西南日本花崗岩類のレアアース特性: 足摺岬の新第三紀深成岩類と山陽帯の後期白亜紀花崗岩類

石原舜三¹·村上浩康²

Shunso Ishihara and Hiroyasu Murakami (2006) Characteristics of REE distribution in granitoids of SW Japan: Miocene plutonic rocks at Ashizuri-misaki and late Cretaceous granitoids of the Sanyo Belt of SW Japan. *Bull. Geol. Surv. Japan*, vol. 57(3/4), p.89 - 103, 7 figs, 6 tables.

Abstract: Three gabbroids and nine granitoids from the Miocene pluton at Ashizuri-misaki, Outer Zone of SW Japan were analyzed for major and trace elements. These plutonic rocks are composed of gabbroids and granitoids, which are alkaline in nature plotted in the shoshonite fields in the alkalisilica diagrams. The granitoids are high in Ba, Zr, Nb, and Zn; implying the rocks are of A-type affinity. The REE contents are the highest among the Japanese granitoids, having an average of REE+Y=453 ppm and LREE/HREE=11.

The late Cretaceous granitoids (20 samples) from the Sanyo Belt were also studied in four areas where the highest levels of calc-alkaline ilmenite-series granitoids are exposed. The REE+Y contents are generally lower than 300 ppm, but are relatively high in the Naegi Granite (ave. 246 ppm) and Tanakami Granite (ave. 213 ppm); both are rich in HREE (LREE/HREE=2.8-2.4). These granites are high in F and well fractionated (according to the Rb/Sr ratios), which are considered the main reasons for the REE concentration. An anomaly with 1,804 ppm REE+Y was discovered in a mafic enclave of the Tanakami Granite of the Kinki district.

Keywords: REE, granitoids, Miocene, late Cretaceous, alkaline, Naegi Granite

要 旨

足摺岬深成岩類(n=12)及び西南日本の山陽帯花崗岩 類の浅成花崗岩類(n=20)の化学分析を実施し,希土類 元素量とその分布特性の解明を試みた.足摺岬のアル カリ花崗岩類はアルカリに富み,Ba,Zr,Nb,Znが多い など,弱いながらもAタイプ的な性格をもつ.この花崗 岩類は我が国では最も希土類元素に富み,その総量は 平均453 ppmに達するが,軽希土類に富み重希土類に 乏しい(LREE/HREE=11).山陽帯の花崗岩類では,苗 木花崗岩が平均246 ppm,田上花崗岩が平均213 ppm であり,総量は少ないが,重希土類に富んでいる (LREE/HREE=2.8~2.4).このような地域差は原マグ マの起源物質と固結前の分化作用の相違に基づいてい る.田上花崗岩中の苦鉄質エンクレーブでは,1,804 ppm REE+Yに達する新発見があった.

1.まえがき

近年の自動車産業界における省エネルギー及び環境 対策の必要性から,重希土類元素の需要が増加してお り,それに対する対応策が求められている.希土類元 素は特定の花崗岩類やカーボナタイト,あるいは類似 岩類に濃集し,かつ関連した初生鉱床に濃集するほか, 風化作用によっても移動・濃集し希土類元素に富む重 要な表成鉱床を形成する(Wu et al., 1990;石原・村上, 2005).したがって,カーボナタイトを産しない我が国 においては,花崗岩類に関連する資源を検討すること が必要である.希土類元素はAタイプ花崗岩類に伴っ て濃集することが多い(石原, 1988).Aタイプ花崗岩 類は一般に非造山帯に産出するが,我が国では造山帯 である四万十層群の付加帯形成後のポスト造山期に, 足摺岬で生成している.

足摺岬の新第三紀花崗岩類はGaに富み,Aタイプ的と 分類された(今岡ほか,1991).これまでの部分分析に よると,日本の花崗岩類でもっとも高い希土類元素量 が得られており(村上・増田,1984;Stein et al.,1994), REEを含む希産鉱物が知られている(Imaoka and Nakashima, 1994a; Nakashima and Imaoka, 1998).ま た花崗岩生成後に貫入した流紋岩質岩脈類も高い値を 示し(Ishihara et al., 1990),そのREEは主としてフッ 化セリウム石,バストネサイトに含まれている (Imaoka and Nakashima, 1994b).これらは主に軽希 土類に富むもので,重希土類に富むものは,岐阜県苗

¹產業技術総合研究所 (Geological Survey of Japan, AIST).

²地圈資源環境研究部門 (Institute for Geo-Resources and Environment, GSJ).

第1図 西南日本の花崗岩類の分布(黒色部と打点部)と研究地点の位置.

Fig. 1 Distribution of granitic rocks and locality of the studied granitoids in the Southwest Japan. MTL, Median Tectonic Line; ISF, Itoigawa-Shizuoka Fault. Solid, Late Cretaceous-Paleogene; dotted, Miocene granitoids.

木地域, 滋賀県田上地域など,西南日本内帯山陽帯のチ タン鉄鉱系優白質花崗岩類で断片的に知られていた (Ishihara and Wu, 2001; 石原ほか, 2005). これらの 報告を補強する目的で新たに野外調査を実施し,希土 類元素の完全分析を行なった結果,幾つかの新事実を 得たので, 既存データと合わせて総括し, 我が国にお ける希土類元素に富む花崗岩類の化学的性格, 及び特 に重希土類特性について報告する.

調査地域は高知県足摺岬の新第三紀深成岩体及び西 南日本内帯の山陽帯の後期白亜紀花崗岩類である.調 査地点を第1図に示す.化学分析は主成分と測定可能な 微量成分について偏光XRFで実施し,別に希土類元素 を含む微量成分についてはICP-ICP/MSで実施した. 一部の試料についてはイオン電極法(IES)によりFを測 定した.

2. 高知県, 足摺岬深成岩体

高知県の足摺岬深成岩体は四万十帯の古第三紀層で

ある清水層群中の小岩体であり、それに熱変成作用を 与える、中新世の同位体年代を持つから堆積岩類の圧 密,変形後に貫入・固結したものと考えられる.アル カリに富むこと(村上ほか, 1983), 花崗岩類が主体で あるが斑れい岩類が共存し,両者のマグマ混交(吉倉・ 熱田、2000)が見られる場として著名である。岩体の 規模は東西に約5.4 km,南北に1.4~3.3 km,村上ほ か(1983)によると、岩相は東西に延び南方へ開いた弧 状を呈して中心に斑れい岩類が、その南側にアルカリ 岩類が、北側に石英に富む一般の黒雲母花崗岩が分布 し(第2図),環状複合体を形成する(村上ほか,1989). 各岩相の貫入・晶出時期としては, 第I期の斑れい岩類 の南側に第II期の優黒質閃長岩とアルカリ花崗岩及び 第III期の粗粒閃長質岩とラパキビ花崗岩,斑れい岩の 北側には第 IV 期の粗粒黒雲母花崗岩が広く分布し、こ れはアプライト・ペグマタイトなどを伴う. 第V期には ドレライトや過アルカリ流紋岩の岩脈類が岩体南部に 主に南北走行で貫入する. 最下段の海蝕台地を覆って 砂礫層が局在する(村上ほか, 1983).

第2図 足摺岬深成岩類の地質図と分析試料の位置.

Fig. 2 Geology and sample location of the studied plutonic rocks in the Ashizuri-misaki area. Geology after Murakami et al. (1983).

足摺岬深成岩体では、その苦鉄質岩相の風化物から チタン砂鉄がかって採掘され、その残鉱からウラン・ トール石が発見された.また花崗岩類はモード鉱物組 成上でモンゾ花崗岩からカリ長石端へかけて分布し、 アルカリ岩的な性格が報告された(林ほか、1969).砂 鉄は鉄チタン酸化物に富む斑れい岩/閃長岩の混在部 (表紙写真)の内陸風化表土から水別選鉱された.これ らの事実はこの深成岩類が希土類元素に冨むことを暗 示する.村上・増田(1984)は12試料の花崗岩類の希土 類元素7成分の部分分析からREE+Y量が614 ppm以下, Stein *et al.*(1994)は5個の花崗岩類からREE+Y=451 ppmの最高値を得ている.一方,Ishihara *et al.*(1990) は最末期の過アルカリ流紋岩岩脈から最高 REE+Y= 962 ppmの希土類元素量を報告した.

今回の研究では,1958年調査時の岩石試料を中心に 12個の完全分析を実施した.分析試料位置を第2図に, 分析結果を第1,2表に示す.

足摺岬花崗岩類は一般にアルカリとFに富み,Al₂O3 とCaOに乏しく,したがってノルム珪灰石を算出し, サーラ輝石・アルカリ角閃石を含む(村上・今岡,1980; 村上ほか,1983).Ga含有量は,高ガリウム系列(23~ 27 ppm Ga)と低ガリウム系列(23~15 ppm Ga)系列 とに分けられ,前者がより広く分布するため今岡ほか (1991)はこの花崗岩類のAタイプ的な特徴を強調した.

閃長岩類(分析番号4~10, 12)はK₂O=5.2~6.1%で あり,K₂O+Na₂Oは10.3~11.8%,共に著しく高い値を

第1表 足摺岬深成岩類の偏光 XRF 分析結果.

Table 1 Polarized XRF analyses of the plutonic rocks of the Ashizuri-misaki pluton.

