラグ堆積物を伴う.したがっ て、本ユニットは下位の内湾泥層を侵食して覆っている と考えられる.全体に淘汰の良い細粒砂層からなり、ト ラフ状あるいはハンモック状~スウェール状斜交層理が 癒着して発達することから、波浪卓越型陸棚における下 部外浜の堆積物の特徴(斎藤,1989)に合致する.潮下 帯の貝殻片を含むことも、この解釈を支持する.

ユニット7 [深度 11.0 m ~ 7.7 m]

記載:本ユニットは褐色~暗褐色の泥層を主体とし,基 底部には波状層理 (Reineck and Singh, 1980) をなす不淘汰 な中粒~粗粒砂層,中部にはトラフ状斜交層理をなす厚 さ5~20 cm の中粒~粗粒砂層が数枚挟在される(第3 図 I). 泥層は肉眼では塊状にみえるが,軟 X 線写真では 細かな葉理が確認され生物擾乱は受けていない. 色調は 暗オリーブ灰 (2.5GY 3/1),オリーブ黒 (10Y 3/1),灰 (7.5Y 4/1) などである. 植物片や貝殻片はほとんど含まれない が,中部層準の砂層 (深度 9.9 m) にウニの破片が含まれ ていた.

珪藻化石は, Aulacoseira ambigua や Synedra ulna など 淡水生種が多く産するが,中部の斜交層理砂層を覆う泥 層(深度 9.6 m)からは Thalassionema nitzschioides が多産 し,海生種の割合が 40% を超える.

ウニ片の¹⁴C 年代は 3,050-2,840 cal BP であった.

解釈: 既述のように本ユニットの下位は下部外浜の堆積 物であり,また上位は後述するように上部外浜の堆積物 と解釈され,海成層に挟まれる.本ユニットにおいても 中部の砂層にはウニ片が含まれ,またこの砂層を覆う泥 層には海生の珪藻が多く含まれていた.一方で,それ 以外の4層準から産出した珪藻化石は淡水生種が優勢 で,淡水環境下で堆積したことを示唆する.本ユニット は全体に泥層を主体とすることから静穏で,かつ間欠的 に海からの砕屑物が流入する淡水環境,例えばラグーン や,砂州により閉塞された河川の河口域などが想定され る.ウニ片を混じえる砂層の流入は高潮などによると推 定されるが,下位や上位のユニットとの関係を含め後段 で再度議論する.

ユニット8 [深度 7.7 m ~ 0.4 m]

記載:本ユニットはやや不淘汰な中粒~粗粒砂を主体とし、明瞭な境界を介して下位の褐色泥層を覆う(第3図 J). 深度3.5 m以深には低角または高角のトラフ状斜交 層理が発達する.ユニット上部では極細粒砂層を挟在し て、不明瞭な平行層理~低角の斜交層理をなす. 貝殻片 は伴われず,深度3~5mには木片や植物片が層理に沿っ て集合し、特に深度3.3~3.5mには層状に集積した木 片が認められる.

極細粒砂層から珪藻の抽出を試みたが,十分な数の産 出は得られなかった.

深度 4.08 m の植物片は 2,940-2,760 cal BP の¹⁴C 年代 を示した.

解釈:泥層を欠いて全体に粗粒な砂層から構成され,ト ラフ状斜交層理や平行層理~低角の斜交層理が発達する ことから,掃流や波浪の影響のもとで堆積したと考えら れる. 貝殻片などは認められないが,花畔低地帯の浜堤 列を構成する砂体であることから,上部外浜~海浜の堆 積物と推定される. とくに本ユニットの下部~中部に発 達する斜交層理砂層は,上部外浜の沿岸砂州を構成する 堆積物(斎藤, 1989)と考えられる.

5. 堆積物物性と粒度組成, pH, 及び EC

密度及び含水比

ガンマ線換算密度と、キューブ試料から求めた湿潤及 び乾燥かさ密度の深度プロファイルは一致するものの、 ガンマ線換算密度の値の方が湿潤かさ密度より高い傾向 がある(第2図). その理由については明確ではないため、 本論では密度のおおよその値と、その相対的な変化傾向 について参照するにとどめる.

密度データの深度プロファイルは,層相記載で記述した各ユニットに発達する上方粗粒化や上方細粒化のサクセッションとおおむね対応している.一方,泥層のガンマ線換算密度の値から深度と密度の関係を比較すると,ユニット1及びユニット3は1.7-1.8 g/cm³で一定しており,ユニット4では1.6 g/cm³程度まで減少する.ユニット7では値がばらつきはっきりしないが,1.6-1.75 g/cm³の範囲である.深度と密度の関係に一定の傾向は見出し難い.

含水比の深度プロファイルは密度データの深度プロ

- 第6図 GS-HIS-1 コアの堆積物と石狩湾の現世表層堆積物と の粒度特性の比較. (A) 平均粒径 — 淘汰度(標準 偏差)図及び(B)平均粒径 — 歪み度図.
- Fig. 6 Comparison of grain-size parameters between the GS-HIS-1 core sediments and shallow marine sediments of modern Ishikari Bay on the scatter diagrams of (A) mean diameter versus sorting (standard deviation), and (B) mean diameter versus skewness.

ファイルと良く対応する. ユニット1及び3ではおおよ そ30-40%の範囲であり, ユニット4では60%程度と 高含水比を示す. ユニット7では値がばらつくが,ユニッ ト6の砂質堆積物は30%でほぼ一定であり, ユニット 8では25%前後となる.

帯磁率

帯磁率の値は粒度組成とよく対応し、特に砂サイズの 堆積物で高い値を示す.帯磁率の深度プロファイルから、 層相記載で記述した各ユニットに発達する上方粗粒化や 上方細粒化のサクセッションが確認される.

粒度分析

粒度分析はユニット 3-b とその上位層準を対象とした. 各ユニットの特徴を以下に簡単に記述する. ユニット 3-b:平均粒径の範囲は 3.0-8.5 Φ で,泥分を含 んで全体に淘汰が不良である. ユニット4:最下部を除くと平均粒径は8.8-9.4 Φ の範囲 にあり,分析対象としたユニットのうち最も細粒な粒度 特性を示した. 試料毎の粒度特性の差が小さく全体に均 質といえるが,ユニット上部に向かって粘土の比率がわ ずかに減少する傾向を示す.

ユニット6:淘汰の良い細粒砂を主体とし、平均粒径の 範囲は2.4-4.0 Фである.上方粗粒化を示し、最頻径は 最下部で3.1 Ф、上部で2.3 Ф、最上部では1.9 Фである. ユニット7:平均粒径値は0.7-8.4 Фの範囲で広いが、こ れは泥層に粗粒な砂の薄層が挟在されることによる. ユニット8:平均粒径の範囲は0.2-1.8 Фで、対象とした ユニットの中で最も粗粒な砕屑粒子から構成される.平

均粒径値にもとづけば、コア深度 2.6 m を境に 2 回の上 方細粒化を示す。

ユニット4,6,7,8と,現世の石狩湾岸における海 底の表層堆積物の粒度分析値(菅・濱田,2001;北海道 立地質研究所,2004)とを,Φ値について求めた平均粒 径 — 淘汰度(標準偏差)及び平均粒径 — 歪み度の図に プロットして比較した(第6図).なお比較対象とした 現世の表層堆積物は,上部~下部外浜の砂質堆積物及び 石狩川河口前面の沿岸域に広がる泥質堆積物である.

ユニット7を除くと、各ユニットの分析値は平均粒 径の違いによりプロットされる領域がおおむね分かれ る. 内湾の泥質堆積物と解釈されたユニット4の分析値 は、現世の湾岸における表層堆積物の分析値とはほとん ど重ならず、より細粒側に分布する. ユニット6は現世 の下部外浜の砂がプロットされる領域に入っており、堆 積相にもとづく解釈と調和的である. ただしユニット6 の砂は現世の下部外浜の砂と比較し、より粗粒で淘汰が 良い領域に集まっている. この違いは現世の表層堆積物 が静穏時に採取されたもので、暴浪による淘汰が進んで いないためと解釈される. 上部外浜~後浜の堆積物と解 釈されたユニット8の分析値は、現在の上部外浜堆積物 より淘汰度が悪く、歪み度が小さい側にプロットされる 結果となった.ただし、現世のデータが2点であること から十分な比較はできない. なお石狩湾岸における前浜 の平均粒径について、太井子 (1977) は石狩川河口付近で 1.2-1.7 Φと最も粗く、河口から南西に 15 km 離れた場所 では 2.0-2.3 Φ と最も細かいことを報告している. ユニッ ト8の分析試料はいずれも平均粒径が1.8 Φ以下である ことから、河口に近接する海浜環境にあったと推察され る. ユニット7の泥層試料の分析値は、現在の石狩川河 口前面の浅海域に堆積する泥質堆積物と分布が重なり, シルト層の試料は現世の下部外浜堆積物の領域に、また 泥層に挟在される砂層の分析値はユニット8の分析値が 占める領域と重なった.

水素イオン濃度指数 (pH)・電気伝導度 (EC)

pH 及び EC の値はユニット 3 からユニット 4 にかけ て漸増する. 深度 50.2 m で pH・EC はそれぞれ最小値 6.8, 1.0 mS/cm となり, 深度 21.5 m で最大値 9.4, 5.0 mS/cm を示す. ユニット 6, 8 は砂質堆積物のみからなりデー タが無いが, ユニット 7 では pH が 7.2 ~ 7.7, EC が 1.5 ~ 2.3 mS/cm で, ユニット 3-a と同程度の値を示す.

6. 考察

6.1 層序と堆積環境

GS-HIS-1コアのユニット3基底(深度55.15m)か ら得られた¹⁴C 年代値 (12,860~12,780 cal BP),及び ユニット1の最上部 (深度 68.65 m) が示す¹⁴C 年代値 40,490±330 y BP から、ユニット2の礫層が沖積層基底 礫層に相当する.沖積層は,下位より礫質河川堆積物(ユ ニット2), 蛇行河川~河川の感潮域及び塩水湿地の堆 積物 (ユニット3), 内湾の堆積物 (ユニット4), そして ユニット6及び8は下部外浜及び上部外浜~海浜の堆積 物で、間に挟まれるユニット7は淡水環境下における泥 質堆積物と解釈された(第7図). 既報の当別町太美地 区 (GS-HTF-1 コア:川上ほか, 2012b) 及び同町川下地 区 (GS-HTB-1, -2 コア:川上ほか, 2012a) において,内 湾堆積物の上位に認められた河川及び塩水湿地の堆積物 (両地点の層序ユニット5)は、今回の親船地区では認め られない. 北川 (1990) により整理された既存層序と対比 すると、ユニット2、3が西浜層下部層、ユニット4が 西浜層上部層(屯田泥層). ユニット6~8が花畔砂層 に相当する(第1表).

以下,太美地区及び川下地区における調査結果と比較 しながら,今回調査を行った親船地区の沖積層の層序と 堆積環境の特徴について述べる.

まず基底礫層であるが,親船地区では中礫〜大礫を 主体とした粗粒な礫層からなり12mもの厚さに達する. また礫の大半が火山岩類である.一方,太美地区及び川 下地区の基底礫層は,北海道中央部の中生界起源と思 われる堆積岩類やチャート,緑色岩などの礫が多く,礫 径は中礫サイズ以下のものがほとんどである(川上ほか, 2012a;b).これは親船地区において,札幌西部に源流 をもつ河川(古豊平川?)からの粗粒砕屑物供給が優勢 であったことを示している.

次に,親船地区では基底礫層を覆う蛇行河川堆積物(ユ ニット3-a)の上位に,河川の感潮域及び塩水湿地の堆積 物(ユニット3-b)が認められる.pH,ECの深度プロファ イルはユニット3-aから3-bにかけて緩やかに高くなり, ユニット3-bではpHが8~8.5,ECは3mS/cm程度を 示す.このユニット3-bに相当する層序ユニットは太美, 川下両地区では認められず,同層準には蛇行河川堆積物 が発達しており,pH,ECの値も7~8,1mS/cm以下 であまり変化しない(川上ほか,2012a;b).親船地区は 現在の石狩川河口付近にあり,10,000年前以降には海進 に伴って次第に海水の影響を受けやすい河川の感潮域と

- 第7図 GS-HIS-1 コアの層序ユニットと AMS¹⁴C 年代,及 び解釈された堆積環境. 柱状図の凡例は第2図を参 照.
- Fig. 7 Summary of stratigraphy, AMS¹⁴C ages, and interpreted sedimentary environments of sediments in the GS-HIS-1 core. See Fig. 2 for explanation of the columnar section.

なったことを示している.

上位のユニット4の堆積は、引き続く海進に伴い親船 地区が内湾環境になったことを示す.この内湾泥層は3 m程度の厚さしかなく、下部外浜の砂層(ユニット6)に 侵食的に覆われる.ユニット4下部の¹⁴C年代が9,010-8,840 cal BPであるのに対し、ユニット6基底に含まれ る貝殻片の¹⁴C年代は5,330-5,220 cal BPで大きな開きが ある.また、この貝殻片の年代値は、較正暦年で7,000 ~7,500年前頃と見積もられる縄文海進高項期(奥東京 湾の例:木村ほか、2006;田辺ほか、2008)よりも有意 に若い.類似のサクセッションは九十九里浜平野の海成 沖積層から報告されており(田村ほか、2006)、そこで は海進期のラビンメント面を介して更新統を侵食的に覆 う海退期(5,000 cal BP 以降)の浅海成の砂体が発達する.

- 第8図 GS-HIS-1コアの堆積曲線.比較のため,GS-HTB-1, -2コア及びGS-HTF-1コアから求めた堆積曲線を合 わせて示し,緑と青の矢印でユニット3とユニット 4の境界位置を示した.灰色の破線は木村ほか(2006) がコンパイルした奥東京湾における海水準変動曲 線.年代値の誤差は2σの範囲を示す.
- Fig. 8 Sediment accumulation curve from the GS-HIS-1 core. Accumulation curves from the GS-HTB-1, -2 cores and the GS-HTF-1 core are also shown for comparison. The green and blue arrows indicate horizons of Unit 3/Unit 4 boundary of the GS-HTB-1, -2 and the GS-HTF-1 cores, respectively. Gray dashed line shows revised sea-level curve for Paleo-Okutokyo Bay (Kimura *et al.*, 2006). Horizontal errors are given as 2σ.

それを参考にすると、基底の侵食面は海進期に形成され たラビンメント面 (Nummedal and Swift, 1987) であり、こ れを海退期の下部外浜の砂層がダウンラップして覆って いるものと考えられる.

ユニット6からユニット8にかけては、全体として 上方粗粒化、上方浅海化する.それらがつくる砂体は 現在の花畔低地帯の浜堤列下にのみ分布しており(松下、 1979)、上述したように縄文海進高頂期以降に海側に成 長したものと結論づけられる.この砂体中に挟まれる淡 水成泥層(ユニット7)の位置づけについては、次の項で 考察する.

6.2 外浜堆積物に挟在する淡水成泥層

ユニット7の泥層は外浜の砂層中に挟在するにも関ら ず、既述のように淡水生の珪藻遺骸を多く産出し、その 割合は80~90%に達する.また葉理が発達して生物擾 乱は受けておらず暗褐色を呈するなど、層相からも淡水 成であることが示唆される.ただし植物片や根痕が全く 観察されず、ユニット3-aの氾濫原堆積物に見られる厚 い泥層とは層相が異なる.堆積曲線と海水準変動曲線(第 8図)に基づくと、ユニット7が堆積したおよそ3,000 年前頃の海水準は現在とほぼ同じか若干低い程度であり、 その時期に標高-5~-8mの場所で淡水成の泥質堆積物 が形成されたことになる(堆積曲線については、後で詳 述する).

粒度特性から見ると、ユニット7の泥層は現在の石狩 川河口前面の沿岸域に堆積する泥質堆積物とよい一致 を示す.また、同ユニットの深度9.9 mに挟在される砂 層にはウニの破片が含まれ、直上の泥層(深度9.6 m)試 料のみ海生の珪藻を多産し、その割合は40%を超える. この砂層の粒度特性は、上部外浜~海浜の堆積物と解釈 されたユニット8と類似している.

次に同ユニットの分布状態を,地盤ボーリング資料(廣 瀬ほか, 2011)を用いて確認する(第9図). 泥層の対比 上の判断基準として、分布標高及び層序、すなわち泥層 の下位に細粒砂が、上位には中粒〜粗粒砂が卓越するこ とに着目した. その結果 GS-HIS-1 の掘削地点付近から 北東側にかけて、海岸線に平行に流れる石狩川最下流域 に沿う標高-5mから-9m付近に、ユニット7に対比し 得る泥質堆積物が連続的に認められる(第9図A). 掘 削地点から西方では泥質堆積物は薄く、また断続的とな るが、石狩湾新港付近までは確認できる.一方、海岸線 に直交する断面(第9図B)を見ると、泥質堆積物は現 河道を横断してその海側・陸側の両側にそれぞれ 500 m ほどの幅で広がり、全体として海側に傾斜するように見 える.また海側末端は石狩砂丘の直下まで到達している. 更に石狩砂丘の下では、2~3m浅い位置(標高-3~-7m) にも泥質堆積物のレンズが挟在するのが確認される.こ のことは花畔低地帯の浜堤列が海側へ成長していく過程 で、浅海の砂層中に泥質堆積物が挟まれ、保存されたこ とを示唆する.

以上を総合的に勘案すると、ユニット7は沿岸の浜堤 列が海側へ成長する間に石狩川から供給された泥質堆積 物が、外浜堆積物に挟まれて保存されたものと推定され る.ただしユニット7は3mを超える厚さをもち、また 泥層には葉理が認められることから、完全に外洋に面し た外浜域での堆積・保存は考えにくい.おそらく現在と 同様に沿岸砂州によって海岸に平行に偏向していた河道 がラゲーン状の環境をなしており、泥質堆積物が堆積・ 保存されたと思われる.そこには高潮などにより、間欠 的に海浜の砂が供給されたであろう.

以上の解釈は, 波浪の影響を受けたデルタシステムの 沿岸域における堆積様式を示した Bhattacharya and Giosan (2003)に拠っている. それによれば, 沿岸流によりデル タの成長が河口の両側で非対称な場合 — 特に河道が沿 岸流の下流側へ大きく偏向する場合に, 河川からの泥質 物の供給が活発であれば, 河口から沿岸流の下流側に かけて厚い泥質堆積物が保存される(彼らの Fig. 7 及び Fig. 11). 現在の石狩湾において, 石狩川河口前面の浅海

第9図 石狩川河口域における地盤ボーリング柱状図の対比 (測線位置は第1図参照). Fig. 9 Stratigraphic correlation of geologic columns around the mouth of the Ishikarigawa River. See Fig. 1 for location.

域表層に泥質堆積物が広く堆積していることから、石狩 川からの泥質物の供給は非常に多いと考えられる(菅・ 濱田,2001).また現在の石狩川の屈曲が示すように沿 岸流は北東へ向かう流れが卓越しており、Bhattacharya and Giosan (2003)が示したケースによく適合する.

以上の解釈で問題となるのは、ユニット7の泥層が現

在の可道より海側の石狩砂丘直下にまで分布することで ある(第9図B).年代的な制約を考えると2000~3000 年前とされる弥生の小海退(太田ほか,1982;1990; Umitsu,1991)に伴う河道の海側への移動と,その後の海 水準上昇による石狩砂丘の形成,並びに河道の陸側への 再移動が想定されるが,今後の検証が必要であろう.

