つくば市で2001年2月から2002年6月に採取したエアロゾル粒子の非水溶性成分の季節変化

太田充恒¹·寺島 滋¹·金井 豊²·上岡 晃²·今井 登¹·松久幸敬¹· 清水 洋³·高橋嘉夫³·甲斐憲次⁴·林 政彦⁵·張 仁健⁶

Atsuyuki Ohta, Shigeru Terashima, Yutaka Kanai, Hikari Kamioka, Noboru Imai, Yukihiro Matsuhisa, Hiroshi Shimizu, Yoshio Takahashi, Kenji Kai, Masahiko Hayashi and Renjian Zhang (2005) Seasonal change of chemical composition of water-insoluble components in aerosol particles collected in Tsukuba from February 2001 to June 2002. *Bull. Geol. Surv. Japan*, vol. 56(3/4), p.99 - 116., 6 figs., 4 tables.

Abstract: Aerosol particles were collected at Tsukuba in Japan from February 2001 to June 2002 and their water-insoluble components were analyzed. Mass concentrations of aerosol particles had three peaks at >11.0 µm, 2.1-7.0 µm and 0.43-0.65 µm in diameter. The concentrations of aerosol samples with 2.1-7.0 µm particle size especially increased when a large-scale dust event was observed. Distribution patterns of most elemental concentrations such as Al₂O₃ were well consistent with size-segregated measurements of aerosol concentration in air. These patterns suggest that coarse particles consist mainly of mineral aerosols. However, some elements such as Cu and Pb were highly enriched in small particles (under 1 µm). These elements are considered to originate in anthropogenic materials. Focusing on the seasonal variation of mass concentrations of aerosol particles, in summer, fall and winter, the mass concentration of fine grains comprised of carbon aerosol was higher than those of coarse grains consisting of mineral aerosol. But their relationship adversely changed in spring. Especially, large-scale dust event supplied coarse grains with mineral aerosol about 10 times than usual case and most elemental concentrations such as Al₂O₃ in the air became extremely high. Seasonal variation of mass concentrations in fine grains did not correspond to the dust event but had the similar trend to that of Al₂O₃. Nevertheless the Cu and Pb contents in fine grains extremely increased in spring and had different seasonal trends from the Al₂O₃ content in fine grains. These results suggest that local surface materials consisting of mineral aerosol and considerable anthropogenic materials were supplied as a fine aerosol at Tsukuba.

Keywords: Kosa, aerosol, Tsukuba, seasonal change, water-insoluble components, grain-size distribution, mass concentration, chemical composition

要 旨

2001年2月から2002年6月にかけて、つくば市で粒径別に採取されたエアロゾル試料の非水溶性成分の化学組成を測定し、粒径別に見た化学組成の特徴やその季節変化について考察を行った。粒径別に見た化学組成の特徴について調べたところ、大気中エアロゾル濃度は $>11.0~\mu$ m、 $3.3\sim4.7~\mu$ m、 $0.43\sim0.65~\mu$ mにピークを持つパターンを示した。ダストイベント(黄砂の飛来)が発生すると、 $2.1\sim7.0~\mu$ mの粗粒粒子に著しい濃度増加が認められた。 Al_2O_3 をはじめとする多くの元素の大気中濃度は、この大気中エアロゾルの濃度変化と

よく似たパターンを示し、粗粒粒子は主として鉱物質エアロゾルから構成されることを示した。ただし、Cu、Pbなどの一部の元素は、 Al_2O_3 とは明らかに異なる濃度変化を示し、人為起源の炭素質エアロゾル由来と考えられた。次にエアロゾル粒子の季節変動について調べたところ、通常時は細粒粒子を構成する炭素質エアロゾルの寄与が粗粒粒子を構成する鉱物質エアロゾルの寄与よりも大きいが、春期ではその関係が逆転することが明らかとなった。また、ダストイベントが発生した時は、通常時の10倍にも達する鉱物質エアロゾルの寄与が認められ、それに応じて Al_2O_3 などのほぼ全ての元素に対して非常に高い大気中元素濃度が確認され

¹地質情報研究部門(Institute of Geology and Geoinformation, GSJ, AIST, Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan.) ²深部地質環境研究センター(Research Center for Deep Geological Environments, GSJ, AIST, Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan.)

³広島大学大学院理学研究科(Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan.)

⁴名古屋大学大学院環境学研究科(Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.)

⁵福岡大学理学部地球圏科学科(Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.)

⁶中国科学院大気物理研究所 (Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, P. R. China.)

た. 一方、細粒エアロゾル粒子の大気中濃度変化はダストイベントとは対応しないものの、 Al_2O_3 の濃度変化と良い対応を示した。しかし細粒粒子中のCu、Pbは春期に非常に高い濃度を示すものの、 Al_2O_3 とは異なる季節変化を示した。したがって、細粒粒子には局地的に巻き上げられたダスト粒子と人為起源物質の両方の寄与が認められる事が明らかとなった。

1. はじめに

気体中に浮遊する微粒子はエアロゾルと呼ばれ, 主 に土壌粒子 (ダスト)・海塩粒子・化石燃料の燃焼などで 発生する煤・スモッグなどにより形成される. その中 で、アジア大陸の乾燥・半乾燥地域から風によって大 気中に舞い上がるダスト粒子 (風送ダスト) は,発生域 の農業生産や生活環境に影響を与えるばかりでなく、 全地球的な気候にも重大な影響を及ぼしている. 特に、 春先に発生し日本へ飛来する大規模な風送ダストは "黄砂"として知られている。これまで、風送ダストの 気候への影響を調査する日中共同研究プロジェクト "ADEC (Aeolian Dust Experiment on the Climate impact)"では、アジア内陸部の風送ダストの舞い上が り過程及びその大気中での長距離輸送過程に関する総 合的な観測・調査を行ってきた. 著者らは、ネットワー ク観測グループ (G2) として,輸送途上域の中国(北京・ 合肥・青島) と日本 (沖縄・福岡・名古屋・つくば)に観測 機器を設置し,エアロゾルの採取を行い, 粒度分析・化 学組成分析を行ってきた (Kanai et al., 2002, 2003; Ohta et al., 2003).

人為起源エアロゾルに比べ、自然起源の鉱物質エア ロゾルを主体とするダスト粒子が気候に与える影響評 価については未解明な点が多く残されている (国立環境 研究所, 2001). 我々の研究グループでは, 主としてダ スト粒子の物性(主に化学組成)を明らかにすることを 主な目標とし、特に以下の3点について検討を重ねて きた。1) 日本及び中国東部においてダストイベントに 対応して採取されたエアロゾル (主としてダスト粒子) の化学的特徴を明らかにする,2)中国から日本への輸 送途上における風送ダストの化学組成変化の検討を行 う.3) つくば観測点で採取されたエアロゾルの化学組 成の季節変動を明らかにする。1)については、2002年 4月6~12日にかけて発生した大規模なダストイベン トに着目し、日本の4観測点で採取されたエアロゾル 試料の化学的な類似点・相違点の議論を行った (Kanai et al., 2003; Ohta et al., 2003). また, Ohta et al. (2005a) では、中国東部の3観測点(北京·青島·合肥) におけるダストイベントに対応した化学組成変化につ いて検討を行っている。2)については、化学分析に加 え、放射光施設を利用した風送ダスト粒子中の元素の

酸化還元状態の変化や化学種の特定を行い,輸送途上における化学反応を調べた (Ohta et al., 2004, 2005b). 本研究では,検討課題3)について,つくば市で2001年2月から2002年6月の期間に採取されたエアロゾル試料を用いて,化学分析を行い,その季節変化を調べた結果について報告する.

2. 試料採取法

エアロゾル試料は、アンダーセンタイプエアーサンプラー (AN-200: Shibata 社製) を用いて、9段階の粒径毎に分割して採取した (>11.0 μ m, 7.0~11.0 μ m, 4.7~7.0 μ m, 3.3~4.7 μ m, 2.1~3.3 μ m, 1.1~2.1 μ m, 0.65~1.1 μ m, 0.43~0.65 μ m 及び <0.43 μ m). 周辺地表から風によって巻き上げられた局地的な物質の混入を防ぐために、エアーサンプラーは地質調査総合センターの 3 階建て建築物屋上に設置された。エアロゾル試料は、2~4週間の連続運転を行って採取した。ただし、2002年4月は、ADECの集中観測期間にあたり、大規模なダストイベント(黄砂の飛来)も発生したため、採取期間は短く5~7日に設定された(Kanai et al., 2003).