	Stag	ge I gabbro	oids	Stage	e II melan	ocratic sy	enite	Stage II s	yenite	Stage III	Stage IV	Dike
Assay no.	1	2	3	4	5	6	7	8	9	10	11	12
Sample no.	AZR1	58A153	58A151	AZ2105	AZ2106	AZ2104	58A111	58A125	58A122	AZ2003	58A139	58A141
SiO ₂	46.96	52.55	63.19	62.77	62.81	65.54	69.67	62.61	63.04	69.95	73.18	60.49
TiO ₂	1.34	2.10	0.95	0.58	0.53	0.44	0.24	0.60	0.50	0.19	0.22	1.15
Al ₂ O ₃	13.32	15.46	14.70	16.58	15.87	15.55	15.00	16.12	16.81	13.58	13.52	15.67
Fe ₂ O ₃	9.83	9.95	5.07	5.18	6.30	4.80	2.50	5.49	4.48	2.87	1.80	6.67
MnO	0.16	0.17	0.08	0.15	0.18	0.12	0.05	0.13	0.11	0.08	0.02	0.15
MgO	12.50	3.97	1.82	0.40	0.25	0.28	0.06	0.37	0.34	0.09	0.33	1.24
CaO	10.09	7.31	3.59	1.58	1.94	1.39	0.50	1.74	1.40	0.70	0.93	3.08
Na ₂ O	2.25	3.68	3.82	5.27	5.62	4.35	5.05	5.06	6.01	4.97	3.59	5.11
K ₂ O	1.23	2.98	4.68	5.98	5.62	6.13	5.93	5.78	5.74	5.59	5.47	5.19
P_2O_5	0.28	0.49	0.24	0.09	0.07	< 0.01	< 0.01	0.09	0.08	< 0.01	0.02	0.40
S	0.10	0.03	0.02	0.04	0.04	0.01	0.02	0.24	0.02	0.01	0.02	0.02
F	0.09	0.15	0.13	0.05	0.07	0.10	0.04	0.11	0.22	0.38	0.15	0.18
$\rm CO_2$	0.25	0.15	0.09	0.12	0.06	0.06	0.10	0.12	0.36	0.08	0.19	0.11
$H_2O^{\scriptscriptstyle +}$	1.45	1.16	0.76	0.59	0.48	0.85	0.26	0.75	0.65	0.41	0.32	0.48
H_2O^-	0.23	0.21	0.10	0.24	0.23	0.24	0.17	0.41	0.13	0.03	0.24	0.08
Total	100.08	100.36	99.24	99.62	100.07	99.86	99.59	99.62	99.89	98.93	100.00	100.02
Rb	36	116	171	141	141	224	226	175	250	293	228	129
Sr	379	392	213	70	17	25	17	115	71	9.9	70	242
Ba	434	890	710	1480	580	496	155	1890	1460	172	575	1590
Zr	109	180	185	173	196	449	558	157	366	439	160	409
Hf	4.3	3.5	4.0	3.1	5.1	10.8	11.9	5.2	9.5	12.0	5.4	7.6
Nb	35	64	58	88	110	125	137	142	139	152	38	138
Та	<6	6.0	4.9	3.8	7.7	8.0	7.8	7.6	8.5	13.0	5.2	6.9
Y	17	33	38	28	32	60	42	49	48	54	26	52
La	30	53	79	19	99	150	260	55	66	143	70	95
Ce	50	96	129	37	159	166	387	110	111	229	118	176
V	242	318	108	<5	<5	7	<3	9	<5	2	14	43
Cr	850	7	25	16	8	10	30	43	52	13	39	22
Co	94	23	12	<7	<8	<7	<5	<7	<7	<5	<4	10
Ni	292	15	13	<1	<1	1	6	3	8	<1	6	3
Cu	49	26	8.6	8.7	2.4	1.2	1.6	3.9	3.9	6.0	1.9	4.6
Zn	2	73	50	109	72	86	39	104	75	49	26	73
Pb	2.9	3.1	6.3	14	7.7	6.1	5.4	12	9.3	8.6	12	6.2
Ga	14.1	18.9	18.4	19.7	21.2	20.1	23.2	22.0	23.2	23.7	18.3	20.7
Ge	<1.5	1.2	1.3	1.4	1.4	1.5	1.0	1.7	1.2	1.1	1.6	1.5
As	< 0.4	0.6	0.5	1.4	< 0.3	< 0.3	< 0.3	2.8	0.9	2.4	< 0.4	1.1
Se	1.3	0.2	0.2	0.2	0.6	0.3	0.4	0.3	0.5	0.3	0.2	0.2
Mo	1.5	1.4	1.7	2.8	3.8	0.9	8.2	1.2	8.2	1.4	0.7	5.0
Sn	1.0	2.1	3.2	3.0	1.7	3.7	4.0	3.0	5.9	4.4	1.7	1.4
Sb	2.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6	< 0.5	< 0.5
Cs	2.2	0.9	2.1	9.5	< 1.5	< 1.5	< 1.5	8.2	4.4	9.1	6.5	2.0
Tl	2.4	0.6	0.9	0.5	1.8	0.9	1.6	0.7	1.1	1.0	1.2	0.4
Bi	1.4	< 0.4	< 0.3	< 0.3	0.9	< 0.3	0.7	0.6	0.7	0.6	< 0.3	< 0.3
Th	3.9	10.1	21	4.7	11.5	27	52	8.6	21	48	29	13.4
U	< 0.5	1.7	4.5	0.9	< 0.5	5.8	9.7	1.3	6.3	7.4	4.8	2.1
ZST(°C)	(638)	(706)	(758)	764	763	862	890	755	827	856	783	816
A/CNK	0.57	0.69	0.82	0.92	0.84	0.95	0.96	0.91	0.90	0.88	1.00	0.80
Ga/Al*104	2.00	2.31	2.37	2.25	2.53	2.44	2.92	2.58	2.61	3.30	2.56	2.50
Na ₂ O+K ₂ O	3.48	6.66	8.50	11.25	11.24	10.48	10.98	10.84	11.75	10.56	9.06	10.30
K ₂ O/Na ₂ O	0.55	0.81	1.23	1.13	1.00	1.41	1.17	1.14	0.96	1.12	1.52	1.02
Rb/Sr	0.1	0.3	0.8	2.0	8.3	9.0	13.3	1.5	3.5	29.3	3.3	0.5
Th/U	7.8	5.9	4.7	5.2	2.3	4.6	5.4	6.6	3.3	6.5	6.0	6.4

Analyst: B. W. Chappell, GEOMOC, Sydney. F, Ion sensitive electrode (ISE) by Actlabs. ZST: Zircon saturation temperature (Watson and Harrison, 1983).

第2表	足摺岬深成岩類の	ICP-ICP/MS	及び ISE	分析結果.

Table 2 ICP-ICP/MS and ISE analyses of the plutonic rocks of the Ashizuri-misaki pluton.

Analyses nos.	1	2	3	4	5	6	7	8	9	10	11	12
Sample nos.	AZR1	58A153	58A151	AZ2105	AZ2106	AZ2104	58A111	58A125	58A122	AZ2003	58A139	58A141
V	192	253	100	< 5	< 5	< 5	< 5	< 5	< 5	< 5	13	50
Cr	690	30	20	< 20	< 20	< 20	20	20	30	< 20	30	< 20
Co	86	25	11	1	< 1	< 1	< 1	1	1	< 1	2	5
Ni	270	30	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Rb	38	123	174	143	125	226	231	186	261	308	238	132
Sr	354	379	208	71	13	28	17	119	75	14	71	239
Ba	451	975	760	1640	480	559	174	2080	1600	203	619	1730
Cs	1.6	3	3.6	4.9	1.8	2.4	2.1	4.6	4	9.2	4.9	1.9
Ga	15	22	21	21	20	24	28	26	26	29	22	24
Ge	1.2	1.4	1.4	1.3	1.6	1.9	1.7	1.3	1.6	1.7	1.6	1.5
La	29.1	58.2	80.5	26.1	93.6	152	240	64.6	77.8	131	71.8	108
Ce	60	116	152	56.7	156	207	354	143	151	246	147	220
Pr	6.33	12.00	13.90	6.51	16.60	30.20	41.90	15.30	14.40	22.60	14.10	22.30
Nd	23.2	41.6	44.5	24.7	51.7	94.3	122.0	54.5	46.5	68.5	45.1	73.5
Sm	4.67	8.29	8.33	5.53	8.54	16.00	18.00	11.10	8.72	12.30	8.32	13.30
Eu	1.50	2.26	1.37	2.28	1.73	1.62	0.78	2.82	2.25	0.54	0.91	2.20
LREE	124.8	238.4	300.0	121.8	328.2	501.1	776.7	291.3	300.7	480.9	287.2	439.3
Gd	4.50	7.79	7.26	5.48	6.67	14.60	14.50	10.20	7.89	10.70	6.96	11.30
Tb	0.73	1.30	1.27	0.91	1.10	2.13	1.91	1.78	1.45	1.97	1.18	1.87
Dy	3.95	7.12	7.22	5.21	5.96	11.70	9.86	10.00	8.52	11.20	6.41	10.30
Но	0.76	1.38	1.43	1.03	1.16	2.24	1.82	1.92	1.76	2.30	1.24	2.00
Er	2.17	4.09	4.46	3.05	3.48	7.08	5.72	5.75	5.53	7.34	3.80	6.18
Tm	0.308	0.599	0.690	0.451	0.541	1.130	0.880	0.860	0.891	1.160	0.575	0.944
Yb	1.87	3.65	4.24	3.04	3.72	7.10	5.56	5.19	5.56	7.40	3.37	5.90
Lu	0.279	0.527	0.607	0.508	0.577	1.080	0.827	0.779	0.783	1.060	0.481	0.845
HREE	14.6	26.5	27.2	19.7	23.2	47.1	41.1	36.5	32.4	43.1	24.0	42.0
Y	20.3	37.8	40.1	30.4	30.1	62.5	46.8	53.9	52.7	66.4	33.6	55.0
HREE+Y	34.9	64.3	67.3	50.1	53.3	109.6	87.9	90.4	85.1	109.5	57.6	97.0
Zr	121	266	284	217	230	564	649	241	458	555	230	525
Hf	3	6.2	7.4	4.3	4.6	12.9	14.2	5.9	10.4	14.2	6.4	11.7
Nb	37.7	72.9	64.5	94.8	113	132	146	158	148	174	46.1	146
Та	2.6	5.0	4.9	4.6	5.5	7.6	8.1	8.6	9.8	12.9	3.9	8.9
Sn	< 1	2	3	3	< 1	3	3	3	6	4	1	2
W	797	< 0.5	< 0.5	< 0.5	1.8	0.6	3	3.2	2.8	2.5	1.1	4
Tl	0.31	0.31	0.38	0.39	0.28	0.43	0.48	0.34	0.48	0.49	0.73	0.27
Pb	< 5	5	7	13	6	8	< 5	9	9	9	12	6
Bi	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Sb	3	1.3	1.8	1.4	1.4	1.9	1.5	1.3	2.1	1.8	1.7	1.4
Th	5.01	15.5	23.6	6.44	14.9	32.3	56.1	15.9	24.2	58.3	33.2	18.7
U	1.1	2.7	5.4	1.5	2.4	6.8	7.6	3.8	5.9	11.7	6.5	3.7
REE+Y	159.667	302.606	367.277	171.89	381.478	412.68	864.559	381.699	385.754	556.41	344.843	536.299
L/HREE+Y	3.6	3.7	4.5	2.4	6.2	2.8	8.6	3.0	3.5	4.2	5.0	4.5