6.3 堆積曲線

今回測定した¹⁴C年代値と深度から堆積曲線を描く と、第8図のようになる.なお圧密の影響を正確に見積 もることは困難であり、ここでは圧密補正を行っていな い.この図から、堆積速度はユニット3で8m/1000年 程度であるが、ユニット4~ユニット6下部にかけて0.8 m/1000年と著しく堆積速度が低下している.これは既 述のように海進時の侵食による見かけのものである.更 にユニット6上部からユニット8にかけては40m/1000 年と著しく堆積速度が速くなる.海成沖積層の外浜~ 海浜の砂層が速い堆積速度を示すことは、九十九里浜 平野や仙台平野においても示されている(田村・増田, 2004;田村ほか、2006).なお松下(1979)は花畔砂層の 海側への成長速度について、¹⁴C年代(測定値)を用いて おおよそ1km/1000年と見積もっている.

石狩湾沿岸域並びに周辺域における海水準変動曲線に ついて詳細が知られていないため,得られた堆積曲線を 奥東京湾における海水準変動曲線(木村ほか,2006)と 暫定的に比較する.その結果,陸成と解釈されたユニッ ト3の区間が堆積曲線より標高の低い位置を通り,矛盾 する.またユニット3-bは河川の感潮域や塩水湿地の堆 積物を主体とすることから,本来9,000~10,600 cal BP の区間で堆積曲線と海水準変動曲線が近接していなけれ ばならない.

次に、より内陸のGS-HTF-1(川上ほか、2012b)及 びGS-HTB-1,-2(川上ほか、2012a)から得られた堆積 曲線もふまえて、奥東京湾の海水準変動曲線との関係 を整理する.堆積曲線における内湾泥層(ユニット4) の下底は海水準変動曲線上にのることを前提とすると、 GS-HTB-1,-2では標高が3~4mほど低い側にずれる が、GS-HTF-1では標高が3~4mほど低い側にずれる が、GS-HTF-1では海水準変動曲線上にのる(川上ほか、 2012b).一方、GS-HIS-1では標高が6~7mも低い側 を通っており、ずれが大きい.このような地点ごとのば らつきは圧密やあるいは地殻変動の影響と推定されるが、 現時点では特定できない.石狩湾沿岸域における海水準 変動曲線の確立が望まれる.

最後に堆積システム変遷の年代をまとめると,礫質河 川(ユニット2)から蛇行河川環境(ユニット3-a)への転 換は13,000 cal BP 頃,蛇行河川環境から感潮域や塩水湿 地環境(ユニット3-b)への移行は10,600 cal BP 頃,更に 内湾環境(ユニット4)への転換は8,900 cal BP 頃となる. 内湾環境への転換は、川下地区や太美地区でも年代的に ほぼ同時であり、アジア各地で報告されている9,000~ 8,500 年前の急激な海水準の上昇(Hori and Saito, 2007)に 対応する可能性がある.ユニット4までは海水準の上昇 に伴い形成された地層であるが、内湾泥層にダウンラッ プする下部外浜~海浜の砂層は5,300 cal BP 以降の形成 であり、縄文海進高項期後の海面低下に応じて急速に海 側に向かって成長したものと推定される.

7. まとめ

1. 北海道石狩市親船地区で掘削した沖積層ボーリング コアGS-HIS-1の層序と堆積環境を検討し,合わせて堆 積物物性,粒度組成,pH,ECを計測した.堆積相,珪 藻化石並びに貝化石から,沖積層は下位より礫質河川堆 積物(ユニット2),蛇行河川〜塩水湿地の堆積物(ユニッ ト3),内湾の堆積物(ユニット4),外浜〜海浜の堆積物 (ユニット6及び8)とそれに挟在する淡水成の泥質堆積 物(ユニット7)からなると解釈された.沖積層の下位に は上部更新統の氾濫原堆積物(ユニット1)が確認された. 2. ユニット4とユニット6の境界は海進ラビンメント 面であり,ユニット6の下部外浜の砂がダウンラップし て覆っている.

3. ユニット6~ユニット8は花畔砂層を構成し, 縄文 海進高頂期以降の海退期に海側に成長した砂体である. この砂体に挟在する泥質堆積物(ユニット7)は,沿岸砂 州により海岸に平行に偏向していたラグーン状の河道に 堆積し,砂体の海側への成長に伴って埋積・保存された. 4. ¹⁴C年代から,礫質河川環境(ユニット2)から蛇行河 川環境(ユニット3)への転換は13,000 cal BP頃で,海 水の影響を受け始め感潮域や塩水湿地環境となるのが 10,600 cal BP頃,引き続く海進により内湾環境(ユニッ ト4)に転換するのは8,900 cal BP頃である.また下部外 浜の砂層が海進ラビンメント面を介して内湾泥層を覆い はじめたのは5,300 cal BP頃である.

謝辞:研究にあたり、札幌市・石狩市をはじめ北海道・ 国などから多くの地盤ボーリングデータの提供を受けた. 掘削に当たっては、石狩市、北海道開発局札幌河川事務 所の皆様に多大なるご協力を頂いた.掘削調査は(株) ダイヤコンサルタントに委託した.MSCLの使用に際し ては産業技術総合研究所地質情報研究部門の池原 研博 士に、コア試料からのサンプリングや各種の分析にあ たっては同部門の國本節子氏に、堆積物の軟X線撮影に 際しては同部門の宮地良典氏、小松原純子博士にご助力 を頂いた.新潟大学の卜部厚志博士、福岡大学の石原与 四郎博士には、堆積相の解釈に際しご助言を頂いた.原 稿は、査読者の納谷友規博士のご指摘により改善された. 本研究に、科学技術振興調整費重要課題解決型研究「統 合化地下構造データベースの構築」を利用した.以上の 方々、関係各機関に対しここに記して感謝申し上げる.

文 献

安藤一男 (1990) 淡水産珪藻による環境指標種群の設定と 古環境復元への応用.東北地理,42,73-88.

Bhattacharya, J. P. and Giosan, L. (2003) Wave-influenced deltas: geomorphological implications for facies

reconstruction. Sedimentology, 50, 187-210.

- Boyd, R., Dalrymple, R. W. and Zaitlin, B. (2006) Estuarine and incised-valley facies models. *In* Posamentier, H. W. and Walker, R. G. eds., *Facies models revisited*, SEPM Special publication no. 84, 171–235.
- Bridge, J. (2006) Fluvial facies models: recent developments. In Posamentier, H. W. and Walker, R. G. eds., Facies models revisited, SEPM Special publication no. 84, 85-170.
- Collinson, J. D. (1996) Alluvial sediments. In Reading, H. G., ed., *Sedimentary environments: processes, facies and stratigraphy*, Blackwell Science, Oxford, 37-82.
- 長谷川康雄・濁川明男 (1993) 新潟県佐渡島の加茂湖から えられた珪藻群集. Diatom (珪藻学会誌), 8, 79-99.
- 廣瀬 亘・川上源太郎・大津 直・木村克己 (2011) 地盤 ボーリングデータベースを用いた石狩低地沖積層 開析谷地形の解析.日本地球惑星科学連合大会予稿 集,HQR022-P01.
- 北海道立地質研究所 (2004) 石狩水圈好適環境創造事業植物片等調査報告書. 54p.
- Hori, K. and Saito, Y. (2007) An early Holocene sea-level jump and delta initiation. *Geophy. Res Lett.*, 34, doi:10.1029/2007GL031029.
- Hughen, K. A., Baillie, M. G. L., Bard, E., Beck, J. W., Bertrand, C. J. H., Blackwell, P. G., Buck, C. E., Burr, G. S., Cutler, K. B., Damon, P. E., Edwards, R. L., Fairbanks, R. G., Friedrich, M., Guilderson, T. P., Kromer, B., McCormac, G., Manning, S., Ramsey, C. B., Reimer, P. J., Reimer, R. W., Remmele, S., Southon, J. R., Stuiver, M., Talamo, S., Taylor, F. W., van der Plicht, J. and Weyhenmeyer, C. E. (2004) Marine04 Marine radiocarbon age calibration, 0–26 cal kyr BP. *Radiocarbon*, 46, 1059-1086.
- Hustedt, F. (1930a) Bacillariophyta (Diatomeae). In Pascher A. ed., Die Süsswasser-Flora Mitteleuropas, Heft 10, Gustav Fischer, Jena, 466p.
- Hustedt, F. (1930b) Die Kieselalgen, Deutschlands, Österreichs und der Schweiz unter Berücksichting der übringen Länder Europas sowie der angrenzenden Meeresgebiete. In Rabenhorst, L. ed., Kryptogamen-Flora von Deutschland, Östrreichs und der Schweiz, Teil 1, Akademische Verlagsgesellschaft, Leipzig, 920p.
- Hustedt, F. (1959) Die Kieselalgen, Deutschland, Österreichs und der Schweiz unter Berücksichting der übringen Länder Europas sowie der angrenzenden Meeresgebiete. In Rabenhorst, L. ed., Kryptogamen-Flora von Deutschland, Östrreichs und der Schweiz, Teil 2, Akademische Verlagsgesellschaft, Leipzig, 845p.

- Hustedt, F. (1961-1966) Die Kieselalgen, Deutschland, Österreichs und der Schweiz unter Berücksichting der übringen Länder Europas sowie der angrenzenden Meeresgebiete. In Rabenhorst, L. ed., Kryptogamen-Flora von Deutschland, Östrreichs und der Schweiz, Teil 3, Akademische Verlagsgesellschaft, Leipzig, 816p.
- 川上源太郎・小松原純子・嵯峨山 積・仁科健二・木
 村克己・広瀬 亘・大津 直 (2012a) 北海道当別町
 川下地区で掘削された沖積層ボーリングコア (GS-HTB-1, GS-HTB-2)の層序および堆積学的解析.地
 質学雑誌, 118, 191-206.
- 川上源太郎・嵯峨山 積・仁科健二・中島 礼・廣瀬 亘・ 大津 直・木村克己 (2012b) 北海道当別町太美地区 で掘削された沖積層ボーリングコア (GS-HTF-1)の 層序学的および堆積学的解析.地質調査研究報告, 63, 21-34.
- 木村克己・石原与四郎・宮地良典・中島 礼・中西利典・ 中山俊雄・八戸昭一 (2006) 東京低地から中川低地 に分布する沖積層のシーケンス層序と層序の再検 討. 地質学論集, no. 59, 1-18.
- 北川芳男 (1990) 第四系 北海道中央部 石狩低地帯 — 石狩海岸平野. 日本の地質 北海道地方編集委員 会編「日本の地質 1 北海道地方」,共立出版株式 会社,東京, 135-136.
- 小菅明男 (1972) 福島県相馬市松川浦の水質と底質の珪藻 遺骸について.地球科学, 26, 243-255.
- 小杉正人 (1988) 珪藻の環境指標種群の設定と古環境復元 への応用. 第四紀研究, 27, 1-20.
- Kramer, K. and Lange-Bertalot, H. (1986) Bacillariophyceae,
 1. Teil: Naviculaceae. *In* Ettl, H., Gerloff, J., Heynig,
 H. and Mollenhauer, D., eds., *Süsswasser-Flora von Mitteleuropas*, Gustav Fischer Verlag, Suttgart, 876p.
- Kramer, K. and Lange-Bertalot, H. (1988) Bacillariophyceae,
 2. Teil: Epithemiaceae, Surirellaceae. *In* Ettl, H., Gerloff,
 J., Heynig, H. and Mollenhauer, D., eds., *Süsswasser-Flora von Mitteleuropas*, Gustav Fischer Verlag, Suttgart,
 610p.
- Kramer, K. and Lange-Bertalot, H. (1991a) Bacillariophyceae,
 3. Teil: Centrales, Fragilariaceae, Eunoticeae. *In* Ettl,
 H., Gerloff, J., Heynig, H. and Mollenhauer, D., eds.,
 Süsswasser-Flora von Mitteleuropas, Gustav Fischer
 Verlag, Suttgart, 576p.
- Kramer, K. and Lange-Bertalot, H. (1991b) Bacillariophyceae,
 4. Teil: Athnanthaceae Kritische Erganzungen zu Navicula (Lineolatae) und Gomphonema. *In* Ettl, H., Gerloff, J., Heynig, H. and Mollenhauer, D., eds., *Süsswasser-Flora von Mitteleuropas*, Gustav Fischer Verlag, Suttgart, 437p.
- 工藤浩三 (1997) 秋田県八郎潟干拓地におけるボーリン

グ・コア試料中の珪藻遺骸群集と古環境. Diatom (珪 藻学会誌), 13, 201-214.

- 松下勝秀 (1979) 石狩海岸平野における埋没地形と上部更 新〜完新統について.第四紀研究, 18, 69-78.
- 村瀬 正・羽坂俊一・池田国昭・山口昇一 (1991) 3 万分 の1札幌および周辺部地盤地質図および説明書.特 殊地質図 (30),地質調査所,73p.
- Nichol, S. L., Zaitlin, B. A. and Thom, B. G. (1997) The upper Hawkesbury River, New South Wales, Australia: a Holocene example of an estuarine bayhead delta. *Sedimentology*, 44, 263-286.
- 濁川明男・長谷川康雄 (1999) 福島県松川浦の底質表層軟 泥中の珪藻遺骸群集と環境の変化. Diatom (珪藻学 会誌), 15, 85-101.
- 濁川明男・長谷川康雄 (2002) 青森県鷹架沼の珪藻遺骸群
 集と水環境. Diatom (珪藻学会誌), 18, 57-71.
- 濁川明男・長谷川康雄 (2005) 青森県尾駮沼の珪藻群集. Diatom (珪藻学会誌), **21**, 107-118.
- 濁川明男・西片 武 (1975) 北陸沿岸湖沼群の珪藻類.地 球科学, **29**, 18-35.
- 野尻湖珪藻グループ (1980) 野尻湖層の珪藻遺骸群集.地 質学論集, no.19, 75-100.
- Nummedal, D. and Swift, D. J. P. (1987) Transgressive stratigraphy at sequence-bounding unconformities: some principles derived from Holocene and Cretaceous examples: implications for more ancient strata. *In* Nummedal, D., Pilkey, O. H. and Howard, J. D. eds., *Sea-level fluctuation and coastal evolution*, SEPM Special publication no. 41, 241-260.
- 太田陽子・松島義章・森脇 広 (1982) 日本における完 新世の海面変化に関する研究の現状と問題 — Atras of Holocene sea-level records in Japan を資料として —. 第四紀研究, **21**, 133-143.
- 太田陽子・海津正倫・松島義章 (1990)日本における完 新世相対的海面変化とそれに関する問題 — 1980 ~ 1988における研究の展望 — 第四紀研究, 20, 31-48.
- Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck,
 J. W., Bertrand, C. J.H., Blackwell, P. G., Buck, C. E.,
 Burr, G. S., Cutler, K. B., Damon, P. E., Edwards, R.
 L., Fairbanks, R. G., Friedrich, M., Guilderson, T. P.,
 Hogg, A. G., Hughen, K. A., Kromer, B., McCormac,
 F. G., Manning, S. W., Ramsey, C. B., Reimer, R. W.,
 Remmele, S., Southon, J. R., Stuiver, M., Talamo, S.,
 Taylor, F. W., van der Plicht, J. and Weyhenmeyer, C. E.
 (2004) IntCal04 Terrestrial radiocarbon age calibration,

26-0 ka BP. Radiocarbon, 46, 1029-1058.

- Reineck, H. E. and Singh, I. B. (1980) Depositional Sedimentary Environments. Springer-Verlag, New York, 551p.
- 斎藤文紀 (1989) 陸棚堆積物の区分と暴風型陸棚における 堆積相.地学雑誌, 98, 164-179.
- 嵯峨山 積・外崎徳二・近藤 務・岡村 聰・佐藤公則 (2010) 北海道石狩平野の上部更新統〜完新統の層序 と古環境. 地質学雑誌, 116, 13-26.
- Smith N. D. and Pérez-Arlucea, M. (1994) Fine-grained splay deposition in the avulsion belt of the lower Saskatchewan River, Canada. *Journal of Sedimentary Research*, B64, 159-168.
- 添田雄二・嵯峨山 積・赤松守雄 (2010) 第四紀地殻変動 域の堆積物 — 北海道中央部 — 石狩低地帯 — 石狩 海岸平野. 日本地質学会編集「日本地方地質誌 1 北海道地方」,株式会社朝倉書店,東京, 250-251.
- 菅和哉・濱田誠一 (2001) 石狩湾奥の沿岸堆積物と海岸 侵食.北海道立地質研究所報告, 72, 31-71.
- 太井子弘和(1977)石狩海岸砂質地における砂質堆積物の 環境区分と堆積環境.北海道大学地球物理学研究報 告, 36, 1-15.
- 田辺 晋・石原与四郎・中島 礼 (2008) 東京低地北部に おける沖積層のシーケンス層序と古地理.地質調査 研究報告, **59**, 509-547.
- 田村 亨・増田富士雄 (2004) 多数の年代値を入れた波浪 卓越型堆積シーケンスの研究 — 千葉県九十九里浜 平野と宮城県仙台平野の完新統から得られた最近 の成果 —. 地学雑誌, 113, 1-17.
- 田村 亨・斎藤文紀・増田富士雄 (2006) 浜堤平野におけ る沖積層の層序と堆積学的解釈:仙台平野と九十九 里平野の例.地質学論集, no. 59, 83-92.
- 内山美恵子・原 未来也・竹内美緒・木村克己 (2011) 東 京低地と中川低地の沖積層堆積物で作成した懸濁 液の水素イオン濃度指数および電気伝導度.地質調 査研究報告, 62, 85-104.
- 上杉 陽・遠藤邦彦 (1973) 石狩海岸平野の地形と土壌に ついて.第四紀研究, 12, 115-124.
- Umitsu, M. (1991) Holocene sea-level changes and coastal evolution in Japan. *Quatern. Res.*, **30**, 187-196.
- 山口正秋・水野清秀・納谷友規・本郷美紗緒・中里裕臣・ 中澤 努 (2009) 関東平野中央部,埼玉県菖蒲町で 掘削された 350 m ボーリングコア (GS-SB-1)の層相 と堆積物物性. 地質調査研究報告, 60, 147-197.

(受付:2011年5月18日;受理:2012年7月26日)

資料・解説 - Note and Comment

珪藻化石と岩相に基づく関東平野中央部で 掘削されたボーリングコアの海成層準の認定

納谷友規^{1,*}・八戸昭一²・松島紘子³・水野清秀¹

Tomonori Naya, Shoichi Hachinohe, Hiroko Matsushima and Kiyohide Mizuno (2012) Identification of marine sediments inferred from diatom fossil and lithofacies in the drillcores in central Kanto Plain, Japan. *Bull. Geol. Surv. Japan*, vol. 63(5/6), p. 147-180, 9 figs, 2 tables, 1 appendix.

Abstract: Number and depth of marine intervals in seven drillcores in central Kanto Plain, central Japan, were examined by diatom fossil analysis and lithofacies observations. The numbers of identified marine intervals in seven drillcores are as follows; 15 marine intervals (TZ-M1–TZ-M15) in Tokorozawa core, six marine intervals (WM-M1–WM-M6) in Washimiya core, three marine intervals (GD-M1–GD-M3) in Gyoda core, 12 marine intervals (KGH-M1–KGH-M12) in Koshigaya-Higashi core, 14 marine intervals (KJ-M1–KJ-M14) in Kawajima core, 18 marine intervals (KK-M1–KK-M18) in Kasukabe core and eight marine intervals (FS-M1–FS-M8) in Fukasaku A-1 core. These results present basic stratigraphic data to develop the Quaternary subsurface stratigraphy of central Kanto Plain.

