論文-Article

北海道東部、屈斜路・摩周カルデラ噴出物の放射炭素年代値

山元孝広^{1,*}·伊藤順一¹·中川光弘²·長谷川健^{2,4}·岸本博志^{2,3}

Takahiro Yamamoto¹, Jun-ichi Itho¹, Mitsuhiro Nakagawa², Takeshi Hasegawa² and Hiroshi Kishimoto (2010) ¹⁴C ages for the ejecta from Kutcharo and Mashu calderas, eastern Hokkaido, Japan. *Bull. Geol. Surv. Japan*, vol. 61 (5/6), p. 161-170, 4 figs, 3 tables.

Abstract: Eruption ages of the ejecta from Kutcharo and Mashu calderas were systematically determined by ¹⁴C dating. 16 charred samples were newly obtained from the Mashu and Nakashumbetsu Tephra Formations around the calderas and dated by AMS and β -counting methods. Examined units are Ma-d, Ma-e, Ma-f, Ma-j, Ma-k, Ma-l and Ml-a in the Mashu ejecta and 6 Nakashumbetsu tephra layers including Kutcharo Pumice Flow Deposit I (KpI), which is the youngest caldera-forming product from Kutcharo caldera. Results of the ¹⁴C dating range from 3,660 ±40 yBP to 36,080±1,300 yBP, and are consistent with the tephrostratigraphy. Calendar age for KpI was newly calculated at almost 40 ka and this age shows there was about 70,000 years recurrence interval between KpI and KpIV caldera-forming eruptions. Mashu caldera has appeared on the eastern part of Kutcharo caldera immediately after the KpI eruption, and calendar age for its main caldera-forming eruption were determined at ca. BC 5,600.

Keywords: Kutcharo caldera, Mashu caldera, ¹⁴C age, tephrostratigraphy

要 旨

北海道東部, 屈斜路・摩周カルデラの噴火年代を, ¹⁴C 年代測定により系統的に明らかにした。今回。両 カルデラ周辺に分布する摩周テフラ層及び中春別テフ ラ層から新たに16の炭化物試料を採取し、これらを AMS・β線計測法により測定している。測年対象と した噴火ユニットは、摩周カルデラ噴出物中の Ma-d, Ma-e, Ma-f, Ma-j, Ma-k, Ma-l 及び Ml-a と, 屈斜路 軽石流 I (KpI) を含む中春別テフラ群の6層である. KpI は屈斜路カルデラで発生した最も新しいカルデラ 形成噴火の堆積物であり、その正確な年代決定が期待 されていた.¹⁴C年代測定結果は∂¹³C補正値で3,660 ±40yBPから, 36,080±1,300yBPにまでわたるが、い ずれも外来テフラも含めたテフラ層序との矛盾はない. KpI 噴火の暦年代については、ほぼ 40ka と算出され、 KpIV を噴出した屈斜路カルデラ最大の噴火から約7万 年の再来間隔で巨大噴火が繰り返されたことになる. 摩周カルデラは、Kpl 噴火直後から屈斜路カルデラの 東壁上に形成されたもので、成層火山体形成後の約7.6 千年前(Cal BC5600年頃)に主カルデラ形成噴火を起 こしたことが明らかになった.

1. はじめに

屈斜路・摩周カルデラは、千島弧南部、阿寒-知床 火山列の南西部を構成する第四紀のカルデラ火山群で ある(第1図). 屈斜路カルデラは、約34万年前から 若梅落結凝灰岩・屈斜路軽石流 VIII~I (KpVIII~I)の 大規模火砕流を噴出し、現在のカルデラ地形(26×20 km)を形成した(勝井・佐藤,1963). その後、カル デラの東部には新たに摩周カルデラが出現し(勝井, 1955;岸本ほか、2009)、両カルデラが出現し(勝井, 1955;岸本ほか、2009)、両カルデラとも活火山とし て活動が継続している. カルデラ形成噴火は発生頻度 が低いため防災の観点からあまり検討されることはな いものの、地層処分のような超長期の将来予測には無 視できない現象である. 屈斜路・摩周カルデラは、最 近約10万年に繰り返しカルデラ形成噴火が起きた地域 であり、カルデラ形成噴火発生プロセスを理解するた めには最適の対象であろう. そのためには、まずカル

¹地質情報研究部門(AIST, Geological Survey of Japan, Institute of Geology and Geoinformation, GSJ)

²北海道大学大学院理学研究院自然史科学部門(Hokkaido University, Graduate School of Science, Department of Natural History Sciences)

³現所属:アジア航測株式会社防災地質部(Asia Air Survey Company, Department of Disaster Prevention)

⁴現所属:茨城大学理学部(Ibaraki University, College of Science)

^{*} Corresponding autor: T. YAMAMOTO, Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan. Email: t-yamamoto@aist.go.jp

図 屈斜路・摩周カルデラ周辺の地形陰影図 と露頭位置、Loc. 1 = 計根別(43°29'59.2" N: 144°47'29.0"E); Loc. 2 = 標 茶(43°18' 7.0"N, 144°32'57.0"E); Loc. 3 = 中春別(43 °28'36.4"N, 145°3'39.7"E); Loc. 4 = 菊 水 (43°31'44.7"N, 145°6'20.2"E); Loc. 5 = 床 丹(43°29'21.8"N, 145°15'8.3"E); Loc. 6 = 江 南(43°47'26.4"N, 144°34'42.9"E); Loc. 7 = 養老牛(43°33'8.7"N, 144°43'54.2"E).