In ppm. Analysts: Actlabs, Ltd., by ICP-ICP/MS

示し,斑れい岩類よりもアルカリ総量に富み,アルカ リーシリカ図でショショナイトの領域にプロットされ る(第3図).なお狭義の花崗岩のK₂O+Na₂Oは9.1%と やや低い.アルミナ過剰度を示すA/CNKは1.0より低 く,一般にメタアルミナスである.Alを置換するGaは 閃長岩類で19.7~23.7 ppmとやや多い.Ga/Alx10⁴=2.3 ~3.3 であり,一般のカルクアルカリ岩の上限,2.6 (Whalen *et al.*, 1982)前後を示し,ややAタイプ的で ある. 閃長岩類はAタイプの特徴であるZr,Nb,Zn,Ba にも富んでいる(第1表).Fは斑れい岩類で900~1,500 ppm, 閃長岩類で500~3,800 ppmであり,一般のカル クアルカリ岩より多く含まれる.

第3図 足摺岬深成岩類のアルカリーシリカ図.

Fig. 3 Alkali-silica diagram of Miocene plutonic rocks of the Ashizuri-misaki pluton. B, basalt (gabbro); BA, basaltic andesite; A, andesite (diorite); D, dacite (granodiorite), R, rhyolite (granite); TB, trachybasalt; BT, basaltic trachyandesite; TA trachyandesite; T, trachyte (monzonite); TD, trachydacite (quartz monzodiorite); Te, tephrite and basanite; Pt, phonotephrite; Tp, tephriphonolite; P, phonolite; F, foidite (Le Maitre *et al.*, 1989).

REE+Y含有量は, 斑れい岩類で160~367 ppm, 閃 長岩類で172~865 ppm, 花崗岩で345 ppmである. 全 体的に軽希土類元素に富んでいる.分析値の希土類元 素パターン(コンドライトで規格化せず)を第4図に示す

第4図 足摺岬深成岩類の希土類元素パターン.

Fig. 4 REE pattern of the Miocene Ashizuri-misaki pluton. The numbers correspond to those of Table 2.

が,最高はCe 354 ppm (分析番号7)であり,右下がり に低下する.軽/重希土類元素比(LREE/HREE+Y)は 斑れい岩類が3.6~4.5,閃長岩類は2.4~6.2である.Y は一般に重希土類として扱われるが,この研究では重 希土類が重要であるので狭義のLREE/HREE比を求め ると,6.2~18.9であり,更に軽希土類の比率が高くな る.最も重希土類元素に富むものは第II期の閃長岩類 (47 ppm,分析番号6;43 ppm,分析番号10)で得られ た.なお,Dyは最高12 ppm (分析番号6)であった.

3. 広島県, 三原鉱山地区

西南日本内帯の後期白亜紀 - 古第三紀花崗岩地帯からは,広島県,岡山県,滋賀県,岐阜県の4地域を選んだ.新たに採取したサンプルの産地と岩石名を第3表に示した.既存試料については,それぞれの文献に記載されているので,参照されたい.

三原市の南南西方約4 km, 宗郷町南部には三原及び 神武鉱山として稼行された本邦第2位のホタル石鉱床群 がある.鉱床は主にルーフペンダント状に残存する上 部古生代の石灰岩類にスカルン鉱体として産する.一 部は後期白亜紀の黒雲母花崗岩類中の鉱染状ほたる石 鉱床であり,晩年には低品位鉱として出鉱された(石原, 2005).

鉱床近傍の花崗岩の周縁部には閃長岩が報告されている(添田,1964).すなわち,アルカリ岩が存在する 点で希土類元素との関連性が興味深く,概査を実施した.青木・肥田(1974)はモード分析に基づき,閃長岩 をモンゾニ岩に変更した.モンゾニ岩の産状は,スカ 第3表 西南日本内帯の分析花崗岩類の産地と岩石タイプ.

Table 3 Locality and rock types of the analyzed granitoids, Inner Zone of Southwest Japan.

Sample Nos.	Locality	Rock type
MH11	広島県、三原市宗郷町南方、三原鉱山、第二堰堤横	緑色鉱物(80%)柘榴石(20%)スカルン
MH13	同上,三原鉱山,第一堰堤横	細粒アルバイト化花崗岩
MH15	同上, 三原鉱山	アルバイト化エンドスカルン
KR23	岡山県倉敷市西坂原津,三吉鉱山下	細粒花崗岩、斑状石英
KR26A	同上,総社市山手鉱山跡	中粒優白花崗岩
MNK30	滋賀県甲賀郡,甲西町甲賀ゴルフ場北東方	微粒黒雲母花崗岩
MNK33	同上,信楽町宮町北側	褐色黒雲母花崗岩
MNK42	同上,信楽町日産信楽鉱山入口	中粒花崗閃緑岩,弱風化
MNK43	同上,信楽町日産信楽鉱山露頭	アプライト
MNK44	同上, 信楽町, 同上	弱粘土化アプライト
MNK45	同上, 信楽町, 同上	カリ長石化花崗岩,弱変質
MNK46	同上, 信楽町, 同上	白雲母ペグマタイト,弱変質
MNK50	滋賀県大津市桐生町第二名神高速トンネル	石英閃緑岩
NG53	岐阜県中津川市苗木南南西方 桑原寺六角堂	中粒黒雲母花崗岩(ペグマタイト含有)
NG64A	岐阜県蛭川村新田,採石場	中粒黒雲母花崗岩
NG64B	同上	複合アプライト質岩脈(幅32cm)のペグマタイト含有相(盤際)
NG64C	同上	岩脈のアプライト部(中心)
KAD1	岐阜県,瑞浪市,釜戸長石(岡野武雄採集)	優白質アプライト
KAD2	同上(同上)	同上
YAM33	長野県, 薮原長石(同上)	同上
BYOFD	韓国,Buyeo Feldspar(S. M. Ko 提供)	同上

ルンと黒雲母花崗岩との接触部,あるいはその近くに 不規則なレンズ状と述べられているので,花崗岩固結 最末期の高温変質作用により生成したものと思われる. また,デーナ石・フェナス石などの希産ベリリウム鉱 物が発見・報告されている(青木・肥田, 1974).

当地区からは,第1堰堤地点から中粒モンゾニ岩 (MH15)と細粒白色ろう質外観のアルバイト化花崗岩 (MH13),第2堰堤地点からざくろ石含有緑色スカルン 鉱石(MH11)の3個を分析した。中粒モンゾニ岩は著し くNa₂Oに富み(9.7%),K₂Oに乏しく(0.3%),希土類元 素総量は,著しく低い(REE+Y=53 ppm,第5表).

アルバイト化花崗岩はCaOが高く(17.4%),古生層か らCaOの供給を受けたものと考えられる.REE+Y量は やや多く(349 ppm),LREE/HREE+Y=2.1,軽希土類 に富んでいる.銅鉱化作用を受けており(Cu 0.4%),Sn (82 ppm)とW(68 ppm)も一般の花崗岩類よりは高い (第4表).緑色ざくろ石スカルンは希土類元素に非常に 乏しい(6 ppm).一方,Snが異常に高い(1.3%). Watanabe and Hoshino(1991)と渡辺・星野(1992)は 当鉱床産の緑色ざくろ石に4.24% SnO₂, そして微細な マレイアイト包有物を報告しており, 筆者らの試料の Sn異常もこれらの鉱物に起因するものと考えられる.