試料採取においては、粒径が $0.65~\mu m$ 以上の粒子は主として無機元素分析を目的とし、ポリフロンフィルター (PF-050:Advantec社製) 上に採取した。一方、粒径が $0.65~\mu m$ 未満の細粒粒子は、主に無機炭素の分析を目的として石英フィルター (2500QAT-UP:Tokyo Dylec社製) 上に採取した。採取されたエアロゾル試料の重量データは、Kanai et al. (2002, 2003) にまとめている。本研究では、ポリフロン・石英フィルターの両方に採取されたエアロゾル試料について化学分析を行った。

3. 分析手法

回収したフィルターは 4 分割し、そのうち 1 分割試料について化学分析を行った。1/4 に切り取られたフィルターは、テフロンビーカー内で水 (25 ml)とエタノール (1 ml) の混合溶液に浸し、超音波洗浄機を用いて水溶性成分を抽出した。この後、0.22 μmニトロセルロース製メンブレンフィルター (Millipore 社製)で懸濁物を濾過し、水溶性成分をイオンクロマトグラフを用いて測定を行った (上岡・金井、2002)、水溶性成分の結果報告については、本稿ではなく別紙で行う予定である。メンブレンフィルターとポリフロンまたは石英フィルターに残った残渣試料は、フッ酸(3 ml)、硝酸(3 ml)、過塩素酸(1 ml)の混酸を用いて、120度のホットプレート上で 2 時間かけて分解した(Imai、1990; Ohta et al.、2003)、その後、200度で蒸発乾固を行い、乾固物を0.5 mlの7N硝酸に溶かし、Milli-Q(MQ)

水を用いて 10 ml に定容した. ポリフロン フィルターはこれらの混酸では分解しない ため蒸発乾固前に取り除いた、Al₂O₃など の主成分元素とV, Sr, BaはICP-AESで, Cu やZn等の微量元素はICP-MSを用いて濃度 分析を行った.マトリックス効果を補正す るために、測定用の標準溶液は、地質標準 試料であるJB-1をエアロゾル試料と同様に 分解したものを用いた (Imai, 1990). 2001 年2月16日から11月12日にかけて採取さ れた試料は、主成分元素とV, Sr, Baを合わ せた12元素の分析だけ行われ,結果は第2 表にまとめられている (Kanai et al., 2003). 2001年12月3日から2002年6月11日にか けて採取された試料については, 主成分元 素・微量元素を含む51元素の測定結果につ いて第3表に示した。ただし、2002年4月 1日から5月8日までの試料の化学分析結果 は, 既にOhta et al. (2003) によって公表さ れているため、第3表には含まれていない。

4. 結果及び考察

4.1 メンブレン・石英フィルターのブラン クテスト

試料回収及び水溶性成分の濾過に用いら れるポリフロン・石英・メンブレンフィル ターはそれぞれ1枚あたり約1g, 0.3g, 0.1 gであるのに対し、回収されたエアロゾル 試料は平均 3.3 mg (最小値 0.16 mg - 最大 値 15 mg) と 1/100 ~ 1/1,000 程度である. そのため、フィルターのブランク値を把握 することは定量値を得る点において大変重 要である. 上記3種類のフィルターのブラ ンクテストは, 主成分元素については既に 行われているが (Kanai et al., 2003), Cuや Zn等の微量元素については検討を行ってい ない. ポリフロンフィルターはフッ酸, 硝 酸、過塩素酸の混酸では分解しないため、 石英・メンブレンフィルターについて、微 量元素のブランクテストを行った. 結果は 第1表に示した.

主成分元素については、メンブレンフィルターは、Na₂O、P₂O₅をわずかに含むものの主成分元素に対するブランクの影響はほとんど無かった。一方、石英フィルターは全ての主成分元素に対してブランク値が得られた。石英フィルターは鉱物起源エアロゾルの寄与が少ない細粒粒子の捕捉に用い

第1表 メンブレンフィルターと石英フィルターのブランクテストの結果.

	Table 1	Results of blank tests of membrane and quartz filters.	
--	---------	--	--

		orane filter Ellulose typ		Quartz filter							
element	mean	S.D.	n	mean	S.D.	n					
(%)											
Na ₂ O	0.005	26%	3	0.007	5%	3					
MgO			0	0.003	12%	3					
Al_2O_3			0	0.027	1%	3					
P_2O_5	0.0004	25%	2	0.001	12%	3					
K ₂ O	0.0001	20%	0	0.005	1%	3					
CaO			0	0.006	21%	3					
TiO ₂			0	0.0001	1%	3					
MnO			0	0.0001	1%	3					
T-Fe ₂ O ₃	0.001										
	0.001	-	1	0.004	2%	3					
(ppm) Li	0.03	86%	2	0.01		1					
Be	0.03	00%	0	< 0.001	1%						
Sc	0.01	_	1	0.001	30%	3 3 3 3 3 3 3 3 3 3 3 3 3 3					
V	1	_	1	0.8	34%	3					
Cr	4	5%	3	3	5%	3					
Co	0.01	30%	3	0.02	22%	3					
Ni	0.9	5%	3	1.3	6%	3					
Cu	0.2	40%	3	0.8	13%	3					
Zn	21	2%	3	8.0	6%	3					
Ga	0.003	-	1	0.05	5%	3					
Rb	0.02	6%	3	0.03	21%	3					
Sr	0.08	0%	2	0.7	1%	3					
Υ	0.005	-	1	0.7	1%	3					
Zr	0.1	82%	2	1.0	28%	3					
Nb	0.09	100%	1 2 2 1	0.02	83%	3					
Mo	0.2	-		10	0.3%	3					
Cd	0.004	23%	3	0.005	2%	3					
Sn Sb	0.04	34%	0	0.08	64%	0					
Cs	< 0.04	17%	3	< 0.001	35%	3					
Ba	\0.001	1 / /0	0	3	2%	3 3 3 3 3					
La	0.007	_	1	0.2	4%	3					
Ce	0.01	_	i	0.4	3%	3					
Pr	0.001	_	1	0.04	3%	3					
Nd	0.005	_	1	0.2	2%	3					
Sm	< 0.001	-	1	0.07	2%						
Eu	< 0.001	-	1	0.02	4%	3					
Gd			0	0.1	1%	3					
Tb			0	0.02	0%	3					
Dy	0.001	-	1	0.1	3%	3					
Ho	< 0.001		1	0.02	4%	3					
Er	0.001	53%	2	0.05	1%	3					
Tm	<0.001	-	1	0.007	4%	3					
Yb	-0.001		0	0.04	2%	3					
Lu Hf	<0.001 0.003	100%	1 2	0.005 0.04	3% 14%	3 3 3 3 3 3 3 3 3					
Та	0.003	83%	3	0.04	1470	0					
TI	< 0.02	-	1	< 0.001	_	1					
Pb	0.1	40%	3	0.4	1%						
Bi	0.001	62%	3	0.002	1%	3					
Th	0.002	-	1	0.1	4%	3					
U	< 0.001	-	1	0.3	1%	3					

S.D.: standard deviation

第2表 つくばで2001年2月16日から11月12日にかけて採取されたエアロゾル粒子の分析結果.

Table 2 Analytical results of aerosol particles collected in Tsukuba from February 16 to November 12 in 2001.

Stage	size	weight	Na ₂ O	MgO	Al ₂ O ₃	P ₂ O ₅	K ₂ O	CaO	TiO ₂		T-Fe ₂ O ₃	V	Sr	Ва
	(µm)	(mg)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(ppm)	(ppm)	(ppm
Tsukuba	no.01: 2001	1/2/16-2/23	3, total flov	v = 283	m^3									
0	>11.0	0.89	***************************************		-	0.045						32		
1	7.0-11.0	0.78	1.36		1.49						0.33	115		
2	4.7-7.0	1.18				0.034						84		
3	3.3-4.7	1.36			8.40	0.009		0.39	0.020	0.009	1.15	63		
4	2.1-3.3	0.77								0.003	1.09	97		
5	1.01-2.1	1.09									0.08	112		
6	0.65-1.01	2.51	0.22		1.56					0.001		23		
7	0.43-0.65	3.21										5		
8	0.43>	2.28										10		
Гsukubа	no.02: 2001	1/2/26-4/26	6, total flov	v = 239	4 m ³	at and the second								
0	>11.0	12.87				0.017			0.019	0.005	0.39	14		
1	7.0-11.0	7.89	0.50	0.17	2.24	0.043			0.069	0.012	1.13	20		
2	4.7-7.0	13.61	1.12	0.54	3.16	0.049	0.66	0.41	0.098	0.014	1.42	30		
3	3.3-4.7	15.12		0.31	2.02	0.032				0.010	1.04	18		
4	2.1-3.3	9.98	0.75	0.50	3.17	0.029	0.87	0.42	0.075	0.010	1.15	30		
5	1.01-2.1	6.17												
6	0.65-1.01	9.49												
7	0.43-0.65	9.45												
8	0.43>	10.81												
Гsukubа	no.03: 2001	1/4/27-5/21	I, total flov	v = 985	m ³	_								
0	>11.0	-												
1	7.0-11.0	3.28		0.26	1.42	0.039		1.69		0.056	1.01	45		
2	4.7-7.0	5.51	0.14	0.55	2.95	0.028		1.20	0.072	0.022	1.01	25		
3	3.3-4.7	7.36		0.42	1.62	0.038	0.10	0.64	0.072	0.016	0.99	23		
4	2.1-3.3	5.14		0.65	2.65	0.036		1.06	0.083	0.029	1.15	27		
5	1.01-2.1	2.94												
6	0.65-1.01	4.48												
7	0.43-0.65	5.07												
8	0.43>	4.46												
Tsukuba	no.05: 2001	1/6/12-7/2,	total flow	= 812 n	n ³									
0	>11.0	1.73	0.94	1.04	5.09	0.20	0.32	0.78	0.24	0.058	2.34		53	350
1	7.0-11.0	1.43	0.68	0.66	4.27	0.17	0.17	0.19	0.20	0.048	1.28		35	290
2	4.7-7.0	1.63	0.66	0.57	3.91	0.26	0.15	0.18	0.24	0.061	2.33		36	360
3	3.3-4.7	2.01	0.89	0.63	4.27	0.40	0.54	0.18	0.28	0.046	3.41		49	620
4	2.1-3.3	2.20	1.01	0.46	2.03	0.24	0.53	0.10	0.18	0.028	1.80		26	410
5	1.01-2.1	2.81	0.42	0.06	0.61	0.05	0.05		0.06	0.016	0.33		4	63
6	0.65-1.01	5.56	0.33	0.07	0.04	0.01	0.09	0.11	0.01	0.004			8	20
7	0.43-0.65	4.51		0.20					0.01	0.005	0.12			
8	0.43>	2.47												
Tsukuba	no.06: 2001	1/7/2-8/2 +	otal flow =	: 1247 n	n ³									
0	>11.0	4.29	0.65	0.96	7.23	0.22	0.38	1.01	0.39	0.080	3.93	45	59	360
1	7.0-11.0	3.50	0.58	0.74	5.71	0.21	0.29	0.47	0.32	0.057	3.16	67	40	230
2	4.7-7.0	3.93	0.53	0.98	6.59	0.26	0.25	0.69	0.35	0.062	4.33	72	56	350
3	3.3-4.7	4.94	0.33	0.67	4.63	0.20	0.36	0.69	0.33	0.002	3.31	50	44	340
4	2.1-3.3		0.45					0.47						
		4.57		0.56	3.13	0.16	0.38		0.19	0.032	2.31	40	38	360
5	1.01-2.1	3.49	0.38	0.57	1.24	0.06	0.08	0.38	0.09	0.018	0.71	4	34	190
6	0.65-1.01	4.39	0.24	0.06	0.13	0.01	0.03		0.01	0.007	0.04	2	6	78
7 8	0.43-0.65	4.97					0.07			0.003	0.21			42
	0.43>	3.45												

