論文 - Article

物理定数から見た白亜紀一古第三紀花崗岩類-その4. 西南日本内帯

金谷 弘^{1,*}·大熊茂雄¹

Hiroshi Kanaya and Shigeo Okuma (2011) Physical properties of Cretaceous to Paleogene granitic rocks in Japan: Part 4. A case of the inner zone of Southwest Japan. *Bull. Geol. Surv. Japan*, vol. 62(5/6), p. 000-000, 9 figs, 1 table.

Abstract: About 1500 granitic rocks exposed in the inner zone of Southwest Japan were collected and measured on their physical properties such as density, porosity, magnetic susceptibility and Natural Remanent Magnetization (NRM). The results were classified in seven areas (Hokuriku, Chubu, east Kinki, west Kinki, east Chugoku, central Chugoku and north Kyushu) and their geologic time (late Cretaceous: K_{1-2} , K_2 , Paleogene: PG_1 , PG_2 , Neogene: N_1 , N_3) and compared with the same geologic time between each area.

1. Density

The mean density of K_{1-2} (older Ryoke) of the Chubu area, east Kinki area, and K_2 of the north Kyushu ranges 2.72~2.74 (g/cm3=10³kg/m³) and that of the PG₁ of the Hokuriku area, PG₂ of the central Chugoku area shows 2.62.

2. Porosity

The mean porosity shows 0.45% in the east Kinki area K_2 (younger Ryoke) and 1.27%, PG₂ of the central Chugoku area with the mode of 0.22 to 0.79%. Rock density is inversely proportional to its porosity.

3. Magnetic susceptibility

Magnetic susceptibilities of K_{1-2} (older Ryoke) and K_2 (younger Ryoke) in the Chubu area and K_{1-2} and K_2 in the east Kinki area show lower value of 10⁻⁴. Magnetic susceptibilities of the K_2 in the Hokuriku area, west Kinki area and central Chugoku area show from 10⁻⁴ to 10⁻³. In addition, those of K_2 of the east Chugoku area and north Kyushu area (west part) contain small amount of 10⁻² order. Most of Paleogene PG₁, PG₂ samples show relatively strong magnetic susceptibilities of 10⁻³ and 10⁻² but some show weak susceptibility of 10⁻⁴.

4. Density and magnetic susceptibility

Considering the basisity of rocks, measured results are classified by Kanaya and Okuma (2010) into four groups, paramagnetic, low magnetic, medium magnetic and high magnetic. Accepting this classification, granitic rocks $K_{1,2}$ and K_2 of the Chubu and east Kinki areas are defined as paramagnetic to low magnetic zone, K_2 of the Hokuriku area, west Kinki area and central Chugoku area contain paramagnetic to medium magnetic samples and K_2 of east Chugoku area contains paramagnetic to medium samples and small amount of high magnetic samples.

5. Natural Remanent Magnetization (NRM)

No relationship between the density and NRM is observed but there is a correlation between the magnetic susceptibility and NRM. Königsberger ratio (Qn) of about 90 percent rock samples shows less than 0.4.

These results are summarized in Table 1 (physical properties of Cretaceous to Paleogene granitic rocks in the inner zone of Southwest Japan).

Keywords: density, porosity, magnetic properties, granitic rocks, the inner zone of Southwest Japan.

¹ 地質情報研究部門(AIST, Geological Survey of Japan, Institute of Geology and Geoinformation)

^{*} Corresponding author: H. KANAYA, Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan. Email: h.kanaya @aist.go.jp

要 旨

西南日本内帯の花崗岩類の密度, 孔隙率, 磁化率の測 定を行った.

密度についてみると、中部地域、東近畿地域の K_{1-2} (古 期領家)および北九州地域の K_2 (新期領家)の平均密 度が 2.72 ~ 2.74 (g/cm³ = 10^3 kg/m³以下同様)と最も 大きく、北陸地域の古第三紀(暁新世)及び中央中国地 域の古第三紀(始新世)花崗岩が 2.62 で最も小さい.

孔隙率についてみると、平均孔隙率は東近畿地域(新期 領家)が0.45%で最も低く中央中国地域、古第三紀(始 新世)の1.27%で最も大きい.その最頻値はほぼ0.22 から0.79%であっておおざっぱにみて平均密度に逆比例 している.

磁化率についてみると白亜紀後期に分類される試料 (K₁₋₂, K₂) は中部地域,東近畿地域そして中央中国地域 では10⁻⁴ (SI 単位,以下同様)前半の試料が非常に多く, 北陸地域,西近畿地域では10⁻³前半の試料が加わる.東 中国地域と北九州西部地域は更に10⁻²を示す試料がある 程度存在する.古第三紀に分類される試料 (PG₁, PG₂) は10⁻⁴の試料が一部存在するものの,10⁻³の試料に加え 10⁻²の強度を示す試料が主流を占める. 残留磁化と密度の相関は全く見られないが,残留磁化 と磁化率の相関 (Qn 比) は時代区分に関係なく 0.2 ~ 0.3 付近に見られる.これは火山岩に比べ花崗岩の強磁性鉱 物の磁区構造がかなり大きいことを意味しているものと 考えられる.

1. はじめに

本研究は、日本列島を構成する基盤深成岩類の中で花 崗岩類を対象にそれらが共通してもつ性質や、各時代、 地域が持つ特有の性質を明確にし、岩石の成因や地質構 造の解析、災害予知など各方面に必要な基礎資料を提供 する事を目標に取りまとめを行っている.今回は西南日 本内帯を対象に、これらを北陸地域(北アルプス・白川 地区)、中部地域、東近畿地域、西近畿地域、東中国地域、 中部中国地域そして北九州地域(第1図)に分けて記載 した.

今回用いた時代区分は100万分の1日本地質図第3版 (地質調査所,1992)である.それによれば深成岩類を 表す記号として中生代白亜紀前期(K₁),同後期(K₂; 新期領家)両者の中間を(K₁₋₂;古期領家),新生代古第 三紀曉新世(PG₁),始新世(PG₂),斬新世(PG₃),新

50km

第1図 研究対象地域と岩石採取地点.

a:北陸地域, b:中部地域, c:東近畿地域, d:西近畿地域, e:東中国地域, f:中央中国地域, g:北九州地域. Fig. 1 Sampling sites in the inner zone of Southwest Japan.

a: Hokuriku area, b: Chubu area, c: east Kinki area, d: west Kinki area, e: east Chugoku area, f: central Chugoku area, g: north Kyushu area. 生代新第三紀を (N_1, N_2, N_3) として表現している. こ れらをもとに今回扱った岩石試料の年代は K_{1-2} から K_2 , PG₁, PG₂ そして N_1 , N₃に到る. この区分によれば従 来の領家帯・山陽帯は主として K_{1-2} , K₂, 同じく山陰帯 は PG₁, PG₂, それに岐阜・福井県に N_1 , 北アルプスに N₃が見られる. N₁, N₃に関しては甲府・丹沢・西南日 本外帯など新第三紀花崗岩類 (N_2, N_3) などが存在する ので, 稿を改めることとし, ここでは簡単な記載にとど める.