4. 岡山県, 倉敷北方地域

この地域にも上部古生代堆積岩類に貫入して,後期 白亜紀の黒雲母花崗岩類が広く分布する.その周縁相 である細粒優白質花崗岩に関連して,三吉・吉備・真 備・岡山などの多数の小規模な鉄マンガン重石石英脈 鉱床が存在した.また山手鉱山で代表される熱水変質 長石鉱床も花崗岩中に分布する(石原・岡野,1994). 分析試料は三吉鉱山直下の若干のグライゼン化を伴う 細粒花崗岩(KR23)及び山手鉱床跡の中粒花崗岩 (KR26A)から選んだ.これらは高カリウム系列に属す る(第5図).

両試料ともにアルカリ総量で花崗岩領域にプロット され, Rb/Sr比(69, 24)が著しく高く, 結晶分化作用が 進んでいるものと思われる.希土類元素総量(REE+Y=

Table 4 Polarized XRF analyses of the plutonic rocks of the Inner Zone of SW Japan.

	Mihara city Kurashiki are					Minakuchi Quadrangle, Shiga Prefecture							
Analyses nos.	1	2	3	4	5	6	7	8	9	10	11	12	13
Sample no.	MH15	MH13	MH11	KR23	KR26A	MNK42	MNK43	MNK44	MNK45	MNK46	MNK50	MNK33	MNK30
SiO ₂	64 41	49.84	38.54	76.72	77.41	74.32	76.60	70.19	69.00	76.37	57.62	74.88	75.68
TiO ₂	0.06	0.45	< 0.01	0.04	0.04	0.09	0.04	0.02	0.04	0.01	0.81	0.08	0.02
Al ₂ O ₃	17.49	24.39	0.30	12.45	12.02	13.10	13.09	17.88	17.21	13.46	14.26	13.50	12.75
Fe ₂ O ₃	1.84	0.30	28.10	1.82	0.75	1.65	0.48	0.34	0.23	0.11	15.42	1.39	0.58
MnO	0.04	0.02	0.54	0.04	0.02	0.04	0.01	< 0.01	< 0.01	0.01	0.43	0.05	< 0.01
MgO	0.14	0.04	0.23	0.03	0.03	0.07	< 0.01	0.02	0.04	< 0.01	1.25	0.10	0.09
CaO	4.52	17.36	32.51	0.68	0.56	0.82	0.63	0.08	0.15	0.78	0.69	1.19	0.00
Na ₂ O	9.70	5.53	0.28	2.96	3.91	3.35	3.70	9.11	6.23	3.56	2.69	3.52	2.45
K ₂ O	0.26	0.22	0.22	4.21	4.58	4.90	4.48	1.26	5.00	4.81	5.59	4.77	7.63
P_2O_5	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.29	< 0.01	< 0.01
S	< 0.01	< 0.01	0.21	< 0.01	< 0.01	< 0.01	0.02	0.02	0.02	0.02	0.03	0.01	< 0.01
F	2.36	4.59	0.58	0.69	0.27	0.06	0.05	0.02	0.02	0.03	1.09	0.14	0.07
CO_2	0.09	0.07	0.14	0.07	0.06	0.57	0.20	0.06	0.93	0.06	0.06	0.08	0.07
H_2O^+	0.64	1.16	0.05	0.83	0.32	0.65	0.45	0.61	0.69	0.45	1.41	0.41	0.38
H_2O^-	0.14	0.14	0.02	0.05	0.17	0.37	0.15	0.26	0.17	0.16	0.15	0.13	0.16
Total	101.69	104.13	101.72	100.59	100.14	99.99	99.90	99.87	99.73	99.83	101.79	100.25	99.88
Rb	8.7	9.6	< 0.4	486	309	152	129	37	152	117	635	167	379
Sr	77	420	< 0.2	7.1	13	14	12	55	94	11	8.1	80	41
Ba	11	6	<2	17	37	30	15	70	1180	13	253	392	360
Zr	54	564	< 0.2	76	74	61	99	120	42	95	343	89	52
Hf	< 13	15.3	< 4.9	6.8	6.9	4.3	6.5	6.4	3.6	5.9	29	4.3	5.8
Nb	15	38	< 0.2	17.7	14.7	15.6	13.9	< 0.2	1.6	4.0	129	5.5	10.9
Та	< 24	2.1	<8	4.7	5.1	3.2	3.0	1.9	1.6	3.2	12.7	2.5	4.7
Y	15	67	< 0.2	98	61	48	53	36	36	27	720	39	60
La	4	107	<2	26	26	33	19	16	6	21	84	23	9
Ce	5	201	<3	56	48	52	38	25	11	39	195	43	18
V	11	<5	16	<2	<2	<2	<2	6	6	<2	<6	2	3
Cr	10	<2	48	7	11	15	7	7	17	12	15	25	24
Co	<4	<2	< 23	5	<3	<4	<2	<2	<2	<2	65	<4	<3
Ni	4	6	<3	3	3	2	4	4	5	3	<3	2	6
Cu	3940	21	42	3.7	2.6	2.1	1.7	1.5	5.5	2.0	<2	1.9	5.0
Zn	89	33	5438	52	22	55	43	36	38	19	296	37	21
Pb	17	16	0.9	26	26	27	27	3.6	13	31	17	26	23
Ga	29.0	29.4	n.d.	21.3	15.6	17.7	17.9	26.6	19.7	18.9	38.0	15.0	15.9
Ge	3.4	1.7	n.d.	2.3	1.7	1.5	1.5	0.6	0.8	1.5	3.0	1.6	1.4
As	7.5	< 0.4	6.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.2	< 0.3	< 0.5	< 0.6	< 0.5	< 0.5
Se	1.0	0.6	0.5	0.3	0.3	0.2	0.2	0.1	0.6	0.4	0.5	0.2	< 0.1
Mo	< 0.2	1.3	< 0.2	3.6	1.4	0.6	< 0.2	< 0.2	2.0	1.2	3.3	1.2	1.0
W	<2	68	<15	16	<1 5.0	<[<1	<[<1	<[<4	<1	10
Sn	/3	82	12560	11.3	5.0	1.9	3.0	1.5	1.5	1.4	28	1.8	2.4
Ag	64	< 0.2	<1	< 0.2	< 0.2	< 0.2	< 0.2	<1	1>	1>	< 0.2	< 0.2	< 0.2
Cu In	0.5	< 0.2	00	< 0.2	< 0.2	< 0.2	< 0.2	0.3	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
III Sh	9	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.4	< 0.5
50 Ca	23 - 1.5	< 0.5	< 0.5	< 0.5 16.9	< 0.5 6.4	0.7	< 0.5	< 0.5	0.0	< 0.5	< 0.5	< 0.5	< 0.5
	< 1.5 1.0	2.0	< 1.5	10.8	0.4	0.1	1.9	2.9	4.5	4.2	5.1	5.5 1.5	4./
11 D:	1.0	1.4	< 1.5 11.1	4.4	2.0	1.0	1.0	1.0	2.0	2.0	5.1	1.5	5.0 17.9
BI	24	1.0	11.1	10.2	0.3	< 0.5	0.3	0.4	0.7	0.5	< 0.0	< 0.5	17.8
111 TT	23 25	29	0.0	31 179	31 7.0	18.1	23	23 17	ð.1 2 0	21	150	15.5	20
$\frac{U}{N_{22}O+K_{22}O}$	0.04	4.0 5 75	~ 0.3	7 17	2.0 2.40	4.0	0.0 0.10	10.27	3.8 11.22	2.3	<u> </u>	2.Z	<u> </u>
$K_2O + K_2O$	9.90	0.04	0.50	1.17	0.49 1 17	0.23 1.46	0.10	0.14	0.80	0.57	0.20 2.09	0.29	3 11
A/CNK	0.03	0.04	0.79	1.72	1.17	1.40	1.21	1 1	1 1	1.55	2.00	1.50	10
$Ga/A1*10^4$	3.1	23	0.0 n.c	2.2	2.5	2.6	1.1 2.6	1.1 2.8	1.1 7 7	1.1 2.7	5.0	1.0 2.1	1.0 7 A
Rh/Sr	0.1	2.5	n.c.	68 5	2.5	10.0	10.8	2.0	1.6	10.6	5.0 78.4	2.1	2. 4 9.7
Th/U	10.0	73	>1.0.	17	23.0 4.4	4 5	3.8	14 7	2.1	84	43	61	5.0

Analyst: B. W. Chappell, GEOMOC, Sydney. F, Ion sensitive electrode (ISE) by Actlabs.

第4表 (続き). Table 4 (Continued).