Keywords: diatom, subsurface geology, marine sediments, Saitama Prefecture, central Kanto Plain, Japan, Pleistocene

要 旨

関東平野中央部の標準地下地質層序を構築するための 基礎資料として,埼玉県内で掘削された7本の既存ボー リングコアにおける海成層準を,岩相と海生珪藻化石の 産出から明らかにした.所沢コアでは15層準(TZ-M1 ~TZ-M15),鷲宮コアでは6層準(WM-M1~WM-M6), 行田コアでは3層準(GD-M1~GD-M3),越谷東コアで は12層準(KGH-M1~KGH-M12),川島コアでは14層 準(KJ-M1~KJ-M14),春日部コアでは18層準(KK-M1 ~KK-M18),深作A-1コアでは8層準(FS-M1~FS-M8)の海成層をそれぞれ認定した.各海成層準には上位 より通し番号を割り振り地下地質層序構築の基礎資料を 提供した.

1. はじめに

平野の地下地質情報は,都市基盤整備,産業立地計画, 地震災害をはじめとする防災計画など様々な方面から利 活用されている.特に関東平野は,首都圏・大都市圏を 含むため地下地質情報の集積と,地下構造モデルの高精 度化が重要な課題である.

関東平野中央部の地下には、非常に厚く第四系が分布 しており、その層厚は大きい場所で1,000 m を超えると 考えられている(例えば、鈴木、2002). 産業技術総合研 究所では、関東平野における地下地質情報整備の一環と して、関東平野の地下に厚く分布する第四系に広く適応 できる地下標準層序の確立と地下地質構造解明のために、 ボーリング調査や既存ボーリングコアの解析を行ってい る.

上記のような背景から,産業技術総合研究所では 2006 年に埼玉県菖蒲町(現久喜市)において独自の350 mボー リング掘削調査を行い,層相の記載,火山灰層序,古 地磁気層序,花粉化石層序,海成層準などを明らかに してきた(山口ほか,2009;植木ほか,2009;納谷ほか, 2009;本郷ほか,2011). さらに,埼玉県が所有する既 存オールコアボーリング試料の再解析により,より広い 範囲を対象として,関東平野中央部における地下 600 m までの第四系地下標準層序を検討している(例えば,本 郷・水野,2009;水野・納谷,2011).

関東平野地下の第四系は,海成層と淡水成層の繰り返 しからなることが知られている.この繰り返しは,氷

¹ 地質情報研究部門 (AIST, Geological Survey of Japan, Institute of Geology and Geoinformation)

² 埼玉県環境科学国際センター研究所 (Reserch Institute, Center for Environmental Science in Saitama, Kami-tanadare 914, Kazo, Saitama 347-0115, Japan)

³ 豊島岡女子学園 (Toshimagaoka Joshigakuen, Higashiikebukuro 1-25-22, Toshima-ku, Tokyo 170-0013, Japan)

^{*} Corresponding author: T. NAYA, Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan. Email: t-naya@aist.go.jp

- 第1図 関東平野の地質図と各コアの掘削地点.地質
 図は杉山ほか (1997)を簡略化.(TZ:所沢コア,KJ:川島コア,GD:行田コア,SB:GS-SB-1,FS:深作A-1コア,WM:鷲宮コア,KK:春日部コア,KGH:越谷東コア).
- Fig.1 Geologic map of Kanto Plain and locality of cores, which are examined in this study. Geologic map of Kanto Plain simplified after Sugiyama et al. (1997) (TZ: Tokorozawa, KJ: Kawajima, GD: Gyoda, SB: GS-SB-1, FS: Fukasaku A-1, WM: Washimiya, KK: Kasukabe, KGH: Koshigaya-Higashi).

河性海水準変化によるものであると考えられている(例 えば、中澤・中里、2005). このような堆積盆地におい て、層序を確立し地下地質構造を明らかにするためには、 ボーリング試料の火山灰層序や古地磁気層序を明らかに することに加え、挟在する海成層を正確に識別して、海 成層の対比を行うことが重要である.例えば、大阪平野 では、Ma-1、Ma0、Ma1からMa13と名付けられた海成 層の対比が、堆積盆地の形成史を明らかにする上で重要 な役割を果たしている(例えば、市原(編)、1993、吉川・ 三田村、1999).

ボーリング試料の海成層の認定には、堆積相の観察と ともに、産出する様々な化石のデータを合わせた総合的 解析を行うことが望ましい(例えば、中澤ほか、2006). このようなボーリング解析には珪藻化石がしばしば利用 される. 珪藻はそれぞれの分類群が、塩分、pH、水流、 栄養塩濃度等、特定の環境に対応して生息するため、水 質指標生物として知られている(渡辺ほか、2005). さ らに、その珪酸質の被殻は化石として堆積物にのこされ やすく、地層が形成された当時の環境を推測するための 指標化石として利用されてきた(例えば、Stoermer and Smol, 1999, eds.). ボーリング試料に含まれる珪藻化石の 有無は、肉眼観察結果を補い海成・非海成層の識別に利 用される. 特に、貝化石を含まない海成層の識別には有 効な手段であることが多い.

関東平野中央部においても、いくつかのボーリングコ アにおいて、海成層が識別されている.関東平野中央部 地質研究会(1994)は、掘削深度600 m の春日部観測井 コアと川島観測井コアの海成層を、貝化石、有孔虫化石、 珪藻化石の産状、硫黄分析結果から報告した.埼玉県 (1996)は掘削長350 m の深作 A-1 コアにおいて、深度 0-190 m の海生層準を珪藻化石の産出から推定した.納 谷ほか(2009)、山口ほか(2009)では、埼玉県菖蒲町で掘 削された GS-SB-1 コアの海成層を、海生珪藻化石の産出 と層相から認定した.

本報告は、関東平野中央部の地下地質層序を構築する

上での基礎的情報を提供することを目的として、関東平 野中央部で掘削された7本の長尺ボーリングコア(掘進 長300-600 m)の柱状図を作成し、これらのボーリングコ アに挟在する海成層準を、海生珪藻化石産出層準と、貝 化石産出層準、層相から詳細に識別した結果を研究資料 として報告する.既に海成層準が報告されていた深作 A-1 コア、春日部コア、川島コアについても珪藻化石の 再検討を行い、より詳細な海成層の認定を試みた.さら に、それぞれの海成層準に対し系統的番号を設定し、各 コアにおける層群単位の大まかな層序区分を示した.本 報告ではそれぞれの海成層の対比および年代については 詳しく議論しないが、現在同時に進められている火山灰 層序、古地磁気層序、花粉化石層序、等を総合した地下 標準層序確立のための基準となる資料として活用される ことが期待される.

2. 試料の概要

2.1 ボーリングコア

本研究で使用したコアは、埼玉県が設置した地盤沈下 観測井のコアである、春日部コア(KK)、川島コア(KJ)、 所沢コア(TZ)、鷲宮コア(WM)、行田コア(GD)、越谷 東コア(KGH)と、同じく埼玉県が実施した活断層調査 で掘削された深作 A-1 コア(FS)である(第1表,第1図). コアの柱状図は、観測井設置および活断層調査の報告書 (埼玉県、1979、1981、1983、1985、1986、1991、1996) に基づき作成し、埼玉県に保管されているコアを改めて 観察し部分的に修正した.コアの観察に基づき、貝化石 の産出層準および生痕化石の産出層準を明らかにすると ともに、次に述べる方法で海生珪藻化石産出層準を明ら かにし、海成層の認定を行った.

2.2 プレパラート作成方法と観察方法

珪藻殻の観察には、処理方法の異なる2種類のプレパ ラート(手法Aおよび手法B)を用いた. それぞれの試

第1表	各コアの名称,	略称,	掘削長,	孔口標高,	緯度経度および掘削年.		
Table 1.	Name, abbrevia	ted nam	e, length,	elevation, la	titude-longitude and drilled	year of examined	cores in this study.

ボーリング名称	コア略称	掘進長(m)	孔口標高(m)	緯度経度		掘削年	出典
1 所沢地盤沈下観測所	所沢 (TZ)	457.3	73.928	N35° 47'56.9″	E139° 28'13.1″	1978-1979	埼玉県(1979)
2 鷲宮地盤沈下観測所	鷲宮 (WM)	514.62	9.24	N36° 5' 38.7"	E139°41'8.5"	1980-1981	埼玉県(1981)
3 行田地盤沈下観測所	行田 (GD)	610.7	17.304	N36° 8'14.7″	E139° 31'12.0″	1982	埼玉県(1983)
4 越谷東地盤沈下観測所	越谷東 (KGH)	350	3.37	N35° 54'8.0"	E139° 48' 55. 5″	1983-1984	埼玉県(1985)
5 川島地盤沈下観測所	川島 (KJ)	600	11.884	N35° 59' 29.5"	E139°29'7.8"	1986	埼玉県(1986)
6 春日部地盤沈下観測所	春日部 (KK)	600	5.31	N35° 57' 13.3"	E139° 46' 6.3"	1990	埼玉県(1991)
7 埼玉県活断層調査 A-1	深作A-1(FS)	300	17.124	N35° 56' 55.7"	E139° 39' 33.6"	1996	埼玉県(1996)
8 菖蒲コア(GS-SB-1)	菖蒲 (SB)	350.2	11.736	N36° 3' 21.8"	E139° 36' 4.3"	2006-2007	山口ほか(2009)

料観察に用いたプレパラート作成方法は付表に示した.

手法 A

乾燥した堆積物数gを軽く押しつぶし,バイアル瓶に 移し,蒸留水を注ぎ全量15 cc となる懸濁液を作成する. バイアル瓶をぬるま湯で湯煎しながらよく撹拌する.こ の懸濁液を適量希釈し,希釈された懸濁液を18 x 18 mm のカバーグラス上に0.5 ml 滴下し,40℃に設定したホッ トプレート上で乾燥させる.封入材(プルーラックス) でスライドグラスに貼り付けプレパラートとする.

手法 B

乾燥した堆積物を砕き,ごま粒程度の大きさのかけ らをピンセットで22 x 24 mmのカバーグラス上に乗せ, 数滴の蒸留水を加え爪楊枝ですりつぶしながら撹拌し懸 濁させる.40℃に設定したホットプレート上で乾燥さ せた後,光硬化樹脂(古澤地質製)でスライドグラスに 貼り付けプレパラートとする.

検鏡は, 倍率 600 倍 (対物レンズ 60 倍)の微分干渉装 置付き生物顕微鏡を用いて行った.少なくとも数測線を 走査して観察し,必要に応じて倍率 400 倍 (対物レンズ 40 倍)にて全面走査による観察も行った.

淡水生種と汽水生・海生種の産出頻度を,次の基準に 従って区分した.

abundant (多産): ほぼすべての視野に1 殻以上産出する. common (普通): すべての視野には産出しないが,1 測 線上に数殻以上産出する.

rare (少産):1測線上あるいは数測線上に1殻程度産出 する.

valve fragment only or very rare (破片のみ,もしくは稀産): 珪藻殻の殻片しか産出しない,もしくはプレパラート全 面に数殻しか産出しない.

no diatom valves found (無産出) : 全く珪藻殻が観察され ない.

種の詳しい同定のために, 倍率 1,000 倍 (油浸対物レ ンズ 100 倍) による観察と, 種によって走査電子顕微 鏡による殻の微細構造の観察を行った. 珪藻の同定と 生態は Krammer and Lange-Bertalot (1988, 1991), Patric and Reimer (1966, 1975), Hartley (1996), Round *et al.* (1990), Snoeijis ed. (1993, ed.), Snoeijis and Vilbaste (1994, eds.), Snoeijis and Potapova (1995, eds.), Snoeijis and Kasperovičienė (1996, eds.), Snoeijis and Balashova (1998, eds.), Vos and De Wolf (1993), 渡辺ほか (2005), Witkowski *et al.* (2000) 等を参考にした.

2.3 海成層の認定方法

本研究では、1)海生・汽水生珪藻の産出、2) 貝化石の 産出、3) 生痕化石 Macaronichnus segregatis の産出(例え ば、Seike, 2007, 2009) のうち、いずれかが認められた 層準を海成層と判断した.海成層の下限と上限は、原則 上記の海成層指標が含まれる層相の境界としたが、同じ ユニット内に海成層と淡水成層の境界が認定された場合 や、実際の層相の連続性から柱状図の層相境界をまたぐ と判断された場合は、海成層境界と柱状図の層相境界が 一致していない.認定された海成層準について、各コア の略称番号(第1表)とコアの上位から下位に向かって M1 から開始する番号の組み合わせで番号を設定した.

3. 海生・汽水生珪藻産出層準と海成層準の認定

検鏡したコアで産出した主な分類群を淡水生及び汽 水・海生種の区分とともに第2表に示す.それぞれのコ アにおける検鏡を行った試料の層準,淡水生種と汽水・ 海生種の産出頻度を柱状図と貝化石の産出層準とともに 第2図~第8図に示す.水野・納谷(2011)で示されたテ フラについては,試料番号と層準を柱状図に示し,海成 層との層位関係を示した.第9図には、コア全体が概観 できる小縮尺の柱状図,海成層準,広域テフラ,既存研 究に基づいた古地磁気極性を示し,すでに公表されてい る菖蒲コア(GS-SB-1:山口ほか2009;納谷ほか,2009) の結果も示した.検鏡した全試料の深度,プレパラート 作成方法,珪藻化石産出頻度を付表1にまとめた.

以下,それぞれのコアにおける珪藻化石産出層準と海 成層の認定結果を述べる.

3.1 所沢コア (TZ)(第2図)

検鏡は所沢コアの合計 92 試料で行われた. このうち 珪藻化石は合計 25 試料で産出した. 無産出および稀産 試料は合わせて 67 試料だった. 珪藻化石が産出した 25

第2表	関東平野中央部ボーリングコアに産出した主な珪藻化石.
Table 2.	Common diatom species occurred in drillcores in central Kanto Plain.

Marine to brackish species	Freshwater species (continued)
Actinocyclus normanii f. subsalsa (Juhlin-Dannfelt) Hustedt	Achnantethidium spp.
Actinoptychus spp.	Aulacoseira spp.
Campylosira cymbelliformis (A. Schmidt) Grun. ex Van Heurck	Cocconeis placentula Ehrenb.
Cocconeis scutellum Ehrenberg	Cyclotella meneghiniana Kützing
Cyclotella baltica (Grunow) Håkansson	Cymbella spp.
Cyclotella choctawhatcheeana A.K.S.Prasad	Decussata spp.
Cyclotella cf. stylorum Brightwell	Diadesmis confervacea Kützing
Cymatosira belgica Grunow in Van Heurck	Diadesmis contenta (Grunow ex Van Heurck) D.G. Mann
Cymatotheca weissflogii (Grunow) Hendey	Encyonema spp.
Diploneis spp.	Epithemia sp.
Fallacia spp.	Eunotia spp.
Giffenia cocconeiformis (Grunow) Round & Basson	Fragilaria spp.
Grammatophora sp.	Fragilariforma sp.
Hyalodiscus sp.	Frustulia vulgaris (Thwaites) De Toni
Lancineis rectilatus Naya	Gomphonema spp.
Melosira spp.	Hannaea arcus var. hattoriana (F.Meister) Ohtsuka
Navicula spp.	Hantzschia amphioxys (Ehrenberg) Grunow in Cleve et Grunov
Paralia spp.	Hippodonta spp.
Petroneis marina (Ralfs in Pritchard) D.G.Mann	Luticola spp.
Plagiogramma staurophorum (Gregory) Heiberg	Melosira varians Agardh
Pleurosigma sp.	Navicula spp.
Psamodictyon spp.	Neidium spp.
Pseudopodosira kosugii Tanimura & Sato	Nitzschia spp.
Pseudostaurosira spp.	Orthoseira roeseana (Rabenhorst) O'Meara
Rhizosolenia spp.	Pinnularia spp.
Rhopalodia acuminata Krammer	Placoneis spp.
Seminavis strigosa (Hustedt) Danieledis & Economou-Amil	li Planothidium spp.
Skeletonema costatum (Greville) Cleve	Pseudostaurosira spp.
Thalassionema nitzschioides (Grunow) Grun.	Puncticulata spp.
Thalassiosira spp.	Reimeria sinuata (Gregory) Kociolek & Stoermer
Trachyneis sp.	Stauroneis spp.
Tryblionella granulata (Grunow) D.G.Mann	Staurosira spp.
Tryblionella lanceola Grunow ex Cleve	Staurosirella spp.
Tryblioptychus cocconeiformis (Cleve) Hendey	Stephanodiscus spp.
	Surirella spp.
Freshwater species	Synedra spp.
Achnantethes spp.	Synedrella sp.
Achnanthes inflata (Kützing) Grunow	Tabellaria sp.

試料のうち, 汽水・海生種は22 試料で産出した. 汽水・ 海生種が産出した層準と貝化石の産出層準より, 所沢コ アには合計 15 層準の海成層が認められた.

海成層の番号と深度は上位より, TZ-M1 (105.30-110.90 m), TZ-M2 (142.40-146.50 m), TZ-M3 (158.30-160.70 m), TZ-M4 (171.40-190.90 m), TZ-M5 (199.00-202.80 m), TZ-M6 (220.70-238.00 m), TZ-M7 (259.75-270.50 m), TZ-M8 (286.40-301.55 m), TZ-M9 (321.20-322.95 m), TZ-M10 (332.70-334.90 m), TZ-M11 (347.45-391.70 m), TZ-M12 (409.93-414.60 m), TZ-M13 (417.50-418.80 m), TZ-M14 (420.70-445.00 m), TZ-M15 (447.90-457.30 m) である.

3.2 鷲宮コア (WM)(第3図)

検鏡は鷲宮コアの合計 122 試料で行われた. このうち

珪藻化石は合計38 試料で産出した. 無産出および稀産 試料は合わせて84 試料だった. 珪藻化石が産出した38 試料のうち,汽水・海生種は14 試料で産出した. 汽水・ 海生種が産出した層準と貝化石の産出層準より, 鷲宮コ アには合計6層準の海成層が認められた.

海成層の番号と深度は上位より, WM-M1 (9.0-13.95 m), WM-M2 (22.50-33.00 m), WM-M3 (58.44-69.14 m), WM-M4 (92.50-103.20 m), WM-M5 (121.90-150.85 m), WM-M6 (342.0-356.0 m), である.

3.3 行田コア (GD)(第4図)

検鏡は行田コアの合計 147 試料で行われた. このうち 珪藻化石は合計 75 試料で産出した. 無産出および稀産 試料は合わせて 72 試料だった. 珪藻化石が産出した 38 試料のうち,汽水・海生種は11 試料で産出した.汽水・ 海生種が産出した層準と貝化石の産出層準より,行田コ アには合計3層準の海成層が認められた.

海成層の番号と深度は上位より, GD-M1 (107.43-130.50 m), GD-M2 (163.58-178.00 m), GD-M3 (559.00-561.50 m) である.

3.4 越谷東コア (KGH)(第5図)

検鏡は越谷東コアの合計 73 試料で行われた. このう ち珪藻化石は合計 34 試料で産出した. 無産出および 稀産試料は合わせて 39 試料だった. 珪藻化石が産出 した 34 試料のうち, 汽水・海生種は 19 試料で産出し た. 汽水・海生種が産出した層準と貝化石の産出層準 より, 越谷東コアには合計 12 層準の海成層が認められ た. 海成層の番号と深度は上位より, KGH-M1 (12.00-35.00 m), KGH-M2 (49.00-54.70 m), KGH-M3 (65.00-68.00 m), KGH-M4 (88.00-121.60 m), KGH-M5 (132.00-135.50 m), KGH-M6 (156.00-158.90 m), KGH-M7 (165.30-172.00 m), KGH-M8 (184.70-198.00 m), HGH-M9 (248.70-257.00 m), KGH-M10 (282.50-285.50 m), KGH-M11 (287.80-295.30 m), KGH-M12 (326.00-350.00 m), である.

3.5 川島コア (KJ)(第6図)

検鏡は川島コアの合計 143 試料で行われた. このうち 珪藻化石は合計 71 試料で産出した. 無産出および稀産 試料は合わせて 72 試料だった. 珪藻化石が産出した 71 試料のうち, 汽水・海生種は 36 試料で産出した. 汽水・ 海生種が産出した層準と貝化石の産出層準より, 川島コ アには合計 14 層準の海成層が認められた.