これまで、西南日本内帯に露出する花崗岩類は白亜紀 から古代三紀に至る岩石が、南から北に向かって領家帯 ・山陽帯そして山陰帯と東西に帯状構造を示すような形 で記載されてきた. しかしこれらは村上(1979)や飯泉 ほか(1985)にも指摘されているように、これら帯間の 境界は全域を通じて必ずしも明瞭なものではなく、それ らが持つ諸種性質による区分と同位体年代などによる区 分が必ずしも一致しておらず問題もある. しかしこれら は大局的に共通した地質学的・岩石学的特徴を持ってい ることも事実であって、木野崎(1953)による鉱床学 的見地から領家帯以北に分布する貫入岩類を広島花崗岩 区と山陰花崗岩区に区分して以来、この区分は多くの人 達に受け継がれ利用されてきている. 今回は西南日本の これら花崗岩類が持つ物理的諸性質を地質年代による区 分を基に物理定数で再考察した.参考にしたのは前述の 100万分の1日本地質図第3版(地質調査所, 1992)お よびその後出版された同位体年代と地質図である.日本 の花崗岩類の同位体年代はこれまで K-Ar 法による結 果が多いが、K-Ar法による欠点は、比較的低温にお いてもアルゴンガスが鉱物から失われ 300℃以下に冷却 された後の年代を示しているに過ぎないと考えられるも のもあり信頼度は高くない.しかし 20 万分の1 地質図 幅「豊橋および伊良湖岬」(牧本ほか, 2004) は放射年 代値を CHIME (モナザイト) 法で測定したものを集約し、 現時点では最も信頼度が高いと考えられるが、同種のも のはこれ以外になく、Rb - Sr 法による値も含めて全体 像を考察した。従って今後、CHIME 法による年代値が 増えればある程度の見直しが必要となる可能性が残る. 今回対象とした地域は中央構造線西側, 富山・長野県, 北アルプス地域から福岡県北九州市に至る地域であるが 広島県下の一部地域、愛媛県高縄半島の試料数が少なく、 かつ山口県下の試料を欠いているのでこれら周辺地域の 結果は参考値として見て頂きたい。また西南日本内帯最 東端と考えられる足尾帯(金谷・大熊、2010)の一部に も山陽帯の特徴の一部に共通した性質が見られるのでこ れら結果についても記載した.

2. 研究の概要

西南日本内帯にみられる地質学的・鉱床学的研究の歴 史は非常に古くその報告も膨大な数にのぼる.他方,地 球物理的手法によるものとしては,重力探査,地震探査, 空中磁気探査,電磁探査などがあるが系統的に両者をつ なぐ研究は少ししか行われて来ていない.そのため日本 列島の露出面積の約12%を占める基盤花崗岩類に着目 し,日本列島全体の物理定数(岩石密度,孔隙率,磁化 率,残留磁化そして弾性波速度など)を同一精度で求め, それらの関係を明確にし,成因などに関する新知見を得 ることを目標にした.またこれら結果は当然重力探査や 磁気探査の構造解釈の一助になる事が考えられる.今回 は磁化率の強さを参考とした山陽帯,山陰帯(金谷・石 原、1973)の結果を地質年代を基に再考察した.ここで 使用した岩石試料およびその詳細については,産業技術 総合研究所のRIO-DB(研究情報公開データベースの一 貫としてwebサイトhttp://riodb02.ibase.aist.go.jp/pbrock21/index.html)からダウンロードが可能である.

今回使用した地質図は100万分の1日本地質図第3版、 地質調査所(1992),20万分の1地質図幅;日光(山元 ほか、2000)、富山(原山ほか、1996)、高山(山田ほ か、1989)、金沢(鹿野ほか、1999)、飯田(山田ほか、 1990),豊橋及び伊良湖崎(牧本ほか,2004),岐阜(脇 田ほか, 1992), 宮津 (黒田, 1968), 京都及大阪 (河 田ほか、1986)、和歌山(栗本ほか、1998)、鳥取(上 村ほか, 1974), 姫路 (猪木, 1981), 徳島 (牧本ほか, 1995), 松江及び大社(坂本ほか, 1982), 高梁(寺岡ほか, 1996)、岡山及丸亀(松浦ほか、2002)、浜田(鹿野 ほか、1988)、広島(山田ほか、1986)、福岡(久保ほ か, 1993). つぎに5万分の1地質図幅; 立山(原山ほ か、2000)、大町(加藤ほか、1989)、槍ヶ岳(原山ほか、 1991), 信濃池田 (加藤·佐藤, 1983), 敦賀 (栗本ほ か, 1999), 近江八幡 (吉田ほか, 2003), 呉 (東元ほか, 1985), 厳島(松浦ほか, 1999) である. その他 30 万 分の1東中国花崗岩地域地質図(笹田ほか, 1979)も参 考にした.

3. 試料および測定方法

3.1 測定試料

露頭より採取した数 kg の岩石塊より磁化率,残留磁 化そして密度測定用に円筒カッターを用いて円柱試料を 切り出し,これを一定の長さに切って円筒試料を作成し た.円筒試料の大きさは直径,長さともに25.4 (または 25.0) mm である.この円筒試料数個を測定し,その平 均値を用いた.円筒試料の大きさは帯磁率計(磁化率計) およびスピナー磁力計の試料ホルダーの形状による.