Topographic image around Kutcharo and Mashu calderas and location of outcrops. Loc. $1 = \text{Kenebetsu} (43^\circ 29' 59.2"\text{N}: 144^\circ 47' 29.0"\text{E});$ Loc. $2 = \text{Chibecha} (43^\circ 18' 7.0"\text{N}, 144^\circ 32' 57.0")$ E); Loc. $3 = \text{Nakashumbetsu} (43^\circ 28' 36.4"\text{N}, 145^\circ 3' 39.7"\text{E});$ Loc. $4 = \text{Kikusui} (43^\circ 31' 44.7")$ N, 145°6'20.2"E); Loc. $5 = \text{Tokotan} (43^\circ 29' 21.8"\text{N}, 145^\circ 15' 8.3"\text{E});$ Loc. $6 = \text{Konan} (43^\circ 47' 26.4"\text{N}, 144^\circ 34' 42.9"\text{E});$ Loc. $7 = \text{Yoroushi} (43^\circ 33' 8.7"\text{N}, 144^\circ 34' 54.2"\text{E}).$

デラ形成噴火の時系列を正確に押さえておく必要がある.

本研究では、屈斜路・摩周カルデラ噴出物の年代を ¹⁴C年代測定で正確に編年することを目的とし、両カ ルデラの周辺で噴出物層序の調査と試料採取を行った. 両カルデラ起源の噴出物は、南東域の根釧原野地域で は下位から中春別テフラ層・茶内テフラ層・摩周テフ ラ層としてその層序が明らかにされている(宮田ほか、 1988a).また、両カルデラ北方の斜里平野地域に分布 するものについては佐藤(1968)や隅田(1988)が層 序の概略を明らかにしている.本研究では、基本的に これらの層序を踏襲した上で、両地域から合計 16 試料 を採取し、その年代を測定した.個々の噴出物の岩石 学的特徴については、岸本ほか(2009)及び長谷川ほ か(2009)に別途、記載してあるので、参照されたい. 本報告の一部は、日本地球惑星科学連合 2007 年大会 で発表している(伊藤ほか、2007).

2. 層序の概略

根釧原野・斜里平野の両地域では、大規模火砕流堆 積物である屈斜路軽石流 IV(KpIV)が広く分布して おり、その上位には多くの降下火砕物、数枚の火砕流 堆積物を挟んだ風成層が堆積している. KpIV は海洋酸

素同位体ステージ 5e の海成段丘を覆い、かつ直上に洞 爺テフラ (Toya) が重なることから、その噴出年代は 約11万年前(110ka),またマグマ総噴出量は150km³ 以上とされている(奥村, 1991;町田・新井, 2003). 両地域で KpIV の上位にある降下火砕物のほとんどは, その粒度と分布から屈斜路・摩周カルデラ起源とみら れ、しかも両カルデラ噴出物間では系統な全岩化学組 成の違いが認められる(長谷川ほか, 2009).ただし、 両噴出物とも斑晶に斜方輝石・単斜輝石を含む灰色~ 白色の軽石が卓越しており、野外において肉眼で区別 することは難しい. 宮田ほか(1988a)は根釧原野に分 布する KpIV の上位にある降下火砕物群を、下位から 下部中春別テフラ層(NI 群), 上部中春別テフラ層(Nu 群), 茶内テフラ層 (Ch 群), 下部摩周テフラ層 (MI 群), 上部摩周テフラ層(Ma群)に再定義し、その詳細を 明らかにしている。勝井・佐藤(1963)の屈斜路軽石 流堆積物 II/III(KpII/III)· 屈斜路軽石流堆積物 I(KpI) は彼らの下部中春別テフラ層に、摩周カルデラ形成期 の噴出物は上部摩周テフラ層中にそれぞれ含まれてい る. また,隅田 (1988) は,斜里地域で止別軽石 (Ymb)・ 東カヤ野軽石 (HkP)・豊住軽石 (TyP) などの層序を 明らかにしている.本研究で確認した降下火砕物の層 序は、基本的に宮田ほか(1988a)や隅田(1988)と 矛盾しておらず、彼らのテフラ名をそのまま使用した

- 第2図 摩周テフラ層・茶内テフラ層・中春別テフラ層の露頭柱状図. Ch-a~-d=茶内テフラ群; Ds-Oh = 大雪御鉢平テフラ;
 HkP = 東カヤ野軽石; Kc-Hb = クッチャロ羽幌テフラ; Kc-Sr = クッチャロ庶路テフラ; Ma-b~-l = 上部摩周テフラ群;
 Ml-a ~-e = 下部摩周テフラ群; Na-P = 中斜里軽石; Ng = 濁川テフラ; Nu-a~-r = 上部中春別テフラ群; Spfa-1 = 支笏
 第1テフラ; TyP = 豊住軽石; YmP = 止別軽石. 露頭位置は第1図を参照.
- Fig. 2 Tephrostratigraphic sections through the Mashu, Chanai and Nakashumbetsu Tephra Formations. Ch-a to -d = Chanai tephra series; Ds-Oh = Daisetsu-Ohachidaira tephra; HkP = Higashikayano pumice; Kc-Hb = Kutcharo-Haboro tephra; Kc-Sr = Kutcharo-Shiyoro tephra; Ma-b to -l = Upper Mashu tephra series; Ml-a to -e = Lower Mashu tephra series; Na-P = Nakashari pumice; Ng = Nigorikawa tephra; Nu-a to -r = Upper Nakashumbetsu tephra series; Spfa-1 = Shikotsu 1 tephra; TyP = Toyozumi pumice; YmP = Yanbetsu pumice. See Fig. 1 for location.

(第2図).また,一部のテフラについては,構成物のモード組成と火山ガラス・主要鉱物の屈折率を測定しており、その結果は第1表にまとめている.