海成層の番号と深度は上位より, KJ-M1 (17.65-22.50 m), KJ-M2 (35.0-43.0 m), KJ-M3? (56.13-57.30 m), KJ-M4 (86.60-87.50 m), KJ-M5 (126.3-138.0 m), KJ-M6 (159.00-171.00 m), KJ-M7 (179.0-186.5 m), KJ-M8 (201.7-229.5 m), KJ-M9 (246.0-251.0 m), KJ-M10 (288.0-292.0 m), KJ-M11 (320.06-322.40 m) KJ-M12 (328.55-337.75 m), KJ-M13 (347.20-362.0 m), KJ-M-14 (370.60-372.55 m) である.

KJ-M1 層準は、今回珪藻の検鏡をしていないが、関東 平野中央部珪藻グループ (1994) により海生珪藻の産出 が報告されているため、海成層と認定した.KJ-M3?は、 今回の検鏡では淡水生種のみ産出し、海生および汽水生 珪藻の産出が確認できなかったが、関東平野中央部珪藻 グループ (1994) では汽水生珪藻である Diploneis smithii の産出が報告されているため、暫定的に海成層とした.

関東平野中央部地質研究会 (1994) は、川島コアで本研 究と同じく 14 層準の海成層を識別している.これらの 海成層深度は、本研究の海成層深度とほぼ一致する.

3.6春日部コア (KK)(第7図)

検鏡は春日部コアの合計 164 試料で行われた. 珪藻化

石は合計 72 試料で産出した. 無産出および稀産試料は 合わせて 92 試料だった. 珪藻化石が産出した 72 試料の うち, 汽水・海生種は 45 試料で産出した. 汽水・海生 種が産出した層準と貝化石の産出層準より, 春日部コア には合計 18 層準の海成層が認められた.

海成層の番号と深度は上位より, KK-M1 (3.10-28.25 m), KK-M2 (35.00-37.50 m), KK-M3 (46.10-58.20 m), KK-M4 (72.90-94.20 m), KK-M5 (116.0-132.85 m), KK-M6 (192.50-205.00 m), KK-M7 (216.20-224.70 m), KK-M8 (256.70-262.40 m), KK-M9 (287.7-298.25 m), KK-M10 (340.9-343.6 m), KK-M11 (363.8-376.1 m), KK-M12 (392.5-408.9 m), KK-M13 (434.2-446.6 m), KK-M14 (460.5-469.0 m), KK-M15 (482.2-490.9 m), KK-M16 (503.6-512.5 m), KK-M17 (536.3-550.4 m), KK-M18 (566.3-582.5 m) である.

関東平野中央部地質研究会(1994)は、春日部コアで 17 層準の海成層を識別している.本研究のKK-M10海 成層は関東平野中央部地質研究会(1994)で識別されて いないが、それ以外の海成層の深度はほぼ一致する.な お、関東平野中央部地質研究会(1994)は、貝化石、有 孔虫化石、海生珪藻化石が共通して産出する海成層に対 して、①から⑫の海成層準分帯を行っている.本研究の 海成層とは、①とKK-M1、②とKK-M3、③とKK-M4、 ④とKK-M5、⑤とKK-M6、⑥とKK-M7、⑦とKK-M9、 ⑧とKK-M11、⑨とKK-M12、⑩とKK-M13、⑪とKK-M17、⑫とKK-M18 がそれぞれ対応する.

3.7 深作 A-1 コア (FS)(第8図)

検鏡は深作コアの合計 150 試料で行われた. このうち 珪藻化石は合計 61 試料で産出した. 無産出および稀産 試料は合わせて 89 試料だった. 珪藻化石が産出した 61 試料のうち, 汽水・海生種は 23 試料で産出した. 汽水・ 海生種が産出した層準と貝化石の産出層準より, 深作コ アには合計 8 層準の海成層が認められた.

海成層の番号と深度は上位よりFS-M1 (23.58-28.58 m),FS-M2 (61.41-68.73 m),FS-M3)(70.25-98.30 m),FS-M4 (115.00-139.95 m),FS-M5 (182.36-183.47 m),FS-M6 (197.00-209.00 m),FS-M7 (244.19-245.50 m),FS-M8 (273.17-285.59 m),である.

4. 海成層の層序区分: 沖積層・下総層群・上総層群

地下地質層序の確立のためには、海成層準、火山灰層 序、花粉層序、古地磁気層序などを総合的に考慮する必 要がある.本稿の主題は海成層準の識別なので、詳細な 層序区分については議論しないが、現段階で明らかにさ れている層序指標を用いて、各コアにおける大局的な層 序区分(沖積層・下総層群・上総層群)を検討した.

第2図A 所沢コア(TZ)の柱状図, 貝化石産出深度, 珪藻化石分析深度, 珪藻化石産出頻度と海成層深度(深度 0-200 m). Fig.2A Columnar section, molluscan shell occurrences, diatom samples, diatom valve abundance and marine intervals in Tokorozawa (TZ) core. (0-200 m depth).

第2図B 所沢コア(TZ)の柱状図, 貝化石産出深度, 珪藻化石分析深度, 珪藻化石産出頻度と海成層深度(深度 200-400 m). Fig.2B Columnar section, molluscan shell occurrences, diatom samples, diatom valve abundance and marine intervals in Tokorozawa (TZ) core. (200-400 m depth).

第2図C 所沢コア(TZ)の柱状図, 貝化石産出深度, 珪藻化石分析深度, 珪藻化石産出頻度と海成層深度(深度 400-457.3 m). Fig.2C Columnar section, molluscan shell occurrences, diatom samples, diatom valve abundance and marine intervals in Tokorozawa (TZ) core. (400-457.3 m depth).

第3図A 鷲宮コア (WM)の柱状図, 貝化石産出深度, 珪藻化石分析深度, 珪藻化石産出頻度と海成層深度 (深度 0-200 m). Fig.3A Columnar section, molluscan shell occurrences, diatom samples, diatom valve abundance and marine intervals in Washimiya (WM) core. (0-200 m depth).

第3図B 鷲宮コア (WM)の柱状図, 貝化石産出深度, 珪藻化石分析深度, 珪藻化石産出頻度と海成層深度 (深度 200-400 m). Fig.3B Columnar section, molluscan shell occurrences, diatom samples, diatom valve abundance and marine intervals in Washimiya (WM) core. (200-400 m depth).

第3図C 鷲宮コア(WM)の柱状図, 貝化石産出深度, 珪藻化石分析深度, 珪藻化石産出頻度と海成層深度(深度 400-514.62 m). Fig.3C Columnar section, molluscan shell occurrences, diatom samples, diatom valve abundance and marine intervals in Washimiya (WM) core. (400-514.62 m depth).

第4図A 行田コア (GD)の桂状図, 貝化石産出深度, 珪藻化石分析深度, 珪藻化石産出頻度と海成層深度 (深度 0-200 m). Fig.4A Columnar section, molluscan shell occurrences, diatom samples, diatom valve abundance and marine intervals in Gyoda (GD) core. (0-200 m depth).

第4図B 行田コア (GD)の柱状図, 貝化石産出深度, 珪藻化石分析深度, 珪藻化石産出頻度と海成層深度 (深度 200-400 m). Fig.4B Columnar section, molluscan shell occurrences, diatom samples, diatom valve abundance and marine intervals in Gyoda (GD) core. (200-400 m depth).

第4図C 行田コア (GD)の桂状図, 貝化石産出深度, 珪藻化石分析深度, 珪藻化石産出頻度と海成層深度 (深度 400-600 m). Fig.4C Columnar section, molluscan shell occurrences, diatom samples, diatom valve abundance and marine intervals in Gyoda (GD) core. (400-600 m depth).

- 第4図D 行田コア(GD)の柱状図,貝化石産出深度,珪藻 化石分析深度,珪藻化石産出頻度と海成層深度 (深度 600-610.7 m).
- Fig.4D Columnar section, molluscan shell occurrences, diatom samples, diatom valve abundance and marine intervals in Gyoda (GD) core. (600-610.7 m depth).

第5図A 越谷東コア(KGH)の柱状図, 貝化石産出深度, 珪藻化石分析深度, 珪藻化石産出頻度と海成層深度(深度 0-200 m). Fig.5A Columnar section, molluscan shell occurrences, diatom samples, diatom valve abundance and marine intervals in Koshigaya-Higashi (KGH) core. (0-200 m depth).

第5図B 越谷東コア(KGH)の柱状図, 貝化石産出深度, 珪藻化石分析深度, 珪藻化石産出頻度と海成層深度(深度 200-350 m). Fig.5B Columnar section, molluscan shell occurrences, diatom samples, diatom valve abundance and marine intervals in Koshigaya-Higashi (KGH) core. (200-350 m depth).

第6図A 川島コア (KJ) の柱状図, 貝化石産出深度, 珪藻化石分析深度, 珪藻化石産出頻度と海成層深度 (深度 0-200 m). Fig.6A Columnar section, molluscan shell occurrences, diatom samples, diatom valve abundance and marine intervals in Kawajima (KJ) core. (0-200 m depth).

第6図B 川島コア(KJ)の柱状図, 貝化石産出深度, 珪藻化石分析深度, 珪藻化石産出頻度と海成層深度(深度 200-400 m). Fig.6B Columnar section, molluscan shell occurrences, diatom samples, diatom valve abundance and marine intervals in Kawajima (KJ) core. (200-400 m depth).

第6図C 川島コア(KJ)の柱状図, 貝化石産出深度, 珪藻化石分析深度, 珪藻化石産出頻度と海成層深度(深度 400-600 m). Fig.6C Columnar section, molluscan shell occurrences, diatom samples, diatom valve abundance and marine intervals in Kawajima (KJ) core. (400-600 m depth).

第7図A 春日部コア(KK)の柱状図, 貝化石産出深度, 珪藻化石分析深度, 珪藻化石産出頻度と海成層深度(深度 0-200 m). Fig.7A Columnar section, molluscan shell occurrences, diatom samples, diatom valve abundance and marine intervals of Kasukabe (KK) core. (0-200 m depth).

第7図B 春日部コア(KK)の柱状図,貝化石産出深度,珪藻分析深度,珪藻殻産出頻度と海成層深度(深度 200-400 m). Fig.7B Columnar section, molluscan shell occurrences, diatom samples, diatom valve abundance and marine intervals in Kasukabe (KK) core. (200-400 m depth).

第7図C 春日部コア(KK)の柱状図, 貝化石産出深度, 珪藻化石分析深度, 珪藻化石産出頻度と海成層深度(深度 400-600 m). Fig.7C Columnar section, molluscan shell occurrences, diatom samples, diatom valve abundance and marine intervals in Kasukabe (KK) core. (400-600 m depth).

地質調査研報 2012 年 第63 巻 第5/6 号

第8図A 深作コア(FS)の柱状図, 貝化石産出深度, 珪藻化石分析深度, 珪藻化石産出頻度と海成層深度(深度 0-200 m). Fig.8A Columnar section, molluscan shell occurrences, diatom samples, diatom valve abundance and marine intervals of Fukasaku A-1 (FS) core. (0-200 m depth).

第8図B 深作コア(FS)の柱状図, 貝化石産出深度, 珪藻化石分析深度, 珪藻化石産出頻度と海成層深度(深度 0-200 m). Fig.8B Columnar section, molluscan shell occurrences, diatom samples, diatom valve abundance and marine intervals of Fukasaku A-1 (FS) core. (0-200 m depth).

第9図A 関東平野中央部のボーリングコアの小縮尺柱状図, 古地磁気極性, テフラ, 海成層準(所沢コア, 川島コア, 深作コア, 菖蒲コア).

Fig.9A Small-scale column, paleo-magnetic polarity, tephra and marine intervals of drilled cores in central Kanto Plain. (TZ, KJ, FS and SB cores).

第9図B 関東平野中央部のボーリングコアの小縮尺柱状図,古地磁気極性,テフラ,海成層準(春日部コア,鷲宮コア,越谷 東コア,行田コア).

荒川低地および中川低地の地下には、最終氷期の下刻 谷が完新世に埋積され形成された沖積層が分布してい る.今回解析したコアのうち、沖積低地上から掘削され た鷲宮、越谷東、川島、春日部コアの最上部の各海成層 (WM-M1, KGH-M1, KJ-M1, KK-M1)は沖積層の海成 層に相当する(第9図).

関東平野中央部において、沖積層の下位に分布する更 新統は、便宜的に下位の上総層群と上位の下総層群に区 分されてきた.中澤ほか(2009)は、埼玉県越谷市で掘 削されたGS-KS-1コアの解析結果から、上総層群と下 総層群の境界に相当する地蔵堂層の基底面(徳橋・遠藤, 1984)、すなわち海洋酸素同位体ステージ(MIS)12に形 成された侵食面(例えば、中里・佐藤, 2001)の特定を行っ た.その結果、関東平野中央部においては、房総半島に おいて認められる上総層群と下総層群の層相の違いは認 められず、上総層群相当層においても、下総層群同様に 陸成層と浅海成層の互層からなることが指摘された.今 回分析したコアの層相は、コア全体を通して海成層と陸 成層の互層からなり、層相のみから両層群を区別するの は困難である.

下総層群地蔵堂層に相当する MIS11 層準は、日本の 様々な地域において温暖帯常緑広葉樹のアカガシ亜属 (Cyclobalanopsis) 花粉及び大型遺体が多産するという特 徴が知られている(杉山、1991; Furutani, 1989; Okuda et al. 2006;本郷、2009,など). 関東平野中央部におい ても、深作 A-1 コアにおいて Cyclobalanopsis の多産層準 の層序学的位置が検討され、本花粉化石の MIS11 層準の 指標としての有用性が示された(本郷・水野、2009). そ こで、既に報告されている Cyclobalanopsis 多産層準を指 標として、各コアにおける下総層群最下部層である地蔵 堂層に相当する MIS11 層準を検討し、上総層群と下総 層群の境界層準の推定を試みた.

本郷・水野 (2009) 及び本郷ほか (2011) は、深作 A-1 コ アと菖蒲コアにおける Cyclobalanopsis 多産層準と MIS11 層準の層序関係を検討した. これらに基づけば, 深作 A-1 コアでは Fs-Pol-12 帯が. 菖蒲コアでは SB-Pol-14 帯 および SB-Pol-15 帯が Cyclobalanopsis 多産層準、すなわ ち MIS11 層準に相当し、それらは FS-M4 及び SB-M4 海 成層準にそれぞれ含まれる(第9図B).春日部コアに おいては、沖積層を除くと2層準で Cvclobalanopsisの 多産が認められる (Fagus-Cyclobalanopsis 亜帯, Fagus-Haploxylon-Cyclobalanopsis 亜帯:関東平野中央部花粉グ ループ, 1994). このうち, 上総層群笠森層の Ks18 テフ ラに対比される KKT-185.0 テフラ (水野・納谷, 2011) より上位にあるのは, Fagus-Cyclobalanopsis 亜帯のみで あり、この層準は KK-M5 海成層に含まれる (第9図 B). 川島コアでは、沖積層以外で Cyclobalanopsis が多産する 層準が1層準認められ (Fagus-Cyclobalanopsis 亜帯: 関 東平野中央部花粉グループ, 1994), この層準は KJ-M4

海成層に相当する (第9図 A). 行田コアでは,水野ほか (2004), 松島ほか (2009) で検討されたように, 深度 150-170 m 付近に *Cyclobalanopsis* 多産層準があり (埼玉県, 1983), この層準は GD-M2 に含まれる (第9図 B).

鷲宮・越谷東両コアでは、花粉化石群集の資料がない ため周辺のコアの層準から推測せざるを得ない. 鷲宮 コアは菖蒲コア・行田コアの MIS11 層準 (SB-M4・GD-M2) とほぼ同深度に位置する WM-M5 を MIS11 層準と 推定した(第9図 B). 越谷東コアでは、本コアと近接し た地点で掘削された中澤ほか(2009)の GS-KS-1 コアの 地蔵堂層相当層深度(およそ 85-133 m)とほぼ同深度に 分布する KGH-M4 を MIS11 層準と推定した(第9図 B).

MIS11 層準に相当する海成層の基底部を上総層群と 下総層群の境界層準と考えると,鷲宮,行田,越谷 東,川島,春日部,深作A-1,菖蒲,各コアにおける上 総層群と下総層群境界層準は,それぞれWM-M5,GD-M2,KGH-M4,KK-M5,FS-M4,SB-M4の基底部付近と 推定される(第9図).この推定は,中澤ほか(2009)が GS-KS-1コアで示したように,海成層の基底部が砂礫 層を伴わない侵食面であるという判断に基づく.なお, MIS11海成層の下位にMIS12の低海水準期に形成され た谷を開折した河川堆積物もしくは扇状地堆積物が部分 的に分布し,これら砂礫層が地蔵堂層相当層基底となる 可能性(平社,2008a,b,松島ほか,2009)は残されて いるが,現段階ではテフラ層序や花粉層序の裏付けが十 分に得られていないため詳細に検討していない.

謝辞:本研究を進めるにあたり,産業技術総合研究所の 本郷美佐緒氏(当時)と山口正秋氏(当時)には試料採 取に,産業技術総合研究所の國本節子氏,茨城大学理学 部の石川友美氏(当時),図子田香織氏(当時),日本大 学文理学部の西内李佳氏(当時)と齊藤貴之氏(当時) には珪藻プレパラートの作成に協力していただいた.こ こに記してお礼申し上げます.

本研究には、文部科学省科学技術振興調整費「統合化 地下構造データベースの構築」(平成18-22年度),産業 技術総合研究所の運営交付金「関東平野の地震動特性と 広域地下水流動系の解明に関する地質学的総合研究」(平 成18-20年度)並びに「沿岸海域の地質・活断層調査」(平 成 21-22年度)を使用した.

文 献

- 会田信行・関東平野中央部地質研究会 (1992) 春日部地盤 沈下観測井の古地磁気層序.地球科学,46,283-286.
- 会田信行・野村 哲・北爪智啓(1994)関東平野中央部ボー リングコアの古地磁気層序.地団研専報, no.42, 48-55.

