「南極地域石油天然ガス基礎地質調査」(FY1980-1999)によって 得られた海底堆積物コアの古地磁気・岩石磁気測定

森尻理恵¹·中井睦美²·上野直子³·荻島智子⁴

Rie Morijiri, Mutsumi Nakai, Naoko Ueno and Tomoko Ogishima (2005) Paleomagnetic and rockmagnetic study of marine sediment core samples taken by the Antarctic Geological and Geophysical Research Project of Japan National Oil Corporation (FY1980-1999). *Bull. Geol. Surv. Japan*, vol. 56(9/10), p.341 - 373, 28 figs, 2 tables.

Abstract: Paleomagnetic and rock magnetic studies were performed on 22 sediment core samples taken by the Antarctic Geological and Geophysical Research Project (FY1980-1999) of the Japan National Oil Corporation (JNOC). These core samples were made available since 2002 after being transferred to the Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), and their reports were released. These cores did not suffer serious magnetic damage, though they have been kept in a room temperature since 2002 after being kept refrigerated for more than 10 years. Our results of measurements of natural remanent magnetization (NRM) and magnetic susceptibility agree with the results of the JNOC reports. Some magnetic parameters, anhysteretic remanent magnetization (ARM) and saturation isothermal remanent magnetization (SIRM) were also shown in our figures, which were not measured during the project. They are important environmental magnetic parameters and would be useful for the research of the Antarctic Ocean in the future.

Keywords: Antarctic Ocean, marine sediment core, paleomagnetism, rock-magnetism, JNOC

1.はじめに

南極周辺海域で得られた海底堆積物コアの自然残留 磁気 (NRM), 带磁率, 非履歷残留磁化 (ARM), 飽和 等温残留磁化 (SIRM)の測定を行った. 使用したコア 試料は,通商産業省から石油公団石油開発技術セン ターへの委託事業「南極地域石油天然ガス基礎地質調 査」(FY1980-1999) において,ほぼ南極大陸をぐるりと 取り囲むように採取したものである.この「南極地域 石油天然ガス基礎地質調査」プロジェクトは、地質学 的及び地球物理学的調査を, 南極条約に規定された科 学調査として実施した.この研究プロジェクトを通じ て多くの成果が得られた(例えば Nishimura et al., 1998; Matsuoka and Funaki, 2003)が, 採取された堆 積物コアなどの研究結果の大部分や資料は広く一般に は公開されていなかった.2000年から2年間にわたり 資料が整理され,研究報告書等はデータベース化され CD-ROM6枚にまとめられ,閲覧可能となっている(藤本・ 辻,2002).本研究で参照したコアの記載や過去の古地 磁気測定結果などは、この報告書CD-ROM(石油公団、 2001) に拠った.また,堆積物コアは2002年4月に産 業技術総合研究所・地質標本館(以下産総研)の管理

に移り,所定の手続きを経た上で利用可能となった. コア試料は,採取後は冷蔵保存されていたが,産総研 に移管後は室温において保存されていた.今後も継続 して,常温で保存される.

堆積物コアの岩石磁気研究は, 1980年代末ころから 測定技術の進歩とともに急速に発展してきた. 例えば, 帯磁率は現在では測定の必須項目としてルーチン化さ れているが、1980年代末までは堆積物について測定さ れることはほとんどなかった(山崎,2000).石油公団 のプロジェクトにおいて得られた古地磁気データにつ いて,報告書CDを参照し航海ごとに第1表にまとめて みた. ここで数字は、ほぼコアー本分の古地磁気デー タが記載されているコア数である。1980年度から古地 磁気データは部分的に記載されており、TH80では9本 中4本,TH81では9本中1本について報告されている が、当時はコア分析のルーチンとして実施されていた わけではなかったらしい. 採取されたコアのほぼ全部 について古地磁気データが公開されているのは,NRM がTH84 航海(1984年度)から,帯磁率はTH93 航海 (1993年度)からである.NRMの測定では、コアごと にいくつかのパイロットサンプルを選びおおむね5mT のステップで段階交流消磁が行われ、最適消磁レベル

¹地質情報研究部門(Institute of Geology and Geoinformation, GSJ)

²大東文化大学(Daito-Bunka University, Takashimadaira, Itabashi-ku, Tokyo, 175-8571 Japan)

³東洋大学(Toyo University, Hakusan, Bunkyo-ku, Tokyo, 112-8606 Japan)

⁴目白学園高等学校(Mejiro-Gakuen High School, Nakaochiai, Shinjyuku-ku, Tokyo, 161-8539 Japan)

第1表 石油公団プロジェクトで得られたコアの古地磁気データ一覧.