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			0°C N			17	· ·	\$7.1.1	17
Analyses nos. 14 15 16 17 18 19 20 21 SiO2 76.57 76.59 76.11 76.39 75.64 76.10 74.80 73.73 TiO2 0.05 0.04 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.03 0.03 0.02 0.03 0.03 0.02 0.03 0.03 0.02 0.03 0.03 0.02 0.03 0.03 0.02 0.02 0.03 0.03 0.02 0.02 0.03 0.03 0.02 0.02 0.03 0.03 0.02 0.02 0.02 0.03 0.08 0.12 0.08 0.12 0.08 0.12 0.08 0.12 0.0	–	1.4	Gifu, Na	legi area	17	Kamac	lo mine	Yabuhara	Korea
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Analyses nos.	14	15	16	1/	18	19	20	21
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sample no.	NG53	NG64A	NG64B	NG64C	KADI	KAD2	YAB33 I	BAYEO
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SiO ₂	76.57	76.59	76.11	76.39	75.64	76.10	74.80	73.73
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TiO ₂	0.05	0.04	0.02	0.01	0.06	0.01	0.02	< 0.01
$ Fe_{0}, 0.99 1.03 0.94 0.89 1.01 0.04 0.016 0.04 0.02 0.01 0.02 0.001 0.01 0.02 0.02 0.01 0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 4.01 0.01 4.01 4.01 4.01 0.09 0.03 0.03 0.03 0.03 0.01 4.01$	Al_2O_3	12.67	12.61	12.59	12.67	13.13	13.51	14.14	14.23
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Fe ₂ O ₃	0.99	1.03	0.94	0.89	1.01	0.04	0.16	0.42
	MnO	0.02	0.02	0.01	0.02	0.02	< 0.01	< 0.01	0.12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MgO	0.06	0.04	< 0.01	0.02	0.11	< 0.01	0.09	0.03
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CaO	0.86	0.70	0.58	0.52	0.62	0.29	0.32	0.26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Na ₂ O	3.84	3.62	4.07	4.12	3.57	5.10	4.62	4.51
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	K ₂ O	4.35	4.75	4.60	4.79	4.13	4.36	5.31	5.82
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P_2O_5	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S	0.02	0.02	0.03	0.03	0.03	0.02	0.03	0.06
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F	0.15	0.13	0.20	0.32	0.09	0.02	0.02	0.02
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CO ₂	0.05	0.06	0.06	0.06	0.17	0.06	0.08	0.12
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	H_2O^+	0.32	0.26	0.00	0.19	0.89	0.12	0.18	0.10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H ₂ O	0.03	0.08	0.16	0.07	0.40	0.02	0.12	0.08
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Total	0.03	0.00	0.50	100.10	0.40	99.65	0.12	99.50
Ro 2.54 3.53 3.73 1.73 3.22 1.33 1.44 Ba 86 35 6 -2 1.54 40 42 36 Žr 76 79 100 127 80 32 23 49 Hf 5.2 7.9 11.0 15.6 8.7 7.3 10.6 13.7 Nb 8.1 9.6 35 39 25 12.4 15.4 37.3 Ta 2.2 3.4 6.2 6.5 6.4 19.1 12.2 14.2 Y 56 85 196 203 64 61 203 33 La 27 28 26 14 21 20 28 12 Ce 53 56 35 29 36 86 82 18 V 1 <2 22 22 22 22 22 22 22 22 22 22 23 20 23 20 20 20 20	Ph	254	305	305	100.10	315	322	/35	650
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sr.	204	14	1 2	< 0.1	22	25	12	14
Ba 60 53 6 ~ 2 134 40 42 30 Zr 76 79 100 127 80 32 23 49 Hf 5.2 7.9 11.0 15.6 8.7 7.3 10.6 13.7 Nb 8.1 9.6 35 39 25 12.4 15.4 37.3 Ta 2.2 3.4 6.2 6.5 6.4 19.1 12.2 14.2 Y 56 85 196 203 64 61 203 33 La 27 28 26 14 21 20 28 12 Ce 53 56 35 29 36 36 82 18 V 1 <2	Do	20	25	1.5	< 0.1	32 154	23	13	26
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ба 7.	76	55 70	100	127	104	40	42	40
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		70 5 0	79	110	12/	00 0 7	52 7 2	10.6	12.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		5.2	/.9	11.0	15.0	8./	/.3	10.0	13./
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ND T	8.1	9.6	35	39	25	12.4	15.4	3/.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	la	2.2	3.4	6.2	6.5	6.4	19.1	12.2	14.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Y	56	85	196	203	64	61	203	33
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	La	27	28	26	14	21	20	28	12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ce	53	56	35	29	36	36	82	18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V	1	<2	<2	<2	<2	<2	2	<2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cr	15	6	7	9	13	6	10	13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Со	<3	<3	4	6	5	<1	<2	<2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ni	3	3	5	3	5	5	5	6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cu	1.6	2.4	2.0	0.9	11.7	10.1	23	2.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zn	20	23	15	27	22	2	11	367
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pb	27	32	45	54	45	25	62	114
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ga	16.1	16.7	20.4	21.1	18.6	23.8	24.5	38.9
As 0.4 0.5 4.2 5.0 < 0.6 < 0.4 107 < 0.9 Se 0.4 0.3 0.5 0.3 0.8 1.0 0.9 0.8 Mo 0.6 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 W < 1 < 1 31 1.4 0.6 1.3 2.9 < 2 Sn 3.3 5.0 5.1 7.8 3.4 2.6 2.8 1.8 Ag < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 Cd < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 In < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 Sb < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 Cs 12.1 9.2 16.4 29 18.6 5.2 17.8 2.2 Tl 2.2 2.7 3.3 3.3 4.3 3.6 4.1 5.2 Bi 0.8 1.0 2.2 0.7 1.6 1.2 1.1 1.2 Na ₂ O+K ₂ O 8.19 8.37 8.67 8.91 7.70 9.46 9.93 10.33 K ₂ O/Na ₂ O 1.13 1.31 1.13 1.16 1.16 0.85 1.15 1.29 A/CNK 1.0 1.0 1.0 $1.$	Ge	1.5	1.7	2.2	2.6	1.9	2.8	3.2	3.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	As	0.4	0.5	4.2	5.0	< 0.6	< 0.4	107	< 0.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Se	0.4	0.3	0.5	0.3	0.8	1.0	0.9	0.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mo	0.6	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	W	<1	<1	31	1.4	0.6	1.3	2.9	<2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sn	3.3	5.0	5.1	7.8	3.4	2.6	2.8	1.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ag	<1	<1	<1	<1	<1	<1	<1	<1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cd	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	In	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	1.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sb	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.4	< 0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cs	12.1	9.2	16.4	29	18.6	5.2	17.8	2.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tl	2.2	2.7	3.3	3.3	4.3	3.6	4.1	5.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bi	0.8	1.0	2.2	0.7	1.6	1.2	1.1	1.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Th	27	37	41	41	30	15.4	22	12.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	U	6.9	11.4	8.3	9.7	4.2	6.3	9.2	12.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Na ₂ O+K ₂ O	8.19	8.37	8.67	8.91	7.70	9.46	9.93	10.33
A/CNK1.01.01.01.01.01.1Ga/Al*1042.42.53.13.12.73.33.35.2Rb/Sr9.121.8304>47809.812.933.546.4Th/U3.93.24.94.27.12.42.41.0	K ₂ O/Na ₂ O	1.13	1.31	1.13	1.16	1.16	0.85	1.15	1.29
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A/CNK	1.0	1.0	1.0	1.0	11	1.0	1.0	1.0
Rb/Sr 9.1 21.8 304 >4780 9.8 12.9 33.5 46.4 Th/U 3.9 3.2 4.9 4.2 7.1 2.4 2.4 1.0	$Ga/A1*10^4$	2.4	2.5	3.1	3.1	2.7	3.3	3.3	5.2
Th/U 3.9 3.2 4.9 4.2 7.1 2.4 2.4 1.0	Rb/Sr	9.1	21.8	304	>4780	9.8	12.9	33.5	46.4
	Th/U	3.9	3.2	4.9	4.2	7.1	2.4	2.4	1.0

253~174 ppm) はやや高く, 重希 土類(LREE/HREE+Y=0.7~0.8) に富んでいる.三吉鉱山産試料は 微量成分としてのF(0.69%), W (15.4 ppm), Sn(9.0 ppm) に富んで おり, 鉱脈中の成分を反映する結 果が得られた.

5. 滋賀県,田上図幅地域

この地域にはジュラ紀の丹波帯 の付加コンプレックスに貫入して 後期白亜紀花崗岩類が広く分布す る.水口図福の作成において,中 野ほか(2003)はこれらを観音寺花 崗閃緑岩,信楽花崗岩,田上花崗 岩と岩脈類に四分した.

信楽周辺に分布する信楽花崗岩 類からは5個;信楽町の日産信楽 鉱山入り口から弱変質中粒花崗岩 (MNK42), 日産信楽鉱山ピット内 の露頭からアプライト(MNK43). 弱粘土化・アルバイト化アプライ ト(MNK44),弱変質アルバイト化 花崗岩(MNK45),弱変質白雲母ペ グマタイト(MNK46),を分析し た. 花崗岩やアプライトは K₂O> Na₂Oであるが, 弱変質岩はNa₂O >K₂Oとなり、アルバイト化とより 後期の粘土化を受けている(第4表) . 信楽花崗岩のREE+Y量は=146 ppm, アプライトにおける総量は 174 ppmであって,共に低い値を 示す. LREE/HREE+Y比は0.8~ 0.9である.変質作用によって, REE+Y量は少し減少している.

北部の田上花崗岩類では,中野 ほか(2003)の中 - 粗粒黒雲母花崗 岩(Gt3)から2個(MNK50,33),同 細粒斑状相(Gt2)に相当する微粒黒 雲母花崗岩(MNK30)を分析し,別 に報告した(石原ほか,2005).こ れらはショショナイト - 高カリウ ム系列に属する(第5図).MK33花 崗岩のREE+Y含有量は178 ppm, LREE/HREE+Yは1.6である.微 粒花崗岩はその高いSiO₂(75.7%), K₂O(7.6%)及びRb/Sr比(9.2)から, 田上花崗岩類のなかで最も分化し

第5表 西南日本内帯の後期白亜紀花崗岩類の ICP-ICP/MS 及び ISE 分析結果.