Italic type indicates that the value is semiquantitative.

られることから、分析結果に対して大きな誤差を与える可能性がある。これらの結果は、Kanai et al. (2003) で得られた結論と調和的である。微量元素の含有量については、メンブレンフィルターでは、Li, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Zr, Nb, Cd, Sb, Hf, Ta, Pb, Biに高いブランク値が認められた。特にZnのブランク値は21 ppm に達するなど、他の元素に比べ著しく濃度が高

かった.石英フィルターでは,Li, Sn, Ta, Tl を除く全ての微量元素に対して高いブランク値を示した.特に,Zr, Mo, Ba, 希土類元素(Y, Ln), Hf, Pb, Bi のブランクが著しく高かった.いずれのフィルターも微量元素について大きなブランク値を示し,その取り扱いには十分な注意が必要なことが分かった.

エアロゾル試料の測定においては、メンブレンフィ

つくば市で採取されたエアロゾル粒子の非水溶性成分に見られる季節変化(太田ほか)

第2表 (つづき). Table 2 (continued).

					1	aute 2	(COIIII	mueu).						
Stage	size	weight	Na ₂ O	MgO	Al_2O_3	P ₂ O ₅	K ₂ O	CaO	TiO ₂		T-Fe ₂ O ₃	٧	Sr	Ва
	(µm)	(mg)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(ppm)	(ppm)	(ppm)
Tsukuha r	no.07: 2001/	8/2-8/21 to	otal flow =	= 763 m	3									
0	>11.0	1.28	1.33	0.62	5.43	0.18	0.29	0.46	0.28	0.060	1.53	57	45	190
1	7.0-11.0	0.99	1.54	0.60	6.10	0.23	0.20	0.24	0.33	0.054	1.85	71	51	290
2	4.7-7.0	4.36	0.26	0.12	1.34	0.06	0.02		0.07	0.021	0.69	4	10	85
3	3.3-4.7	1.76	0.99	0.39	3.58	0.23	0.26		0.22	0.048	1.63		27	350
4	2.1-3.3	1.50	1.62	0.45	2.01	0.31	0.47	0.24	0.15	0.036	1.06		28	320
5	1.01-2.1	1.27	1.75	0.09	0.48	0.13	0.62		0.04	0.024		50	11	170
6	0.65-1.01	2.55	0.42			0.02				0.006		30		110
7	0.43-0.65	3.00	0.66									46		
8	0.43>	2.42	0.41											
Tsukuba r	no.08: 2001/	8/23-9/12,	total flow	= 817 :	m ³									
0	>11.0	-												
1	7.0-11.0	0.31	5.76	0.74	8.68	0.48	2.56		0.43	0.198	2.11	96	63	370
2	4.7-7.0	1.56	1.00	0.27	2.16	0.21	0.28		0.15	0.039	1.09	80	22	180
3	3.3-4.7	3.00	0.58	0.19	1.29	0.56	0.67	0.08	0.08	0.026	0.70	2	14	140
4	2.1-3.3	2.90	0.30	0.08	0.55	0.13			0.05	0.016	0.23	27	7	90
5	1.01-2.1	2.90	0.61		0.16	0.22	0.44		0.02	0.016	0.14	46	3	16
6	0.65-1.01	2.98	0.34			0.02				0.013		14		
7	0.43-0.65	3.30								0.007		21		
8	0.43>	1.84								0.004				
	no.09: 2001/	9/12-10/1,	total flow				tires.	1.55	1 12	2000	0.20	1250		1122
0	>11.0	1.23	0.85	0.60	4.17	0.37	0.52	0.90	0.25	0.118	2.65	201	57	150
1	7.0-11.0	0.92	1.61	0.43	3.10	0.15	0.55	0.15	0.16	0.083	1.28		38	180
2	4.7-7.0	2.27	0.45	0.30	2.45	0.18	0.12	0.21	0.17	0.044	1.61	44	27	370
3	3.3-4.7	1.49	0.69	0.42	3.37	0.45	0.20	0.27	0.22	0.072	2.54	58	39	560
4 5	2.1-3.3 1.01-2.1	0.16 1.47	8.11	2.49 0.01	13.4 0.36	2.33	2.60	0.27	1.16 0.05	0.239 0.016	15.5 0.00		440 3	3280 40
6	0.65-1.01	2.57		0.01	0.30	0.09	0.02		0.05	0.009	0.00	51	3	40
7	0.43-0.65	2.26				0.02	0.01			0.003		31		
8	0.43>	2.55								0.000				
Teukuha r	no.10: 2001/	10/3-10/22	total flo	w = 771	m ³									
0	>11.0	1.50	, total no	0.44	4.90	0.06	0.13	0.47	0.21	0.056	1.48	173	34	140
1	7.0-11.0	0.49		1.00	8.62	0.17	0.48	0.10	0.44	0.078	1.34	115	47	330
2	4.7-7.0	1.24		0.70	5.18	0.17	0.25	0.08	0.29	0.049	1.16	118	39	390
3	3.3-4.7	1.98		0.42	2.85	0.15	0.19	000000000	0.18	0.023	1.19	9	25	340
4	2.1-3.3	1.42		0.36	2.34	0.08	0.09		0.16	0.032	1.29	149	23	430
5	1.01-2.1	1.24		0.02	0.79	0.02			0.081	0.025	0.84	43		140
6	0.65-1.01	2.41		0.01	0.16		0.04		0.061	0.022		122		13
7	0.43-0.65	2.88					0.13			0.005		21		
8	0.43>	4.84					0.05					73		
Tsukuba r	no.11: 2001/	10/22-11/1	2, total flo	ow = 84	4 m ³									
0	>11.0	-												
1	7.0-11.0	-												
2	4.7-7.0	1.58		0.63	4.80	0.19	0.26	0.12	0.29	0.044	1.82	159	32	360
3	3.3-4.7	1.26		0.94	6.94	0.43	0.42	0.18	0.46	0.061	2.90	163	55	1020
4	2.1-3.3	-												
5	1.01-2.1	1.41		0.09	1.27		0.03		0.10	0.043	0.65	129		180
	0.65-1.01	0.91	0.80	0.23	0.92	0.06	0.54	0.20	0.07	0.109	0.86	216	17	43
6										0015	0.00	=-		
7	0.43-0.65 0.43>	4.03					0.16 0.07			0.015	0.22	59 14		

Italic type indicates that the value is semiquantitative.

ルターまたは石英フィルターを試料と同様に分解したものを、JB-1標準溶液及びブランク溶液に加えて行っている。フィルターブランクの測定で得られたシグナル強度の標準偏差を3倍した強度に相当する濃度変化を検出限界と定め、測定値が検出限界を下回った値については削除した。その結果、V、Cr、Ni、Zn、Cd、Sb、Moなど、フィルターのブランク値が高い元素につい

ては、有意な定量値がほとんど得られなかった.特に石英フィルターを用いて回収された細粒粒子試料 (0.65 μ m 未満) は、Mo, Zr, Hf, REE, Ba, Th, U など鉱物質エアロゾルに多く含まれる元素に対して有意な定量値がほとんど得られなかった.このように、石英フィルターで回収された試料は定量性に乏しいため、第 2, 3 表には参考値として斜体で値を示した.

第3表 つくばで2001年12月3日から2002年6月11日にかけて採取されたエアロゾル粒子の分析結果. Table 3 Analytical results of aerosol particles collected in Tsukuba from December 3 in 2001 to June 11 in 2002.