Table 1	List of magnetic measurements which v	vere show	n in JNOC	reports.		
year	cruise,core	NRM	sus.	others	area	
1980	TH80(PC101-109)	4	0	0	Amundsen Sea	
1981	TH81(PC201-209)	1	0	0	off Queen Maud Land	
1982	TH82(PC304-306,G301-309)	1	0	0	Dumont d'Urville Sea	
	TH82(PC301-303)	2	0	0	Ross Sea	
1983	TH83(G401-402,PC401-402,406-407)	0	0	0	Dumont d'Urville Sea	
	TH83(PC403-405,G403-405)	0	0	0	off Wilkes Land	
1984	TH84(PC502-505,507)	5	0	0	Prydz Bay	
1985	TH85(PC601-606)	4	0	0	off Queen Maud Land	
1986	TH86(PC701,G701-709)	10	0	0	Amundsen Sea	
1987	TH87(GC801-809)	9	0	0	off Antarctic Peninsula	
1988	TH88(GC901-908)	8	0	0	off Antarctic Peninsula	
1989	TH89(GC1001-1006)	6	0	0	Prydz Bay	
1990	TH90(GC1101-1109)	9	0	0	Dumont d'Urville Sea	
1991	TH91(GC1201-1202)	1	0	0	Dumont d'Urville Sea	
	TH91(GC1203-1208)	5	0	0	Ross Sea	
1992	TH92(GC1301-1302)	2	0	0	Dumont d'Urville Sea	
	TH92(GC1303-1308)	6	0	0	Ross Sea	
1993	TH93(GC1401-1409)	7	7	0	Dumont d'Urville Sea	
1994	TH94(GC1501-1509)	9	9	Hysteresis	off Wilkes Land	
1995	TH95(GC1601-1602)	1	1	0	Dumont d'Urville Sea	
	TH95(GC1603-1606)	4	4	0	Ross Sea	
1996	TH96(GC1701-1710)	9	9	AMS	off Antarctic Peninsula	
1997	TH97(GC1801-1806)	5	5	AMS	off Antarctic Peninsula	
1998	TH98(GC1901-1903,1907)	4	4	AMS	off Wilkes Land	
	TH98(GC1904-1906)	3	3	AMS	Prydz Bay	
1999	TH99(GC2001-2009)	0	0	0	Prydz Bay	

(optimum demagnetization field, ODF)が推定されて いる.測定結果としてコアごとに,深さに対する消磁 前並びにODFでの消磁結果のグラフ (コアによっては どちらかのみ)が記載されている.しかし、報告書に は段階交流消磁結果は代表的なパイロットサンプルの ものしか記載されていない。

そこで筆者らは,最終的には南極海における堆積物 コアの古地磁気学的手法を用いた対比を目標として, これらのコアのうち、なるべく保存状態が良く、ほぼ ぐるりと南極大陸を取り囲む配置になるようにコアを

選び、ピストンコア8本、グラビティーコア14本を選 択した. 測定は,7 cm³プラスチックキューブを用いて 分析用試料を採取して行った.しかし使用したコアの 中には、航海中並びに終了後、さまざまな目的のため のサンプリングが既に行われていて、セクションに よってはこれ以上の分析用試料採取が難しいものも あった.

本報告では、今回使用した22本のコアについて、 NRMや帯磁率の再測定のみならず,コア採取当時測定 されなかった ARM, SIRM の測定を行い, 基礎データ

第1図 採取点分布図. Fig. 1 Location map of sampling sites.

として公開することにした.

最終的な目標である南極周辺海域のコアの対比を行 うためには,熱磁化分析や粒度分析など,更に詳しい 磁性鉱物の検討が必要であるが,それらは現在進行中 である.コアの対比や環境磁気学的な議論はまた別の 機会に行う予定である.

2. 古磁気測定

今回測定を行った22本のコアについて,第1図に海 域区分とコアの採取地点を示し,第2表にコアの採取 地点の情報を示した.そのうち,産総研に2002年4月 から常温で所蔵されていた分はグラビティーコア13 本,ピストンコア2本で,これらはAと記されている. 残りのグラビティーコア1本, ピストンコア6本につい ては7 cm³キューブでコアから分析用試料の採取作業 を行う数日前まで冷蔵されており, Bと記されている. 採取したキューブの試料はAとBの合計4,442個になっ た.採取した分析用試料は測定まで家庭用冷蔵庫に保 管されていた.なお,コアの名称は報告書に従った.PC はピストンコア, GCまたはGはグラビティーコアに対 応している.