Table 5 ICP-ICP/MS and ISE analyses of the plutonic rocks of the Inner Zone of SW Japan.

	М	ihara min	e	Kurashik	i Area		Ν	Iinakuchi	Quadran	gle, Shiga	n Prefectu	re	
Analyses nos.	1	2	3	4	5	6	7	8	9	10	11	12	13
Sample nos.	MH15	MH13	MH11	KR23	KR26A	MNK42	MNK43	MNK44	MNK45	MNK46	MNK50	MNK33	MNK30
V	<5	< 5	11	< 5	< 5	< 5	< 5	< 5	< 5	< 5	38	< 5	< 5
Cr	310	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Co	2	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1	7	< 1	< 1
Ni	540	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
As	9	< 5	10	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Rb	10	12	< 1	491	320	155	139	39	141	119	588	174	391
Sr	70	399	< 2	6	12	13	12	52	80	9	11	77	41
Ba	11	7	< 3	14	30	18	13	64	1050	13	267	370	354
Cs	0.4	3.7	0.1	13.3	3	1.4	1.3	0.4	1.2	1.1	25.3	2.4	3.8
Ga	30	34	9	26	19	21	22	31	21	22	47	18	20
Ge	2.9	2.3	47.3	2.7	1.8	1.5	1.7	0.7	0.7	1.9	4	1.4	2.1
Zr	72	705	4	102	104	75	134	147	55	106	466	118	77
Hf	3.4	17.8	< 0.1	5.2	5.1	3.3	5.8	6	1.9	5	17.6	3.8	4
Nb	17.8	43	1.3	20.5	18.3	18	17.2	3.5	4.9	7.2	141	9.1	14.9
Та	2.03	2.87	< 0.01	4.07	2.87	1.44	1.65	0.45	0.59	1.38	6.87	1.15	1.77
Sn	57	74	> 1000	9	3	< 1	2	< 1	< 1	< 1	25	< 1	1
W	2.9	75.8	92.3	15.4	1.4	3	< 0.5	< 0.5	< 0.5	0.5	2.2	< 0.5	12.6
Tl	0.08	0.08	< 0.05	3.28	1.96	0.86	0.8	0.34	0.76	0.78	5.17	1.03	2.57
Pb	14	16	8	24	20	24	26	< 5	9	33	20	20	20
Bi	18.9	0.3	6.8	8.4	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	10
Sb	20.9	1.4	1.9	1.2	1.1	0.9	1.4	1.3	1.2	1.1	1.5	1	1.4
Th	27.3	28.1	0.18	30.1	31.3	17.7	23	22.9	8.19	19.5	192	15.7	24.8
U	2.94	3.71	0.14	11.6	5.92	3.83	6.37	2.89	1.37	3.19	41.2	2.12	3.29
F(%)	2.36	4.59	0.58	0.69	0.27	0.06	0.05	0.02	0.02	0.03	1.09	0.14	0.07
La	3.12	104	0.7	16.5	13.6	11.7	13	9.5	11.6	9.09	90.2	22.3	11.7
Ce	8.74	206	0.85	41.7	32	26.7	32.8	18.8	21	22	204	47.5	26
Pr	1.45	24.3	0.15	5.82	4.29	3.76	4.73	3.37	3.24	2.86	29.4	5.91	4.1
Nd	7.03	83.5	0.5	28.7	20.1	18.9	24.4	17	14.7	14	154	26.8	21.7
Sm	2.11	17.1	0.1	8.48	5.57	5.37	7.52	4.69	3.43	3.71	49.1	5.89	6.8
Eu	0.112	1.03	0.061	0.052	0.066	0.144	0.104	0.122	0.375	0.108	0.164	0.453	0.103
LREE	22.562	237.93	3.361	101.2	75.626	66.574	82.554	53.482	54.345	51.768	526.86	108.85	70.403
Gd	2.49	13.4	0.13	10.4	6.65	6.98	9.06	5.38	4.04	4.09	88.1	6.34	8.87
Tb	0.53	2.16	0.02	2.31	1.43	1.31	1.7	1	0.79	0.77	20.4	1.2	1.86
Dy	3.55	11.2	0.16	15.2	9.51	8.29	10.1	6.17	5.05	4.63	142	7.51	12.1
Но	0.77	2.09	0.03	3.24	2.03	1.7	1.98	1.29	1.07	0.94	32	1.52	2.53
Er	2.47	6.28	0.11	10.6	6.73	5.3	5.96	4.11	3.37	2.9	99.4	4.67	7.91
Tm	0.421	0.924	0.015	1.75	1.12	0.788	0.882	0.647	0.515	0.443	14.1	0.68	1.18
Yb	3.01	5.32	0.09	10.9	7.31	5.01	5.36	4.04	3.23	2.72	78.4	4.15	7.21
Lu	0.496	0.713	0.011	1.53	1.02	0.696	0.739	0.589	0.441	0.394	10.5	0.579	0.957
HREE	13.737	42.087	0.56	55.93	35.8	30.074	35.781	23.226	18.506	16.887	484.9	26.649	42.517
Y	16.9	69.2	1.9	96.1	63	49.2	55.5	35.7	33	26.9	792	42.1	61.5
HREE+Y	30.637	111.287	2.46	152.03	98.8	79.274	91.281	58.926	51.506	43.787	1276.9	68.749	104.117
REE+Y	53.2	349.2	4.8	253.2	174.4	145.8	173.8	112.4	105.9	95.6	1803.8	177.6	174.5
L/HREE	0.7	2.1	1.4	0.7	0.8	0.8	0.9	0.9	1.1	1.2	0.4	1.6	0.7

In ppm, analyzed by Actlabs, Ltd. F analyzed by ISE.

た岩相と思われるが、そのREE+Y総量は175 ppm, LREE/HREE+Y=0.7であり,特に高くはない.田上花 崗岩体では岩体周縁部でF含有量が低下する傾向が見 られ、この特性がやや低いREE含有量と関係している 可能性がある. 大津市桐生町付近で第2名神高速道路トンネル工事か ら運び出された,直径約1m玉石であった石英閃緑岩 (TNK50)は,苦鉄質,特に鉄に富むがアルカリ総量も 多く,アルカリーシリカ図(第5図)で,ショショナイト 系列にプロットされる.希土類元素総量は非常に高く 第5表 (続き). Table 5 (Continued).

	Nae	gi area, G	ifu Prefec	ture	Kamad	o mine	Yabuhara	Korea
-	14	15	16	17	18	19	20	21
Element:	NG53	NG64A	NG64B	NG64C	KAD1	KAD2	YAB33	BAYEO
V	<5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Cr	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Co	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Ni	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
As	< 5	< 5	9	< 5	< 5	< 5	117	< 5
Rb	268	291	415	472	312	331	454	580
Sr	27	13	3	< 2	27	21	10	12
Ba	86	33	< 3	< 3	154	40	581	40
Cs	9.5	7.2	13.4	24.4	14.2	4.8	15.9	1.4
Ga	20	18	23	25	23	28	30	46
Ge	1.8	1.4	3.4	2.8	2.2	2.7	3.8	3.2
Zr	103	79	129	160	107	44	40	67
Hf	4.8	3.8	8.5	11.5	5.2	3.1	3.5	12.4
Nb	12.6	12.2	39.6	42	25.7	15.2	18.9	43.4
Та	1.89	2.3	6.57	3.85	6.41	18.4	10.8	13.4
Sn	2	4	4	6	3	3	3	2
W	1	1.3	40.3	2.9	0.7	0.7	1.6	< 0.5
T1	1.77	1	2.22	2.61	1.88	1.38	1.87	3.76
Pb	26	16	40	50	42	21	52	97
Bi	< 0.1	0.2	1.9	0.1	0.1	< 0.1	0.1	< 0.1
Sb	1.5	0.9	1.4	1.5	1.5	1.3	2	1.3
Th	27.6	34.4	40.7	41.6	30.5	16.3	23.3	17.6
U	6.35	9.81	8.92	10	3.97	6.74	8.9	16.5
F(%)	0.15	0.13	0.2	0.32	0.09	0.02	0.02	0.02
La	24	19.6	19.3	10.8	14.7	10.3	22	4.15
Ce	51.9	45.9	25.3	25.6	31.9	29.1	84.3	10.5
Pr	6.65	6.28	5.97	3.73	4.03	3.46	13.9	1.43
Nd	29.7	29.9	31.5	20.3	20	19	83.6	9.11
Sm	6.6	7.77	10.4	6.79	5.98	7.79	36.1	6.36
Eu	0.171	0.102	0.092	0.012	0.197	0.171	0.066	0.04
LREE	119.02	109.56	92.562	67.234	76.807	69.821	239.97	31.59
Gd	7.17	9.28	15.8	10.5	8.14	10.7	38.7	7.62
Tb	1.4	1.88	3.64	2.71	1.87	2.47	7.17	1.92
Dy	9.08	12.1	25.6	20.5	13.3	15.8	35.8	12.3
Но	1.92	2.56	5.65	4.82	2.9	2.99	5.55	2.12
Er	6.33	8.32	19	17.7	9.38	8.9	14.9	6.57
Tm	1.03	1.29	3.16	3.21	1.5	1.5	2.43	1.28
Yb	6.74	8.15	20.8	21.5	9.75	9.46	14.6	8.33
Lu	0.958	1.13	3.11	3.17	1.44	1.29	1.98	1.12
HREE	34.628	44.71	96.76	84.11	48.28	53.11	121.13	41.26
Y	61.8	78	199	197	66.2	69.4	207	41
HREE+Y	<u>96.42</u> 8	122.71	<u>295.7</u> 6	281.11	114.48	122.51	328.13	123.52
Total REE	215.4	232.3	388.3	348.3	191.3	192.3	568.1	113.9
L/HREE	1.2	0.9	0.3	0.2	0.7	0.6	0.7	04

今後の課題である.この岩石は 完晶質,新鮮な岩石で,鏡下では ごくわずかに絹雲母化を受ける 斜長石,黒雲母,石英を主成分と し,若干のカリ長石を含むので 石英閃緑岩 - 花崗閃緑岩境界付 近のモード組成を持つ.多量の 高屈折率鉱物が,主に黒雲母中 に見られ,EPMAによる予察的な 検討によると,それは主として ゼノタイム,ジルコン,モナズ石 であり,これらがREE,U,Thを 含むものと考えられる.