3.2 測定器および測定方法

密度測定は試料の3つの状態を秤量する1.強制湿潤 状態における水中重量,2.これを空気中に取り出し試料 表面に付着している水をふき取り空中重量,3.強制乾 燥状態における空中重量である.秤量は上皿天秤の下部

第1表	西南日本内帯に露出	する白亜紀・市	古第三紀花崗	岩類の物理 第	定数のとり)まとめ).		
Table 1	Physical properties of	of Cretaceous	to Paleogene	granitic ro	cks in the	inner z	one of	Southwest	Japan

	-			r					-		
				試料数	密度変化範囲	平均密度	最頻値	平均孔隙率	最頻値	磁化率最頻值	Qn比
	地質年代 (geologic time)			sample	density variation	mean density	mode	mean porosity	mode	magnetic susceptibility	Qn ratio
			n	range	(10^{3}kg/m^{3})		(%)		(x10 ⁻⁵) SI		
	K2			54	2.58-2.82	2.65	2.60	0.83	0.43	20	< 0.4
							2.66				
		PG_1		52	2.58-2.72	2.62	2.59	0.95	0.55	20	< 0.4
北陸地域							2.65		1.00	660	
										1430	
Hokuriku area			N ₁	21	2.62-2.77	2.70	2.72	0.99	0.58	2550	< 0.4
			N ₃	39	2.59-2.94	2.67	2.62	1.08	0.95	870	< 0.4
							2.67			1570	
	K ₁₋₂			62	2.60-2.87	2.72	2.68	0.67	0.42	20	< 0.4
中部地域							2.75				
Chubu area	K2			176	2.58-2.90	2.67	2.65	0.83	0.44	15	< 0.4
									0.78		
	K ₁₋₂			56	2.63-2.93	2.74	2.65	0.45	0.30	30	< 0.4
東近畿地域							2.78				
east Kinki area	K ₂			169	2.57-3.03	2.67	2.60	0.62	0.46	13	< 0.4
	_						2.65				
	K ₁₋₂					_		_		_	_
	K ₂			150	2.57-2.88	2.68	2.60	0.82	0.22	13	< 0.4
西䜣畿地域	2						2.65		0.61?	109	
west Kinki area							2.77			322	
		PG_1		21	2.60-2.88	2.66	2.64	0.49	0.35	600	< 0.4
										1560	
	K2			239	2.57-3.03	2.66	2.62	0.80	0.59	15	< 0.4
東中国地域	2									1810	
east Chugoku area		PG_1		84	2.58-2.88	2.65	2.60	0.89	0.39	590	< 0.4
				-			2.65		0.79	1020	
										2800	
		PG ₂		14	2.56-2.79	2.62	2.60	1.32		780	< 0.4
		-								1350	
	K ₁₋₂			4		2.74		0.51			< 0.4
	. т. Ка			152	2.56-2.91	2.65	2.61	1 10	0.58	10	< 0.2
由中中国神神	-2	PG		126	2 56-2 95	2.65	2.51	1.10	0.25	18	< 0.4
central Chugoku area		101		120	2.50 2.95	2.00	2.50	1.15	0.20	340	· 0.4
contrar enagoka area							2.07		1.09	1600	
									1.07	2500	
		PG		74	2.55-2.85	2.62	2.57	1.27	0.79	8	< 0.4
		- 2					2.63		1.82	163	
										1180	
										2570	
北九州地域	K2			42	2.59-3.10	2.73	2.70	0.62	0.38	30	< 0.4
north Kyushu area										1590	
合計(total)	Γ			1535							

フックにケージを吊るし試料を乗せ水中重量を、ついで 空中に取り出し表面水を短時間でふき取り空中重量を測 定する.この際使用した水は水道水を活性炭とイオン交 換樹脂を通したものを用いた.強制湿潤状態は水につけ た試料を真空槽中で減圧し、一定時間その状態を確保す ることで可能であり,乾燥重量の測定は強制乾燥状態(ま たはそれと類似の状態)が必要であるが、この測定では 試料中の自然残留磁化(NRM)の消滅や試料の変形を 恐れ熱を加えることを避けた.このため測定試料を特殊 空調室に長期間放置する、真空槽中に長時間放置するな どの方法を取った.

磁化率測定は Bison3101 型帯磁率計(Bison 社,米国)

および MS2 (MS2B) 型帯磁率計 (Bartington 社, 英国) を用い双方で測定を行い, それぞれの平均値で確認を 行った. 測定値の再現性は非常に良好である. 残留磁化 測定はスピナー磁力計 "SMD88"型(夏原技研,日本国) を使用した. またこれら値は SI にて表示した. 残留磁 化測定に用いた "SMD88"型スピナー磁力計は, X, Y, Z 軸方向それぞれ 4 回 (6 スピン) スタック回数 35 回の時, 全磁力のバラツキ (1 σ) が 50% を示す時の値はおおよ そ 3x10⁻³ (x10⁻⁶Am²) で単位体積あたり 2.3x10⁻⁴ (A/m) であり, 花崗岩の弱い試料の測定には必ずしも十分な感 度ではない. 磁化率は無名数, 磁化は A/m 表示である.

4. 測定結果

測定結果を表示するのに花崗岩類の分化指数として密度(乾燥密度, ρ_d)を横軸に使用した.花崗岩類を表示 する場合,通常SiO₂やDI(Differentiation Index)等が 使用される場合が多い.SiO₂の変化は一般に40~77% (重量比)程度でありこれが0.1%程度の精度をもつとす ると密度の変化範囲は2.58~3.10で密度測定の精度は 当報告では0.002程度が確保されているので精度的には 問題はないものと考えられる.今回検討地域の1つ,中 部地域の元素(SiO₂, Fe₂O₃(全鉄))と密度の関係(第 2図aおよびb)を表示した.1次式(y=ax+b)で近似 したが,両元素とも係数,定数ともに北上山地(金谷・ 大熊,2003),阿武隈山地(金谷・大熊,2007)の結果 と大差なく花崗岩類のこれら元素は密度と密接な関係に あることが認められる.

次に,第1図の地域区分と時代区分(白亜紀後期,古 第三紀そして新第三紀)に従い岩石を分類すると a. 北 陸地域(北アルプス,白川地区)(K₂, PG₁, N₁, N₃), b. 中部地域(K₁₋₂, K₂), c. 東近畿地域(K₁₋₂, K₂), d. 西 近畿地域(K₁₋₂, K₂, PG₁), e. 東中国地域(K₂, PG₁, PG₂), f. 中央中国地域(K₁₋₂, K₂, PG₁, PG₂), g. 北九 州地域(K₂)(第1表)である.

4.1 密度

これら7地域のK₁₋₂, K₂(白亜紀後期)の密度のヒス トグラムを示す(第3図 a ~ i).