グラビティーコアラーやピストンコアラーによって 採取された海底堆積物は,まず船上で,インナー チューブが取り出される.そして,報告書を見ると担 当者によって番号の付け方に違いがあるようだが,お おむね,インナーチューブのトップから順に1,2,3, 4,5,・・・,cc(コアキャッチャー)と1mごとのセ

- 第2表 コアの採取点情報(石油公団報告書より抜粋). 地域名QML: クイーンモードランド沖, DUS: デュモンデュアビル海, WL: ウィルクスランド沖, PB: プリッツ湾, AS: アムンゼン海, AP: 南極半島沖, RS: ロス海. 備考A:1年以上室温に戻されていたコア B: 試料成型の数日前まで冷蔵されていたコア.
- Table 2 Location of coring sites.

Area Code; QML: off Queen Maud Land, DUS: Dumont d'Urville Sea, WL: off Wilkes Land, PB: Prydz Bay, AS: Amundsen Sea, AP: off Antarctic Peninsula, RS: Ross Sea.Remarks; A: sampled from cores stored in a room temperature for one year, B: sampled from cores being kept refrigerated.

Cruise	Core	area	Location(deg)	Water Depth(m)	Section	Remarks
TH81	PC204	QML	05.343W, 69.570S	1844	1,2,3,4	в
TH81	PC208	QML	34.215W, 69.906S	4360	1,2,3,4,5,6,7	в
TH83	PC401	DUS	137.018E, 62.831S	3816	2,3,4,5,6,7,8	А
TH83	PC404	WL	105.153E, 63.936S	3536	1,2,3,4,5,6,7,8	А
TH84	PC505	РВ	69.876E, 65.863S	2481	1,2,3,4,5,6,7	В
TH84	PC507	РВ	75.123E, 62.817S	3805	1,2,3,4,5,6,7,8	В
TH85	PC602	QML	40.008E, 60.442S	4639	2,3,4,5,6,7,8	В
TH85	PC603	QML	43.080E, 66.001S	3157	1,2,3,4,5,6,7,8	В
TH86	GC703	AS	109.979W, 69.765S	3710	1,2,3,4,5	А
TH86	GC704	AS	109.027W, 66.536S	4524	1,2,3,4,5	A
TH87	GC809	AP	49.986W, 61.851S	3315	1,2,3,4,5	A
TH88	GC901	AP	58.994W, 62.744S	1455	1,2,3,4	А
TH88	GC903	AP	61.3089W, 60.534S	3639	1,2,3,4	В
TH92	GC1301	DUS	145.017E, 64.829S	3341	2,4,5	А
TH92	GC1302	DUS	144.992E, 65.485S	2537	3,5	A
TH92	GC1306	RS	169.993W, 75.770S	1450	2,3,4,5	A
TH93	GC1407	DUS	130.518E, 63.749S	3687	1,2,3,4,5	A
TH93	GC1409	DUS	130.498E, 64.583S	1318	1,2,3,4,5	A
TH94	GC1502	WL	112.340E, 63.990S	2656	1,2,3	A
TH94	GC1503	WL	115.995E, 63.292S	3368	1,2,3,4,5	A
TH94	GC1508	WL	118.438E, 63.999S	3232	1,2,3,4,5	A
TH95	GC1603	RS	178.283E, 67.821S	3326	2,3,4,5	А

クションに切断され,更に半割にされる.半割のコア には上方をさす矢印がチューブにマークされ,この1 mごとに切断された状態で保存される.また船上では 軟X線撮影用のセクションなどさまざまな研究用途に 応じてサンプリングが行われる.そして,全体の堆積 構造を乱さないように,既にサンプリングされた痕に は発泡スチロールの小片が詰められている.