Stage	size	weight	Na ₂ O	MgO	Al ₂ O ₃	P ₂ O ₅	K ₂ O	CaO	TiO ₂	MnO	T-Fe ₂ O ₃	Li	Ве	Sc	Cr
1187-	(µm)	(mg)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	ppm	ppm	ppm	ppm
Tsukuba	no.13: 2001	1/12/3-12/2	7, total flo	ow = 969	9 m ³										
0	>11.0	2.61			4.50	0.24	0.51		0.22	0.045	2.79	16	0.6	6.2	230
1	7.0-11.0	1.35			3.46	0.25			0.15	0.039	2.40	13	0.5	4.3	370
2	4.7-7.0	2.39			2.53	0.20			0.15	0.035	2.34	10	0.4	3.3	560
3	3.3-4.7	2.36			2.06	0.20			0.15	0.031	2.20	9	0.4	2.5	320
4	2.1-3.3	2.02			0.85	0.16			0.09	0.030	1.75	5	0.2	1.1	400
5	1.01-2.1	4.63				0.05			0.02	0.020	0.46		0.04		140
6	0.65-1.01	4.21				0.04	0.00			0.014	0.54				620
7 8	0.43-0.65 0.43>	3.25 3.52			0.10	0.07 0.01	0.28 0.31			0.002 0.002					
Tsukuba	no.15: 2002	2/1/21-2/12	, total flo	w = 890	m ³										
0	>11.0	1.26		1.11	9.03	0.37	0.82	2.64	0.52	0.089	5.98	33	1.5	25	
1	7.0-11.0	1.70			4.17	0.19			0.25	0.042	2.88	14	0.6	9.4	210
2	4.7-7.0	2.42		0.64	5.79	0.23	0.48		0.38	0.053	4.26	22	0.9	9.4	
3	3.3-4.7	2.58		0.55	4.78	0.22	0.44		0.33	0.042	3.72	19	1.0	7.4	
4	2.1-3.3	2.16		0.44	3.81	0.18			0.28	0.040	3.46	17	8.0	5.9	370
5	1.01-2.1	-													
6	0.65-1.01	4.89							0.02	0.016	0.33		0.08	1.3	
7	0.43-0.65	3.81			2.54	0.13	0.53	0.83	0.03	0.02	0.70				
8	0.43>	3.61			2.53	0.10	0.53	0.74	0.02	0.02	0.46				
Tsukuba	no.16: 2002	2/2/12-3/1,	total flow	= 687 n	n ³										
0	>11.0	5.11	0.30	0.46	6.16	0.38	0.38	0.97	0.35	0.066	3.81	15	0.7	9.5	190
1	7.0-11.0	2.30		0.56	7.68	0.40	0.43		0.42	0.070	4.67	22	1.0	13	
2	4.7-7.0	3.15		0.49	6.12	0.36	0.38		0.36	0.051	4.11	18	0.9	9.3	
3	3.3-4.7	2.44	0.30	0.55	6.77	0.35	0.41		0.41	0.051	5.00	21	1.1	14	220
4	2.1-3.3	0.53			13.6	0.54			0.90	0.102	11.0	50	2.5	27	
5	1.01-2.1	7													
6	0.65-1.01	4.02			2022	125-222	12022	000200	17-252	0.010	0.27	14252	0.06	0.9	
7	0.43-0.65	2.78			3.38	0.12	0.65	1.07	0.03	0.03	0.81	25			
8	0.43>	2.32			3.84	0.14	0.76	1.15	0.04	0.02	0.66	29			
Tsukuba	no.18: 2002	2/3/8-4/1, to	otal flow =	= 482 m ³	3										
0	>11.0	6.62	0.48	0.97	12.0	0.55	0.61	1.30	0.73	0.12	7.89	26	1.2	20	90
1	7.0-11.0	3.18	0.33	0.89	9.34	0.42	0.57	27.2327	0.55	0.09	6.04	25	1.2	16	
2	4.7-7.0	4.19	0.36	1.17	9.06	0.33	0.80	0.75	0.53	0.08	5.78	29	1.4	14	
3	3.3-4.7	4.63	0.48	1.93	11.1	0.34	1.29	0.89	0.64	0.08	6.97	43	2.1	16	140
4	2.1-3.3	3.86	0.31	1.33	7.46	0.19	0.97		0.44	0.04	4.76	32	1.5	11	100
5	1.01-2.1	2.32		0.86	5.01	0.11	0.64		0.30	0.03	3.23	22	1.1	6.9	4000
6	0.65-1.01	2.11			0.93				0.06	0.03	1.41	5	0.4	3.7	1020
7	0.43-0.65	0.83													
8	0.43>	0.48													
Tsukuba	no.25: 2002	2/5/21-6/11		w = 853											
0	>11.0	4.15	0.33	0.58	6.32	0.34	0.41	1.11	0.38	0.064	4.68	17	0.8	11	210
1	7.0-11.0	1.41	0.50	0.97	11.0	0.51	0.71		0.61	0.100	8.53	34	1.6	18	230
2	4.7-7.0	3.36	0.28	0.67	6.45	0.33	0.48		0.38	0.058	5.50	23	1.2	11	140
3	3.3-4.7	2.73		0.64	6.04	0.32	0.47		0.38	0.052	5.66	24	1.2	10	190
4	2.1-3.3	2.38		0.40	3.82	0.27			0.25	0.038	4.19	18	8.0	6.8	370
5	1.01-2.1	1.32			1.88	0.15			0.13	0.029	2.26	10	0.5	4.4	70
6	0.65-1.01	5.03	0.41			0.05				0.009	0.35	2	0.07	0.7	70
7	0.43-0.65	4.52			1.92	0.10	0.32	0.62	0.02	0.02	0.50				
8	0.43>	4.05			2.26	0.12	0.34	0.77	0.02	0.02	0.54				

Italic type indicates that the value is semiquantitative.

4.2 つくば市における大気中エアロゾル濃度の特徴

第1図には、つくば市で2001年2月から2002年6月にかけて採取されたエアロゾル粒子の大気中濃度変化を示した。観測期間中に発生したダストイベントは2002年3月19~22日と2002年4月6~12日の2回あった (Zhang et al., 2002; Kanai et al., 2003). 中国では3

月のダストイベントの方が大規模であったが (Zhang et al., 2002), 日本においては、飛来したエアロゾル濃度の総量から判断する限り 4 月のイベントの方が規模が大きかった (Kanai et al., 2003). つくば市における大気中エアロゾル濃度も同様に、2002年4月8~12日に採取された試料で最大値を示した (第1図).

つくば市で採取されたエアロゾル粒子の非水溶性成分に見られる季節変化(太田ほか)

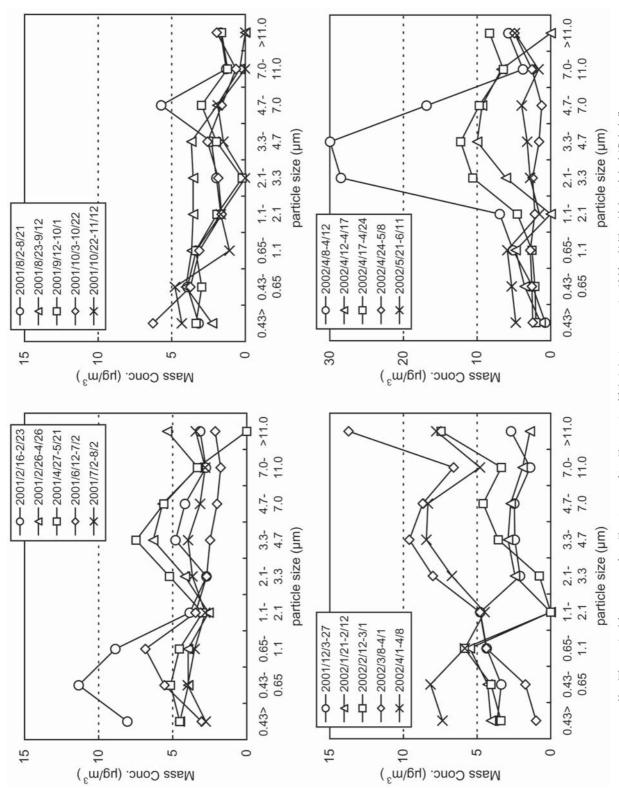
第3表 (つづき). Table 3 (continued).