- Furutani, M. (1989) Stratigraphical subdivision and pollen zonation of the Middle and Upper Pleistocene in the coastal Area of Osaka Bay, Japan. *Journal of Geosciences, Osaka City University*, **32**, 91–121.
- Hartley, B. (1996) An Atlas of British Diatoms. Biopress Limited, Bristol, UK, 601 p.
- 市原 実(1993編)大阪層群. 創元社, 大阪, 340p.
- 平社定夫 (2008a) 関東平野中央部における中 上部更新 統の堆積相および堆積シーケンス.地球科学, 62, 29-41.
- 平社定夫 (2008b) 関東平野における中 上部更新統の層 序および構造運動.地球科学, 62, 43–55.
- 本郷美佐緒 (2009) 大阪堆積盆地における中部更新統の花 粉生層序と古環境変遷. 地質雑, 115, 64–79.
- 本郷美佐緒・水野清秀 (2009) 埼玉県さいたま市で掘削さ れた深作 A-1 ボーリングコアの花粉化石群集.地 調研報, **60**, 559–579.
- 本郷美佐緒・納谷友規・山口正秋・水野清秀 (2011) 関東 平野中央部埼玉県菖蒲町で掘削された 350 m ボーリ ングコア (GS-SB-1) から産出した花粉化石群集.地 調研報, **62**, 281–318.
- 関東平野中央部地質研究会 (1994) 関東平野中央部地下地 質の編年と対比.地団研専報, no.42, 154–164.
- 関東平野中央部花粉グループ (1994) 関東平野中央部ボー リングコアの花粉層序 — 春日部 (60KK) および川 島 (84KJ) ボーリングコアの花粉分析 —. 地団研専 報, no.42, 212–150.
- 関東平野中央部珪藻グループ (1994) 関東平野中央部ボー リングコアの珪藻遺骸群集.地団研専報, no.42, 91–120.
- Krammer, K. and Lange-Bertalot, H. (1988) Bacillariophyceae.
 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. *In* Ettl, H., Gerloff, J., Heynig, H. and Mollenhauer, D., eds., Süsswasserflora von Mitteleuropa, Band 2/2. VEB Gustav Fischer Verlag, Jena. 596 p.
- Krammer, K. and Lange-Bertalot, H. (1991) Bacillariophyceae.
 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. *In* Ettl,
 H., Gerloff, J., Heynig, H. and Mollenhauer, D., eds.,
 Süsswasserflora von Mitteleuropa, Band 2/3. 576 pp.
 Gustav Fischer Verlag, Stuttgart, Jena.
- 松島紘子・須貝俊彦・水野清秀・八戸昭一 (2009) 関東 平野内陸部,吹上~行田地域における中・上部更 新統の地下層序と堆積環境変化.第四紀研究,48, 59-74.
- 水野清秀・納谷友規 (2011) 広域テフラと海成層層準の認 定に基づく関東平野中央部のボーリングコアの対 比. 地質調査総合センター速報, **56**, 121–132.
- 水野清秀・須貝俊彦・八戸昭一・中里裕臣・杉山雄一・ 石山達也・中澤 努・松島紘子・細矢卓志 (2004) ボー

リング調査から推定される深谷断層南東部の地質 構造と活動性.活断層・古地震研究報告, 4, 69-83.

- 中里裕臣・佐藤弘幸 (2001) 下総層群の年代と"鹿島"隆 起帯の運動. 第四紀研究, **40**, 251–257.
- 中澤 努・中里裕臣 (2005) 関東平野中央部に分布する 更新統下総層群の堆積サイクルとテフロクロノロ ジー.地質雑, 111, 87–93.
- 中澤 努・中島 礼・植木岳雪・田辺 晋・大嶋秀明・ 堀内誠示 (2006) 大宮台地の地下に分布する更新統
 下総層群木下層のシーケンス層序学的研究.地質
 雑, 112, 349–368.
- 中澤 努・中里裕臣・大嶋秀明・堀内誠示 (2009) 関東
 平野中央部における上総 下総層群境界: 越谷
 GS-KS-1 コアでの MIS12 層準の特定. 地質雑, 115, 49-63.
- 納谷友規・山口正秋・水野清秀 (2009) 関東平野中央部 埼玉県菖蒲町で掘削された 350 m ボーリングコア (GS-SB-1)の珪藻化石産出層準と淡水成層準及び海 成層準の識別. 地調研報, **60**, 245–256.
- Okuda, M., Nakazato, H., Miyoshi, N., Nakagawa, T., Okazaki, H., Saito, S. and Taira, A. (2006) MIS11-19 pollen stratigraphy from the 250-m Choshi core, northeast Boso Peninsula, central Japan: Implications for the early/mid-Brunhes (400-780 ka) climate signals. *Island Arc*, **15**, 338–354.
- Patrick, R. and Reimer, C.W. (1966) The diatoms of the United States, exclusive of Alaska and Hawaii, Volume 1-Fragilariaceae, Eunotiaceae, Achnanthaceae, Naviculaceae. Academy of Natural Sciences of Philadelphia Monograph, 13, Sutter House, Lititz, 688 p.
- Patrick, R. and Reimer, C.W. (1975) The diatoms of the United States, exclusive of Alaska and Hawaii, Volume 2, Part 1-Entomoneidaceae, Cymbellaceae, Gomphonemaceae, Epithemaceae. Academy of Natural Sciences of Philadelphia Monograph, 13, Sutter House, Lititz, 213 p.
- Round, F. E., Crawford, R.M. and Mann, D.G. (1990) *The Diatoms. Biology & Morphology of the genera*. Cambridge University Press, London, 747 p.0
- 埼玉県 (1979) 所沢地盤沈下観測所地質調査委託業務報告 書 昭和 54 年. 埼玉県環境部水質保全課, 157p.
- 埼玉県 (1981) 鷲宮地盤沈下観測所地質調査報告書 昭和 56年.埼玉県環境部水質保全課, 174p.
- 埼玉県 (1983) 行田地盤沈下観測所地質調査報告書 昭和 58 年. 埼玉県環境部水質保全課, 138p.
- 埼玉県 (1985) 越谷東地盤沈下観測所地質調査報告書 昭 和 60 年. 埼玉県環境部水質保全課, 166p.
- 埼玉県 (1986) 川島地盤沈下観測所地質調査報告書 昭和 60年. 埼玉県環境部水質保全課, 141p.

埼玉県 (1991) 春日部地盤沈下観測所地質調査報告書 平

成3年. 埼玉県環境部水質保全課, 210p.

- 埼玉県 (1996) 埼玉県活断層調査報告書. 埼玉県環境部防 災局地震対策課, 200p.
- Seike, K. (2007) Palaeoenvironmental and palaeogeographical implications of modern Macaronichnus segregatis-like traces in foreshore sediments on the Pacific coast of central Japan. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 252, 497–502.
- Seike, K. (2009) Influence of beach morphodynamics on the distributions of the opheliid polychaete *Euzonus* sp. and its feeding burrows on a sandy beach: paleoecological and paleoenvironmental implications for the trace fossil *Macaronichnus segregatis. Palaios, 24*, 799–808.
- Snoeijs, P. (1993, ed.) Intercalibration and distribution of diatom species in the Baltic Sea. Vol. 1. OPULUS, Uppsala, 130p.
- Snoeijs, P. and Vibaste, S. (1994, eds.) Intercalibration and distribution of diatom species in the Baltic Sea. Vol. 2. OPULUS, Uppsala, 125p.
- Snoeijs, P. and Potapova, M. (1995, eds.) Intercalibration and distribution of diatom species in the Baltic Sea. Vol. 3. OPULUS, Uppsala, 125p.
- Snoeijs, P. and Kasperovičienė, J. (1996, eds.) Intercalibration and distribution of diatom species in the Baltic Sea. Vol. 4. OPULUS, Uppsala, 125p.
- Snoeijs, P. and Balashova, N. (1998, eds.) Intercalibration and distribution of diatom species in the Baltic Sea. Vol. 5. OPULUS, Uppsala, 144p.
- Stoermer, E.F. and Smol, J.P. (1999, eds.) *The Diatms: Applications for the Environmental and Earth Sciences.* Cambridge, London, 469p.
- 杉山雄一 (1991) 渥美半島 浜名湖東岸地域の中部更新

統 — 海進 — 海退サイクルとその広域対比 —. 地 調月報,42,75-109.

- 杉山雄一・須貝俊彦・井村隆介・水野清秀・遠藤秀典・ 下川浩一・山崎晴雄 (1997) 50 万分の1活構造図8「 東京」(第2版),地質調査所。
- 鈴木宏芳 (2002) 関東平野の地下地質構造. 防災科学技術 研究所研究報告, **63**, 1–19.
- 徳橋秀一・遠藤秀典 (1984) 姉崎地域の地質.地域地質研 究報告 (5万分の1地質図幅),地質調査所,136p.
- 植木岳雪・山口正秋・本郷美佐緒・納谷友規・水野清秀 (2009) 関東平野中央部,埼玉県菖蒲町で掘削された GS-SB-1 コアの古地磁気・岩石磁気測定.地調研報, **60**, 199–243.
- Vos, P.C. and De Wolf, H. (1993) Diatoms as a tool for reconstructing sedimentary environments in coastal wetlands; methodological aspects. Hydrobiologia, 269/270, 285–296.
- 渡辺仁治·浅井一視·大塚泰介·辻 彰洋·伯耆晶子 (2005) 淡水珪藻生態図鑑. 内田老鶴圃, 東京, 784p.
- Witkowski, A., Lange-Bertalot, H. & Metzeltin, D. (2000) Diatom flora of marine coasts I. In Lange-Bertalot, H. ed. Iconographia Diatomologica, Annotated Diatom Micrographs 7. A.R.G. Gantner Verlag K.G., Ruggell, 925 pp.
- 山口正秋・水野清秀・納谷友規・本郷美佐緒・中里裕臣・ 中澤 努 (2009) 関東平野中央部,埼玉県菖蒲町で 掘削された 350 m ボーリングコア (GS-SB-1)の層相 と堆積物物性. 地調研報, 60, 147–197.
- 吉川周作・三田村宗樹 (1999) 大阪平野第四系層序と深 海底の酸素同位体比層序との対比.地質雑, 105, 332-340.

(受付:2012年2月21日;受理:2012年7月26日)

付表 1

各コアの珪藻化石を検鏡した試料の深度,プレパラート作成方法,珪藻化石産出頻度 (slide:スライド作成方法,F: 淡水生種,M-B: 汽水 — 海生種,a:多産,c:普通,r:少産,fr.:破片のみ,もしくは稀産,nd:無産出).

Appendix 1. Depth, procedure for preparation and diatom valve abundance of investigated materials in each core (slide: procedure for slide preparation, F: freshwater species, M-B: Marine and Brackish species, a: abundant, c: common, r: rare, fr.: valve fragment only or very rare, nd: no diatom valves found).
Tokorozawa (TZ)
Washimiya (WM)

Tokorozawa (TZ)	5	,			Tokoroza	awa (TZ)					Washin	niya	(WM)				
depth (m)	slide	F	M-B	fr, nd	depth (m)	slide	F	M-B	fr, nd	depth (n)		slide	F	M-B	fr, nd
69.46 - 69.47	B	-	-	nd	410.86	- 410.87	B	-	-	nd	245.65	-	245.66	В	-	-	nd
81.00 - 82.00	В	-	-	nd	413.40	- 413.41	В	-	-	nd	261.00	-	262.00	В	с	-	- nd
84.50 - 84.51	B	-	-	nd	418.00	- 419.00	B	-	-	nd	204.00	-	205.00	B	-	-	fr
85.50 - 86.00	B	-	_	nd	429.18	- 429.19	B	-	-	nd	297.00	_	298.00	В	c	_	-
86.00 - 87.00	B	-	-	nd	433.26	- 433.27	B	-	-	nd	298.00	-	299.00	В	-	-	fr.
87.17 - 87.18	В	-	-	nd	437.41	- 437.42	в	-	-	nd	299.00	-	300.00	в	-	-	fr.
96.00 - 97.00	в	-	-	nd	444.44	- 444.46	в	-	-	nd	306.00	-	307.00	в	-	-	fr.
97.00 - 98.00	В	-	-	nd	445.71	- 445.72	В	-	-	nd	307.00	-	308.00	В	r	-	-
98.66 - 98.67	B	-	-	nd	453.20	- 453.22	B	-	-	nd	309.00	-	310.00	B	r	-	-
105.00 - 106.00	В	-	c	-	455.21	- 455.22	В	-	-	nd	310.15	-	310.10	В	с	-	fr
106.00 - 106.00	B	2	a	-	455.71	- 433.72	Б	-	-	nu	312.60	-	312.62	B	-	-	fr
109.00 - 110.00	B	-	-	nd	Washimi	va (WM)					313.40	-	313.41	В	-	-	nd
113.00 - 114.00	В	-	-	fr.	depth (m)	slide	F	M-B	fr, nd	314.35	-	314.36	в	-	-	nd
142.00 - 143.00	В	-	а	-	0.64	- 0.65	В	с	-	-	317.14	-	317.15	В	с	-	-
143.00 - 144.00	В	с	а	-	1.80	- 1.82	В	а	-	-	318.64	-	318.65	В	-	-	fr.
144.00 - 145.00	В	-	с	-	3.76	- 3.77	В	а	-	-	319.19	-	319.20	В	-	-	fr.
145.60 - 145.61	В	-	r	-	6.48	- 6.49	В	c	-	-	320.82	-	320.83	В	-	-	fr.
140.23 - 140.24	B	-	<u>с</u>		0.85	- 7.22	B	a r	-	-	322.50	-	322.51	B	- r	-	П.
172.28 - 172.29	B	-	a r	-	13.00	- 14.00	B	-	a r	-	326.68	-	326.69	B	C I	-	- 1
173.16 - 173.17	B	-	r	-	16.32	- 16.33	В	-	-	nd	328.00	-	329.00	В	r	-	
174.33 - 174.34	В	r	a	-	17.90	- 17.91	В	-	-	fr.	333.00	-	334.00	в	-	-	fr.
175.15 - 175.16	В	-	а	-	19.88	- 19.89	В	а	-	-	342.00	-	343.00	В	-	с	-
180.75 - 180.76	в	-	r	-	22.58	- 22.59	в	-	-	fr.	344.00	-	345.00	в	-	-	nd
193.87 - 193.88	В	а	-	-	23.60	- 23.61	В	с	с	-	345.00	-	346.00	в	-	-	nd
194.50 - 194.51	В	а	-	-	24.80	- 24.81	В	r	с	-	346.34	-	346.35	В	с	r	-
194.90 - 194.91	В	r	-	-	25.58	- 25.59	В	-	-	fr.	346.70	-	346.71	В	-	a	-
$\frac{199.70}{202.22} = \frac{199.73}{202.23}$	B	a	с э		27.84	- 27.85	B	c	1	fr	347.27	-	347.28	B	-	a	
245 55 - 245 56	B	-	-	fr	32.66	- 32.67	B	-	-	fr	348.00	_	349.00	B	-	-	nd
246.47 - 246.48	B	-	-	nd	38.80	- 38.81	B	r	-	-	352.00	-	353.00	В	-	а	-
262.66 - 262.67	В	-	с	-	39.60	- 39.61	в	-	-	fr.	353.00	-	354.00	в	-	-	nd
264.87 - 264.88	В	с	с	-	41.12	- 41.13	В	-	-	fr.	354.00	-	357.64	В	-	-	fr.
269.52 - 269.53	в	с	а	-	42.64	- 42.65	в	с	-	-	355.67	-	355.68	в	-	-	fr.
271.26 - 271.27	В	-	-	fr.	48.88	- 48.89	В	-	-	fr.	356.77	-	356.78	В	-	-	fr.
295.59 - 295.60	В	-	с	-	50.65	- 50.66	В	r	-	-	357.63	-	357.64	В	с	-	-
296.57 - 296.58	В	-	-	na	68.00 74.20	- 69.00	В	-	с	- nd	359.03	-	359.64	В	-	-	Ir.
297.57 - 297.58	B		-	- nd	74.20	- 76.48	B			fr	364.00	-	365.00	B		-	nd
300.64 - 300.65	B	-	-	nd	77.50	- 77.51	B	с	-	-	365.50	-	365.51	B	с	-	-
300.85 - 300.86	В	-	-	nd	84.78	- 84.79	В	-	-	nd	366.00	-	367.00	в	с	-	-
302.80 - 302.81	В	-	-	nd	87.66	- 87.67	в	-	-	nd	373.00	-	374.00	в	-	-	nd
315.19 - 315.22	В	-	-	nd	94.30	- 94.31	В	-	-	nd	375.40	-	375.41	В	-	-	nd
316.72 - 316.73	В	-	-	nd	96.24	- 96.25	в	-	-	nd	377.30	-	377.32	в	-	-	fr.
316.80 - 316.82	В	-	-	nd	98.54	- 98.55	В	-	-	nd	381.53	-	381.54	В	-	-	fr.
322.45 - 322.47	В	r	с	-	100.79	- 100.80	В	-	-	nd	383.22	-	383.23	В	-	-	nd
320.10 - 327.00	D	-	-	nd	105.74	- 105.75	B	-	-	nd	380.38	-	380.39	B	-	-	nu fr
334.49 - 334.51	B		-	nd	119.40	- 119.41	B	-	-	nd	391.72	-	391 73	B		-	nd
342.68 - 342.69	В	-	-	fr.	124.50	- 124.51	В	-	-	nd	393.64	-	393.65	В	-	-	nd
342.70 - 342.71	В	-	-	nd	128.89	- 128.90	В	-	-	nd	395.00	-	396.00	в	-	-	nd
343.50 - 343.51	В	-	-	nd	130.60	- 130.61	в	-	-	nd	399.00	-	400.00	в	-	-	nd
346.47 - 346.48	В	-	-	nd	132.60	- 132.61	В	-	-	nd	400.00	-	404.00	В	-	-	nd
348.43 - 348.45	В	-	-	nd	135.74	- 135.75	В	-	-	fr.	446.00	-	447.00	В	-	-	nd
351.71 - 351.73	В	-	-	nd	137.53	- 137.54	В	-	-	nd	451.00	-	452.00	В	-	-	nd
354.42 - 354.44	В	-	-	nd	140.60	- 140.61	В	-	-	nd	Guada	GE					
357 30 - 357 32	B	-	-	nd	145.25	- 145.24	B	r	-	-	denth ($\frac{OL}{n}$)	slide	F	M-B	fr. nd
361.50 - 361.51	B	-	-	nd	148.66	- 418.67	B	-	-	nd	4.40	-	4 4 1	B	c	-	-
363.50 - 363.51	в	-	-	nd	150.65	- 150.66	в	-	r	-	5.50	-	5.51	в	r	-	-
365.30 - 365.31	В	-	-	nd	154.50	- 154.51	в	-	-	fr.	18.12	-	18.13	в	с	-	-
369.33 - 369.35	в	-	-	nd	155.25	- 155.26	в	-	-	fr.	19.53	-	19.55	в	r	-	
372.33 - 372.34	В	-	-	nd	156.55	- 156.56	В	-	-	fr.	20.51	-	20.52	В	а	-	-
374.51 - 374.52	В	-	-	nd	163.70	- 163.71	В	а	-	-	22.35	-	22.36	В	с	-	-
377.74 - 377.76	В	-	-	nd	165.60	- 165.61	В	-	-	tr.	25.90	-	25.91	В	-	-	tr.
3/8.89 - 3/8.90	В	-	-	nd nd	167.40	- 10/.41	В	-	-	na	26.70	_	26.71	В	a	-	-
382.64 - 382.65	B	2	-	nd	171.51	- 171.66	R	a r	-	-	27.74	_	28.92	R	-	-	fr
385.50 - 385.51	B	-	-	nd	174.55	- 174.56	B	-	-	nd	30.30	-	30.31	B	а	-	-
389.50 - 389.51	в	-	-	nd	177.50	- 177.51	в	а	-	-	30.57	-	30.58	в	r	-	-
391.75 - 391.76	в	-	-	nd	182.33	- 182.34	В	-	-	nd	37.10	-	37.11	В	с	-	-
394.59 - 394.60	В	-	-	nd	183.33	- 183.34	в	-	-	nd	41.42	-	41.43	в	-	-	fr.
395.40 - 395.42	B	-	-	nd	235.60	- 235.62	B	-	-	nd	42.30	-	42.31	В	с	-	-
397.90 - 397.91	В	-	-	nd	235.97	- 235.98	B	-	-	nd	49.90	-	49.91	B	а	-	-
400.72 - 400.74	В	-	-	nd	236.58	- 236.59	В	-	-	nd	50.10	-	50.11	В	a	-	-
402.87 - 402.89	B	-	-	nd	240.93 241.02	- 240.94 - 241.96	B	r	-	- fr	57.90 58.60	-	57.91 58.61	В	c	-	-
409.58 - 409.59	В	-	-	nd	242.79	- 242.80	B	r	-	-	59.50	-	59.51	B	a	-	
						= .2.00	-	-			07.00						

付表 1 続き.

Appendix 1. Continue.