6. 岐阜県, 苗木地域

この地域には,美濃帯のジュ ラ紀付加コンプレックスを切っ て後期白亜紀の濃飛流紋岩類が 噴出し,これらに花崗岩類が貫 入し,苗木,土岐などの花崗岩体 を構成する(Ishihara and Wu, 2001).苗木花崗岩体からは中津 川市苗木南南西方,桑原寺六角 堂の中粒黒雲母花崗岩を選んだ. これはペグマタイトを含み,典 型的な苗木花崗岩である.その REE+Y量は216 ppm,LREE/ HREEは1.2である(第5表).

恵那郡蛭川村新田の採石場で は中粒黒雲母花崗岩から1個 (NG64A),それに貫入する幅32 cmの複合アプライト岩脈から盤 際のペグマタイト含有アプライト (NG64B)及び中心部のアプライト (NG64C)を選んだ。中粒花崗岩 のREE+Y量は232 ppm,LREE/ HREE+Y=0.9,岩脈の早期晶出と 考えられる周縁ペグマタイト含有 相のREE+Y量は388 ppm,LREE/ HREE+Y=0.3,最末期固結の中 心部のアプライト相のREE+Y量 は348 ppm,LREE/HREE=0.2で あった。すなわち,花崗岩固結期

(1,804 ppm),特にY(792 ppm)に富み,Dy は142 ppm である.したがって,水平的な希土類分布パターンを 示し,その絶対量も飛び抜けて高く(第6図),LREE/ HREE+Yが低い(0.4).この球石はサービスエリア造成 用に既に処分されており,地表における露頭の発見が からアプライト期に向けて希土類元素は1.6倍程度濃集 し、かつ重希土類に富む傾向が認められる.

岐阜県瑞浪市釜戸には領家花崗岩類の伊奈川花崗岩 に貫入する優白質アプライト岩脈があって,釜戸長石 として窯業用に永年稼行された(石原・岡野, 1994).

第5図 西南日本内帯花崗岩類のアルカリーシリカ図.

Fig. 5 Alkali-silica diagram of the late Cretaceous granitoids of the Inner Zone of Southwest Japan. Alphabetical symbols are the same as those of Fig. 3.

Fig. 6 REE pattern of the late Cretaceous granitoids of the Inner Zone. The numbers correspond to those of Table 4.

その2例(KAD1, 2)を第4,5表に示す. REE+Y量は221 ppmと192 ppmであり,LREE/HREE+Y=0.6~0.7で あって上述の苗木花崗岩中の分化岩脈より希土類元素 に乏しい.この事実は,釜戸長石の母マグマであった

第7図 足摺岬深成岩体及び西南日本内帯花崗岩類の希土類 元素パターン(平均値).

Fig. 7 Average REE patterns (ppm) of selected granitoids in Southwest Japan.

母岩の領家花崗岩が希土類元素に乏しい(Ishihara and Wu, 2001) ためと考えられる.

同様な岩石は長野県木曽郡木祖村薮原でも,奈川花 崗岩中の変質アプライト岩脈として知られている(須藤・ 高木,1994).この薮原長石(YAB33)は著しくYに富み (207 ppm),REE+Y量が大きく(568 ppm),LREE/ HREE+Yが低い(0.7).この事実は,原マグマの奈川花 崗岩が苗木花崗岩と同様な重希土類に富む性質を持つ 可能性を暗示している.韓国,大田市郊外からの同様 なアプライト長石(BUYEO)を参考値として示したが, これはREE+Y量に乏しい.花崗岩形成の最末期生成物 と考えられるアプライトも原マグマの性質によって希 土類に関して異なる性質を持つことを示している.

7. 希土類元素の岩体別平均値, 分布特性と成因

調査岩体の希土類元素存在量の概要を知り,風化殼 との関連性を見るために,主要岩相の平均値を求めた (第5表).足摺岬岩体では主岩相の閃長岩類7個を第2 表から平均した.岡山県南部では万成花崗岩の4個 (Ishihara et al., 2005)に今回の倉敷地域2個を加えて 平均し,岡山南部と表示した.水口図幅地域では前回 (石原ほか,2005)の6個に今回の1個を加えた田上花 崗岩の値として示した.苗木地域では前回(Ishihara and Wu,2001)の7個に,今回の2個を加えて平均し た.比較のために領家花崗岩類と日本の平均値とを示 したが,前者はIshihara and Wu(2001)による中部地

Elements	Ashizuri	Okayama	Tanakami	Naegi	Ryoke	Average
	Syenites	Granites	Granites	Granites	Granites	Japan
	n=7	n=8	n=7	n=9	n=8	n=2
SiO ₂	65.2%	75.4%	75.4%	76.7%	73.4%	72.1%
La	112.2	22.1	21.4	23	26.3	20.3
Ce	187.7	50.2	41.1	52.2	50.5	44.3
Pr	21.10	6.00	5.82	7.19	6.76	5.50
Nd	66	25.04	25.1	29.5	23.9	21.8
Sm	11.50	6.57	7.59	8.04	5.20	5.59
Eu	1.72	0.46	0.27	0.14	0.63	0.50
LREE	369	110.35	101.32	120.07	113.24	97.99
Gd	10.00	7.47	8.77	7.47	4.20	5.47
Tb	1.61	1.53	1.80	1.90	1.00	1.04
Dy	8.92	9.54	11.20	12.40	5.35	6.55
Но	1.750	2.075	2.260	2.330	0.944	1.030
Er	5.42	6.51	7.51	7.38	3.26	3.78
Tm	0.85	1.05	1.23	1.32	0.52	0.70
Yb	5.37	6.65	7.52	8.57	4.20	4.31
Lu	0.80	0.99	1.16	1.11	0.58	0.74
HREE	34.72	35.821	41.46	42.48	20.05	23.62
Y	49	61.4	70.2	83.4	40	51.9
HREE+Y	83.72	97.22	111.66	125.88	60.05	75.52
REE+Y	452.72	207.57	212.98	245.96	173.29	173.51
L/HREE	10.6	3.1	2.4	2.8	5.6	4.2

第6表 足摺岬深成岩体及び西南日本内帯花崗岩類の希土類元素の平均値. Table 6 Average REE contents (ppm) of selected granitoids in SW Japan.

Data source. Ashizuri: Nos. 4 to 10 of Table2.

Okayama: KR23 and KR26A of this study, 4 analyses (TO55, TO181, TO287, TO289) of Ishihara

(2003), and 2 analyses of the Mannari main phase (Ishihara et al., 2005).

Tanakami: MNK33 and 6 analyses of Ishihara et al. (2005).

Naegi: NG53 and NG64A, and 213, 211 N505, N506, N508, N509, N510 of Ishihara and Wu (2001).

Ryoke: T105, T110, T109, T114, T94, T60, T145 and T70 of Ishihara and Wu (2001),

Average Japan: Average of JG2(Naegi granite) and JG3 (Mitoya granodiorite) of Imai et al. (1995).

方領家帯北縁部の塊状花崗岩の平均値であり,後者は 日本産標準試料(Imai *et al.*, 1995)から,島根県三刀 屋の磁鉄鉱系の閃雲花崗閃緑岩(JG3)と岐阜県苗木の黒 雲母花崗岩(JG2)の値を平均したものである.

これら平均値のREEパターン(無規格化)を第7図に 示す.この図から,(i)足摺岬深成岩類が軽希土類元素 を中心として最も希土類元素に富んでいる,(ii)苗木花 崗岩がEuの著しい負異常を示し, 重希土類元素に富んでいる,など が明らかである.

足摺岬花崗岩類のREEは,花崗 岩類の2倍程度の高REE含有量を 持つ流紋岩脈でフッ化セリウム< (Ce, La) F_3 >,バストネサイト< Ce, La(CO_3)F>が含まれること (Imaoka and Nakashima, 1994b), あるいはチェフキナイトの産出例 (Imaoka and Nakashima, 1994a) などから,これら軽希土類元素に 富む鉱物に依存する可能性が高 い.その検討は今後の課題である.

苗木花崗岩中に多産する小規模 なペグマタイトにはフェルグソナ イトが最も一般的に産出し,つい でサマルスカイト,モナズ石,恵 那石である(小関・松原,1961). またREEを多く含むジルコンの変 種である苗木石も産出し,苗木花 崗岩のREEはごく微量に含まれる 上記鉱物に由来するものと考えら れる.