斜里・根釧両地域の降下火砕物の中には斑晶に角閃 石を含む降下火山灰が複数認められるが、これらは屈 斜路・摩周カルデラよりを遠方から飛来したものであ る.その中でも大雪御鉢平降下軽石(Ds-Oh;勝井ほか、 1979;目次、1983)は良く追跡でき、根釧原野地域と 斜里平野地域とを結ぶ重要な鍵層となっている.斜里 地域における Ds-Ohの存在は、隅田(1996)によっ て記載され下位の YmP と上位の HkP の間に位置する とされている.今回の調査でもこの層序関係が再確認 され、Ds-Oh は YmP と HkP の間に層厚 6cm の降下堆 積物として分布する(Loc. 6).下部 3cm は軽石細粒火 山礫混じりのガラス質火山灰、上部 3cm はガラス質の 中粒火山灰から構成されている.Ds-Oh の分布は根釧 原野(本報告の Loc. 4 と同じ露頭)でも確認されてお り(和田ほか、2007)、上部中春別テフラ層中の Nu-q (宮田ほか、1988a)がこれに相当する(長谷川ほか、 2009).このほか、野付郡別海町中春別(Loc. 3)では 下部摩周テフラ層中の MI-bと MI-e の間に厚さ約 5cm で軽石型ガラス質の細粒火山灰降下堆積物が確認でき る(MI-d1;宮田ほか.1988a).重鉱物には斜方輝石・ 単斜輝石以外に少量の角閃石が含まれ(第1表)、構成

- 第1表 摩周テフラ層・茶内テフラ層・中春別テフラ層中の火砕堆積物の特徴. Ch-a = 茶内テフラ; Ng = 濁川テフラ; Nu-a & -d = 上部中春別テフラ群; Spfa1 = 支笏第1テフラ. Ap = 燐灰石; Bt = 黒雲母; Cpx = 単斜輝石; Hb = 普通角閃石; Min = 鉱物; Opq = 不透明鉱物; Opx = 斜方輝石; tr = 微量.
- Table 1.Characteristics of pyroclastic deposits within the Mashu, Chanai and Nakashumbetsu Tephra Formations.Ch-a = Chanai tephra
Ch-a; Ng = Nigorikawa tephra; Nu-a & -d = Upper Nakashumbetsu tephra series; Spfa-1 = Shikotsu 1 tephra. Ap = apatite; Bt =
biotite; Cpx = clinopyroxene; Hb = hornblende; Min = minerals; Opq = opaque minerals; Opx = orthopyroxene; tr = trace.

	Loc.	Modal composition							Refractive Index																
		Particl	e comp	onent	(%)	Heavy	Minera	l compo	onent	(%)	Glass					Opx					Hb				
		~.	Light	Heavy	~ .	~	~		~	~ .					count					count					count
Unit		Glass	Mın.	Min.	Others	Орх	Срх	Hb	Opq	Others				(mode)	no.				(mode)	no.				(mode)	no.
Ng	3	63.5	17.0	1.5	18.0	45.0	24.0	3.0	28.0	-	1.4904	~	1.4978	-	4	1.700		1.717	1.711	47	1.669	~	1.678	1.673	29
											1 5002		1 50(7	1 502	51	1 720		1 705		2	1 (01		1 (00	1.682	22
											1.5002	~	1.5067	1.503	51	1.720	~	1.725	-	2	1.081	\sim	1.690	1.083	22
											1.5142	~	1.5187	-	2										
N.	2	40.0	20.0	5.0	27.0	27.0	20.0	4.5	27.5	D((1.0)	1 4057		1 4071		4	1 705		1 715	1.710	= (1 (70		1 (01	1 (72)	50
INg	3	46.0	20.0	5.0	27.0	57.0	20.0	4.5	57.5	DI (1.0)	1.4937		1.49/1	1 502	4	1.705		1.715	1./14	50	1.670		1.001	1.072	20
											1.4993	~	1.5092	1.505	/9	1.724	~	1.720	-	3	1.692	~	1.093	-	2
											1.5100		1.5151	-	7										
											1.5155	~	1.5251	1 505	51										
Cha	2	55.0	15.5	2.0	26.5	27.5	22.5	0.5	48.0	Ap(1.5)	1.3020	~	1.5150	1.303	2	1 702	~	1 700	1 706	54	1 666	~	1.660		4
CII-a	5	55.0	15.5	5.0	20.5	21.3	22.5	0.5	46.0	Ap(1.5)	1.4902	~	1.5002	1.490	52	1.705	~	1.709	1.700	7	1.672	~	1.680	1 674	24
											1.5020	~	1.5107	1.500	33	1./11		1./14	-	/	1.690	~	1.000	1.074	24
Nu o	2	95.5	7.0	2.5	5.0	21.6	10.2	0.6	45.0	Ap(2.5)	1.3103	~	1.5000	1.312	2	1 702	~	1 711	1 706	59	1.000	~	1.674	1 660	25
INU-a	5	05.5	7.0	2.5	5.0	51.0	19.5	0.0	45.0	Ap(3.3)	1.4998	~	1.5009	1 500	2	1.702	~	1.715	1.700	70	1.605	~	1.602	1.009	25
											1.5050		1.3144	1.509	4	1./15		1.715	1 706	4	1.005		1.092	-	/
Nu-d	3	79.0	11.0	4.5	5.5	23.5	19.5	1.0	54.5	Ap(1.5)	1.5008	~	1.5028	-	7	1.703	~	1.713	1.708	60	1.670	~	1.679	1.677	33
										1.	1.5043	~	1.5073	1.506	29						1.682	~	1.687	-	9
											1.5077	~	1.5115	1.510	36										
																			1.706						
																			1.711						
Spfa-1	4	82.0	5.5	1.5	11.0	53.9	29.4	1.0	13.7	Ap(2.0)	1.5001	~	1.5052	1.503	60	1.705	~	1.718	1.716	40	1.669	~	1.677	1.674	22
																								1.084	
						1					1 5085	~	1 5085		1	1 726	~	1 733	1 727	15	1 683	~	1 693	1.690	23
											1.5118	~	1.5128	_	2	1.720		1.,55	1.727	15	1.505		1.075	1.070	25
L		I				1					1.0110		1.0120		-										

物の屈折率から北海道渡島半島の濁川カルデラ起源で ある濁川テフラ(Ng;町田・新井,2003;青木・大串, 2006)に対比される.また,野付郡別海町中春別の北 東方約7kmの地点(Loc.4)のKpI直下の下部中春別 テフラ層中には薄いピンク色をしたガラス質火山灰の レンズを挟んだ不明瞭に成層する灰色火山灰が挟まれ ている(第2図).このガラス質火山灰は,1)火山ガ ラスの屈折率が1.503前後であること,2)重鉱物とし て少量の斜方輝石のほか,角閃石を含むこと(第1表), 3)KpIの直ぐ下位にあることから,宮田ほか(1988a) も指摘するように,支笏第1テフラ(Spfa-1;町田・新井, 2003)に対比されよう.