Gyoda (O	GD)				
depth (m	I)		slide	F	M-B	fr, nd
64.50	-	64.51	В	r	-	-
66.30	-	66.31	В	с	-	-
08.05	-	08.00	В	c	-	-
73.90	_	73.91	D	a	-	-
76.75	-	76.76	B	a 9	-	
79.53	-	79.54	B	c	-	-
80.55	-	80.56	B	r	-	-
82.20	-	82.21	B	c	-	-
82.30	-	82.31	В	r	-	-
83.40	-	83.41	В	с	-	-
85.90	-	85.91	В	а	-	-
86.60	-	86.61	в	а	-	-
88.65	-	88.66	в	с	-	-
91.70	-	91.71	В	с	-	-
93.45	-	93.46	В	а	-	-
94.50	-	94.51	в	с	-	-
95.70	-	95.71	В	с	-	-
103.82	-	103.83	В	-	-	nd
105.87	-	105.88	В	-	-	nd
115.58	-	115.59	В	-	-	fr.
117.13	-	117.14	В	-	-	fr.
119.50	-	119.51	В	r	r	-,
122.40	-	122.41	В	-	-	nd
124.50	-	124.51	B	-	-	Ir.
120.10	-	120.11	Б	-	c	-
127.37		127.38	D	с	1	- nd
129.40	_	129.41	B	-	-	nd
132.00	-	133 71	B	r		-
135.88	-	135.89	B	-		nd
136.68	-	136.69	B	-	-	nd
150.00	-	150.81	B	-	-	nd
158.80	-	158.81	B	-	-	nd
163.20	-	163.21	в	-	-	nd
165.10	-	165.11	В	r	с	-
168.80	-	168.81	В	r	r	-
170.70	-	170.71	в	с	а	-
172.50	-	172.51	в	-	а	-
173.30	-	173.31	В	-	-	nd
176.50	-	176.51	в	r	а	-
176.90	-	176.91	В	с	а	-
178.60	-	178.61	в	-	-	nd
180.90	-	180.91	В	r	-	-
181.80	-	181.81	B	-	-	nd
184.85	-	184.86	B	r	-	-
185.85	-	185.86	В	с	-	-
180.75	-	180.70	В	с	-	-
189.30	-	189.31	В	c	-	-
102.22	-	190.30	D	a	-	-
192.25	_	192.24	D	0	-	-
195.75	_	195.70	B	a	-	fr
195.50	_	193.37	B	-		nd
208.60	-	208.61	B	-		fr
211.70	-	211 71	B	a		-
214.75	-	214 76	B	-	-	nd
215.50	-	215 51	В	-	-	nd
221.70	-	221.71	В	-	-	nd
232.40	-	232.41	В	-	-	nd
242.40	-	242.41	В	а	-	-
248.30	-	248.31	в	-	-	nd
253.60	-	253.61	в	r	-	-
254.50	-	254.51	В	-	-	nd
256.30	-	256.31	В	-	-	nd
257.50	-	257.51	В	-	-	nd
257.80	-	257.81	В	-	-	nd
258.25	-	258.26	B	-	-	fr.
259.80	-	259.81	B	-	-	fr.
260.40	-	260.41	B	-	-	nd
260.47	-	260.48	В	-	-	nd
260.49	-	260.50	В	-	-	nd
201.50	-	201.51	В	-	-	nd
202.70	-	202./1	В	-	-	nd
2/1.40	-	2/1.41	В	-	-	nd
284.55	-	284.54	В	-	-	nd
289.4/	-	289.48	В	-	-	nd
293.33	_	275.54	ы р	-	-	nd
346 38	_	346 30	B	2	-	nd
210.00		210.27	5		-	

C	lepth (m	1)		slide	F	M-B	fr, nd
	347.39	-	347.40	В	-	-	nd
	386.80	-	386.82	в	-	-	nd
	390.70	-	390.71	в	-	-	nd
	392.56	-	392.57	в	-	-	nd
	419.70	-	419.71	В	-	-	nd
	421.56	-	421.57	В	-	-	nd
	422.95	-	422.96	В	-	-	nd
	435.26	-	435.27	В	-	-	nd
	435.72	-	435.73	В	-	-	nd
	480.29	-	480.31	В	-	-	nd
	523.19	-	523.20	В	a	-	-
	524.05	-	524.06	В	с	-	-
	526.60	-	526.61	В	-	-	fr.
	527.62	-	527.63	В	с	-	-
	<u>528.06</u>	-	528.07	В	а	-	-
-	528.17	-	528.18	В	r	-	-
	528.70	-	528.71	В	r	-	-
	529.91	-	529.92	в	r	-	-
	531.60	-	531.61	в	r	-	-
	532.40	-	532.41	В	r	-	-
-	533.38	-	533.39	В	-	-	nd
	536.53	-	536.54	в	-	-	nd
	553.65	-	553.66	в	-	-	fr.
	556.62	-	556.63	в	-	-	nd
	559.88	-	559.89	В	-	r	-
-	560.52	-	560.53	В	-	-	fr.
	561.27	-	561.28	в	-	r	-
	562.29	-	562.30	в	r	-	-
	566.37	-	566.38	в	-	-	fr.
	567.50	-	567.51	В	-	-	fr.
	570.43	-	570.44	В	r	-	-
:	573.32	-	573.33	В	r	-	-
:	575.77	-	575.78	В	r	-	-
	578.23	-	578.24	В	-	-	fr.
_	581.70	-	581.71	В	-	-	fr.
	587.46	-	587.47	В	-	-	nd
:	589.43	-	589.44	В	-	-	nd
	592.16	-	592.17	В	-	-	nd
	594.50	-	594.51	В	-	-	nd
_	596.60	-	596.61	В	-	-	nd
-	599.50	-	599.51	B	r	-	-
	603.70	-	603.71	в	-	-	nd
	605.52	-	605.53	В	-	-	fr.
	608.43	-	608.44	В	-	-	nd
	609.87	-	609.88	В	r	-	-
							_

Gyoda (GD) Koshigaya-Higashi (KGH)										
depth (m)	slide	F	M-B	fr. nd	depth (m)	slide	F	M-B	fr. nd	
347.39 - 347.40	B	-	-	nd	161.05 - 161.06	B	с	-	-	
386 80 - 386 82	В	-	-	nd	166.23 - 166.24	В	-	r	-	
390.70 - 390.71	В	-	-	nd	167.20 - 167.21	В	-	-	fr.	
392.56 - 392.57	в	-	-	nd	169.51 - 169.52	в	r	r	_	
419.70 - 419.71	в	-	-	nd	171.20 - 171.21	в	-	-	nd	
421.56 - 421.57	В	-	-	nd	180.52 - 180.53	В	-	-	fr.	
422.95 - 422.96	в	-	-	nd	185.00 - 186.00	в	-	-	fr.	
435.26 - 435.27	В	-	-	nd	194.00 - 195.00	В	-	-	fr.	
435.72 - 435.73	В	-	-	nd	196.60 - 196.61	В	-	-	nd	
480.29 - 480.31	В	-	-	nd	198.35 - 198.36	В	-	-	nd	
523.19 - 523.20	В	а	-	-	199.60 - 199.61	В	-	-	nd	
524.05 - 524.06	в	с	-	-	200.24 - 200.25	в	-	-	nd	
526.60 - 526.61	в	-	-	fr.	206.10 - 206.11	в	-	-	nd	
527.62 - 527.63	в	с	-	-	210.56 - 210.57	в	-	-	nd	
528.06 - 528.07	В	а	-	-	217.98 - 217.99	В	-	-	nd	
528.17 - 528.18	В	r	-	-	232.30 - 232.31	В	-	-	nd	
528.70 - 528.71	В	r	-	-	236.00 - 237.00	в	-	-	nd	
529.91 - 529.92	В	r	-	-	249.00 - 250.00	в	-	-	fr.	
531.60 - 531.61	В	r	-	-	252.00 - 253.00	в	-	r	-	
532.40 - 532.41	В	r	-	-	255.50 - 255.51	В	-	-	nd	
533.38 - 533.39	в	-	-	nd	258.50 - 258.51	в	-	-	nd	
536.53 - 536.54	В	-	-	nd	261.62 - 261.63	в	-	-	nd	
553.65 - 553.66	в	-	-	fr.	263.90 - 263.91	в	с	-	-	
556.62 - 556.63	В	-	-	nd	266.80 - 266.81	в	-	-	nd	
559.88 - 559.89	В	-	r	-	283.17 - 283.18	В	-	-	nd	
560.52 - 560.53	в	-	-	fr.	286.00 - 287.00	в	-	-	nd	
561.27 - 561.28	в	-	r	-	289.00 - 290.00	в	-	-	nd	
562.29 - 562.30	в	r	-	-	291.00 - 292.00	в	-	-	nd	
566.37 - 566.38	в	-	-	fr.	292.00 - 293.00	в	-	-	fr.	
567.50 - 567.51	В	-	-	fr.	293.00 - 294.00	В	-	-	nd	
570.43 - 570.44	в	r	-	-	295.10 - 295.11	в	r	с	-	
573.32 - 573.33	в	r	-	-	295.62 - 295.63	в	а	-	-	
575.77 - 575.78	в	r	-	-	300.50 - 300.51	в	с	-	-	
578.23 - 578.24	В	-	-	fr.	305.10 - 305.11	В	r	-	-	
581.70 - 581.71	В	-	-	fr.	328.25 - 328.26	В	-	с	-	
587.46 - 587.47	в	-	-	nd	333.55 - 333.56	в	-	-	nd	
589.43 - 589.44	в	-	-	nd	337.25 - 337.26	в	-	с	-	
592.16 - 592.17	В	-	-	nd	339.60 - 339.61	В	-	с	-	
594.50 - 594.51	В	-	-	nd	340.10 - 340.11	В	-	с	-	
596.60 - 596.61	В	-	-	nd	344.60 - 344.61	В	-	r	-	
599.50 - 599.51	В	r	-	-	345.23 - 345.24	В	-	-	nd	
603.70 - 603.71	В	-	-	nd	346.63 - 346.64	В	-	-	nd	
605.52 - 605.53	В	-	-	fr.	349.80 - 349.81	В	-	r	-	
600 12 - 600 11	D			nd						

Koshigaya-Higashi (KGH)							
depth (n	1)		slide	F	M-B	fr, nd	
49.62	-	49.63	в	-	-	fr.	
52.75	-	52.76	в	-	-	fr.	
53.20	-	53.21	В	-	r	-	
54.20	-	54.21	В	-	-	nd	
67.67	-	67.68	В	-	-	fr.	
96.10	-	96.11	в	-	-	nd	
104.80	-	104.81	В	-	-	nd	
105.90	-	105.91	В	-	-	nd	
106.70	-	106.71	В	-	-	nd	
107.67	-	107.67	В	-	-	nd	
112.80	-	112.81	В	-	-	fr.	
114.70	-	114.71	В	r	r	-	
115.80	-	115.81	В	-	с	-	
117.23	-	117.24	В	-	r	-	
121.90	-	121.91	В	r	-	-	
124.50	-	124.51	в	а	-	-	
126.20	-	126.21	в	r	-	-	
127.80	-	127.81	В	с	-	-	
129.36	-	129.37	в	а	-	-	
130.33	-	130.34	В	а	-	-	
132.35	-	132.36	в	-	r	-	
133.70	-	133.71	в	-	с	-	
134.50	-	134.51	В	r	а	-	
135.10	-	135.11	В	-	с	-	
136.25	-	135.26	В	с	-	-	
139.25	-	135.26	В	с	-		
140.60	-	140.61	В	-	-	fr.	
141.73	-	141.74	в	с	-	-	
145.28	-	145.29	В	а	-	-	
158.40	-	158.41	В	r	r	-	

Kawajim	a (KJ)				
depth (m))		slide	F	M-B	fr, nd
32.92	-	32.93	Α	а	-	-
36.63	-	36.64	Α	-	с	-
41.80	-	41.81	Α	r	r	-
43.70	-	43.71	Α	а	-	-
56.34	-	56.35	А	r	-	-
82.34	-	82.35	А	r	-	-
82.90	-	82.91	Α	с	-	-
83.25	-	83.26	Α	с	-	-
84.40	-	84.41	в	с	-	-
86.10	-	86.11	в	с	-	-
92.88	-	92.89	В	-	-	fr.
97.78	-	97.80	Α	-	-	nd
98.77	-	98.80	Α	с	-	-
99.80	-	99.81	Α	с	-	-
101.70	-	101.72	Α	-	-	nd
103.40	-	103.41	Α	с	-	-
114.81	-	114.83	Α	с	-	-
122.09	-	122.10	Α	r	-	-
124.53	-	124.54	в	с	-	-
129.66	-	129.70	Α	r	с	-
131.10	-	131.11	А	-	r	-
135.20	-	135.21	А	-	-	nd
136.38	-	136.40	Α	-	-	nd
137.81	-	137.83	Α	-	-	nd
149.23	-	149.24	в	-	-	nd
150.24	-	150.26	В	-	-	nd
162.70	-	162.74	А	r	с	-
164.79	-	164.82	A	r	c	-
166.34	_	166.36	А	-	r	-
167.50		167.52	^		-	

付表1 続き.

Appendix 1. Continue.

Kawajim	a ((KJ)				
depth (m)		slide	F	M-B	fr, nd
168.59	-	168.60	В	-	r	-
169.38	-	169.39	A	-	r	
170.59	-	170.60	A	-	-	nd
180.38	-	180.39	A	-	-	nd
181.38	-	181.45	A	-	с	-
183.19	-	183.22	A	-	-	na
184.42	-	105.20	Б	-	r	-
183.27	-	107.74	A	-	r	- C.
18/.08	-	18/./4	A	-	-	IT.
201.47	-	201.54	B	-	-	nd
204.23	-	204.20	A	-	r	-
205.39	-	205.42	A	с	с	-
210.28	-	210.31	в	-	-	IT.
212.72	-	212.73	A	-	-	IT.
214.26	-	214.30	<u>A</u>	-	-	nd
215.33	-	215.34	В	-	r	-
216.26	-	216.29	в	-	r	-
217.57	-	217.58	A	-	с	-
219.65	-	219.67	A	r	-	-
221.37	-	221.40	A	-	r	-
223.57	-	223.61	A	-	r	-
225.54	-	225.55	A	-	r	-
229.31	-	229.32	В	-	-	fr.
230.21	-	230.22	A	-	-	nd
238.60	-	238.61	A	-	-	nd
239.52	-	239.53	В	-	-	nd
240.17	-	240.18	В	-	-	nd
244.90	-	244.91	A	-	-	fr.
245.60	-	245.61	Α	r	-	-
247.52	-	247.53	A	а	r	-
247.80	-	247.81	в	r	а	-
248.25	-	248.26	в	r	а	-
259.82	-	259.83	в	-	-	nd
261.64	-	261.65	в	с	-	-
262.52	-	262.53	В	с	-	-
262.89	-	262.90	в	с	-	-
263.11	-	263.12	в	а	-	-
263.28	-	263.29	в	с	-	-
263.65	-	263.66	в	а	-	-
267.09	-	267.10	В	с	-	-
267.78	-	267.79	Α	-	-	nd
268.85	-	268.86	в	с	-	-
269.50	-	269.51	Α	а	-	-
269.64	-	269.65	в	с	-	-
271.40	-	271.41	Α	-	-	fr.
273.41	-	273.42	В	-	-	nd
285.80	-	285.81	в	с	-	-
287.37	-	287.38	Α	с	-	-
288.81	-	288.82	Α	-	r	-
289.41	-	289.42	Α	-	r	-
290.18	-	290.19	Α	-	с	-
290.78	-	290.79	Α	r	а	-
293.90	-	293.91	Α	-	-	nd
295.64	-	295.65	А	с	-	-
311.67	-	311.69	Α	-	-	nd
316.15	-	316.16	Α	-	-	nd
318.58	-	318.59	Α	r	-	-
320.45	-	320.46	Α	r	с	-
322.30	-	322.31	Α	с	а	-
323.80	-	323.81	Α	с	-	-
327.20	-	327.21	Α	с	-	-
329.16	-	329.17	в	-	r	-
331.64	-	331.65	Α	r	-	-
332.74	-	332.75	Α	-	-	nd
335.77	-	335.78	А	-	с	-
338.44	-	338.45	А	а	-	-
343.29	-	343.30	Α	r	-	-
347.23	-	347.24	Α	-	с	-
349.37	-	349.38	Α	-	r	-
360.56	-	360.57	А	-	с	-
364.80	-	364.81	А	-	-	nd
368.64	-	368.65	А	-	-	nd
369.68	-	369.69	А	-	-	nd
371.34	-	371.35	А	r	а	-
373.30	-	373.31	А	-	-	fr.
374.73	-	374.74	A	-	-	nd
381.45	-	381.46	А	-	-	nd
383.80	-	383.81	A	-	-	nd
385.90	-	385.91	А	-	-	nd
288 12		200 11	٨			nd

depth (m)	slide	F	M-B	fr, nd	depth (m)
394.46 - 394.47	А	-	-	fr.	183.18 - 183.
397.85 - 397.86	А	-	-	fr.	184.53 - 184.
400.62 - 400.63	А	-	-	nd	193.94 - 193.
405.40 - 405.41	А	-	-	nd	196.25 - 196.
412.26 - 412.30	А	-	-	nd	199.65 - 199.
413.18 - 413.19	А	-	-	nd	201.23 - 201.
421.75 - 421.76	Α	-	-	nd	215.87 - 215.
424.24 - 424.25	Α	-	-	nd	216.58 - 216.
425.34 - 425.35	Α	-	-	nd	217.58 - 217.
427.74 - 427.75	А	-	-	nd	218.23 - 218.
432.55 - 432.56	А	-	-	nd	224.08 - 224.
452.83 - 452.84	в	-	-	nd	224.50 - 224.
473.33 - 473.34	в	-	-	nd	224.89 - 224.
501.68 - 501.69	в	-	-	nd	225.13 - 225.
502.60 - 502.62	В	-	-	nd	227.55 - 227.
516.59 - 516.60	в	-	-	nd	228.20 - 228.
522.73 - 522.74	в	-	-	nd	229.91 - 229.
524.60 - 524.61	в	-	-	nd	231.75 - 231.
527.64 - 527.65	в	-	-	nd	232.81 - 232.
556.47 - 556.48	В	-	-	nd	234.27 - 234.
559.74 - 559.75	в	-	-	nd	235.21 - 235.
562.44 - 562.45	в	-	-	nd	236.91 - 236.
566.44 - 566.45	в	-	-	nd	240.45 - 240.
568.20 - 568.21	в	-	-	nd	245.76 - 245.
571.10 - 571.11	В	-	-	nd	257.40 - 257.
573.16 - 573.17	в	-	-	nd	259.24 - 259.
575.50 - 575.51	в	-	-	nd	259.63 - 259.
588.94 - 588.95	в	-	-	nd	260.07 - 260.
589.87 - 589.88	в	-	-	nd	261.23 - 261.
590.60 - 590.61	В	-	-	nd	263.71 - 263.
594.24 - 594.25	B	-	-	fr.	267.91 - 267.
595.84 - 595.85	в	-	-	fr.	271.95 - 271.
599.20 - 599.21	В	-	-	nd	273.58 - 273.
					285.37 - 285.