堆積物の採取は、このような状態で保存されている コアの半割面から、容積7 cm³のプラスチックキューブ を利用して、なるべく連続的に行った.また、1 mに切 られたコアのセクションごとに上端から個々のキュー ブの中心までの長さを測定した.今回示されるグラフ の横軸は深さを示す.報告書ではその0 cmの場所は海 底面とみなされている場合が多いようであるが,個々 のキューブの深さは,柱状試料記載の図を参考に,コ アのセクションの上端の深度を推定し,そこから キューブまでの長さを加えたものである.具体的には, セクションのトップからp cmのところにあるキューブ の深さは,石油公団の報告書に記されている,切断さ れた各セクションの上端が相当する深さの値(q cm) を読み取り, (p + q) cm とした.ただし,古地磁気 データの変化パターンを報告書と測定値で比較すると, 明らかに深度データがずれていると思われるものも あった.セクションの中には保存や移動の過程で堆積 物の先端が乱れたものもあり,正しく深度データを復 元できていないものもあるので注意が必要である.

コアのセクションの大多数は密閉状態が良好で,堆 積物は予想以上に湿潤であった.プラスチックキュー ブで採取された後,キューブに詰められた状態で堆積 物は冷蔵庫で保管されている.ただし,採取作業は産 総研で行い,測定作業は京都大学並びに同志社大学と 高知大学で行った.

測定作業は,大きく2回に分けて行った.1回目の測 定には,第2表のAのコアを用いた.この作業は以下 の手順で行われた.

- NRM (Natural Remanent Magnetization, 自然 残留磁化):測定には, 同志社大学の超電導磁力計 (2G Enterprises 755R)を使用した. この段階で 消磁は行っていない.
- 初期帯磁率測定:測定は,帯磁率計(Bartington MS-2)を使用して,同志社大学と京都大学で行っ た.低周波(0.47 kHz)と高周波(4.7 kHz)の2 モードで測定した.初期帯磁率として低周波モー ドでの測定値を採用した.
- 3. 帯磁率異方性測定:京都大学と高知大学で Kappabridge KLY-3Sを使用して測定した.結果報 告は別の機会に譲る.
- 4. NRM とARM 測定:高知大学で,超電導磁力計 (2G760)を使用して20 mT,35 mT,80 mTの3 段階の交流消磁,更に 60μ Tの直流磁場と20 mT, 35 mT,80 mTの交流磁場でARM (Anhysteretic Remanent Magnetization,非履歴性残留磁化)を 獲得させ,磁化の測定を行った.
- SIRMとBIRM測定:高知大学と京都大学にて1T でSIRM (Saturation Isothermal Remanent Magnetization, 飽和等温残留磁化)をパルスマグネ タイザーを用いて着磁し,磁化強度をスピナー磁 力計で測定し,更にSIRMと反対方向に0.1Tと0.3 TでBIRM (Back-field Isothermal Remanent Magnetization, 逆等温残留磁化)を着磁し,そ れぞれ測定を行った。

2回目の測定には,第2表のBのコアを用いた.1回 目の測定結果を見て,帯磁率異方性の測定前後でNR Mは変化しないことがわかったので,手順1は省略し た.また1回目の測定ではARM獲得を3段階(20 mT, 35 mT,80 mT)行っていたが,2回目では80 mTのみ とした.あとはおおむね同様の測定を行った.

3. 測定結果

長期保存されたコアが磁気試料として有効かどうか の検討は,多くの研究例がある(例えばOtofuji et al., 1982; Yamazaki et al., 2000 など). 今回の報告では 単純に,NRMと帯磁率の深さに対する変化と石油公 団の報告書に記載されているデータとの比較により, 長期間保存のコアの研究への使用の有効性の検討を 行った.

具体例として、第2図から第6図にPC507(プリッ ツ湾),GC704(アムンゼン海),GC1409(デュモンデュ アビル海), GC1503 (ウィルクスランド沖) 並びに GC1603 (ロス海)の結果を示した。第2図と第3図で はNRM 強度と伏角について石油公団のデータ(●)と 今回測定したデータ(□)を比較した. 第2図はPC507 について, 消磁前の石油公団のデータと今回の35 mT で消磁後のデータ,第3図はGC704について,12mT で消磁後の石油公団のデータと今回の20 mTで消磁後 のデータの比較を行った。第4図から第6図まではNRM 強度,伏角,帯磁率について石油公団のデータ(●)と 今回測定したデータ(□)の比較を行った.NRMの比 較では,第4図はGC1409について,30mTで消磁後 の石油公団のデータと今回の35 mTで消磁後のデー タ,第5図はGC1503について25mTで消磁後の石油 公団のデータと今回の35 mTで消磁後のデータ、そし て第6図はGC1603について30mTで消磁後の石油公 団のデータと今回の35 mTで消磁後のデータ、となっ ている.