Stage	V	Co	Ni	Cu	Zn	Ga	Rb	Sr	Υ	Zr	Nb	Мо	Cd	Sn	Cs	Ва	La	Ce	Pr
87/4	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Tsukuba no	.13: 20	01/12/	3-12/2	7, total	flow =	969 m ³	3												
0	130	11	260	270	940	8	31	32	8	47	3		1	30	2.1	160	9.1	16	1.8
1	210	9	270	430	1330	6	24		5	68			2	40	2.0	160	4.8	8.9	1.1
2	180	12	410	430	1250	4	18		4	63	2		2	30	1.4	240	4.5	7.9	0.9
3	180	9	320	620	1350	4	15		3	110	1	11	2	60	1.3	330	3.4	7.2	0.9
4	210	8	340	660	1590	3	8		2	110	2		3	120	0.9	250	2.0	3.9	
5	93	2	100	330	880	2	1			21			2	130	0.1	30	1.1	2.2	0.2
6	54	5	260	290	420	2				5			3	120	0.04		2.0	5.0	0.4
7 8				390 410	460 350								5 6	180 150	1.2 1.8				
	45.00	00/4/0	4 0/40			003								700	7.0				
Tsukuba no 0	0.15: 20	14	1-2/12	370	940	16	61	141	17	200	18	91	1	40	5.2	450	18	39	4.3
1		12	40	360	780	7	23	36	8	62	3	91	1	30	1.9	200	8.4	16	1.7
2		10	40	520	850	10	35	45	12	100	7	14	2	80	2.8	400	13	25	2.5
3		8		590	840	9	31	42	10	130	5	23	2	70	2.5	510		25	2.5
4		12	210	710	1040	11	26	36	9		4	30	3	140	2.5	490	12 12	25	
		12	210	710	1040	1.1	20	30	9	120	4	30	3	140	2.5	490	12	24	2.4
5	FO	4		210	400	4			0.2	11		9	4	120	0.1		20	63	0.6
6	59	1		310	400	4	10	FO	0.3	11		9	4	120	0.1		2.8	6.3	0.6
7 8				360 310	520 380	11	13 12	59 58					7 8	120 110	1.5 1.7				
						2	12	50					0	110	1.7				
Tsukuba no		11127		THE STATE OF THE S	Likewa Et														
0	60	14	210	180	260	9	26	42	11	51	4		1	10	2.0	150	9.0	20	2.1
1	140	11		280	410	12	35	46	15	70	5		1	30	2.8	250	12	24	3.0
2	100	10		330	450	10	28	36	12	72	4		1	30	2.4	280	11	21	2.4
3	120	13	50	570	510	13	35	44	15	150	7	56	2	60	2.8	460	15	30	3.1
4	470	17		2120	2440	35	64	92	30	440	16	88	11	440	6.8	1280	42	80	8.5
5																			
6	72			260	340	3			0.3	10			4	110	0.03		2.4	5.0	0.5
7				480	590			78					8	110	2.1				
8				550	470			84					9	100	4.7				
Tsukuba no	.18: 20	02/3/8	-4/1, to	tal flov	v = 482	m ³													
0	120	21	30	150	190	17	43	62	23	87	7		1	10	3.5	240	17	34	4.2
1	130	15		180	180	15	42	53	20	82	6		1	10	3.5	230	18	35	4.3
2	100	14	140	190	220	15	51	63	19	89	8		1	10	4.1	310	18	39	4.2
3	110	19	110	260	250	20	84	95	24	120	10	6	2	20	6.5	510	28	59	6.4
4	74	12		210	200	15	61	67	17	92	8		2	30	5.1	390	22	48	4.8
5	100	6		290	260	12	43	50	11	70	5		3	100	4.3	260	17	34	3.5
6	140	23		270	240	7	9		3	20	2	12	5	150	0.9	100	9.9	17	1.8
7							-				-						0.0		
8																			
Tsukuba no	.25: 20	02/5/2	1-6/11	, total f	low = 8	53 m ³													
0	100	12	110	250	480	10	30	52	11	82	7	23	1	20	2.1	180	10	22	2.4
1	170	16	. 10	540	500	19	56	84	23	120	8	25	2	30	4.2	380	28	46	5.2
2	80	11		410	530	12	39	55	14	82	6	17	2	30	3.1	330	16	31	3.4
3	94	10		530	790	13	41	59	14	110	7	28	2	70	3.5	440	17	34	3.6
4	34	12	190	500	1500	12	27	45	10	100	6	26	4	120	2.8	420	16	28	3.2
		4	130	490	1300	12	12	40	4	54	U	20	6	290	1.6	160	10	20	0.2
5				200	340	3	1		0.5	10		8	3	120	0.2	100	2.6	5.0	0.5
5				CUU	040	J	- 1		0.5	10		0	3	120	0.2		2.0	0.0	0.0
6		1						16					2	20	10	100			
		1		210 210	250			46 52					3	80 70	1.3 0.9	190 210			

Italic type indicates that the value is semiquantitative.

粒径に対する大気中濃度変化の特徴に着目すると、いずれの試料も $7.0\sim11.0~\mu m$ と $0.65\sim1.1~\mu m$ に極小値を持ち、 $>11.0~\mu m$, $3.3\sim4.7~\mu m$, $0.43\sim0.65~\mu m$ にピークを持つパターンを示す事が分かる。ダストイベントが発生すると、 $1\sim11~\mu m$ (特に $2.1\sim7.0~\mu m$)の粗粒粒子の著しい増加が認められる。中国におけるダスト

イベント時の濃度分布は、 $7 \mu m$ 以上の粗粒粒子に著しく富んだパターンを示し、日本で認められるパターンとは大きく異なる (Yabuki et al., 2002; Ohta et al., 2005b). したがって、中国大陸から日本への輸送途上で $7 \mu m$ 以上の粗粒な粒子が重力による沈降作用 (fallout) によって取り除かれていることが分かる。た


第3表 (つづき). Table 3 (continued).

Stage	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Hf	Ta	TI	Pb	Bi	Th	U
	ppm	ppm	ppm	ppm		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppn
Tsukuba no					flow =				1271.29	2002	V211 202 11		52828	*20020			1232	9277.23
0	6.8	1.4	0.3	1.5	0.4	1.3	0.2	0.5	0.1	0.6	0.08	1.2	2.9	0.2	190	1	2.2	0.8
1	4.3	0.8	0.2	0.9	0.1	0.7	0.2	0.5	0.1	0.4	0.08	1.5	1.9	0.2	280	5 4	2.4	0.9
2	3.7	0.8	0.2	0.6		0.5	0.1	0.3	0.06	0.3	0.07	1.2	2.3	0.2	300	7	1.6	0.5
3 4	2.7	0.6	0.1	0.6		0.5	0.1	0.3	0.06	0.3	0.04	2.0	2.4	0.3	410 860	15	1.7 1.2	0.6
5		0.2										0.4	0.5	0.3	1030	13	0.3	0.1
6	0.5	0.4										0.1	0.7	0.2	970	11	0.2	0.0
7	0.0	0.1													1550	15		0.0
8															1120	9		
rsukuba no	o.15: 20	02/1/2	1-2/12	, total f	low = 8	90 m ³												
0	19	4.8	1.1	3.5		2.8	0.5	1.5	0.3	1.9	0.2	4.9		0.5	300	2	14	2.0
1	7.1	1.7	0.4	1.3		1.3	0.3	0.7	0.1	0.6	0.08	1.6		0.2	240	2	4.8	8.0
2	10	1.8	0.6	1.7		1.7	0.3	1.0	0.2	1.0	0.2	2.1		0.5	360	4	4.5	1.3
3	10	1.9	0.5	2.0	0.0	1.5	0.3	0.9	0.1	0.8	0.1	2.4		0.6	410	5	4.1	1.1
4 5	9.1	1.4	0.3	1.6	0.2	1.3	0.3	0.7	0.1	0.7	0.1	2.9		0.7	880	12	3.7	1.0
6												0.2		0.3	1280	14	0.9	0.2
7												0.2		0.0	1450	8	0.5	0.2
8															1080	6		
Γsukuba no	o.16: 20	02/2/1	2-3/1,	total flo	w = 68	7 m ³												
0	8.9	2.0	0.5	1.8		1.5	0.3	0.9	0.1	0.9	0.1	1.3		0.2	120	1	2.9	1.1
1	11	2.6	0.7	2.4		2.2	0.5	1.2	0.2	1.3	0.2	1.7		0.3	220	2	4.0	1.6
2	9.5	2.0	0.6	2.0		1.7	0.3	0.9	0.2	0.9	0.2	1.7		0.4	230	4	3.4	1.3
3	13	2.4	0.6	2.5		2.2	0.4	1.2	0.2	1.2	0.2	3.2		0.7	410	12	6.5	1.6
4	28	6.4	1.4	5.7		4.9	0.9	2.5	0.4	2.4	0.4	10		2.4	2710	120	15	4.
5												0.4		0.0	1010	20	4	0.0
6 7												0.1		0.3	1040 1670	28 16	1	0.2
8															1280	7.8		
Tsukuba no	o.18: 20	02/3/8	-4/1. to	otal flov	v = 482	m ³												
0	18	4.1	1.1	4.0		3.4	0.7	2.0	0.3	1.9	0.3	2.2		0.4	80	1	4.9	2.1
1	17	3.5	1.0	3.5		2.9	0.6	1.9	0.3	1.9	0.3	2.2		0.4	130	1	5.2	1.9
2	17	3.3	0.8	3.2		2.8	0.6	1.6	0.2	1.6	0.2	2.3		0.5	170	1	5.7	2.0
3	25	5.0	1.1	4.6		4.0	0.7	2.1	0.3	2.2	0.3	2.8		0.8	230	3	8.7	2.5
4	19	3.7	0.7	3.2	0.0	2.6	0.5	1.5	0.3	1.6	0.2	2.2		0.7	320	5	7.1	2.0
5	13	2.7	0.6	2.3	0.3	1.9	0.4	0.9	0.2	0.9	0.1	1.5		0.9	960	19	5.1	1.2
6 7	5.6	0.9	0.2	0.7	0.1	0.5		0.2		0.2	0.04	0.4		0.5	1430	17	1.6	0.4
8																		
Tsukuba no	25.20	02/5/2	1-6/11	total f	low = 8	53 m ³												
0	9.7	2.0	0.5	2.0	0.3	1.7	0.3	1.0	0.2	0.9	0.1	1.9		0.3	150	1	4.5	1.0
1	22	4.3	1.0	4.4	0.3	3.1	0.6	1.9	0.2	1.7	0.1	2.7		0.6	390	3	7.7	2.1
2	13	2.6	0.7	2.5	0.5	2.1	0.4	1.2	0.2	1.1	0.4	1.7		0.5	300	3	4.2	1.3
	14	2.5	0.6	2.5	0.5	2.1	0.4	1.3	0.2	1.1	0.2	2.4		0.7	460	5	4.6	1.5
3	11	2.0	0.5	2.1	0.3	1.6	0.3	0.9	0.1	0.8	0.1	2.2		0.8	870	10	3.5	1.
3 4				5.75								1.0		1.0	2130	27	2.6	0.7
4 5												0.2		0.3	1090	11	0.4	0.2
4 5 6												0.2		0.0		1.1	0.4	0.2
4 5												0.2		0.0	1270 920	6 5	0.4	0.2

Italic type indicates that the value is semiquantitative.