3.¹⁴C年代測定試料の記載

DHT101

標津郡中標津町計根別 (Loc. 1) において, 層厚約 10cm で逆級化の顕著な摩周火砕堆積物 d (Ma-d; 勝 井, 1962; 岸本ほか, 2009)の軽石火山礫降下堆積物 の基底部に含まれる炭化物を採取した. Ma-d は, 摩周 火山中央火口丘 (カムイヌプリ)形成期 (Katsui et al., 1975)の噴出物の一つである.炭化物試料は,乾燥後, 不純物を手選別で取り除き, 0.12g を測年試料とした.

DHT102

標津郡中標津町計根別(Loc. 1)において, 層厚約

4cm で結晶片の多い粗粒火山灰降下堆積物からなる摩 周火砕堆積物 e(Ma-e;勝井, 1962;岸本ほか, 2009) の直下の炭化物を含む土壌を採取した. Ma-e は, 摩周 火山中央火口丘形成期(Katsui et al., 1975)の噴出物の 一つである.土壌試料は,乾燥後,含まれる炭化物を 手選別で取り出し, 0.3gを測年試料とした.

DHT103

標津郡中標津町計根別(Loc. 1)において,層厚約 10cmで粒径や色調の異なる5層に成層した青灰色細 粒~中粒火山灰降下堆積物からなる摩周火砕堆積物j (Ma-j;勝井,1962;岸本ほか,2009)の直下の炭化 物を含む土壌を採取した.Ma-jの上位には摩周火砕堆 積物i・h・g(Ma-i・Ma-h・Ma-g;勝井,1962;岸本 ほか,2009)の明瞭な軽石火山礫降下堆積物が土壌を 挟まず重なっており,根釧原野においてよく目立つ鍵 層となっている(第2図).これらは主カルデラ形成期 噴火の産物である(岸本ほか,2009).土壌試料は,乾 燥後,含まれる炭化物を手選別で取り出し,0.10gを測 年試料とした.分析はAMS法で実施された.

DHT104

標津郡中標津町計根別 (Loc. 1) において, 層厚約 7cmの灰色中粒火山灰降下堆積物からなる摩周火砕堆 積物 k (Ma-k; 勝井, 1962; 岸本ほか, 2009)の直下 の炭化物を含む土壌を採取した. Ma-k は, 摩周火山カ ルデラ形成期 (Katsui et al., 1975) の噴出物の一つであ る. 土壌試料は, 乾燥後, 含まれる炭化物を手選別で 取り出し, 0.04g を測年試料とした.

DHT105

野付郡別海町中春別 (Loc. 3) において, 層厚約 90cmの軽石火山礫降下堆積物からなる摩周火砕堆積物 1 (Ma-1;勝井, 1962;岸本ほか, 2009)の直下の炭化 物を含む土壌を採取した. Ma-1は摩周テフラ層の中位 にある厚い軽石層であり,根釧原野において良い鍵層 となっている(第2図).また, Ma-1は摩周火山カル デラ形成期 (Katsui et al., 1975)の最初の噴出物である. 土壌試料は,乾燥後,含まれる炭化物を手選別で取り 出し, 0.13gを測年試料とした.

DHT106

標津郡中標津町計根別(Loc. 1)において,層厚約 10cmの石質岩片を主体とする暗灰色粗粒火山灰降下堆 積物からなる下部摩周テフラ層中の Ml-a(宮田ほか, 1988a)の直下の炭化物を含む土壌を採取した. Ml-aは, 間に厚さ 20cmの褐色火山灰土を挟んで Ma-lの直下に 位置する降下堆積物で,摩周火山成層火山形成期(Katsui et al., 1975)の最後の噴出物である. ある.土壌試料は, 乾燥後,含まれる炭化物を手選別で取り出し,0.16gを 測年試料とした.

DHT107

野付郡別海町床 (Loc.5) において, 層厚約 8cm の 石質岩片を主体とする暗灰色中粒火山灰降下堆積物か らなる下部摩周テフラ層中の Ml-a (宮田ほか, 1988a) の直下の炭化物を含む土壌を採取した. Ml-a は, 間に 厚さ 16cm の褐色火山灰土を挟んで鍵層 Ma-l の直下に 位置する降下堆積物で, 摩周火山成層火山形成期(Katsui et al., 1975)の最後の噴出物である.土壌試料は, 乾燥 後, 含まれる炭化物を手選別で取り出し, 0.06g を測年 試料とした.

DHT108

野付郡別海町中春別 (Loc. 3) において, 層厚約7cm の降下堆積物からなる上部中春別テフラ層中のNu-h (宮田ほか, 1988a)の直下の炭化物を含む土壌を採取 した. Nu-h は層厚3cmで黄色軽石細粒火山礫からなる 下部と, 層厚4cmで暗灰色粗粒火山灰からなる上部で 構成される. Nu-h は摩周火山初期の爆発的噴火の産物 である(長谷川ほか, 2009). 土壌試料は, 乾燥後, 含 まれる炭化物を手選別で取り出し, 0.02gを測年試料と した.

DHT109

野付郡別海町中春別 (Loc. 3) において, 層厚約 46cmの降下堆積物からなる上部中春別テフラ層中の Nu-l (宮田ほか, 1988a)の直下の炭化物を含む土壌を 採取した. Nu-l は4ユニットからなり, 下位から層厚 3cm で軽石細粒火山礫まりじの灰色中粒火山灰, 層厚 33cm で逆 - 正級化した淘汰の良い明灰色軽石粗粒火山 礫 (最大粒径 5.8cm), 層厚 5cm で緻密な暗灰色細粒火 山礫, 層厚 5cm で結晶片に富んだ灰色粗粒火山灰で構 成される. Nu-l は摩周火山初期の爆発的噴火の産物で ある (長谷川ほか, 2009). 土壌試料は, 乾燥後, 含 まれる炭化物を手選別で取り出し, 0.12g を測年試料と した.