北陸地域の K_2 に分類される花崗岩の乾燥密度 (ρ_d) の平均値 (ρ_{av}) は2.65 でその最頻値は2.60と2.66 にみられる.これらの岩石の多くは5万分の1地質図「大町」 (加藤ほか、1989)に記載されている有明花崗岩である. 中部地域にみられる K_{1-2} (古期領家)の平均値は2.72 でその最頻値は2.68と2.75 に見られる. 同様に K_2 (新期 領家)の平均値は 2.67 でその最頻値は 2.65 である.

東近畿地域の K₁₋₂ の平均値は 2.74 であってその最頻 値は 2.65 と 2.76 に見られる. 同様に K₂ の平均値は 2.68 で最頻値は 2.60 と 2.65 にみられる.

西近畿地域の K₁₋₂ の試料は,淡路島に数個存在するものの数が少ないためこれを省略した. K₂の平均は 2.68 その最頻値は 2.60, 2.65 そして 2.77 である.

東中国地域にみられる K₂の平均は 2.66, 最頻値は 2.62 である.

中央中国地域に見られる K₂の平均値は 2.65 で,その 最頻値は 2.61 である.

北九州地域に見られる K₂ は平均値 2.73, 最頻値は 2.70 であった.

次に新生代古第三紀に分類される PG₁, PG₂(第3図 j~o)についてみると、北陸地域の PG₁ は岐阜県白川 村から富山県上平村、利賀村に到る白川谷付近に分布す る古第三紀花崗岩類に琵琶湖北部から若狭湾にかけて分 布する江若花崗岩を含む.これらの平均密度は 2.62 で 最頻値は 2.59 と 2.65 である.

西近畿地域における PG₁ は宮津花崗岩のみであり平 均密度 2.66,最頻値 2.64 である.

次に東中国地域には PG₁, PG₂ がみられ, PG₁の平均 密度 2.66, 最頻値 2.60, 2.65, PG₂ はそれぞれ 2.62, 2.60 である.

中央中国地域にも PG₁, PG₂ があり PG₁ の平均密度 2.66, 最頻値 2.58, 2.67 であり, PG₂ の平均密度は 2.62 最頻値は 2.57, 2.63 である.

このほか北陸地域には新生代新第三紀花崗岩類(第 3図 p, q)の N₁, N₃は, それぞれ N₁の平均密度 2.70, 最頻値 2.72 で, N₃の平均密度 2.67, 最頻値 2.62, 2.67 が見られる.

第2図 中部地域の密度と化学元素(SiO₂ および Fe₂O₃(全鉄))の対比図. Fig. 2 Relationship between density and chemical elements (SiO₂, Fe₂O₃ as total Fe) in Chubu area.

- 第3図 各地域でみられる密度の頻度分布図(白亜紀後期 K₁₋₂, K₂, 古第三紀 PG₁, PG₂, 新第三紀 N₁, N₃). A:北陸地域 K₂, b: 中部地域 K₁₋₂, c:中部地域 K₂, d:東近畿地域 K₁₋₂, e:東近畿地域 K₂, f:西近畿地域 K₂, g:東中国地域 K₂, h:中 央中国地域 K₂, i:北九州地域 K₂, j:北陸地域 PG₁, k:西近畿地域 PG₁, l:東中国地域 PG₁, m:東中国地域 PG₂, n: 中央中国地域 PG₁, o:中央中国地域 PG₂, p:北陸地域 N₁, q:北陸地域 N₃.
- Fig.3 Histogram of density distribution of each area (Late-Cretaceous: K₁₋₂, K₂, Paleogene: PG₁, PG₂, Neogene: N₁, N₃). a: Hokuriku area K₂, b: Chubu area K₁₋₂, c: Chubu area K₂, d: east Kinki area K₁₋₂, e: east Kinki area K₂, f: west Kinki area K₂, g: east Chugoku area K₂, h: central Chugoku area K₂, i: north Kyushu area K₂, j: Hokuriku area PG₁, k: west Kinki area PG₁, l: east Chugoku area PG₁, m: east Chugoku area PG₂, n: central Chugoku area PG₁, o: central Chugoku area PG₂, p: Hokuriku area N₁, q: Hokuriku area N₃.

Fig.3 Continued.

4.2 孔隙率

 K_{1-2} , K_2 の孔隙率については密度と同様(第4図a~ q)で、その平均値でみると東近畿地域は K_{1-2} が0.45% でもっとも低く、ついで東近畿地域の K_2 及び北九州地 域の0.62%、中部地域 K_{1-2} の0.67%、東中国地域の0.80%、 西近畿地域の K_2 の0.82%、中部地域及び北陸地域 K_2 の 0.83%、中央中国地域の K_2 の1.10%となっている、こ れらを孔隙率の最頻値でみると、西近畿地域の 0.22% が 最も低く、東中国地域の 0.59% で最も高い. PG₁, PG₂ は西近畿地域の 0.49% が最も低く東中国地域の PG₂ で最 も高い. 孔隙率は測定した岩石の風化・変質の進行状況 と優白質・優黒質の割合を示すもので、岩石密度の最頻 値の低い値を示す地域ほど高い孔隙率がみられる. これ らはまとめの項でさらなる検討を行う.

Fig.4 Histogram of porosity distribution of each area. See also Fig.3.

4.3 磁化率

磁化率の大きさのみで各地域をみてみると(第5図 a ~ q),白亜紀後期に分類(K_{1-2} , K_2)される花崗岩類は 東中国地域および北九州地域西部を除き $1x10^{-2}$ を越す値 を示すものは見られず大半の試料は $1 \sim 3x10^4$ の弱い値 を示す.北陸地域,西近畿地域の試料はこれに 10^3 オー ダーの試料がある程度加わり,東中国地域及び北九州地 域西部は $1 \sim 2x10^2$ の高い値を示す試料がさらに加わる. 古第三紀に分類される花崗岩類 (PG₁, PG₂) は少量 の 10⁻⁴の試料が入るものの, 10⁻³に加え 10⁻² オーダーの 強度を有する試料の割合が非常に多い.

次に新第三紀に分類される花崗岩類(N₁, N₃)は10⁻⁴の試料はほとんど見当たらず10⁻²の試料が大半を占める.

Fig.5 Histogram of magnetic susceptibility distribution of each area. See also Fig.3.