南極海のような還元環境にある堆積物では空気中に 置かれることにより強磁性鉱物が失われることがあり, その場合残留磁化は不安定になるが古地磁気方位はそ れなりに保存され、新たな磁性鉱物が生成される事は 一般には起きないと考えられている. 今回も全てでは ないが,報告書に記載されている古地磁気データと今 回測定されたデータはほぼ調和的な結果になったこと から、これらのコアの使用には、おおむね問題がない と考えた.ただし,それにはいくつかの要因があった. 一番大きなものは, コアがもともと強い比較的安定な 磁化を持っていたので, 空気中に置かれることによる 磁性鉱物の変化が起こっても、ある程度安定した磁化 を保つことができたと考えられる.残念ながら石油公 団のデータ(帯磁率はデータテーブルから, NRM は報 告書の深度に対する図から読み取ったもの)と今回測 定したデータでは、サンプリング深度や交流消磁の磁 場強度が一致していないために比較結果の詳しい考察 は行うことができない.

今回測定を行った 22 本のコアについて,初期帯磁 率,NRM 強度,伏角,ARM 帯磁率と SIRM,ARM / SIRM,S比,の7項目のプロファイルを示した(第7

- 第2図 PC507:石油公団の報告書データと今回測定したデータの比較.上から NRM 強度(消磁前の石油 公団の NRM 強度(●)と今回 35 mTで消磁後(□)), NRM 伏角(消磁前の石油公団の NRM 強度 (●)と今回 35 mTで消磁後(□)).
- Fig. 2 PC507: Comparison of NRM between JNOC report (solid circles) and this study (open squares). The data of JNOC were not demagnetized, and the data of this study were demagnetized by alternating field at 35 mT. Upper: NRM intensity, lower: NRM inclination.

第3図 GC704:石油公団の報告書データと今回測定したデータの比較.上からNRM強度(12 mTで消磁後の石油公団のNRM強度(●)と今回20 mTで消磁後(□)),NRM伏角(12 mTで消磁後の石油公団のNRM強度(●)と今回20 mTで消磁後(□)).

Fig. 3 GC704: Comparison of NRM between JNOC report (solid circles) and this study (open squares). The data of JNOC were demagnetized by alternating field at 12 mT, and the data of this study were demagnetized by alternating field at 20 mT. Upper: NRM intensity, lower: NRM inclination.

- 第4図 GC1409:石油公団の報告書データと今回測定したデータの比較.上から NRM 強度(30 mT で 消磁後の石油公団の NRM 強度(●)と今回 35 mT で消磁後(□)), NRM 伏角(30 mT で消磁 後の石油公団の NRM 強度(●)と今回 35 mT で消磁後(□)),帯磁率(石油公団報告書(●), 今回の測定(□)).
- Fig. 4 GC1409: Comparison of NRM between JNOC report (solid circles) and this study (open squares). The NRM data of JNOC were demagnetized by alternating field at 30 mT, and the NRM data of this study were demagnetized by alternating field at 35 mT. Upper: NRM intensity, middle: NRM inclination, lower: susceptibility

図 - 第23 図).また,コアの番号順ではなく,海域ご とにまとめてある.同じ海域内ではおおむね番号順で ある.このうちNRMは高知大学で測定したもののみ, ARM は 80 mTの交流磁場中で獲得したもののみを示 した.いずれも横軸は前に述べた深さである.

ここで7項目の磁気パラメーターに付いて簡単に説 明する.おおむね小玉 (1999), Evans and Heller (2003) 並びに鳥居 (2005) に拠った.

3.1. 帯磁率

帯磁率は外部磁場をかけた時の磁化のしやすさを表

した値である. ここでは体積を基準にしているので単 位はディメンジョン無のSIを用いている. キューブの 体積は7 cm³,高さを19 mmとして,堆積物がキュー ブにきっちりと詰まらなかったものについては V=7 cm³ × (19 mm-足りない長さ) /19 mmという補正を 行った.

帯磁率の大きさは、含まれる鉱物の持つ帯磁率の強 さと量比で決まる.一般にマグネタイトなどの強磁性 鉱物が多く含まれているものは帯磁率が高い.また、 ここでは0.47 kHzの低周波モードで測定した値を初期 帯磁率として採用している.