Kasukat	be (1	KK)	alida	Б	MD	fr nd
2 14	1)	2.15	silue	Г	M-D	II, IIU
2.14	-	2.15	A	С	-	-
4.50	-	4.51	A	-	a	-
9.00	-	9.07	A	-	a	-
17.80	-	17.81	A	-	c	-
23.30	-	23.31	A	1	С	-
32.09	-	32.70	A	a	-	-
47.22	-	47.22	A	C r	a	-
56.22	-	56.24	^	1	1	- nd
56.93	-	50.54	A	-	-	nd
57.70	-	57.80	A	-	-	nd
60.42	-	57.80	A	-	-	nd
70.64	-	70.45	A	-	-	nd
/9.04	-	19.05	A	-	-	na
81.55	-	84.30	A	-	-	na
85.50	-	83.32	A	-	1	-
91.44	-	91.45	A	C	a	-
95.85	-	95.80	A	a	а	-
90.70	-	90.71	A	С	-	-
98.40	-	98.41	A	1	-	-
116.80	-	116.81	A	C	-	-
110.00	-	110.01	A	-	1	- nd
124.22	-	124.22	A	-	-	nu
124.52	-	124.55	A	-	1	- nd
120.09	-	120.91	P	-	-	nd
129.20	-	129.21	<u> </u>	-		nu
131.52	-	131.55	1	a	-	-
122.22	-	122.22	^	a	1	-
135.52	-	135.33	A	C	-	-
139.20	-	139.27	1	c	-	-
142.57	-	142.58	A	0		-
142.57	-	142.50	1	a	-	-
147.52	-	147.55	A	a	-	-
154 70	-	154 71	1	c	-	-
156.61	-	156.62	A	C	-	- fr
166.64	-	166.65	A P	-	-	п. fr
100.04	-	100.05	D A	-	-	II. nd
176.40	-	176.42	A	-	-	nd
170.40	-	170.42	A P	-	-	nd
1/9.09	-	1/9.70	D A	-	-	nu
180.18	-	180.20	A	-	-	na

depth (m)	(KK)	slide	F	M-B	fr. nd
183.18 -	183.19	A	-	-	nd
184.53 -	184.54	Α	-	-	nd
193.94 -	193.95	A	r	r	-
196.25 -	196.26	A	-	-	nd
199.65 -	201.24	B	-	-	nd
201.23 -	201.24	B	-	-	nd
216.58 -	216.59	A	-	r	-
217.58 -	217.59	В	-	-	fr.
218.23 -	218.24	А	-	с	-
224.08 -	224.09	В	-	с	-
224.50 -	224.51	Α	-	r	-
224.89 -	224.96	A	-	-	nd
225.13 -	225.14	В	а	-	-
227.55 -	227.50	B	-	-	nd
228.20 -	220.21	B	-		nd
231.75 -	231.76	B	-	-	nd
232.81 -	232.82	В	-	-	nd
234.27 -	234.28	в	-	-	nd
235.21 -	235.22	А	-	-	nd
236.91 -	236.92	в	-	-	nd
240.45 -	240.46	Α	-	-	nd
245.76 -	245.77	B	-	-	nd
257.40 -	257.41	B	r	r	-
259.24 -	259.25	в	r	r	-
259.05 -	259.04	A P	r	-	-
261.23	261.24	A	r	- r	
263.71 -	263 72	A	a	-	-
267.91 -	267.92	B	-	-	nd
271.95 -	271.96	Α	-	-	nd
273.58 -	273.59	в	-	-	nd
285.37 -	285.38	в	-	-	nd
288.68 -	288.69	Α	-	-	fr.
288.13 -	288.14	Α	-	-	nd
289.20 -	289.21	A	-	-	nd
289.94 -	289.95	В	r	r	-
290.14 -	290.15	A	-	-	fr.
291.04 -	291.03	<u>В</u>	1	1	- nd
294.77 -	294.78	B	- r	-	-
297.78 -	297.79	A	-	-	nd
298.41 -	298.42	A	-	-	nd
298.95 -	298.96	А	r	-	-
307.42 -	307.43	Α	r	-	-
314.54 -	314.55	Α	а	-	-
324.70 -	324.73	Α	с	-	-
325.38 -	325.39	В	-	-	fr.
328.91 -	328.92	B	r	-	-
331.5/ -	331.58	в	-	-	nd
340.17	340.18	R	-	-	nd
341.45	341.46	A	r	-	-
342.14 -	342.15	В	-	-	fr.
343.67 -	343.68	Α	r	-	-
348.54 -	348.55	в	-	-	nd
349.70 -	349.72	Α	-	-	nd
364.55 -	364.56	в	-	-	nd
366.60 -	366.61	A	-	-	fr.
368.22 -	368.23	A	-	-	nd
369.04 -	309.05	в	-	-	nd
370.77 -	370.78	A	-	-	nd
373.12	373.13	B			nd
373.87 -	373.88	B	-	r	-
375.84 -	375.85	В	-	a	-
376.85 -	376.86	в	r	-	-
378.12 -	378.13	Α	с	-	-
381.28 -	381.29	Α	-	-	nd
389.78 -	389.79	Α	-	-	nd
391.86 -	391.87	A	с	-	-
393.10 -	393.11	в	r	с	-
394.31 - 404.00	394.32 404.01	A	-	-	IT. fr
404.90 -	404.91	<u>Б</u>	-	-	nd
400.90 -	400.91	A .	-	-	nd
410.90 -	410.91	A	-	-	nd
411.70 -	411.71	в	-	-	nd
412.64 -	412.65	Α	-	-	nd

付表1 続き.

Appendix 1. Continue.

	-	,				
depth (m	1)		slide	F	M-B	fr, nd
414.75	-	414.76	Α	-	-	nd
415.24	-	415.25	в	-	-	nd
417.36	-	417.37	А	-	-	nd
434.43	-	434.44	А	-	-	nd
436.80	-	436.81	А	-	-	fr.
437.78	-	437.79	A	-	-	nd
438 94		438.95	B			fr
446.42	_	446.43	Δ	r	r	
450.49		450.50	B	-	-	fr
452 72	-	452.74	ь •	-	-	nd
433.73	-	455.74	A	-	-	na
458.65	-	458.66	в	-	-	Ir.
460.74	-	460.75	A	r	r	-
461.76	-	461.77	В	-	с	-
462.56	-	462.57	Α	r	с	-
463.93	-	463.94	Α	с	с	-
466.75	-	466.76	Α	-	-	nd
467.72	-	467.73	Α	-	r	-
468.33	-	468.34	в	-	r	-
470 46	-	470 47	А	-	-	nd
482.63		482 64	A		r	-
482.05	-	486.37	AA	-	1	
405.50	-	400.57	A .	-	c	
405.23	-	+03.20	A	-	c	-
480.70	-	480./1	в	-	а	-
487.35	-	487.36	A	-	c	-
490.30	-	490.31	Α	-	а	-
503.82	-	503.83	Α	а	с	-
504.50	-	504.51	А	r	а	-
505.29	-	505.30	Α	-	а	-
509.63	-	509.64	Α	r	r	-
511 60		511.61	A	r	c	-
516.80	-	516.81	A	c	-	
517.80	-	517.82	Δ		-	nd
526.70	-	526 71	A .	-	-	nd
520.70	-	520.71	A	-	-	na
538.75	-	538.76	В	-	-	nd
541.86	-	540.87	В	-	-	nd
549.50	-	549.51	в	-	-	nd
551.73	-	551.74	в	-	-	nd
553.03	-	553.04	в	-	-	nd
556.64	-	556.65	в	-	-	nd
578 10	-	578.11	В	-	-	nd
576.10						
581.86	-	581.88	В	-	-	nd
581.86 589.87	2	581.88 589.89	B B	-	-	nd nd
581.86 589.87 592.03	-	581.88 589.89 592.05	B B B	-	-	nd nd nd
581.86 589.87 592.03 599.90	-	581.88 589.89 592.05 599.92	B B B	-	-	nd nd nd nd
581.86 589.87 592.03 599.90	-	581.88 589.89 592.05 599.92	B B B	-	-	nd nd nd
581.86 589.87 592.03 599.90	- - -	581.88 589.89 592.05 599.92	B B B	-	-	nd nd nd
581.86 589.87 592.03 599.90 Fukasak depth (m	- - - 1)	581.88 589.89 592.05 599.92	B B B slide	- - -	- - - M-B	nd nd nd fr, nd
581.86 589.87 592.03 599.90 Fukasak depth (m 2.72	- - - - - - -	581.88 589.89 592.05 599.92 A-1 (FS) 2.77	B B B slide A	- - - -	- - - -	nd nd nd fr, nd
<u>578.10</u> 581.86 589.87 592.03 <u>599.90</u> <u>Fukasak</u> depth (m 2.72 8.80	- - - - -	581.88 589.89 592.05 599.92 A-1 (FS) 2.77 8.87	B B B slide A A	- - - - -	- - - - -	nd nd nd nd fr, nd nd nd
581.86 589.87 592.03 599.90 Fukasak depth (m 2.72 8.80 14.62	- - - - 1) - -	581.88 589.89 592.05 599.92 2.77 8.87 14.65	B B B slide A A A	- - - - - -	- - - - - - - -	nd nd nd nd fr, nd fr.
581.86 589.87 592.03 599.90 <u>Fukasak</u> depth (m 2.72 8.80 14.62 16.52	- - - - 1) - -	581.88 589.89 592.05 599.92 4-1 (FS) 2.77 8.87 14.65 16.55	B B B slide A A A A	- - - - - - - -	- - - - - - - -	nd nd nd fr, nd fr, nd fr. -
578.10 581.86 589.87 592.03 599.90 Fukasak depth (m 2.72 8.80 14.62 16.52 18.27	- - - - - - - -	581.88 589.89 592.05 599.92 2.77 8.87 14.65 16.55 18.32	B B B slide A A A A A	- - - - - - - - - - - - - - -	- - - - - - - -	nd nd nd fr, nd fr, nd fr. -
581.86 581.86 589.87 592.03 599.90 <u>Fukasak</u> depth (m 2.72 8.80 14.62 16.52 18.27 22.50	u A 1)	581.88 589.89 592.05 599.92 2.77 8.87 14.65 16.55 18.32 22.56	B B B slide A A A A A A	- - - - - - - - - - - - - - -	- - - - - - - - - -	nd nd nd fr, nd nd fr. -
581.86 581.86 589.87 592.03 599.90 Fukasak depth (m 2.72 8.80 14.62 16.52 18.27 22.50 24.70	- - - - - - - - - - -	581.88 589.89 592.05 599.92 2.77 8.87 14.65 16.55 18.32 22.56 24.74	B B B Slide A A A A A A A	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - -	nd nd nd fr, nd nd fr. - -
Strate 581.86 581.86 589.87 592.03 599.90 Fukasak depth (m 2.72 8.80 14.62 16.52 18.27 22.50 24.70 27 10	- - - - - - - - - - - - -	581.88 589.89 592.05 599.92 2.77 8.87 14.65 16.55 18.32 22.56 24.74 27.15	B B B Slide A A A A A A A A	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	nd nd nd fr, nd fr. - - -
Strate 581.86 581.86 589.87 592.03 599.90 Fukasak depth (m) 2.72 8.80 14.62 16.52 18.27 22.50 24.70 20.50	- - - - 1) - - - - - - - - - - -	581.88 589.89 592.05 599.92 2.77 8.87 14.65 16.55 18.32 22.56 24.74 27.15 20.50	B B B Slide A A A A A A A A A A A	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	nd nd nd nd fr, nd fr. - - - -
Fukasak Gepth (m 2.72 8.80 14.62 16.52 18.27 22.50 24.70 27.10 29.56	- - - - - - - - - - - - - - - - -	581.88 589.89 592.05 599.92 2.77 8.87 14.65 16.55 18.32 22.56 24.74 27.15 29.59	B B B Slide A A A A A A A A A A A A A	- - - - - - - c a r a c r	- - - - - - - - - - - - - - - - - - -	nd nd nd nd fr, nd nd fr. - - - - -
Fukasak depth (m 2.72 8.80 14.62 16.52 16.52 16.52 12.50 24.70 27.10 29.56 32.40	- - - - - - - - - - - - - - - - - -	581.88 589.89 592.05 599.92 2.77 8.87 14.65 16.55 18.32 22.56 24.74 27.15 29.59 32.44	B B B Slide A A A A A A A A A A A A A	F - - - c a r a c r a	- - - - - - - - - - - - - - - - - - -	nd nd nd nd fr, nd nd fr. - - - - - - - - - - - - - - - - - - -
Fukasak depth (m 2.72 8.80 14.62 16.52 18.27 22.50 24.70 27.10 29.56 35.15	- - - - - - - - - - - - - - - - - - -	581.88 589.89 592.05 599.92 2.77 8.87 14.65 16.55 18.32 22.56 24.74 27.15 29.59 32.44 35.20	B B B Slide A A A A A A A A A A A A A A	F - - c a r a c r a c r a	- - - - - - - - - - - - - - - - - - -	nd nd nd fr, nd fr. - - - - - - nd
Fukasak depth (m 2.72 8.80 14.62 16.52 18.27 22.50 24.70 27.10 29.56 32.40 35.15 36.74	- - - - - - - - - - - - - - - - - - -	581.88 589.89 592.05 599.92 2.77 8.87 14.65 16.55 18.32 22.56 24.74 27.15 29.59 32.44 35.20 36.76	B B B Slide A A A A A A A A A A A A A	F - - - - c a r a r r	- - - - - - - - - - - - - - - - - - -	nd nd nd nd fr, nd fr. - - - - - - - - - - - - - - - - - - -
Fukasak depth (nr 2.72 8.80 14.62 16.52 18.27 22.50 24.70 27.10 29.56 32.40 35.15 36.74 38.50	- - - - - - - - - - - - - - - - - - -	581.88 589.89 592.05 599.92 2.77 8.87 14.65 16.55 18.32 22.56 24.74 27.15 29.59 32.44 35.20 36.76 38.55	B B B B Slide A A A A A A A A A A A A A A A A A	- - - - - c a r a c r a c r a	- - - - - - - - - - - - - - - - - - -	nd nd nd nd fr, nd nd fr. - - - - - - - - - - - - - - - - - - -
Fukasak depth (m 2.72 8.80 14.62 16.52 18.27 22.50 24.70 27.10 29.51 35.15 36.74 38.74	- - - - - - - - - - - - - - - - - - -	581.88 589.89 592.05 599.92 2.77 8.87 14.65 16.55 18.32 22.56 24.74 27.15 29.59 32.44 35.20 36.75 38.55 40.60	B B B B Slide A A A A A A A A A A A A A A A A A A A	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	nd nd nd nd fr, nd fr. - - - - - - - - - - - - - - - - - - -
Fukasak depth (m 2.72 8.80 14.62 16.52 18.27 22.50 24.70 27.10 29.56 32.40 35.15 36.74 38.50 40.55 42.80	- - - - - - - - - - - - - - - - - - -	581.88 589.89 592.05 599.92 2.77 8.87 14.65 16.55 16.55 16.55 16.55 16.55 18.32 22.56 24.74 27.15 29.59 32.44 35.20 36.76 38.55 40.60 42.90	B B B B A A A A A A A A A A A A A A A A	- - - - - c a r a r a r a r	- - - - - - - - - - - - - - - - - - -	nd nd nd nd nd fr, nd nd fr. - - - - - - - - - - - - - - - - - - -
Strain Strain 581.86 589.87 592.03 599.90 599.90 599.90 Fukasak depth (m 2.72 8.80 14.62 16.52 18.27 22.50 24.70 27.10 29.56 32.40 35.15 36.74 38.50 40.55 42.80 44.62	- - - - - - - - - - - - - - - - - - -	581.88 589.89 592.05 599.92 2.77 8.87 14.65 16.55 18.32 22.56 24.74 27.15 29.59 32.44 35.20 36.76 38.55 40.60 42.90 44.68	B B B B A A A A A A A A A A A A A A A A	F - - - c a r a c r a c r a a c r a a a r	- - - - - - - - - - - - - - - - - - -	nd nd nd nd fr, nd nd fr. - - - - - - - - - - - - - - - - - - -
Fukasak depth (m 2.72 8.80 14.62 16.52 18.27 22.50 24.70 27.10 29.56 35.15 36.74 38.75 40.55 42.80	- - - - - - - - - - - - - - - - - - -	581.88 589.89 592.05 599.92 2.77 8.87 14.65 16.55 18.32 22.56 24.74 27.15 29.59 32.44 35.20 36.76 38.55 40.60 42.90 44.68 45.60	B B B B A A A A A A A A A A A A A A A A	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	nd nd nd nd nd fr, nd nd fr. - - - - - - - - - - - - - - - - - - -
Fukasak depth (m 2.72 8.80 14.62 16.52 18.27 22.50 24.70 27.10 29.56 32.40 35.15 36.74 36.74 38.50 44.62 45.54 46.62	- - - - - - - - - - - - - - - - - - -	581.88 589.89 592.05 599.92 2.77 8.87 14.65 16.5	B B B B S S S S S S S S S S S S S S S S	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	nd nd nd nd nd fr, nd nd fr. - - - - - - - - - - - - - - - - - - -
Site Solution Stars Seg Sta	- - - - - - - - - - - - - - - - - - -	581.88 589.89 592.05 599.92 2.77 8.87 14.65 16.55 18.32 22.56 24.74 27.15 29.59 32.44 35.20 36.76 38.55 40.60 42.90 44.68 45.60 44.68	B B B B B B B B B B B B B B B B B B B	F - - - - c a c r a c r a c r a a a a a a	- - - - - - - - - - - - - - - - - - -	nd nd nd nd nd fr. - - - - - - - - - - - - - - - - - - -
Fukasak depth (m 22,20 880 14.62 16.52 18,27 22,50 24,70 27,10 29,50 35,15 36,74 35,15 36,74 44,62 45,54 46,65 47,64 46,65 47,64	- - - - - - - - - - - - - - - - - - -	581.88 589.89 592.05 599.92 2.77 8.87 14.65 16.55 18.32 22.56 24.74 27.15 29.59 32.44 27.15 29.59 32.44 35.20 36.76 38.55 40.60 42.90 44.68 45.60 42.90	B B B B B B A A A A A A A A A A A A A A	F - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	nd nd nd nd nd fr, nd nd fr. - - - - - - - - - - - - - - - - - - -
Fukasak depth (m 2.72 8.80 14.62 16.52 18.27 22.50 24.70 27.10 29.56 32.40 35.15 36.74 38.50 44.62 45.54 46.62 47.64 48.62 47.64 48.62	- - - - - - - - - - - - - - - - - - -	581.88 589.89 592.05 599.92 2.77 8.87 14.65 16.55 17.57 17.5	B B B B B S S S S S S S S S S S S S S S	- - - - - - - - - - - - - - - - - - -	M-B - - - - - - - - - - - - - - - - - -	nd nd nd nd nd fr, nd nd fr. - - - - - - - - - - - - - - - - - - -
Site Solution Star 86 Star 86 Star 86 Star 80 Star 80 Star 80 Star 80 14.62 16.52 18.27 8.80 24.70 27.10 29.56 32.40 35.15 36.74 36.51 36.50 40.55 42.80 44.62 45.54 46.65 47.64 48.64 48.64	- - - - - - - - - - - - - - - - - - -	581.88 589.89 592.05 599.92 2.77 8.87 14.65 16.55 18.32 22.56 24.74 27.15 29.59 32.44 35.20 36.76 38.55 40.60 42.90 36.76 44.68 45.60 44.68 45.60 44.68 45.70 49.76	B B B B B S S S S S S S S S S S S S S S	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	nd nd nd nd nd fr. - - - - - - - - - - - - - - - - - - -
Fukasak depth (m 592.03 599.90 599.90 Fukasak depth (m 2.72 8.80 14.62 16.52 18.27 22.50 24.70 27.10 29.56 32.40 35.15 36.74 35.15 44.62 45.54 46.65 47.64 49.71 50.54	- - - - - - - - - - - - - - - - - - -	581.88 589.89 592.05 599.92 2.77 8.87 14.65 16.55 18.32 22.56 24.74 27.15 29.59 32.44 27.15 29.59 32.24 35.20 36.76 38.55 40.60 42.90 44.68 45.60 46.70 47.69 48.70 49.76	B B B B B A A A A A A A A A A A A A A A	F - - - c a r a c r a c r a c r a a c r a a a a		nd nd nd nd nd nd fr. nd nd fr. - - - - - - - - - - - - - - - - - - -
Fukasak depth (m 599.90 Fukasak depth (m 2.72 8.80 14.62 16.52 18.27 22.50 24.70 27.10 29.56 32.40 35.15 36.74 38.50 40.55 42.80 44.62 45.54 46.64 49.71 50.54 50.54 48.64 49.71 50.54 52.75		581.88 589.89 592.05 599.92 2.77 8.87 14.65 16.55 16.55 16.55 16.55 22.56 24.74 27.15 29.59 32.44 35.20 36.76 38.55 40.60 42.90 44.68 45.60 44.60 42.90 44.68 45.60 44.76 9 48.70 49.76 50.60	B B B B B S S S S S S S S S S S S S S S	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	nd nd nd nd nd fr. - - - - - - - - - - - - - - - - - - -
Sile Solution Stars Seg Sta		581.88 589.89 592.05 599.92 2.77 8.87 14.65 16.55 18.32 22.56 24.74 27.15 29.59 32.44 35.20 36.76 38.55 40.60 42.90 36.76 38.55 40.60 44.68 45.60 44.68 45.60 44.68 45.60 44.76 50.60 52.83 54.63	B B B B S S S S S S S S S S S S S S S S	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	nd nd nd nd nd fr. - - - - - - - - - - - - - - - - - - -
Fukasak depth (m 599.90 Fukasak depth (m 2.72 8.80 14.62 16.52 18.27 22.50 24.70 27.10 29.50 24.70 35.15 36.74 35.15 36.74 35.15 36.74 44.62 45.54 46.65 47.64 49.71 50.54 52.75 54.58		581.88 589.89 592.05 599.92 2.77 8.87 14.65 16.55 18.32 22.56 24.74 27.15 29.59 32.44 27.15 29.59 32.24 35.20 36.76 38.55 40.60 42.90 44.68 45.60 44.69 44.69 45.60 45.060 50.60 52.83 54.63 55.89	B B B B B A A A A A A A A A A A A A A A	F - - - - c a r a c r a a a a a a a a a a a	M-B - - - - - - - - - - - - - - - - - -	nd nd nd nd nd nd fr, nd nd fr. - - - - - - - - - - - - - - - - - - -
Fukasak depth (m 599.90 599.90 599.90 2.72 8.80 14.62 16.52 18.27 22.50 24.70 27.10 29.56 32.40 35.15 36.74 38.50 40.655 42.80 44.62 45.54 46.64 49.71 50.54 52.75 54.58 57.04		581.88 589.89 592.05 599.92 2.77 8.87 14.65 16.55 16.55 16.55 18.32 22.56 24.74 27.15 29.59 32.44 35.20 36.76 38.55 40.60 42.90 44.68 45.60 44.60 42.90 44.68 45.60 44.69 48.70 49.76 50.60 52.83 54.63 55.89 57.10	B B B B S S S S S S S S S S S S S S S S	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	nd nd nd nd nd fr. - - - - - - - - - - - - - - - - - - -
Sile Solution Stall.86 589.87 S592.03 599.90 Sp9.90 599.90 Fukasak depth (m 27.20 8.80 14.62 16.52 18.27 8.20 24.70 27.10 29.56 32.40 35.15 36.74 36.51 36.50 40.55 42.80 44.62 45.54 46.65 47.64 49.71 50.54 52.55 54.58 57.04 59.17		581.88 589.89 592.05 599.92 2.77 8.87 14.65 16.55 18.32 22.56 24.74 27.15 29.59 32.44 35.20 36.76 38.55 40.60 42.90 36.76 38.55 40.60 44.68 45.60 44.68 45.60 44.68 45.60 44.68 45.60 44.68 45.60 44.76 50.80 52.83 54.63 55.89 57.10 59.25	B B B B B S S S S S S S S S S S S S S S	- - - - - - - - - - - - a a a a a a - - - a a a -	- - - - - - - - - - - - - - - - - - -	nd nd nd nd nd nd fr. - - - - - - - - - - - - - - - - - - -
Sile Solution Stall.86 581.86 Stall.86 589.87 Sp2.03 599.90 Sp9.90 592.03 Sp9.90 599.90 Fukasak depth (m 2.72 8.80 14.62 16.52 18.27 22.50 24.70 27.16 29.50 24.70 35.15 36.74 38.50 40.55 42.80 44.62 45.54 46.65 47.64 48.64 49.71 50.54 52.75 54.58 57.04 59.704 59.704 59.76		581.88 589.89 592.05 599.92 2.77 8.87 14.65 16.55 18.32 22.56 24.74 27.15 29.59 32.44 27.15 29.59 32.47 35.20 36.76 38.55 40.60 42.90 44.68 45.60 44.69 44.69 44.69 45.60 45.060 50.60 52.83 54.63 55.89 57.10 59.23	B B B B B A A A A A A A A A A A A A A A	- - - - - - - - - - - - - - - - - - -	M-B - - - - - - - - - - - - - - - - - -	nd nd nd nd nd fr, nd nd fr. - - - - - - - - - - - - - - - - - - -
Fukasak depth (m 592.03 599.90 599.90 2.72 8.80 14.62 16.52 18.27 22.50 24.70 27.10 29.56 32.40 35.15 36.74 38.50 40.655 42.80 44.62 45.54 46.64 49.71 50.54 57.04 59.17 60.67 61.80		581.88 589.89 592.05 599.92 2.77 8.87 14.65 16.55 15.55 16.55 15.55 16.55 15.55 16.55 15.55 16.55 15.55 16.55 15.55 16.55 15.55 16.55 15.55 16.55 15.55 16.55 15.55 16.55 15.55 16.55 15.55 16.55 15.55 16.55 15.55 16.55 15.5	B B B B B B B B B B B B B B B B B B B	- - - - - - - - - - - - - - - - - - -	M-B - - - - - - - - - - - - - - - - - -	nd nd nd nd nd fr, nd nd fr. - - - - - - - - - - - - - - - - - - -