物理定数から見た白亜紀一古第三紀花崗岩類一その4.西南日本内帯(金谷・大熊)

4.4 磁化率と密度の対比

磁化率と密度を対比(第6図a~k)した.これは岩 石の磁化率の大きさが分化指数に相関を示すためである. 密度がSiO₂やFe₂O₃(全鉄)に相関することはすでに 述べた(金谷・大熊 2003, 2007)ところであるが、こ のことは花崗岩質岩においては、斑レイ岩から狭義の花 崗岩までの鉄含有量は13 - 14%から0.6 - 0.8%(全鉄) の変化に対し磁化率が10 - 15倍程度の変化を示すこと による.鉄鉱物は塩基性岩においては常磁性の有色(鉄) 鉱物がより多く含まれるため、鉄含有量に対し強磁性鉱 物の割合が酸性岩に比べて低く、日本列島に見られる花 崗岩質岩は密度が2.60から2.95の変化に対し磁化率10 - 100(x10⁻⁵)および2000 - 20000(x10⁻⁵)の2直線 間(片対数で表示)に大半の試料が含まれる(アダカイ ト質岩の一部が外れる)事による.

本項目では上記の観点からこれらを多少細分化し「金 谷・大熊(2010)」同様, 密度 2.60~2.95 の変化に対 し磁化率 $30 \sim 300, 60 \sim 600, 600 \sim 6000$ (x10⁻⁵)の 3本の区分線(第6図)を加えて密度2.60のとき磁化率 30 以下 (常磁性), 30~60 (弱磁性), 60~600 (中磁性), 600~2000 (強磁性), 2000 以上 (アダカイト質, 強磁 性)と名付け記載した.本報告でもこの分類に従う. 白 亜紀後期花崗岩(K1-2, K2)に見られる磁化率は、東中 国地域と北九州地域西部(小倉-田川断層帯西部)を除 く5地域では原則として600(密度2.60)を超える強度(強 磁性)をもつものは殆どなく中磁性を示すものがもっと も多い。中磁性を示す花崗岩は、北陸地域においては有 明花崗岩体の一部、東近畿地域は野州花崗岩体、西近畿 地域では茨木花崗岩体、東中国地域(岡山南部)におい ては黒雲母花崗岩(I型, 濡木ほか, 1979;日本地質学 会, 2009) に多く見られ、同時に瀬戸内海の香川県、本島、 豊島そして小豆島の一部にもみられる。中央中国でも呉 花崗岩他(厳島他)の一部にもあり、斜長石中に二次的 な白雲母を生じたり, 有色鉱物の変質に伴って鉄酸化物 (magnetite)を生じるなど、マグマ固結後の2次的な熱 水変質を蒙っていると考えられる岩石の一部に中磁性を

示す試料が見られる. それ以外では弱磁性・常磁性で特 に中部地域及び東近畿地域では殆どの試料が常磁性を示 す. 強磁性を示す花崗岩は中部地域ではアダカイト質花 崗岩(日曾利花崗岩)があるが,東中国地域では花崗岩 を7種類に分類(濡木ほか,1979)しI~N型花崗岩ま たは細粒花崗岩に貫かれる中-塩基性岩(ホルンブレン ド黒雲母花崗閃緑岩を主体とし斜方輝石や普通輝石を含 むトーナル岩,石英閃緑岩,石英モンゾ閃緑岩などをと もなうもの(日本地質学会,2009)や,白亜紀後期花崗 岩類の各岩型Kgb,Kgd,Kfg(寺岡ほか,1996)の一 部にも強磁性を示すものが多く見られる.前者は田結庄 (1982)や高木(1993)によるFe~Ti酸化鉱物の報告 にもあるように磁鉄鉱または磁鉄鉱・チタン鉄鉱比が高 い値を示す岩石である. そして北九州地域西部では強磁 性花崗岩に属する岩石がいくつか見られる.

古第三紀花崗岩は北陸地域(PG₁)においては強磁性, 弱磁性・常磁性がほぼ同数で中磁性示す岩石が一部みら れる.本報告で北陸地域に含めた琵琶湖北岸から若狭湾 にいたる江若花崗岩はPG₁に分類されているが,岩体 を構成する粗粒黒雲母花崗岩と中粒黒雲母花崗岩は全て 常磁性・弱磁性花崗岩で細粒斑状黒雲母花崗岩のみ中 磁性花崗岩に分類される.西近畿地域(PG₁、宮津花崗 岩)は強磁性,中磁性ほぼ同数である.東中国地域(PG₁, PG₂)においては強磁性花崗岩が最も多く,ついで中磁 性,弱磁性・常磁性花崗岩も僅かであるが認められる. 中部中国地域(PG₁, PG₂)は強磁性花崗岩が圧倒的に 多くついで中磁性,弱磁性・常磁性も一部みられる.

新第三紀花崗岩類 N₁, N₃ は西南日本内帯では,北陸 地域にのみ存在し,N₁(能郷白山岩体ほか)は強磁性花 崗岩が大半で,N₃(滝谷花崗岩,黒部川花崗岩)は強磁 性花崗岩約 65%,中磁性花崗岩 35% である.

4.5 残留磁化

磁化率同様, 密度と自然残留磁化 (NRM) の対比図 (第 7 図 a ~ k) を作成した.

 K_{1-2} , K_2 については密度の増加と共にやや右肩上がり に見うけられる地域も見られるが、かなり漠然としてお り相関があるとは言えない. PG_1 , PG_2 , N_1 そして N_2 は K_{1-2} , K_2 よりも多少明確になるもののやはり相関があ るとは断定できない.

4.6 Qn 比(Königsberger ratio)

自然残留磁化(NRM)と現在の地球磁場による誘導 磁場(κH , κ は磁化率, Hは現在の地球磁場の強さ)の 比Qnの頻度分布図(第8図a~q,階級値は0.2)を示す. K₂の西近畿地域を除き地質年代に関係なく殆どが0.4以 下の値を示す.西近畿地域も0.4以下が多い.しかし全 体の約25%がQn比2.0を超えている.

Qn 比に関連して磁化率と残留磁化の対比図(第9図

a~k)を示す. 多少のバラツキが認められる地域はあ るものの両者は明らかな正の相関を示す.

5. 考察と解釈

今回考察を行った西南日本内帯は白亜紀後期,古第三 紀そして新第三紀に到る花崗岩質岩類であって,絶対年 代でおよそ1億年より170万年に到る.これらを白亜紀 後期,古第三紀そして新第三紀に分けて考察すると白亜 紀後期のK₁₋₂(古期領家)は主として今回分類の中部地 域と東近畿地域に存在(西近畿地域の淡路島にも少量) し,K₂(新期領家)はそれ以外の5地域を含めた全地域 に存在する.これらを平均密度でみると,中部・東近畿 地域のK₁₋₂は2.72,2.74に対し,K₂は2.65の北陸・中 央中国地域から2.68の東近畿・西近畿地域に到る狭い 範囲に集中している(北九州地域は2.73).これらを最 頻値で見るとK₁₋₂はK₂より高い最頻値をもつことから K₁₋₂は密度の大きい岩石の占める割合がより多いためと 考えられる.