DHT110

野付郡別海町中春別 (Loc. 3) において, 層厚約 83cmの降下堆積物からなる上部中春別テフラ層中の Nu-n (宮田ほか, 1988a)の直下の炭化物を含む土壌 を採取した. Nu-1は, 層厚 3cmで灰色中粒火山灰から なる下部と, 層厚 80cmで淘汰の良い明灰色軽石粗粒 火山礫(最大粒径 3.3cm)からなる上部で構成される. Nu-n は摩周火山初期の爆発的噴火の産物である(長谷 川ほか, 2009). 土壌試料は, 乾燥後, 含まれる炭化 物を手選別で取り出し, 0.13g を測年試料とした.

DHT111 • DHT112

川上郡標茶町標茶の西方約4kmの地点(Loc. 2)に おいて、屈斜路軽石流堆積物I(KpI;勝井・佐藤, 1963)基底部の炭化した樹幹を採取した.露頭では上 面が風化したKpIVを、間に褐色火山灰土を挟んで直 接にKpIに先行する火山豆石に富んだガラス質の降 下堆積物が覆い、更に上位を塊状の軽石凝灰角礫岩か らなるKpI本体が被覆している.町田・新井(2003) は先行する降下堆積物とKpI本体を合わせ全体をクッ チャロ庶路テフラ(Kc-Sr)と呼んでいる.Kc-Srのマ グマ総噴出量は100km³程度で、屈斜路カルデラの最 後のカルデラ形成噴火の産物である.炭化樹幹は火砕 流本体の基底部に横倒しになってまばらに含まれ、露 頭からは繋がっていない別の2本の炭化樹幹を採取し た.2本の炭化樹幹試料は、乾燥後、樹幹の表面部分 をそれぞれ0.80g分剥がし、測年試料とした.

DHT113

野付郡別海町中春別の北東方約7kmの地点(Loc. 4)において、下部中春別テフラ層(NI;宮田ほか、 1988a)中の未命名降下堆積物直下の炭化物を含む土壌 を採取した.Kc-Srよりも下位の降下火砕物の層序は、 露出が極めて限られるため、ほとんど確立していない のが現状である.本未命名降下堆積物の層厚は53cmで、 下位から層厚6cmの結晶片に富んだ暗灰色粗粒火山灰, 層厚13cmで結晶片に富む基質を持った灰色軽石粗粒 火山礫(最大径2.5cm),層厚34cmで軽石細粒火山礫 をまばらに含んだ淘汰の悪い粗粒火山灰の3ユニット から構成される.本降下堆積物の上位には,薄い褐色 土壌を挟んで,層厚5cmのスコリア細粒火山礫降下堆 積物があり,更にその上位には薄いピンク色をしたガ ラス質火山灰のレンズを挟んだ不明瞭に成層する灰色 火山灰が重なっている(第2図).このガラス質火山灰 は,既に述べたようにSpfa-1に対比される.土壌試料は, 乾燥後,含まれる炭化物を手選別で取り出し,0.20gを 測年試料とした.

DHT201 · DHT202

標津郡中標津町北養老牛(Loc.7)において,摩周軽 石流堆積物f(Ma-f;勝井,1958)中の炭化した樹幹 を採取した.露頭ではMa-fは下限不明で約9mの層厚 を持ち,炭化樹幹は露頭の最下部に多く含まれている. Ma-fはMa-j・Ma-i・Ma-gの一連の降下火砕物 に続いて噴出した火砕流の産物であり,全体が主カル デラ形成噴出物とされ,そのマグマ総噴出量は20km³ 程度である(岸本ほか,2009).露頭からは繋がって いない別の2本の炭化樹幹を採取した.2本の炭化樹 幹試料は,乾燥後,樹幹の表面部分(年輪数年分)を それぞれ20g分剥がし,測年試料とした.

DHT203

斜里郡清里町江南(Loc. 6) において,大雪御鉢平降 下軽石(Ds-Oh;勝井ほか,1979;目次,1983)の直 下の炭化物を含む土壌を採取した.Ds-Ohの下部3cm は軽石細粒火山礫混じりのガラス質火山灰,上部3cm はガラス質の中粒火山灰からなる.斑晶には斜方輝石・ 単斜輝石以外に角閃石が含まれている.土壌試料は, 乾燥後,含まれる炭化物を手選別で取り出し,0.20gを 測年試料とした.

4. ¹⁴C 年代測定結果

分析は、BETA ANALYTIC 社に依頼した.炭化物は 全て酸/アルカリ/酸洗浄の前処理が施されている. DHT201 と DHT202 については β 線計測法,これ以外 の試料については AMS 法で分析されている.年代値は RCYBP (AD 1950 を 0 年とする)表記され、 ∂^{13} C 補 正が行われている.暦年校正には Stuiver et al. (1998) のデータベースが用いられた.暦年代の算出には Talma and Vogel (1993)の手法が用いられた.

補正年代値として DHT101 の 3,660±40yBP から, DHT113 の 36,080±1,300 yBP までの年代値が得られ た(第2表).同じユニットから採取された DHT201 と DHT202 は誤差範囲を超えて約 200 年の補正年代値の 開きがあるものの,暦年代の 2σ 範囲では重複部分が あり(第 3 図),大きな矛盾ではない.また,DHT111 とDHT112 については,誤差の範囲で補正年代値が一 致している.他の試料についても得られた補正年代値 は全て層序関係と矛盾することはなく,測年結果に特 に異常なものは指摘できない.

5. 考察

摩周テフラ層の年代

本テフラ層からは、これまでに以下の摩周カルデラ 噴出物の¹⁴C 年代値が報告されている.いずれの値も δ¹³C 補正は行われていない.