だし、3月のイベントでは> $11.0~\mu$ mに最大のピークが、4月のイベントでは $2.1\sim7.0~\mu$ mにかけて顕著なピークが認められるなど、ダストイベントによって濃度分布に違いが認められる事から、そのときの気象条件(湿度・風速など)によって、粗粒粒子の沈降率が異なることが考えられる。一方、通常時では $1~\mu$ mよりも細かい

粒子の大気中濃度が粗粒粒子よりも高い傾向を示した. 1 μ m未満の細粒粒子は,燃焼過程によって発生する炭素質エアロゾルや大気中で凝集した硫酸アンモニウムエアロゾルから構成される(名古屋大学水圏科学研究所, 1991; 国立環境研究所, 2001). ダストイベントの影響を強く受ける粗粒粒子と異なり,細粒粒子は重力によ

つくば市にて2001年2月から2002年6月にかけて採取されたエアロゾル試料の粒径に対する大気中濃度変化。 Distribution of aerosol mass concentrations among particle size at Tsukuba city from February in 2001 to June in 2002. Fig. 1 第1図

る沈降の影響を受けにくいため、中国から飛来した細粒エアロゾル粒子は大気上層にとざまり、観測点においては比較的近傍で発生した粒子を採取していると考えられる.

4.3 非水溶性成分の粒径に対する濃度変化の特徴

つくば市で2001年2月16日から2002年6月11日に かけて採取された試料の測定元素のうち、特徴的な濃 度変化を示す Al₂O₃, CaO, Total Fe₂O₃ (T-Fe₂O₃), Cu, Pbについて、第2図に粒径に対する大気中濃度 (ng/ m³) の変化を示した、Al₂O₃をはじめとする多くの元素 は鉱物質エアロゾル起源であり(西川ほか, 1987; 名古 屋大学水圈科学研究所, 1991; Zhang and Iwasaka, 1998; Mori et al., 2003), 第1図に示されたエアロゾル 重量分布とよく似た傾向を示す. しかし, 主成分元素 である CaO の濃度変化は、Al₂O₃、T-Fe₂O₃のそれとや や異なり、2~7 μm付近のピークが小さく比較的平ら なパターン示す, 粒径が細かくなるに従って濃度が減 少するなどの特徴が認められる。同様の特徴は、Na2O やK2Oの濃度変化パターンにも認められる. これらの 元素は、方解石・海塩・粘土鉱物中の層間イオンなど、 水溶性成分に抽出され易い相に多く存在している。そ のため、水溶性成分の抽出作業において、不十分な抽 出又は過剰な抽出のために、濃度変化がAl₂O₃, T-Fe₂O₃ のそれと少し異なったと考えられる (Ohta et al., 2003).

一方, Cu, Zn, Cd, Sn, Pb, Bi などの元素は, Al₂O₃ とは明らかに異なる挙動を示し、鉱物質エアロゾルと は異なる起源を持つ事を示している. 例えば, 第2図 に示されたCuの濃度分布は全体的に平らなパターンを 示し、わずかに $3.3 \sim 4.7 \mu m$ 付近に小さなピークを示 す. Pbは粒径が細かくなるに従って濃度が指数関数的 に増加する傾向を示す. 先に述べたとおり、細粒粒子 は主として燃焼によって発生した炭素質エアロゾルか ら構成されているため, 例えばガソリンの燃焼などに 伴って多くの Pb が大気中に放出されたと考えられる (国立環境研究所, 2001). しかし, 近年では, 無鉛ガソ リンの使用が主流になったため、全ての原因がガソリ ン等の化石燃料起源では説明できない. また, 化石燃 料の燃焼による汚染だけでは、鉛以外の重金属元素の 濃集を全て説明することは難しいが、少なくとも鉱物 質エアロゾルだけでは細粒粒子における重金属元素の 濃集は説明できない. ただし,粗粒粒子側においては, 鉱物質エアロゾルの寄与が一部認められる。このこと は、2002年3月8日から4月1日の試料では粒径が3.3 $\sim 4.7 \ \mu \text{m} \ \text{E} > 11.0 \ \mu \text{m} \ \text{E} + \text{E} +$ 年4月8~12日の試料では粒径が3.3~4.7 μm に最大 の大気中 Cu 濃度のピークを示すことからも分かる.

4.4 粒径に対するAl₂O₃ 濃度規格値の特徴

SiO2を除くと、 Al_2O_3 は鉱物質エアロゾル中では最も濃度が高く、アルミノシリケイト鉱物の違いによる濃度変化に比較的乏しい。そのため、 Al_2O_3 濃度で規格化することで、鉱物組成比の変化、非シリケイト鉱物や人為起源の汚染物質の寄与を見積もることができる(名古屋大学水圏科学研究所、1991)。第3図には、参考としてCaO, T- Fe_2O_3 , Cu, Pb O 4 元素について、 Al_2O_3 規格値を示した。

その結果,Al₂O₃同様に鉱物質エアロゾルに多く含ま れるT-Fe₂O₃のAl₂O₃規格値は、粒径が細かくなるに 従ってほぼ一定か緩やかに濃度が増加する傾向を示し た. これに対し CaO の Al₂O₃ 規格値は, 粒径の減少に 伴いほぼ一定か又は減少する傾向を示した. Na2O, K₂OのAl₂O₃規格値はCaOのそれとほぼ同じ傾向を示 し, それ以外の主成分元素・微量元素はT-Fe₂O₃/Al₂O₃ 比とよく似た粒径依存性を示した。また、粒径が1~2 μmまで減少したときにCaO/Al₂O₃比やT-Fe₂O₃/Al₂O₃ 比が著しく増加する試料がいくつか認められ, 1~2 μm を境に鉱物組成が大きく変化している可能性を示して いる。ただし、一部の試料を除くと、粒径が $1\sim 2 \mu m$ 以上のエアロゾル試料においては, 粒径に対する各元 素のAl₂O₃規格値の変化が比較的穏やかであることか ら、鉱物組成の変化は穏やかであるかほとんど無いと 考えられる、これに対し、Cu、PbはCaO、T-Fe2O3に比 較すると, 粒径の減少に伴いAl₂O₃規格値が著しく増加 する. 第3図からは, 2 μm を境にその値は急激に増加 する傾向が見て取れる. 特にPbについては, >11.0 μ m の試料から $0.65 \sim 1.1 \, \mu \text{m}$ の試料にかけて、濃度比が 最大1,000倍にも達する. したがって,これらの元素は 主として鉱物質エアロゾルよりはむしろ人為的なもの を表していると考えられる。一方、春期に採取された 試料中のCuのAl₂O₃規格値は、7 μm以上の粗粒粒子 と 2 μm 以下の細粒粒子で値が高い U 字型のパターン を示す. この点については、4.6章で詳しく議論する.

4.5 粒径別に見た大気中エアロゾル濃度の季節変化

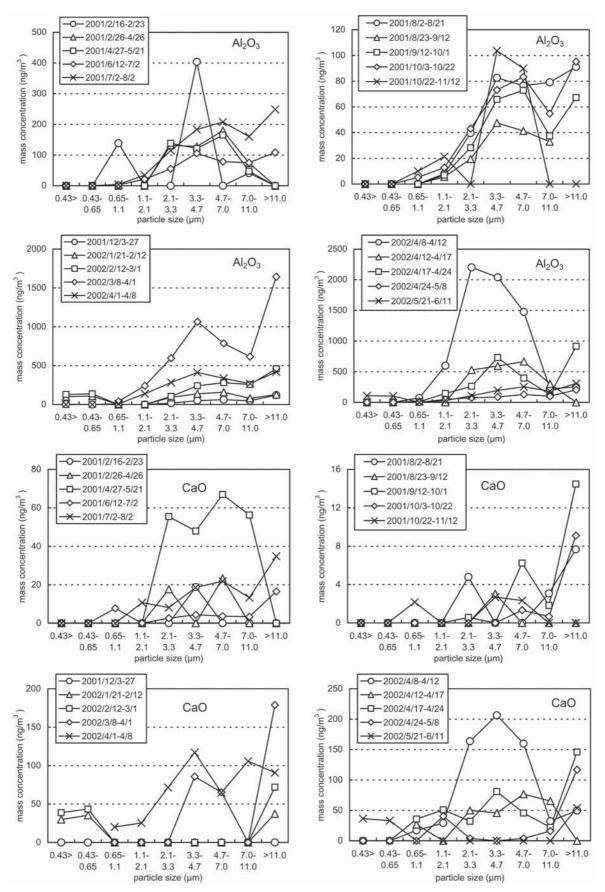
3月19~22日と4月6~12日の2回の大規模なダストイベントを除く試料に対して、ステージ別に大気中エアロゾル濃度の相関係数を計算したところ、大きく二つの傾向が認められた(第4表). 一つは、>11.0 μ m から2.1~3.3 μ m の4ステージの間に認められる非常に強い相関関係であり、もう一つは0.65~1.1 μ m 以下の3ステージ間の強い相関関係である。この二つのグループ間の相関関係はほとんど認められない。また、粒径1.1~2.1 μ m の試料は、>11.0 μ m から2.1~3.3 μ m の4ステージの試料とは弱い正の相関係数しか示さなかった。そのため、粗粒粒子の主要構成成分である鉱物質エアロゾルと、細粒粒子の主要構成成分である鉱物質エアロゾルと、細粒粒子の主要構成成分であ