つぎに古第三紀の PG₁ をみると北陸地域の 2.62,西 近畿・東中国・中央中国地域の平均値はいずれも 2.66 で, 北陸地域は最頻値の低いものの割合が多いことによるも のではないかと考えられる.PG₂は中国地方にしか存在 せず平均密度は 2.62 であるが,これはその岩石記載(文 象斑岩,文象質花崗岩,細粒花崗岩など浅成の岩相で特 徴づけられる)からみて,その岩質によるものと考えら れる.

同様に孔隙率についてみるとその平均値は東近畿地域のK₁₋₂の0.45%から中央中国地域のPG₂の1.27%に到る. 日本の白亜紀後期花崗岩類についての密度と孔隙率の対 比図を作成すると、y=a/(x-b)(y;孔隙率、x;密度、a、b; 定数)の関係が見られa、bは地域により多少異なる値 (地域の特徴、風化、変質等の影響などを受ける)を示す. 孔隙率は岩質により異なり、密度が2.60の時孔隙率は おおよそ1.3%、2.65の時0.7%、2.70のとき0.55%、2.80 の時0.38%程度の数値を示す.これらを元に西南日本の 平均密度と平均孔隙率をみると大局的には比例関係が見 受けられる.しかしこれらはそれらが持つ最頻値や試料 全体の風化・変質の程度やその割合もある程度反映して いるものと考えられる.

つぎに磁化率についてみると白亜紀後期の K_{1-2} , K_2 は 一般に低く, アダカイト質岩を除くと 10 ~ 30x10⁻⁵ で 高いものは見られない.しかし東中国地域の K_2 は低い ものの他に,高い磁化率示すものが 8% 強含まれる.また, 北九州地域の花崗岩類も小倉一田川断層帯より西部のも のに高い磁化率を示す岩石が多い.同様に古第三紀花崗 岩類の PG₁, PG₂ についてみると,北陸地域では常磁性 的なものの他にやや高い値を示すものが見られる.西近 畿地域も同様である,東中国地域・中央中国地域はかな り高い所にピークが見られる.北陸地域の新第三紀花崗 岩類 N₁, N₂ は非常に高いピークがみられる.

磁化率と密度について K1-2, K2 をみると、北陸地域 の K。は常磁性の試料が多く弱磁性のものは数が少なく、 中磁性の試料が全体のおおよそ30%を占める。中部地 方の K1.2, K2 は大半の試料が常磁性であるが数個強磁性 に入る試料(アダカイト質岩、前述)が見られる. 東近 畿地域にみられる K1.9, K, は多くが常磁性花崗岩であ るが中磁性花崗岩も一部に見られる. 西近畿地域に見 られる K₂は常磁性・弱磁性共に多く中磁性花崗岩もそ れなりの数が見られる.東中国地域のK₂は常磁性花崗 岩が多く、弱磁性もある程度認められるが、密度の低い (2.67以下)約20%の試料に中磁性が、また約8%の試 料に強磁性の岩石が認められる. 前回報告の足尾帯南部 の中磁性花崗岩は、20万分の1地質図「日光」(山元ほ か、2000) にみられる分類凡例が後期白亜紀-前期古第 三紀になっている事、及び中磁性を示す花崗岩の分布が 群馬県利根郡武尊山周辺,群馬県水上町,奥利根湖周辺 に限られる事などから今回の分類基準のK2に該当しな い可能性があり、山陽帯に見られる特徴とは異なるもの ではないかと考えられる. 東中国地域の強磁性花崗岩の 一部については既に報告(高木、1993)があるが、これ ら強磁性花崗岩に分類される岩石はその割合は異なるも のの、東中国の山陽帯に属するいくつかの岩型に見られ る. 中央中国地域の K₂は常磁性花崗岩がかなり多くま た、12% 前後の試料が中磁性を示す。北九州地域は小倉 一田川断層帯東側の K。は常磁性を示すものが多いが西 側の多くは強磁性花崗岩である。これらについては、既 に詳細な報告(石原ほか, 1979)がある.

つぎにPG1, PG2について考察すると、北陸地域の PG₁は常磁性・弱磁性、中磁性、強磁性を示すものの割 合はそれぞれ 1/3 ずつで強磁性を示す試料は主として白 川谷に露出する試料(白川花崗岩)であり、琵琶湖、若 狭湾付近にみられる江若花崗岩については強磁性を示す ものはなく常磁性・弱磁性及び中磁性を示すものがほぼ 同数である.西近畿地域(宮津花崗岩)は強磁性,中磁 性を示し、前者の割合が多い。東中国地域のPG1は強 磁性を示すもの 73%, 中磁性を示すもの 18%, 弱磁性・ 常磁性を示すもの9%である.PG2は強磁性,中磁性で, 前者が約80%である。中央中国地域のPG1は強磁性・ 中磁性そして常磁性・弱磁性の割合は 60%・25% そして 15% であり、PG2 のそれは 58%、 32% そして 10% である. 新第三紀に分類される N₁ は能郷白山岩体他で殆どが強 磁性花崗岩であり、N。に分類される黒部川・滝谷花崗 岩は 2/3 が強磁性, 1/3 が中磁性である.

残留磁化についてみると密度との相関は見られない. Qn比は地域に関係なく 0.4 以下を示す.一部地域の試料 には雷の影響を受けたと見られる Qn比の高いものが認 められる.

第6図 密度と磁化率の対比図(白亜紀後期 K₁₋₂, K₂, 古第三紀 PG₁, PG₂, 新第三紀 N₁, N₃). a:北陸地域 ◆:K₂, b:中部地域 ◆: K₁₋₂, ■:K₂, c:東近畿地域 ◆:K₁₋₂, ■:K₂, d:西近畿地域 ◆:K₂, e:東中国地域 ◆:K₂, f:中央中国地域 ◆: K₂, g:北九州地域 東◆:K₂, 西■:K₂, h:北陸地域 ◆:PG₁, ●:N₁, ■:N₃, i:西近畿地域 ◆:PG₁, j:東中国地域 ◆:PG₁, ■:PG₂, k:中央中国地域 ◆:PG₁, ■:PG₂. 三本の直線は a;常磁性・弱磁性, b;中磁性そして c;強磁性の区分線をあらわす.