- Ma-b: 直下の腐植土から900±100yBP(GaK-3139;庄司・ 増井, 1974).
- Ma-c: 直下の腐植土から 1,700±100yBP(GaK-3140; 庄司・増井, 1974).
- Ma-e:上下の腐植土からそれぞれ3,100±30yBPと4,150 ±40yBP(宮田ほか, 1988a).
- Ma-f:炭化樹幹から 6,460±130yBP(GaK-247;勝 井, 1958), 7,190±230yBP(GaK-248;勝井, 1958).
- Ma-k: 直下の腐植土層から 8,420±180yBP (Gak-2592; 佐々木ほか, 1971).
- Ma-l:層中の炭化木片から10,920±210yBP (GaK-4210; Katsui et al., 1975),直下の土壌中の炭化 物から13,170±210yBP (宮田ほか, 1988a).

これに対し今回の測年では、Ma-dから3,360±40 yBP (DHT101), Ma-eから4,720±40yBP (DHT102), Ma-fから6,510±70 yBP (DHT201) と6,730±60 yBP (DHT202), Ma-jから6,920±50yBP (DHT103), Ma-k から10,130±60yBP (DHT104), Ma-lから12,630± 70yBP (DHT105)の補正年代値を得ている. 腐植土の ¹⁴C年代値については ∂^{13} C補正による年代値の変動が 大きい傾向があるため、今回の補正年代値と腐植土に 対する未補正の既報値との単純な比較は出来ないもの の、両者には大きな隔たりがあるわけではない. 一方, Ma-fとMa-l中の炭化木片の既報値は、誤差の範囲で 今回の補正年代値と重なっており、各堆積物の噴火年 代を示すものと考えても良いであろう.

暦年代に換算するとMa-dについてはCal BC2,000頃, Ma-e についてはCal BC3,500頃となる. Ma-fについて は、前述の通りDHT201とDHT202の暦年代の2 σ の 重複から、Cal BC5,600頃に噴火したものと判断でき る(第3図). 一方、Ma-j直下のDHT103の年代につ いては、若干の考察が必要である. 岸本ほか(2009) はMa-jからMa-fまでを主カルデラ形成期と呼び、一 連の噴火の産物とした.DHT103の暦代値Cal BC5,780

- 第2表 屈斜路・摩周カルデラ周辺に分布する火砕堆積物の放射年代測定結果. AMS = 加速器質量分析法; Rad = β線計測法; a = 堆積物中の炭化物; b = 堆積物下の土壌中の炭化物; [] = Bata 番号.
- Table 2. Results of radiocarbon dating for the pyroclastic deposits around Kutcharo and Mashu calderas. AMS = accelerator mass spectrometry method; Rad = radiometric method (β -counting); a = charred material within the deposit; b = charred material in the underlying soil; [] = Beta number.

Unit	Sample	Loc	Method	Material	¹⁴ C age (y BP)	δ ¹³ C (permil)	Calibrated ¹⁴ C age (y BP)	Calendar age		Intercept age
Ma-d	DHT101	1	AMS	а	3670±40 -25.9 3660±40		3660±40	20(95%)	BC2140-1920	BC2030
	[220724]							1σ(68%)	BC2120-2090	
									BC2050-1960	
Ma-e	DHT102	1	AMS	b	4720±40	-24.7	4720±40	20(95%)	BC3640-3480	BC3520
	[220725]								BC3470-3370	
								1σ(68%)	BC3620-3580	
									BC3530-3500	
									BC3440-3380	
Ma-f	DHT201	7	Rad	а	6520±70	-25.8	6510±70	20(95%)	BC5610-5330	BC5480
	[220737]							1σ(68%)	BC5510-5450	
									BC5410-5390	
Ma-f	DHT202	7	Rad	а	6770±60	-27.7	6730±60	20(95%)	BC5720-5530	BC5640
	[220738]							10(68%)	BC5680-5620	-
Ma-i	DHT103	1	AMS	b	6940±50	-26.1	6920+50	$2\sigma(95\%)$	BC5890-5710	BC5780
inte j	[220726]	<u>,</u>	1 11/15	Ű	0,10200	2011	0,20200	$1\sigma(68\%)$	BC5840-5730	200,00
Ma-k	DHT104	1	AMS	h	10130+60	-25.1	10130+60	$2\sigma(95\%)$	BC10350-10260	BC9740
Ma K	[220727]	1	7 11/10	0	10150±00	23.1	10150100	20(9570)	BC10200-9580	DC7740
	[220727]								BC10200-9580	
								1~(690%)	BC9370-9390	-
								10(08%)	BC10130-10070	
									BC10020-9860	
	DUTION		13.60		44020 50		11000 50	a (0.5 m)	BC9820-9620	D.G10000
Ma-I	DHT105	3	AMS	b	11930±70	-25.3	11930±70	20(95%)	BC13080-12910	BC12080
	[220728]								BC12300-12280	BC11990
									BC12170-11840	BC11900
									BC11820-11680	-
								1σ(68%)	BC12140-11860	
									BC11780-11710	
Ml-a	DHT107	5	AMS	b	12490±70	-28.1	12440±70	2 0 (95%)	BC13520-12190	BC12400
	[220730]							lσ(68%)	BC13480-12220	
Ml-a	DHT106	1	AMS	b	12630±70	-25.3	12630±70	2 0 (95%)	BC13630-12350	BC13320
	[220729]							1σ(68%)	BC13590-12390	BC12610
										BC12540
Nu-h	DHT108	3	AMS	b	27390±430	-25.5	27380±430		-	-
	[220731]									
Nu-l	DHT109	3	AMS	b	27990±470	-26.0	27970±470		-	-
	[220732]									
Nu-n	DHT110	3	AMS	b	30330±620	-25.5	30320±620		-	-
	[220733]									
Ds-Oh	DHT203	6	AMS	b	32640±820	-25.2	32640±820		_	-
	[220739]									
Kc-Sr	DHT111	2	AMS	а	34690±1100	-25.1	34690±1100		_	_
	[220734]									
Kc-Sr	DHT112	2	AMS	я	34890+1100	-24.4	34900+1100		_	_
110 01	[220735]	-	1 1110	ů	51070±1100	27.7	51200±1100			
NI	DHT112	1	AMS	h	36110+1300	-26.7	36080+1300		_	_
141	1220726		ANIS	U	50110±1500	-20.7	30000±1300			
	[220736]									

第3図 摩周カルデラ噴出物の暦年分布.年代値の詳細は 第2表を参照.