希土類元素は大局的に高フッ素 花崗岩類(足摺岬, 苗木など)と関 連しているが, それらの花崗岩質 マグマの成因は異なると考えられ る. 足摺岬深成岩類の斑れい岩の 中間生成物は低いSr初生値を持ち (0.7035, Shibata and Ishihara, 1979), 斑れい岩マグマが上部マ ントル起源であることを示す. 閃 長岩類は少量の磁鉄鉱を含むこ と,メタアルミナスの性格などか ら四万十帯の堆積岩起源とは考え られず, 地殻深所に潜在する苦鉄 質火成岩類が,恐らく斑れい岩マ グマの上昇によって部分溶融し, 発生マグマが少量であったために アルカリに富む性質を持つに至っ たものと考えられる.

山陽帯の優白質花崗岩類はチタン鉄鉱系カルクアル カリ岩に属し,堆積岩を含む珪長質火成岩類起源と思 われる(Ishihara and Matsuhisa, 2002)が,苗木花崗 岩が最も希土類元素に富み,次いで田上花崗岩である. REEは一般の微量造岩鉱物に含まれるものと思われる が,関連アプライト岩脈については希産鉱物が含まれ る可能性がある.苗木・田上花崗岩類はフッ素に富み, かつマグマ分化が進んでいた性質を持つ.この2点が, 山陽帯の一般の花崗岩類の中で,これら花崗岩類が重 希土類を中心として希土類元素に富むに至った原因と 考えられる.

田上花崗岩中に見られた著しく異常な岩石 (1,804 ppm REE+Y, 142 ppm Dy)は苦鉄質であるにもかかわ らず苦鉄鉱物は黒雲母のみである. 鏡下で完晶質組織 を示し,斜長石のアルカリ長石化も顕著ではないので, 恐らくマグマ期に苦鉄質マグマとK, REEに富む珪長質 マグマとが反応して生成したものと思われる. この試 料は高速道路建設のトンネル工事用の貯石場から得ら れたので産状がはっきりせず,今後,類似岩を発見し て更なる解析を進めることが必要である.

8.むすび

ハイブリッド車時代に対応する希土類元素確保のた めの基礎研究の一環として,花崗岩類中の希土類元素 量を調査した.その結果,足摺岬花崗岩類が最も希土 類元素に富み,平均値で453 ppm REE+Yであり,つい で山陽帯の優白花崗岩類(苗木,246 ppm REE+Y,田上, 213 ppm REE+Y)が多く含むことが判明した.これら は今後の風化殻や風化堆積物における希土類元素濃集 機構解析の基礎データとなるものである.1,800 ppm REE+Yに達する異常値を持つ包有岩の成因解明は今後 の課題である.

文 献

- 青木義和·肥田 昇 (1974) 広島県三原鉱山のベリリウ ム鉱床の地質と鉱床の成因. 鉱山地質, **24**, 201-211.
- 林昇一郎・石原舜三・坂巻幸雄 (1969) 現地残留鉱床に 伴うウランー高知県,足摺岬におけるウラン・ トール石鉱床ー.日本におけるウランの産状 その 2,地調報告, no.232, 93-103.
- Imai, N., Terashima, S., Itoh, S. and Ando, A. (1995) 1994 compilation of analytical data for minor and trace elements in seventeen GSJ geochemical reference samples, "Igneous rock series". *Geostd. Newslet.*, **19**, 135-213.
- Imaoka, T. and Nakashima, K. (1994a) Chevkinite in syenites from Cape Ashizuri, Shikoku Island, Japan. *Neues Jb. Miner. Mh.*, H. 8, 358-366.
- Imaoka, T. and Nakashima, K. (1994b) Fluocerite in a peralkaline rhyolite dyke from Cape Ashizuri, Shikoku Island, Southwest Japan. *Neues Jb. Miner. Mh.*, H.12, 529-539.

今岡照喜·中島和夫·村上允英(1991)高知県足摺岬A

タイプ花崗岩中のガリウム.岩鉱,86,354-363.

- 石原舜三 (1988) A タイプ花崗岩と REE 鉱床. 地質 ニュース, no.409, 6-24.
- 石原舜三 (2005) 岐阜県平岩ほたる石鉱床の地質と日本 のほたる石鉱床区における重要性.地質調査研究 報告, 56, 167-176.
- Ishihara, S. and Matsuhisa, Y. (2002) Oxygen isotopic constraints on the geneses of the Cretaceous-Paleogene granitoids in the Inner Zone of Southwest Japan. Bull. Geol. Surv. Japan, 53, 421-438.
- 石原舜三·村上浩康 (2005) いまレアアースが面白いー イオン吸着型鉱床は将来の先端高度産業を支えら れるか?.地質ニュース, no.609, 4-18.
- 石原舜三·岡野武雄 (1994) 花崗岩系列と非金属鉱物資 源. 地質ニュース, no.484, 13-24.
- Ishihara, S. and Wu, C-Y. (2001) Genesis of Late Cretaceous-Paleogene granitoids with contrasting chemical trends in the Chubu District, Central Japan. Bull. Geol. Surv. Japan, 52, 471-491.
- 石原舜三・中野聡志・寺島 滋 (2005) 近畿地方田上花 崗岩の化学的特性-特に放射性元素と希土類元素 の役割-.地質調査研究報告, 56, 93-98.
- Ishihara, S., Yoshikura, S., Horikawa, S., Ogasawara, M., Nishio, I. and Terashima, S. (2005) On the oxidized and reduced granites found in quarries of Okayama city, Southwest Japan. *Bull. Geol. Surv. Japan*, **56**, 1-8.
- Ishihara, S., Tanaka, T., Terashima, S., Togashi, S, Murao, S. and Kamioka, H. (1990) Peralkaline rhyolite dikes at the Cape Ashizuri: -A new type of REE and rare metal mineral resources. *Mining Geol.*, **40**, 107-115.
- 小関幸次・松原秀樹 (1961) 概論:含ウランペグマタイト鉱床.日本におけるウランの産状,その1.地調報告,no.190,13-26.
- Le Maitre, R. W., Bateman, P., Dudek, A., Keller, J., Lameyre, J., Le Bas, M. J., Sabine, P. A., Schmid, R., Sorensen H., Streckeisen, A., Wooddey, A. R. and Zanettin, B. (1989) A classification of igneous rocks and glossary of terms. Blackwell, Oxford. 193 p.
- 村上允英・今岡照喜(1980)四国南西部の深成岩類の化 学性 ーとくに足摺岬深成岩類の特徴.甲藤次郎 教授還暦記念論文集,57-70.
- 村上允英・増田康之 (1984) 高知県足摺岬産第三紀火成 岩類の微量元素.岩鉱,**79**, 318-328.
- 村上允英・蟹沢聡史・石川賢一 (1983) 高知県, 足摺岬 産第三紀火成岩類の高フッ素含有量. 岩鉱, **78**, 497-504.

- 村上允英・今岡照喜・魚住誠司(1989)高知県足摺岬の 環状複合体とその形成機構.地団研専報, no.36, 115-142.
- 中野聰志・川辺孝幸・原山 智・水野清秀・高木哲一・ 小村良二・木村克巳 (2003) 水口地域の地質.地域 地質研究報告 (5万分の1地質図福).地質調査総合 センター,83 p.
- Nakashima, K. and Imaoka, T. (1998) Niobian and zincian ilmenites in syenites from Cape Ashizuri, Southwest Japan. *Mineralogy and Petrology*, **63**, 1-17.
- Shibata, K. and Ishihara, S. (1979) Initial ⁸⁶Sr/⁸⁷Sr ratios of plutonic rocks from Japan. *Contrib. Mineral. Petrol.*, **70**, 381-390.
- 添田 晶 (1964) 中国地方, 広島県, 三原地区.国内鉄 鋼原料調査第3集, 465-468.
- Stein, G., Charvet, J., Lapierre, H. and Fabbri, O. (1994) Geodynamic setting of volcano-plutonic rocks in so-called "paleo-accretionary prisms": Fore-arc activity or post-collisional magmatism? The Shimanto belt as a case study. *Lithos*, 33, 85-107.
- 須藤定久・高木哲一 (1994) 長野県, 薮原長石鉱山の交 代性長石鉱床―その産状と岩石記載. 地質調月報, **45**, 257-265.

- Watanabe, M. and Hoshino, K. (1991) Tin behavior and its implications for skarn genesis. In Skarns
 Their genesis and metallogeny. Theophrastus Publications, S. A., Athens, 31-55.
- Watson, E. B. and Harrison, T. M. (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Let, v. 64, 295-304.
- 渡辺 洵・星野健一 (1992) 含錫ガーネットの成因.ス カルン型鉱床の生成機構の解明,平成3年度総研 報告書, p.13-18.
- Whalen, J. B., Currie, K. L. and Chappell, B. W. (1982) A-type granites: geochemical characteristics, discrimination and petrogenesis. *Contrib. Mineral. Petrol.*, **95**, 407-419.
- Wu, C-Y., Huang, D-H. and Guo, Z-X. (1990) REE geochemistry in the weathered crust of granites, Longnan area, Jiangxi Province. Acta Geol. Sinica, 3, 193-210.
- 吉倉紳一·熱田真一 (2000) 花崗岩体に記録されたマグ マ混交・混合現象.月刊地球/号外, no.30, 140-145.
- (受付:2006年5月1日;受理:2006年8月29日)