る炭素質エアロゾルの寄与率は、 $1.1 \sim 2.1 \mu m$ で逆転 すると考えられる。

そこで、大気中エアロゾル濃度の季節変化を調べるために、上記の結果を基にして9ステージから、最も粗粒な>11.0 μ mの試料、ダストイベントを最も強く反映する3.3~4.7 μ mの試料、炭素質エアロゾルの寄与を強く示す0.65~1.1 μ mの試料、エアロゾルの性質が遷移的に変化する1.1~2.1 μ mの試料の4つの粒径データに着目し、第4図に示した。

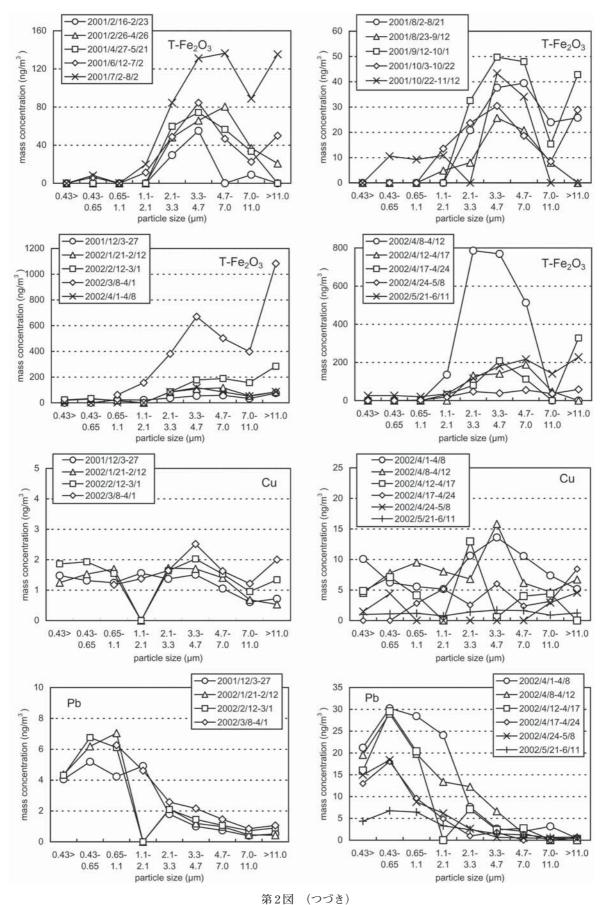
粒径が>11.0 μ m, 3.3~4.7 μ mのエアロゾル濃度は 春期に高く、特にダストイベントが観測されたときに 著しい増加が認められる。例えば、粒径 $3.3 \sim 4.7 \, \mu m$ の 試料に着目すると, 春期の大気中エアロゾル濃度は他 の季節の約3倍,2002年4月8~12日のダストイベン ト時は通常時の約10倍にも達した。大きなダストイベ ントが観測されない場合でも, 春期に粗粒なエアロゾ ル粒子が多いのは、春期に非常に強い風が吹くため周 辺地表から物質が空高くまで巻き上げられたことによ ると考えられる. サンプラーは周辺地表からの舞い上 がり物質の混入を避けるために建物屋上に設置されて いるが、完全にその影響を除くことは不可能である。 第5図に,気象庁によるつくば市における2001年,2002 年の月別平均風速変化を示した。いずれの年でも春期、 特に4月は最も平均風速が大きく、3月・5月はそれに 続くが、2月・6月は平均風速が小さい、この平均風速 の変化と粗粒エアロゾル粒子の大気中濃度の変動は非 常に調和的である.一方,春期以外では,粗粒粒子の 大気中濃度は低く,むしろ $1.1 \sim 2.1 \mu m$ や $0.65 \sim 1.1$ μmの細粒粒子の大気中濃度が相対的に高くなってい る. 細粒粒子の季節変動はデータのばらつきが大きく, 明瞭な傾向が認められない. これは、細粒粒子を構成 する炭素質エアロゾルや硫酸アンモニウムエアロゾル の生成率に大きな季節変動がない事や, 粗粒粒子と異 なり粒径が細かいため風速が小さくとも大気中に漂う ことができることを反映していると考えられる.

4.6 粒径別に見たエアロゾル粒子中の元素濃度の季節変化

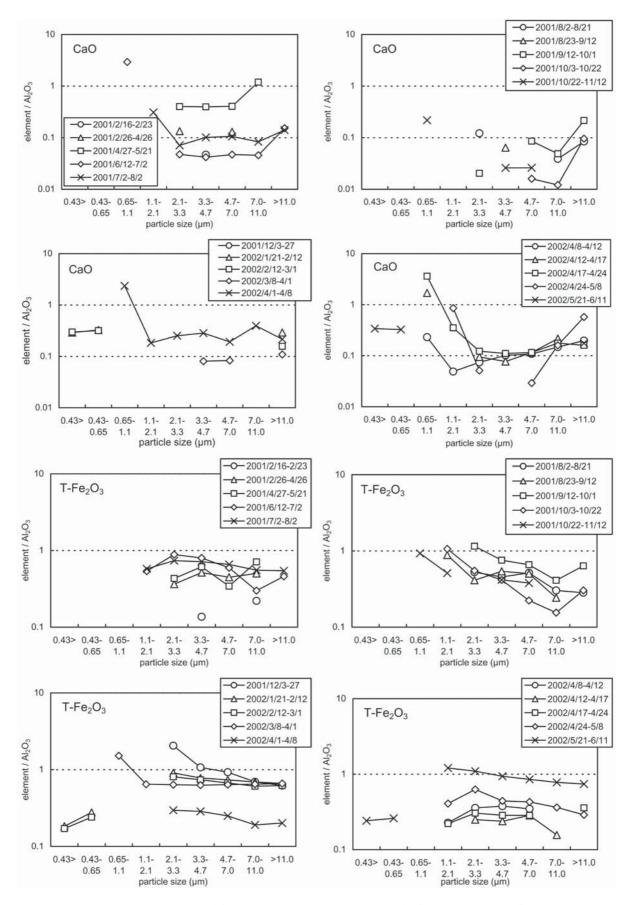

次に、エアロゾル粒子中の元素濃度の季節変化について述べる。代表として、 Al_2O_3 、T- Fe_2O_3 、Cu、Pb の濃度変化に着目した。第4図と同様に、 $>11.0~\mu m$, $3.3~4.7~\mu m$, $1.1~2.1~\mu m$, $0.65~1.1~\mu m$ の4つの粒径別に得られた各元素の濃度値を第6図に示した。鉱物質エアロゾルに多く含まれる Al_2O_3 とT- Fe_2O_3 は、 $1~\mu m$ 以上の粒子において、春に大気中濃度が高くかつダストイベント時に著しく濃度が増加するなど、大気中エアロゾル濃度の変化と非常によく似た傾向を示した。しかし、2001年の春に採取された試料中の Al_2O_3 、T- Fe_2O_3 濃度はその前後の試料に比べさほど高い値を示

さなかった。 $1 \mu \text{m}$ 以下の細粒粒子(第6図中 $0.65\sim1.1 \mu \text{m}$ 粒子参照)については,濃度が低くいくつかの試料について定量値が得らなかったが,春期で濃度が高く,粗粒粒子ほど顕著ではないがダストイベント時に対応して最大値を示す。これらの傾向はほとんどの元素に共通して認められた。また,先に示した, Al_2O_3 ,CaO,T-Fe $_2O_3$ 濃度(第2図)及び CaO,T-Fe $_2O_3$ の Al_2O_3 規格値(第3図)において,粒径毎の特徴に明瞭な季節変動は認められなかった。ダストイベント時以外は,つくば市周辺から局地的に巻き上げられたダスト粒子を回収したと考えられるが,実際には,ダストイベントと非イベントの間に大きな変化が認められない。すなわち,局所的に巻き上げられた物質と黄砂を化学組成から判断するのは難しいと言える。

一方, Cu, Pb などの元素は, 2001年12月以降のみ 測定データが得られている. Cu/Al₂O₃及びPb/Al₂O₃比 の粒径依存性の特徴から, エアロゾル粒子中のCu, Pb は主に人為物質起源と推測された. しかし, 第6図か らは、粗粒粒子におけるCu, Pb大気中濃度は春期に高 く,特に4月6日から8日のダストイベント時に著しく 濃度が増加するなど、Al₂O₃とT-Fe₂O₃とほぼ同じ季節 変動を示した。第3図で示したとおり、春期に採取さ れた試料において、粗粒粒子中のCu/Al₂O₃比の増加が 認められることから、粗粒粒子中のCu, Pbは鉱物質エ アロゾル起源といえる。ただし、3月8日から4月8日 にかけて採取された試料のダストイベント (3月19~ 22日に発生) に対応した粗粒粒子中のCu, Pb濃度の増 加は認められなかった. この原因として, 日本では大 気中エアロゾル濃度が低いために、サンプリング期間 を長くする必要があり、その結果として局地的な物質 の混入が増加し、ダストイベントの影響を隠したと考 えられる、細粒粒子の濃度変化に着目すると、春期で は粒径が $0.65 \sim 1.1 \, \mu \text{m} \, \text{及び} \, 1.1 \sim 2.1 \, \mu \text{m} \, \text{のいずれの}$ 試料も,他の季節と比較して大気中エアロゾル濃度が 低いにも関わらず (第4図), Cu, Pbの大気中濃度は非 常に高い傾向を示す事が分かる(第6図). しかし, 粗 粒粒子と異なり、細粒粒子中のこれらの元素の季節変 化はAl₂O₃やT-Fe₂O₃の変化とは一致しない. したがっ て,人為起源物質の増減を表していると解釈される.