は DHT201 と DHT202 よりも有意に古く、2 σ で見て も 100 年以上の開きがある.可能性としては以下の 2 つが考えられよう.1) DHT103 の年代値は直下の土 壌中の炭化物から得られたもので、Ma-j の噴火年代を 直接示すものではなく、その下限値を示している.2) Ma-j 自体は良く成層しており、複数回の噴火イベント の産物であるとは確実であり(岸本ほか、2009)、Ma-f の破局噴火のかなり以前から小規模な噴火が起きてい た.どちらかを判断するためには、別の試料を用いて 更に年代測定を追加する必要がある.

Ma-lと Ml-aの暦年代については、その2σが広い範囲に及んでおり、個々の測定値のみからでは単純に噴

火年代を絞り込むことができない(第3図).しかしな がら,既に述べたように MI-a の直ぐ下位には広域テフ ラである Ng が位置している.Ng の噴出年代について は,下北半島沖海底コアでの海成層との層序関係から, ほぼ14.6ka頃に噴出したことが明らかになっている(青 木・大串,2006).したがって,DHT105・106・107 の Ng の噴火年代よりも古くなる 2σ暦年代は無視する ことが可能となり, Ma-1と MI-a の噴火年代としては, Cal BC12,000 頃と Cal BC12,400 頃がふさわしい.

中春別テフラ層の年代

本テフラ層中には、屈斜路カルデラ起源の KpII/III・ KpIの火砕流堆積物が存在する. KpII/III について は、その直下に広域テフラである Aso-4 があること から、噴出年代はほぼ9万年前として特に問題はな い(第4図;奥村, 1991).一方, KP I については, 網走市音根内に分布する本堆積物中の炭化木片から 32,200+3,000-2,000yBP (GaK-866)の¹⁴C年代が報告さ れていた (Kigoshi, 1967). しかしながら, この年代値 はβ線計測法の測定限界に近く、その信頼性をより測 定限界が古い AMS 法で確認する必要があった.今回 KpI から AMS 法で得られたほぼ 35,000yBP の補正年 代値は、従来値よりも若干古く、町田・新井(2003) の予測に近いものである.しかも、今回の測定値は、 直上の試料から 27,000~33,000yBP, 直下の試料か ら 36,000yBP の補正年代値が得られ、その確度は非 常に高いものとなっている.しかしながら、この年代 域の¹⁴C 年代値から暦年代への較正データは極めて乏 しいのが現状で、国際的に合意された較正曲線は確定 していない (例えば中村, 2001). それでも, 最近の Fairbanks et al. (2005)の暦年校正プログラムを使うと、 KpIの実年代は 40ka までさかのぼることになる(第3) 表). なお、上部中春別テフラ層の Nu-g・Nu-h 間の炭 質物から、宮田ほか(1988b)は22,200±3,000yBPの AMS¹⁴C年代を報告しているが、これも今回実施した Nu-h 直下の補正年代値(DHT108)と矛盾するもので はない

今回の分析では、屈斜路・摩周カルデラ噴出物以外 にも、大雪火山の御鉢平カルデラ形成噴火の Ds-Oh (勝 井ほか、1979;目次、1983)、支笏カルデラ形成噴火 の Spfa-1 (町田・新井、2003) についても新たに年代 を与えることが出来た. Ds-Oh は約3万年前とされて いたが、AMS 法による補正年代値は約33,000yBP と若 干古く、暦年代は38ka まで更にさかのぼることが確実 である(第3表). Spfa-1 直下層からも、町田・新井(2003) の指摘の通り従来のβ線計測法による年代(3.1~3.2 万年前)よりも有意に古い補正年代値が得られ、その 暦年代は41ka までさかのぼることが確実であろう.

Fig. 3 Distribution of the calendar ages for the ejecta from Mashu caldera. See Table 2 for the details of ages.

第4図 屈斜路・摩周カルデラ噴出物の層序関係. 黒矢印は火砕流堆積物, 破線は外来テフラを示す.

- Fig. 4 Stratigraphic relationship between the ejecta of Kutcharo and Mashu calderas. Black arrows and dotted lines show pyroclastic flow deposits and foreign tephra layers.
- 第3表 中春別テフラ層から得られた放射性炭素年代に対する暦年代.年代較正は, Fairbanks et al. (2005)の較正プログラム を使用した.

Table 3. Calendar ages for the radiocarbon ages from the Nakashumbetsu Tephra Formation. The ages were converted by the calibration program by Fairbanks et al. (2005) on their web page (http://www.radiocarbon.ldeo.columbia.edu/research/radiocarbon.htm).