 $Fig. 6 \quad Relationship \ between \ density \ and \ magnetic \ susceptibility.$

Three straight lines indicate the boundary of a; paleomagnetic, lower magnetic, b; medium magnetic and c; high magnetic zones.

(Late Cretaceous: K_{1-2} , K_2 , Paleogene: PG_1 , PG_2 , Neogene: N_1 , N_3), a: Hokuriku area \bigstar : K_2 , b: Chubu area \bigstar : K_{1-2} , \blacksquare : K_2 , c: east Kinki area \bigstar : K_{1-2} , \blacksquare : K_2 , d: west Kinki area \bigstar : K_2 , e: east Chugoku area \bigstar : K_2 , f: central Chugoku area \bigstar : K_2 , g: north Kyushu area, east \bigstar : K_2 , west \blacksquare : K_2 , h: Hokuriku area \bigstar : PG_1 , \blacksquare : N_3 , i: west Kinki area \bigstar : PG_1 , j: east Chugoku area \bigstar : PG_2 , k: central Chugoku area \bigstar : PG_2 .

第6図 続き. Fig.6 Continued.

第7図 密度と残留磁化の対比図.

a:北陸地域 K₂, b:中部地域 K₁₋₂, K₂, c:東近畿地域 K₁₋₂, K₂, d:西近畿地域 K₂, e:東中国地域 K₂, f:中部中国 地域 K₂, g:北九州地域 K₂, h:北陸地域 PG₁, N₁, N₃, i:西近畿地域 PG₁, j:東中国地域 PG₁, PG₂, k:中央中国 地域 PG₁, PG₂ (記号の区分は第6図参照).

Fig.7 Relationship between density and NRM. See also Fig.6.

第7図 続き. Fig.7 Continued.

第9図 磁化率と残留磁化の対比図.

a:北陸地域 K₂, b:中部地域 K₁₋₂, K₂, c:東近畿地域 K₁₋₂, K₂, d;西近畿値域 K₂, e:東中国地域 K₂, f:中央中国 地域 K₂, g:北九州地域 K₂, h:北陸地域 PG₁, N₁, N₃, i:西近畿地域 PG₁, j:東中国地域 PG₁, PG₂, k:中央中国 地域 PG₁, PG₂ (記号の区分は第6図参照). 図中の実線は *Qn*=0.2 を表す. (記号の区分は第6図参照)

 $\label{eq:Fig.9} Fig.9 \qquad \mbox{Relationship between magnetic susceptibility and NRM. Solid lines show Qn=0.2$. See also Fig.6.}$

Fig.9 Continued.

6. まとめと結論

西南日本内帯を7地域に分け地質年代を基にこれを観 察した.これらの結果以下の事が確認された.

密度の平均値は白亜紀後期、中部地域・東近畿地域の K₁₋₂ (古期領家) と北九州地域 K₂ (新期領家) が, 2.72 ~ 2.74 と最も大きく、北陸地域、中央中国地域の PG₁, PG₂ (古第三紀)の 2.62 で最も小さい.

2. 孔隙率は大局的に見て各地域の平均密度(最頻値) の大きさに逆比例している.また密度が2.80~2.60(斑 レイ岩~狭義の花崗岩)まで変化した時の孔隙率の変化 はおおよそ0.38~1.4%で、その差はほぼ1%見られる. これは両岩石の構成鉱物の違い、つまり石英とカリ長石 の量比が完全に異なることから、冷却時の石英の相変化 (α - β)や、鏡下でみられる石英・カリ長石の割れ目の 存在などからも説明される.

3. 岩質を考慮して分けたその岩石のもつ磁化率の大 きさにより強磁性,中磁性,弱磁性・常磁性に分類した 時,強磁性を示す岩石の多い区域,少ない区域に分類す ることができる.

強磁性を示す地域は強磁性を示す岩石試料の割合が圧 倒的に多いことを示すもので中磁性,弱磁性・常磁性の 岩石試料もある割合で含まれ,地質年代や地域によって その割合は異なる.

これらを地質年代で分けてみると、白亜紀後期に分類 される岩石のうち K_{1.2}に分類される北陸地域,中部地 域, 東近畿地域, 西近畿地域, 中央中国地域の花崗岩は 主として a. 常磁性・弱磁性で構成され、K₂に分類され る花崗岩は b. 常磁性・弱磁性、中磁性に分類され、古 第三紀に分類される岩石 (PG₁, PG₂) は主として c. 中 磁性、強磁性花崗岩で構成される3種に分けられる。こ れら岩石はこれまで、それぞれの岩石学的特徴や絶対年 代などから領家帯、山陽帯そして山陰帯などと名付けら れ使用されてきた. しかし各帯の境界は必ずしも明瞭で ないところもあり、これまでにも報告されているように 磁気的に見ても、東中国地域において K2 に分類される 花崗岩のいくつかに強磁性を示す岩石が見受けられ、ま た K₂に分類されてきた山陽帯に密度 2.58~2.66の低 密度(SiO₂=77-70%)の部分に中磁性を示す岩石がい くつか存在する. これはこれら地域の密度と主成分元素 (SiO₂, Fe₂O₃)の相関々係はそうでない地域の結果と比 較して係数がやや異なる事実とも合わせ今後検討される べき問題と考えられる.

4. 残留磁化と相関が認められるのは磁化率であって、 その Qn 比(Königsberger ratio)は地域によらず 0.4 以 下である.このため磁気探査を行った時、誘導磁化への 影響は非常に小さい. 謝辞:本研究を進めるにあたり中央中国地域(浜田・広 島南北断面)および北九州地域の岩石試料の提供を受け, 現地における地質情報や鏡下観察結果など貴重な情報の 提供を頂き,かつ適切な助言をして戴いた産業技術総合 研究所地質情報研究部門,松浦浩久博士には深く感謝の 意を表する.

文 献

地質調査所(1992)100万分の1日本地質図第3版.