- 第5図 GC1503:石油公団の報告書データと今回測定したデータの比較.上から NRM 強度(25 mT で 消磁後の石油公団の NRM 強度(●)と今回 35 mT で消磁後(□)), NRM 伏角(25 mT で消磁 後の石油公団の NRM 強度(●)と今回 35 mT で消磁後(□)), 帯磁率(石油公団報告書(●), 今回の測定(□)).
- Fig. 5 GC1503: Comparison of NRM between JNOC report (solid circles) and this study (open squares). The NRM data of JNOC were demagnetized by alternating field at 25 mT, and the NRM data of this study were demagnetized by alternating field at 35 mT. Upper: NRM intensity, middle: NRM inclination, lower: susceptibility.

3.2.NRM

自然残留磁化(NRM)は、堆積物が自然の中で獲得 した自発磁化で、マグネタイトなどの強磁性鉱物が 担っている.通常、堆積時またはその直後に獲得する 初生磁化とその後に獲得する二次磁化のベクトル和に なっている.また、一般に二次磁化の方が消磁されや すい性質をもつことが多いので、段階的に消磁を行っ て分離を行おうとする.20 mT,35 mT,80 mTの3段 階の交流消磁を行ったが、ここでは消磁なし(●)と 35 mTで消磁した(□)プロファイルのみを示す.偏 角データは、コアがチューブの中でねじれている可能 性があるので測定は行ったがここでは示していない.

3.3.ARMとSIRM

非履歴性残留磁化(ARM)は交流磁場の振幅を徐々 に減少させながら同時に直流磁場を加える過程で獲得 される磁化をいう.ARMの大きさは直流磁場が地球磁 場程度の場合は,その磁化強度は直流磁場に比例する. ただし実際には同一直流磁場でも交流磁場が大きいほ どARM強度は強くなる.これは交流磁場が大きいほど

第6図 GC1603:石油公団の報告書データと今回測定したデータの比較.上から NRM 強度(30 mT で 消磁後の石油公団の NRM 強度(●)と今回 35 mT で消磁後(□)), NRM 伏角(30 mT で消磁 後の石油公団の NRM 強度(●)と今回 35 mT で消磁後(□)), 帯磁率(石油公団報告書(●), 今回の測定(□)).

Fig. 6 GC1603: Comparison of NRM between JNOC report (solid circles) and this study (open squares). The NRM data of JNOC were demagnetized by alternating field at 30 mT, and the NRM data of this study were demagnetized by alternating field at 35 mT. Upper: NRM intensity, middle: NRM inclination, lower: susceptibility.

それだけ広い範囲の保磁力を持つ磁性粒子がARMに 寄与するからである.つまり,交流磁場とARM強度の 関係は磁性粒子の保磁力分布によって決まる.した がって一定直流磁場の元で交流磁場を増加させれば ARMも増加するが,あるところで飽和するので,今回 は交流磁場を 80 mTとしてなるべく強いARMを獲得 させた.

またここでは、ARM 強度を直流磁場の値で割って ARM 帯磁率に変換したものを示した(●).これは帯 磁率と同様に強磁性鉱物の量や粒径を反映するが、特 にARM の獲得効率が単磁区領域では帯磁率よりも高いことを利用して,帯磁率とARM帯磁率の比から磁性 鉱物の粒径を推定することもできる(King *et al.*,1982; Banerjee *et al.*,1981).

等温残留磁化(IRM)はサンプルが,常温で強い人 工的な磁場にさらされて,獲得される磁化である.飽 和等温残留磁化(SIRM)は,高磁場をかけて飽和させ た等温残留磁化(IRM)をいう.ここではパルスマグ ネタイザーを使ってARMと直交する方向に着磁させ た.SIRMの値(□)は,磁化の残りやすさを示してい ると考えてよい.IRMはARMに比べて粒径依存性が小 さい.

3.4.S比

S比はヘマタイトのような高保磁力の磁性鉱物とマ グネタイトのような低保磁力の磁性鉱物の含有比を反 映するパラメーターである. ヘマタイトはマグネタイ トに比べて1桁以上も保磁力が大きい. はじめに1 Tと いう強い磁場をかけて SIRM を獲得させ,次に逆向き に0.1 Tの磁場をかける. 更にその次に0.3 Tの磁場を かける. ここではBloemendal *et al.* (1992) に従って, S比の計算は,0.1 T(□),0.3 T(●)ともに,[(-IRM/ SIRM)+1]/2を採用した. 値が1に近いほど,試料中に 残留保磁力が低い強磁性鉱物(マグネタイトなど)の 相対的な含有量が多いことを示す. 0.1 Tで飽和するも のは,マグネタイトやマグへマイトで,0.3 Tまでに大 部分が飽和する. 0.3 Tでも飽和しないのは,へマタイ トやゲーサイトというのが大体の目安になる.