Sample	Unit	Calibrated ¹⁴ C age (yBP)	Calendar ages (yBP)	Calibration version		
DHT108	Nu-h	27380±430	32709±550	Fairbanks0107		
DHT109	Nu-1	27970±470	33332±482	Fairbanks0107		
DHT110	Nu-n	30320±620	35708±519	Fairbanks0107		
DHT203	Ds-Oh	32640±820	38028±836	Fairbanks0107		
DHT111	Kc-Sr	34690±1100	40027±1059	Fairbanks0107		
DHT112	Kc-Sr	34900±1100	40226±1051	Fairbanks0107		
DHT113	Nl below Spfa-1	36080±1300	41331±1183	Fairbanks0107		

6. まとめ

本研究では、北海道東部の屈斜路・摩周カルデラ噴 出物の年代を¹⁴C年代測定で明らかにした。屈斜路カ ルデラでは、約34万年前から8噴火サイクルで9回 の大規模な火砕流噴火を起こしているが、KpIを噴出 した最後のカルデラ形成噴火は約4万年前(¹⁴C年代値 で35,000yBP)であることが明らかになった。したがっ て、KpIVを噴出した屈斜路カルデラ最大の噴火から 約7万年の再来間隔でマグマ総噴出量が100km³を越 えるような巨大噴火が繰り返されたことになる. 摩周 カルデラは,屈斜路カルデラの東壁上に形成されたも ので,成層火山体形成後の約7.6千年前(Cal BC5,600 頃)に主カルデラ形成噴火を起こしたことを明らかに した.摩周カルデラを形成した噴火のマグマ総噴出量 は20km³程度と屈斜路カルデラ形成噴火よりも規模が 小さいものの,破局噴火に至るまでに非常に数多くの 火砕物が摩周カルデラから放出されている. カルデラ 形成噴火に至るマグマの岩石学的研究については別途 実施しており、稿を改めて明らかにする予定である.

引用文献

- 青木かおり・大串健一(2006)下北半島沖海底コア MD01-2409中に介在する濁川テフラ.第四紀研究, 45, 257-260.
- Fairbanks, R.G., Mortlock, R.A., Chiu, T.-C., Cao, L., Kaplan, A., Guilderson, T.P., Fairbanks, T.W., Bloom, A.L., Grootes, P.M. and Nadeau, M.-J. (2005)
 Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired ²³⁰Th/²³⁴U/²³⁸U and ¹⁴C dates on pristine corals. Quaternary Sci. Rev., 24, 1781-1796.
- 勝井義雄(1955)摩周火山の地質と岩石.地質雑, **61**, 481-495.
- 勝井義雄(1958) 阿寒, 屈斜路火山群. 地球科学, no.39, 19-30.
- 勝井義雄(1962)5万分の1地質図幅「屈斜路湖」お よび同説明書.北海道開発庁,42p.
- 勝井義雄・佐藤博之 (1963) 5 万分の1 地質図幅「藻琴山」 および同説明書.北海道開発庁,42p.
- 勝井義雄・横山 泉・伊藤太一(1979) 旭岳-火山地 質・活動の現況および防災対策.北海道における 火山に関する研究報告書,第7編,北海道防災会議, 42p.
- Katsui, Y., Ando, S. and Inaba, K. (1975) Formation and magmatic evolution of Mashu volcano, East Hokkaido, Japan. J. Fac. Sci. Hokkaido Univ., 16, 533-552.
- Kigoshi, K. (1967) Gakushuin Natural Radiocarbon Measurements VI. *Radiocarbon*, **9**, 43-62.
- 岸本博志・長谷川健・中川光弘・和田恵治(2009)最 近約1万4千年間の摩周火山のテフラ層序と噴火 様式.火山,54,15-36.
- 長谷川健・岸本博志・中川光弘・伊藤順一・山元孝 広(2009) 北海道東部,根釧原野および斜里平野 における約3万5千~1万2千年前のテフラ層序 と後屈斜路カルデラ火山の噴火史.地質雑,115, 369-390.
- 伊藤順一・山元孝広・中川光弘・長谷川健・岸本博志 (2007)北海道東部,屈斜路・摩周カルデラ噴出 物の放射炭素年代値,日本地球惑星科学連合 2007

年大会予稿集, V157-P030.

- 町田 洋・新井房夫(2003)新編火山灰アトラス [日本列島とその周辺]. 東大出版会, 336p.
- 目次英哉(1987)御鉢平カルデラの火山活動史. 層雲 峡博物館研究報告, no.7, 1-8.
- 宮田雄一郎・山口昇一・矢崎清貫(1988a)計根別地域 の地質.地域地質研究報告(5万分の1地質図幅), 地質調査所,77p.
- 宮田雄一郎・曽根敏雄・中村俊夫(1988b)加速器質 量分析計による根釧原野後期更新世テフラ層の¹⁴C 年代:日本の第四紀層の¹⁴C年代(169).地球科学, **42**, 303-305.
- 中村俊夫(2001) 放射性炭素年代とその高精度化.第 四紀研究, **40**, 445-459.
- 奥村晃史(1991)北海道地方の第四紀テフラ研究.第 四紀研究, **30**, 379-390.
- 佐々木龍男・松井公平・富岡悦郎・佐々木清一・矢沢正士・ 山田 忍・矢野義治・北川芳男(1971)北海道に おける腐植質火山灰の編年に関する研究.第四紀 研究, 10, 117-123.
- Stuiver, M., Reimer, P.J., Bard, E., et al. (1998) INTCAL98 Radiocarbon Age Calibration, 24,000-0 cal BP. *Radiocarbon*, 40, 1041-1083.
- 佐藤博之(1968) 東北海道斜里地域における洪積世後 期の火山灰と段丘. 地調月報, 19, 115-126.
- 隅田まり(1988) 斜里地域におけるテフラ層序.知床 博物館研究報告, no.9, 19-31.
- 隅田まり(1996)清里~斜里地域に分布する後期更 新世テフラ層.第四紀露頭集-日本のテフラ, 105-105.
- 庄司貞雄・増井純一(1974) 北海道川上郡標茶町のカ ムイヌプリ岳火山灰土壌の¹⁴C年代,日本の第四 紀層の¹⁴C年代(97).地球科学,28, p.182-182.
- Talma, A.S. and Vogel, J.C. (1993) A simplified approach to calibrating ¹⁴C dates. *Radiocarbon*, **35**, 317-322.
- 和田恵治・石崎直人・佐藤鋭一(2007)根釧原野,別 海町中春別露頭で同定された大雪山・御鉢平カル デラ起源の広域火山灰.北海道教育大学大雪山自 然教育研究施設研究報告, no.41, 55-65.

(受付:2009年7月1日;受理:2009年11月4日)