Fukasaku depth (m	1 A)	A-1 (FS)	slide	F	M-B	fr, nd
66.44	-	66.50	A	-	r	-
60.05	-	60.00	A	-	-	nd
71 41	2	71 49	A		-	nd
74.20	_	74.29	A	-	-	fr.
77.37	-	77.45	A	-	-	fr.
80.54	-	80.63	Α	-	-	nd
83.85	-	83.90	Α	-	-	nd
86.55	-	86.60	Α	-	-	nd
89.62	-	89.70	A	-	-	nd
91.10	-	91.20	A	-	-	nd
92.76	-	92.80	A	-	с	- nd
94.50	-	94.55	A	-	-	nd
99.50	_	99.56	A	-	-	fr
100.83	-	100.87	A	-	-	fr.
101.30	-	101.35	А	r	-	-
103.11	-	103.23	Α	-	-	fr.
104.38	-	104.45	Α	-	-	fr.
106.39	-	106.44	Α	-	-	nd
108.50	-	108.57	A	-	-	fr.
112.30	-	112.43	A	-	-	nd
115.55	-	115.65	A	-	-	nd
110.45	2	110.33	A	1	-	nd
120 41	-	120 47	A	-		nd
122.65	-	122.72	A	-	-	fr.
124.50	-	124.56	А	-	-	nd
125.60	-	125.70	А	-	-	nd
127.66	-	127.77	Α	-	-	nd
129.63	-	129.70	Α	-	с	-
130.45	-	130.52	A	-	а	-
132.68	-	132.77	A	-	а	-
134.65	-	134.75	A	-	с	-
136.20	-	136.27	A	-	C C	<u> </u>
137.68	_	137.74	A	-	c	-
138.26	_	138.32	A	с	c	-
139.30	-	139.35	A	-	a	-
139.89	-	139.94	Α	с	-	-
140.55	-	140.62	А	а	-	-
141.39	-	141.44	Α	а	-	-
142.15	-	142.20	A	-	-	fr.
143.53	-	143.59	A	а	-	-
144.57	-	144.64	A	r	-	-
145.07	-	145.74	A	-	-	Ir.
147.12	2	147.20	A	r C	-	-
150.90	2	151.00	A	-	-	nd
155.57	-	155.63	A	-	-	nd
156.90	-	156.96	Α	-	-	fr.
158.83	-	158.91	А	а	-	-
160.23	-	160.31	Α	а	-	-
161.85	-	161.92	Α	а	-	-
162.28	-	162.35	A	a	-	-
165.00	-	165.12	A	a	-	-
167.02	2	167.10	A	a -	-	- nd
168.00	-	168.07	A	-	-	nd
178.50	-	178.60	A	-	-	-
182.36	-	182.44	A	-	r	-
183.08	-	183.14	А	r	r	-
183.55	-	183.60	А	-	-	fr.
185.76	-	185.82	Α	-	-	fr.
186.57	-	186.64	A	-	-	fr.
188.12	-	188.19	A	-	-	nd
191.00	-	191.10	A	-	-	nd
195.80	-	195.90	A	-	-	nd
197 70	2	197.80	A	-	-	nd
199.70	-	199.80	A	-	-	nd
201.53	-	201.62	A	-	-	nd
203.23	-	203.30	А	-	-	nd
205.38	-	205.45	А	-	-	fr.
206.23	-	206.31	А	-		fr.
207.56	-	207.64	Α	-	а	-
208.28	-	208.36	A	-	с	-
209.65	-	209.71	A	-	-	nd
210.07	-	210.74	A	-	-	nd
213.30	-	410.00	п		-	nu

Fukasak	u A-1 (FS)			
depth (m	1)	slide F	M-B	fr, nd
215.10	- 215.17	A -	-	nd
217.25	- 217.31	Α -	-	nd
217.75	- 217.77	Α -	-	nd
219.92	- 219.98	Α -		nd
230.50	- 230.58	Α -	-	nd
231.11	- 231.15	A -		nd
231.74	- 231.76	Α -	-	nd
232.16	- 232.20	Α -	-	nd
233.30	- 233.38	A -	-	nd
237.62	- 237.68	Α -	-	nd
241.35	- 241.40	A -	-	nd
244.26	- 244.34	Α -	-	nd
245.73	- 245.83	A -	-	fr.
246.73	- 246.80	Α -	-	nd
247.71	- 247.80	Α -	-	nd
248.16	- 248.25	Α -		nd
249.41	- 249.5	Α -	-	nd
250.2	- 250.3	Α -	-	nd
251.74	- 251.79	Α -	-	nd
252.65	- 252.73	Α -		nd
253.26	- 253.34	Α -	-	nd
255.34	- 255.41	Α -	-	nd
257.55	- 257.62	Α -	-	nd
259.28	- 259.34	Α -	-	nd
261.79	- 261.85	Α -		nd
264.36	- 264.44	Α -	-	nd
273.26	- 273.34	Α -	-	nd
275.6	- 275.67	Α -	-	nd
277.79	- 277.85	Α -	-	nd
279.27	- 279.33	A -	c	-
281.1	- 281.17	Α -	a	-
283.19	- 283.27	Α -	с	-
284.46	- 284.53	A c	c c	-
285.31	- 285.39	Α -	c	-
286.62	- 286.7	A c	- :	-
288.35	- 288.43	A c	- :	-
290.2	- 290.26	A c	- :	-
292.63	- 292.69	A c	- :	-
294.24	- 294.3	A c	- :	-
295.14	- 295 19	A -		fr

540	日本及び周辺地域の泥火山データベース	高橋正明・切田 司・大丸 純・ 風早康平
541	世界石紀行	加藤碵一·青木正博·須田郡司· 芝原暁彦
542	桜島昭和火口の噴煙の時間的変化の観察	西来邦章・宮城磯治
543	日本の大規模マスムーブメントデータベース	塚本 斉
544	3D 絵葉書	岸本清行・河村幸男・川畑 晶・
		中島礼
545	筑波山・霞ヶ浦地質見学ガイド	中島 礼・西岡芳晴・宮地良典
546	石川県珠洲市(能登半島)の中新統飯塚層から産出した鰭脚類及び鯨類化 石の珪藻年代	柳沢幸夫・小西健二・甲能直樹
547	房総半島南部下部~中部中新統産の珪質鞭毛藻化石	沢村孝之助・柳沢幸夫
548	地質情報展 2011 みと 未来に活かそう 大地の鳴動	川畑 晶・中島和敏・大熊洋子・ 百目鬼洋平
549	新潟県津川地域音無川沿いに露出する野村層(中部〜上部中新統)のテフ ラ層	平中宏典・柳沢幸夫・黒川勝己
550	岩手県、宮城県及び福島県北部から産出した束柱類化石の地質年代	柳沢幸夫
551	地質調査総合センター第18回シンポジウム地質学で読み解く巨大地震と 将来の予測 – どこまでわかったか-	地質調査総合センター編
552	地質調査総合センター第19回シンポジウム社会ニーズに応える地質地盤 情報 - 邦東平野部の地質地般情報をめぐる最新の動向-	地質調査総合センター編
553	前報 前市「封市の地員地盃前報をのくる取利の動向 細敗岸田抽撮石岸咨濵控本信井(北陽・歿直・細敗油)のコア試料の組察	佐臨書幸,山綽 健,小笑百正继,
000	新闻水山水泉和水直水川(北吻 田朵 新闻行)·2-7 城行•2 航水 結里	金大祐一郎
554	イーハトーブの地質ジオ	加藤碵一・書太正博・長森革明
555	産総研におけるベントナイトのメチレンブルー吸着量測定方法	堀内悠・高木哲一
556	概要調査の調査・評価項目に関する技術資料 一立地要件への適合性とそ	深部地質環境研究コア編
	の根拠となる調査結果の妥当性-	
557	第1回アジア太平洋大規模地震・火山噴火リスク対策ワークショップ講演	佃 栄吉・高橋 浩・宝田晋治・
	要旨集	高田 亮・桑原保人・吾妻 崇・
		小泉尚嗣・石川有三
558	2011 年の霧島山噴火映像	宮城磯治
559	砂漠を歩いてマントルへ -中東オマーンの地質探訪-	小笠原正継・青木正博・芝原暁彦・ 澤田結基
560	概要調査の調査・評価項目に関する技術資料 -立地要件への適合性とそ	深部地質環境研究コア編
	の根拠となる調査結果の妥当性-	
561	一般向けウェブページ用地質用語の解説	吉川敏之・井川敏恵・西岡芳晴
562	茨城県瓜連丘陵に分布する引田層のフィッション・トラック年代	山元孝広
563	仙山線沿線の地質ガイド	高橋裕平
564	日本列島における地下水賦存量の試算に用いた堆積物の地層境界面と層厚 の三次元モデル (第一版)	越谷 賢・丸井敦尚
566	2011 年 9 月紀伊半島台風 12 号による災害緊急調査報告	川畑大作・斎藤 眞

地質調査総合センターの最新出版物

200 万分の1地質編集図	No. 4	日本地質図第5版
20 万分の 1 地質図幅	伊勢・静	岡及び御前崎(第2版)・与論島及び那覇・八代及び野母崎の一部・新潟(第2版)
5万分の1地質図幅	小滝・西	郷・延岡・野田・加茂・戸賀及び船川(第2版)・熱海・榛名山・阿仁合(第2版)
海外地球科学図	アジア地	質図(1:500万)
	中央アジ	ア鉱物資源図(1:300 万)
海洋地質図	No. 74	落石岬沖海底地質図 (1:20 万)
	No. 75	天売島周辺海底地質図 (1:20 万)
	No. 76	積丹半島付近表層堆積図 (1:20 万)
	No. 77	日高舟状海盆海底地質図 (1:20 万)
構造図	No. 14	全国主要活断層活動確率地図
火山地質図	No.15	樽前火山地質図(1:3 万)
	No.16	十勝岳火山地質図(1:3 万)
鉱物資源図	No. 7	南西諸島(1:50万)
特殊地質図	No. 39	千葉県清和県民の森周辺の地質図
水文環境図	No. 6	山形盆地(1:20 万)CD-ROM
重力図	No. 27	岡山地域重力図(ブーゲー異常)
	No. 28	高知地域重力図(ブーゲー異常)
	S3	甲府地域重力構造図(ブーゲー異常)
空中磁気図	No. 44	岩手火山地域高分解能空中磁気異常図
	No. 45	福井平野地域高分解能空中磁気異常図
数值地質図	G-16	20 万分の 1 日本シームレス地質図 DVD 版
	G-17	九州地質ガイド
	FR-2	燃料資源地質図「東部南海トラフ」
	GT-4	全国地熱ポテンシャルマップ
	S-1	海陸シームレス地質情報集「能登半島北部沿岸域」 DVD 版
	S-2	海陸シームレス地質情報集「新潟沿岸域」 DVD 版
	V-3	口永良部島火山地質データベース
	P-7	有珠火山地域地球物理総合図」
	G20-1	20 万分の1数値地質図幅集「北海道北部」第2版
	G20-2	20 万分の1数値地質図幅集「北海道南部」第2版
	E-5	表層土壌評価基本図 ~富山県地域~
その他	日本の熱	水系アトラス
	海と陸の	地球化学図

地質調査研究報告編集委員会

委員長 森下祐一	
中 時 貴 敏英 本 山 井 村 邉 君 長 鈴 片 澤 月 川 神 内 森 中 勝 谷 川 森 木 山 井 村 邉 宮 野 尻 野 町 子 四 森 木 山 井 村 港 君 男 の 界 の 界 の 界 の 月 四 の 界 の の の の 月 の の の の の の 月 の の の の の の	
中 野 俊	
事務局	
独立行政法人 産業技術総合研究	完
地質調査情報センター	
地質・衛星情報サービス室	

所 Tel: 029-861-3601 http://www.gsj.jp/inquiries.html

地質調査研究報告 第63巻 第5/6号 平成24年10月31日 発行

独立行政法人 產業技術総合研究所 地質調査総合センター 〒305-8567 茨城県つくば市東1-1-1 つくば中央第7

本誌掲載記事の無断転載を禁じます。

©2011 Geological Survey of Japan, AIST http://www.gsj.jp/

Bulletin of the Geological Survey of Japan Editorial Board

Chief Editor: Yuichi Morishita Deputy Chief Editor: Takayuki Sawaki Editors: Ryu Ohtani Toshiyuki Yoshikawa Hideaki Nagamori Atsushi Suzuki Hajime Katayama Yuki Sawai Katsuhiro Tsukimura Yoshihisa Kawanabe Jinguuji Motoharu Takayuki Uchino Rie Morijiri Shun Nakano Secretariat National Institute of Advanced Industrial Science and Technology Geological Survey of Japan Geo-information Center Geoinformation Service Office Tel: +81-29-861-3601 http://www.gsj.jp/inquiries.html

Bulletin of the Geological Survey of Japan Vol.63 No.5/6 Issue October 31, 2012

National Institute of Advanced Industrial Science and Technology

Geological Survey of Japan AIST Tsukuba Central 7, 1-1, Higashi 1-chome,

Tsukuba, Ibaraki 305-8567 Japan

All rights reserved.

©2011 Geological Survey of Japan, AIST http://www.gsj.jp/

BULLETIN OF THE GEOLOGICAL SURVEY OF JAPAN

Vol. 63 No. 5/6 2012

CONTENTS

Stratigraphic and sedimentologic analysis of the latest Pleistocene to Holocene sediment core
GS-HIS-1 recovered from the Ishikari coastal plain, Oyafune, Ishikari, Hokkaido, Japan
Gentaro Kawakami, Ayako Funabiki, Tsumoru Sagayama, Rei Nakashima, Kenji Nishina,
Wataru Hirose, Sunao Ohtsu, Yousuke Isomae and Katsumi Kimura
Identification of marine sediments inferred from diatom fossil and lithofacies in the drillcores in

GEOLOGICAL SURVEY OF JAPAN

National Institute of Advanced Industrial Science and Technology

1-1, Higashi 1-chome, Tsukuba, Ibaraki, 305-8567 Japan

地 調 研 報 Bull. Geol. Surv. Japan Vol. 63, No. 5/6, 2012