3.5. ARM/SIRM

ARMとSIRMの比はマグネタイトの粒子サイズの推定に広く使われている.ARMは単磁区(SD),なかでも単磁区 - 超常磁性(SD - SP)境界付近の粒径で獲得効率のピークがある.それに対して,SIRMはあまり粒子サイズに依存しない.そのため,ARM/SIRMが大きいほうが粒子サイズは小さくなり,特に単磁区 - 擬単磁区(SD - PSD)粒子が多く含まれている堆積物かどうかの判定に用いられる.ただし,ARMは磁性鉱物間の磁気相互作用の大きさに敏感なので,マグネタイトの含有量(体積比)が少ない場合もARM/SIRMは大きくなる(Sugiura, 1979; Yamazaki and Ioka, 1997)ので解釈には注意が必要である.

4. おわりに

本研究の大きな目的は,堆積物の磁気特性を用いて 南極海周辺のコアの対比を試みることにある.しかし, その研究結果を示す前に,今回使用した22本のコアに ついて,再測定をしたNRMや帯磁率のみならず,コア 採取当時測定されなかったARM,SIRMの測定結果も 合わせて,基礎データとして公開することにした.

また、当然の事ながら、コアがきちんとシールされ ていて,乾燥がさほど進んでいなかったことも大きい. さまざまな用途でサンプリングした後は、コアが乱れ ないように発泡スチロール片をきっちり詰めておく, というのが基本的なルールである. そうしていても長 年の間には、堆積物の位置がずれるのはやむをえない ところがある。そのため、サンプルの深度については 正確な復元は既に困難になっているので、岩相記載や その他のデータと対比を行う場合には, ずれを生じる 恐れがあるが、報告書のプロファイルと比較した限り ではせいぜい数 cm の範囲に収まっていると考えてよ いだろう. どうしても報告書のプロファイルとパター ンが合わない場合は、コアが乱れたものと仮定して、 プロファイルを見ながらキューブの位置データを報告 書に合うように手作業で調整した、しかしながら、手 作業の調整程度で復元できたのは、コア使用のルール が比較的きちんと守られていたことが大きい. コアが 後年使用可能か否かの分かれ目というのは、使用者の マナーにかかっていると改めて認識された.

謝辞:本研究を行うに当たり、コアの使用については 産総研・地質情報研究部門の西村 昭氏、産総研・地 質標本館の松江千佐世氏、並びに極地研究所の三浦英樹 氏にお世話になりました.また測定については、京都 大学の石川尚人助教授、同志社大学の林田 明教授、 高知大学海洋コアセンターの小玉一人教授、海洋研究 開発機構の久光敏夫氏にお世話になりました.更に 西村 昭氏、並びに査読者である産総研・地質情報研 究部門の山崎俊嗣氏にはいろいろ御教示いただきました.謝意を表します.最後に、本研究は文部科学省科 学研究費補助金(課題番号15540442)の助成を受けま した.また、一部は高知大学海洋コア総合研究セン ター共同利用研究(04B006)として実施しました.コ ア採取点分布の図はフリーソフトGMT (Wessel and Smith, 1998)を用いて作成しました.

第7図-第28図

それぞれのコアについて上から(1)初期帯磁率,(2)消磁なし(●)と35 mTで交流消磁を行った残留磁化強度(□),
(3)消磁なし(●)と35 mTで交流消磁を行った残留磁化伏角(□),(4)ARM帯磁率(●)とSIRM(□),(5)ARM/SIRM
(●),(6) S比, S-0.17(□)とS-0.37(●). PC404はARMを測定しなかった.

From the top panel,

(1)Initial susceptibility (\bigcirc) , (2) Intensity of NRM before (\spadesuit) and after AF demagnetization at $35\text{mT}(\Box)$, (3) Inclination of NRM before (\spadesuit) and after AF demagnetization at $35\text{mT}(\Box)$, (4) ARM-susceptibility (\spadesuit) and SIRM (\Box) , (5) ARM/SIRM (\spadesuit) , and (6) S-ratios, S-0.1T (\Box) and S-0.3T (\spadesuit)

ARM of PC404 was not measured.

Fig. 7 PC204, off Queen Maud Land area.

Fig. 8 PC208, off Queen Maud Land area.

Fig. 10 PC603, off Queen Maud Land area.