- 原山 智·竹内 誠・中野 俊・佐藤岱生・滝沢文教(1991) 「槍ヶ岳地域の地質」. 地域地質研究報告(5万分の 1地質図幅),地質調査所.
- 原山 智・滝沢文教・加藤碵一・駒澤正夫・広島俊男・ 須藤定久(1996)20万分の1地質図幅「富山」, 地質調査所.
- 原山 智·高橋 浩·中野 俊·苅谷愛彦·駒沢正夫(2000) 「立山地域の地質」. 地域地質研究報告(5万分の 1地質図幅),地質調査所.
- 東元定雄・松浦浩久・水野清秀・河田清雄(1985)「呉 地域の地質」.地域地質研究報告(5万分の1地質 図幅),地質調査所.
- 飯泉 茂・沢田順弘・先山 徹・今岡照喜(1985)中国・ 四国地方の白亜紀⁻古第三紀火成活動―火成岩類の 対比を中心として―.地球科学, **39**, 372 - 384.
- 猪木幸雄(1981)20万分の1地質図幅「姫路」,地質 調査所.
- 石原舜三・唐木田芳文・佐藤興平(1979)北九州―西中 国地域の磁鉄鉱系とチタン鉄鉱系花崗岩類の分布 一特に小倉―田川断層帯の再評価―.地質雑, 85, 47-50.
- 金谷 弘・石原舜三(1973)日本の花崗岩質岩石にみら れる帯磁率の広域的変化. 岩鉱, 68, 211-224.
- 金谷 弘・大熊茂雄 (2003) 物理定数から見た白亜紀一
 古第三紀花崗岩類一その1.東北地方北部.地調研
 報, 54, 303 313.
- 金谷 弘・大熊茂雄(2007)物理定数から見た白亜紀一 古第三紀花崗岩類―その2.東北地方南部.地調研 報,58,239 - 252.
- 金谷 弘・大熊茂雄(2010)物理定数から見た白亜紀—
 古第三紀花崗岩類—その3.足尾帯(関東地方北部).
 地調研報, 61, 1-15.
- 鹿野和彦・松浦浩久・服部 仁・山田直利・東元定雄・ 広島俊男・須田芳朗・駒澤正夫(1988)20万分の 1地質図幅「浜田」,地質調査所.
- 鹿野和彦・原山 智・山本博文・宇都浩三・駒澤正夫・ 広島俊男・須藤定久(1999)20万分の1地質図幅 「金沢」,地質調査所.
- 加藤碵一・佐藤岱生(1983)「信濃池田地域の地質」.地 域地質研究報告(5万分の1地質図幅),地質調査所.

- 加藤硯一・佐藤岱生(1989)「大町地域の地質」. 地域 地質研究報告(5万分の1地質図幅),地質調査所.
- 河田清雄・宮村 学・吉田史郎 (1986) 20 万分の1 地 質図幅「京都及大阪」,地質調査所.
- 木野崎吉郎(1953)中国地方の花崗岩とタングステン及 びモリブデン鉱床について(概報). 広大地研報, **3**, 61 - 76.
- 久保和也・松浦浩久・尾崎正紀・牧本 浩・星住英雄・ 鎌田耕太郎・広島俊男(1993)20万分の1地質図 幅「福岡」,地質調査所.
- 栗本史雄·牧本 博·吉田史郎·高橋祐平·駒澤正夫(1998) 20万分の1地質図幅「和歌山」,地質調査所.
- 栗本史雄・内藤一樹・杉山雄一・中江 訓(1999)「敦 賀地域の地質」.地域地質研究報告(5万分の1地 質図幅),地質調査所.
- 黒田和男(1968)20万分の1地質図幅「宮津」,地質調査所.
- 松浦浩久・栗本史雄・吉田史郎・斉藤文紀・牧本 博・ 利光誠一・巌谷敏光・駒澤正夫・広島俊男(2002) 20万分の1地質図幅「岡山及び丸亀」,地質調査所.
- 松浦浩久・豊 遙秋・佃 栄吉 (1999)「厳島地域の地 質」地域地質研究報告 (5万分の1地質図幅),地 質調査所.
- 牧本 博・利光誠一・高橋 浩・水野清秀・駒澤正夫・ 志知龍一(1995)20万分の1地質図幅「徳島」, 地質調査所.
- 牧本 博・山田直利・水野清秀・駒澤正夫・須藤定久 (2004) 20 万分の1 地質図幅「豊橋及び伊良湖岬」, 地質 調査総合センター.
- 村上允英(1979) 東中国における後期中生代 ~ 古第三紀 酸性岩類の南北変化の概要.地質学論集. 17, 3 – 18.
- 日本地質学会編,日本地方地質誌6 中国地方(2009), p.296-299,朝倉書店.
- 濡木輝一・浅見正雄・光野千春(1979)岡山県中・南部 の花崗岩類. 地質学論集. 17, 35 – 46.

- 坂本 亨・山田直利・須田芳郎(1982)20万分の1地 質図幅「松江及び大社」,地質調査所.
- 笹田政克・山田直利・先山 徹・上田 薫(1979)東中 国,三朝・奥津・湯原地域の白亜紀後期~古第三紀 火成岩類,地質学論集,17,19-35.
- 田結庄良昭(1982) 東中国および近畿地域の後期中生 代[~]古第三紀花崗岩類中の Fe – Ti 酸化鉱物. 岩鉱, **77**, 387 – 402.
- 高木哲一(1993)磁鉄鉱系列/チタン鉄鉱系列花崗岩質 マグマの酸化還元状態の推移—中国地方中部[~]東部 の例—. 岩鉱, **88**, 165 – 178.
- 寺岡易司・松浦浩久・牧本 博・吉田史郎・神谷雅治・ 広島俊男・駒澤正夫・志知龍一(1996)20万分の 1地質図幅「高梁」,地質調査所.
- 上村不二男・坂本 亨・山田直利 (1974) 20 万分の 1 地質図幅「鳥取」,地質調査所.
- 脇田浩二・原山 智・鹿野和彦・三村弘二・坂本 亨・ 広島俊男・駒澤正夫(1992)20万分の1地質図幅 「岐阜」,地質調査所.
- 山田直利·東元定雄·水野清秀·広島俊男·須田芳郎 (1986) 20 万分の1 地質図幅「広島」. 地質調査所.
- 山田直利・野沢 保・原山 智・滝沢文教・加藤碵一・ 広島俊男・駒澤正夫(1989)20万分の1地質図幅 「高山」,地質調査所.
- 山田直利・脇田浩二・広島俊男・駒澤正夫(1990)20 万分の1地質図幅「飯田」,地質調査所.
- 山元孝広・滝澤文教・高橋 浩・久保和也・駒澤正夫・ 広島俊男・須藤定久 (2000) 20 万分の1 地質図幅「日 光」,地質調査所.
- 吉田史郎・西岡芳晴・木村克巳・長森英明(2003) 「近 江八幡地域の地質」,地域地質研究報告(5万分の 1地質図幅),地質調査総合センター.

(受付:2010年9月8日;受理:2011年3月11日)