第11図 PC401 デュモンデュアビル海.
 ただし帯磁率は Bartington MS-2 ではなく Kappabridge KLY-3S で測定された. SIRM はほかのコアが1 個おき(約5~6 cm 間隔)であるのに対して5 個おき(約12~15 cm 間隔)に測定され, BIRM は 0.3 Tのみ着磁されている.

Fig. 11 PC401, Dumont d'Urville Sea area. Susceptibility was measured using Kappabridge KLY-3S instead of Bartington MS-2. For S-ratios, S-0.3 T was shown. SIRM was measured every six samples.

Fig. 12 GC1301, Dumont d'Urville Sea area.

Fig. 13 GC1302, Dumont d'Urville Sea area.

Fig. 15 GC1409, Dumont d'Urville Sea area.

第16図 PC404 ウィルクスランド沖. ただし帯磁率はBartington MS-2ではなくKappabridge KLY-3Sで測定されたもの. ARMの獲得実験はなし.

Fig. 16 PC404, off Wilkes Land area. Susceptibility was measured using Kappabridge KLY-3S instead of Bartington MS-2. ARM was not measured.

Fig. 17 GC1502, off Wilkes Land area.

第18図 GC1503 ウィルクスランド沖. Fig. 18 GC1503, off Wilkes Land area.

第19図 GC1508 ウィルクスランド沖. Fig. 19 GC1508, off Wilkes Land area.

Fig. 27 GC1306, Ross Sea area.

-372-

文 献

- Banerjee, S. K., King, J. W. and Marvin, J. (1981) A rapid method for magnetic granulometry with applications to environmental studies. *Geophys. Res. Lett.*, **8**, 333-336.
- Bloemendal, J., King, J. W., Hall, F. R. and Doh, S. J. (1992) Rock magnetism of Late Neogene and Oligocene deep-sea sediments: relationship to sediment source, diagenetic process, and sediment lithology. J. Geophys. Res., 97, 4361-4375.
- Evans, M. E. and Heller, F. (2003) Environmental Magnetism. 299p, *Academic Press*.
- 藤本正道・辻 喜弘 (2002) 石油公団による南極周辺海 域地質調査で得たデータと試料ーその総括と今後 の活用ー,南極地学シンポジウム講演要旨,国立 極地研究所.
- 石油公団 (2001) 南極海の堆積物および岩石に関する地 質データー石油公団による南極調査―,石油公団 CD-ROM.
- King, J. W., Banerjee, S. K., Marvin, J. and Özdermir, Ö. (1982) A comparison of different magnetic methods for determining the relative grain size of magnetite in natural material: some results from lake sediments. *Earth Planet. Sci. Lett.*, **59**, 404-419.
- 小玉一人 (1999) 古地磁気学, 東京大学出版会.
- Matsuoka, H. and Funaki, M. (2003) Characteristics of the natural remanent magnetization (NRM) of a core collected from offshore Wilkes Land, East Antarctica. *Antarctic Record*, **47**, 3, 315-327.

- Nishimura, A., Nakasone, T., Hiramatsu, C. and Tanahashi, M. (1998) Late Quaternaly paleoenvironment of the Ross Sea continental shelf, Antarctica. *Annals of Glaciology*, **27**, 275-280.
- Otofuji, Y., Katsura, I. and Sasajima, S. (1982) Decay of a post depositional remanent magnetization in wet sediments due to the effect of drying. *Geophys. J. R.astr. Soc.*, **70**, 191-203.
- Sugiura, N. (1979) ARM, TRM and magnetic interactions: Concentration dependence. Earth Planet. Sci. Lett., 42, 451-455.
- 鳥居雅之 (2005) 環境磁気学―レビューー. 地学雑誌, 114, 284-295.
- 山崎俊嗣(2000)古地磁気・岩石磁気研究の進展-白嶺 丸が採取した堆積物の重要な役割-.地質ニュー ス, no. 549, 54-57.
- Yamazaki, T. and Ioka, N, (1997) Cautionary note on magnetic grain-size estimation using the ratio of ARM to magnetic susceptibility. *Geophys. Res. Lett.*, 24, 751-754.
- Yamazaki, T., Solheid, P. A. and Frost, G. M. (2000) Rock magnetism of sediments in the Angola-Namibia upwelling system with special reference to loss of magnetization after core recovery. *Earth Planets Space*, **52**, 329-336.
- Wessel, P. and Smith, W. H. F. (1998) New, improved version of the Generic Mapping Tools released, EOS Trans. AGU, 79, p.579.

(受付:2005年5月9日;受理:2005年7月21日)