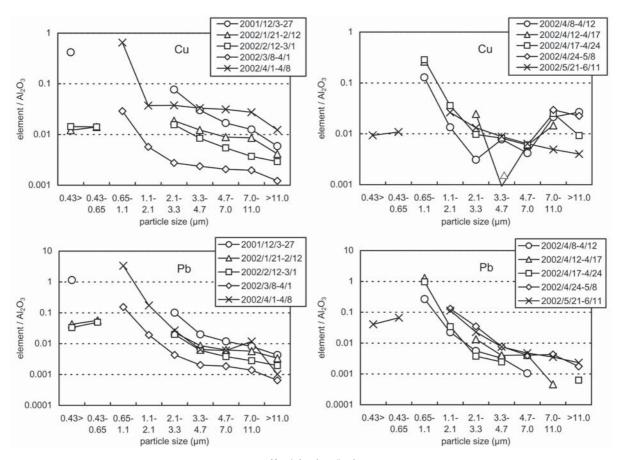

5. まとめ

2001年2月から2002年6月にかけて,つくば市で粒径別に採取されたエアロゾル試料の非水溶性成分中の化学組成を測定し、その季節変化について考察を行った。その結果、1 μmよりも粗粒なエアロゾル粒子の大気中濃度は、平均風速の増加やダストイベント(黄砂の飛来)の発生と対応して増加することが認められた。粗粒社子の化学組成比及び化学組成の季節変化は、大気



第2図 エアロゾル試料中の Al₂O₃, CaO, T-Fe₂O₃, Cu, Pb 大気中濃度の粒径に対する変化.

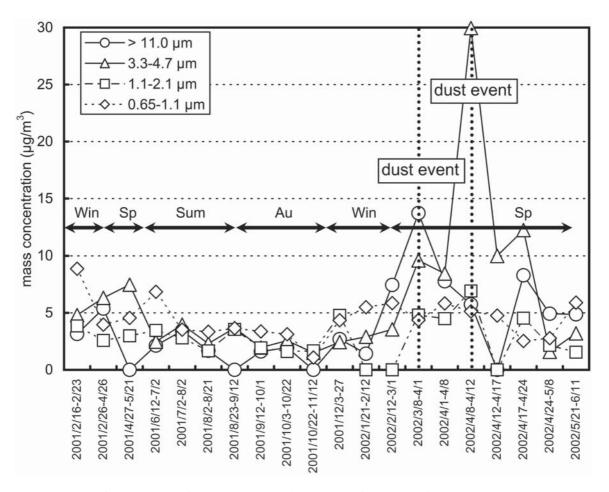
Fig. 2 Distribution of mass Al₂O₃, CaO, T-Fe₂O₃, Cu and Pb concentrations in aerosol particles.



第2図(フラミ) Fig. 2 (continued)

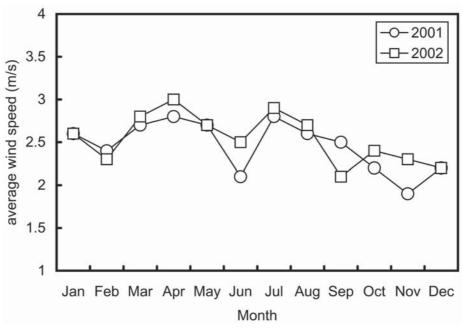
第3回 エアロゾル試料中の CaO, T-Fe₂O₃, Cu, Pbの Al₂O₃ 規格値の粒径に対する変化.

Fig. 3 Distribution of concentration ratios of CaO, T-Fe₂O₃, Cu and Pb to Al₂O₃ in aerosol particles.


第3図 (つづき) Fig. 3 (continued)

第4表 エアロゾル濃度の相関係数.

Table 4 Correlation coefficient of aerosol concentrations.


	7.0-11.0	4.7-7.0	3.3-4.7	2.1-3.3	1.1-2.1	0.65-1.1	0.43-0.65	<0.43 µm
	μm	μm	μm	μm	μm	μm	μm	~0.43 μm
>11.0 µm	0.87	0.71	0.74	0.66	0.46	-0.03	0.02	0.00
7.0-11.0 µm		0.87	0.90	0.79	0.51	0.03	0.02	-0.15
4.7-7.0 μm			0.91	0.78	0.43	0.10	0.07	-0.05
3.3-4.7 µm				0.93	0.58	0.08	0.05	-0.06
2.1-3.3 µm					0.57	-0.16	-0.01	-0.12
1.1-2.1 µm						0.38	0.27	0.07
0.65-1.1 μm							0.74	0.47
0.43-0.65 μm								0.80

Bold-face type means that the correlation coefficient is larger than 0.7.

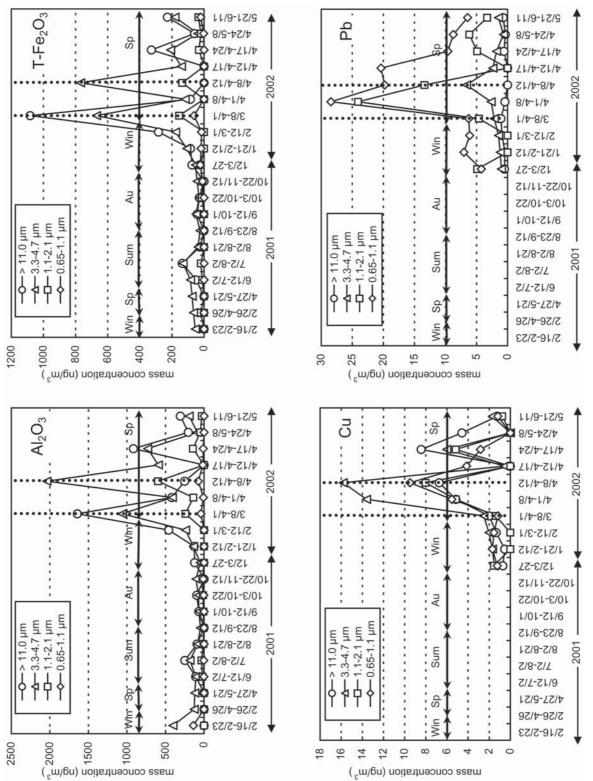

第4図 2001年2月から2002年6月における大気中エアロゾル濃度の季節変化.

Fig. 4 Seasonal variation of mass concentrations of aerosol particles collected from February in 2001 to June in 2002.

第5図 つくば市における2001,2002年の月別平均風速.

Fig. 5 Monthly variation of average wind speed at Tsukuba in 2001 and 2002.

2002 年 6 月における大気中元素濃度(Al₂O., T-Fe₂O., Cu, Pb)に認められる季節変動 2001年2月から **X** 紙

Seasonal variation of elemental concentrations (Al₂O., T-Fe₂O., Cu and Pb) of aerosol particles in the air from February in 2001

9

to June in 2002.

中エアロゾル濃度変化と非常によい対応を示すことから,粗粒粒子は鉱物質エアロゾルから構成されることが明らかとなった。しかし,化学組成から局所的に巻き上げられた物質と黄砂を区別することはできなかった。 1μ mよりも細粒なエアロゾル粒子は,春期に濃度が増加する傾向を示すものの,ダストイベントに対応しないなど,粗粒粒子とは異なった季節変動を示した。また,その大気中濃度変化と Al_2O_3 等の鉱物質エアロゾル起源の元素の濃度変化は良い対応を示すが,Cu, Pb等の人為起源物質起源と考えられる元素の濃度変化とは良い対応を示さなかった。このことから,風送ダスト(黄砂)の寄与が認められる粗粒粒子とは異なり,細粒光子は局地的な表層物質(ダスト)と人為的な物質から構成されることが明らかとなった。

謝辞:この研究は文部科学省の科学技術振興調整費の 援助のもとに行われました。また、つくばにおけるエ アロゾル試料採取の手伝いをして頂いた金井三千代氏 には感謝の意を表します。

文 献

- 国立環境研究所 (2001) 大気エアロゾルの計測手法とその環境影響評価手法に関する研究. 国立環境研究所特別研究報告. **SR-43-2001**, 59p.
- Imai, N., (1990) Multielement analysis of rocks with the use of geological certified reference material by ICP-MS. *Anal. Sci.* **6**, 389-395.
- 上岡 晃·金井 豊 (2002) つくば市において粒径別に 採取された風送塵中の水溶性成分の化学組成.第 49回地球化学会年会,136 (要旨).
- Kanai, Y., Ohta, A., Kamioka, H., Terashima, S., Matsuhisa, Y., Shimizu, H., Takahashi, Y., Kai, K., Xu, B., Hayashi, M. and Zhang, R. (2002) Preliminary study on the grain-size distribution and concentration of aeolian dust collected in Japan. *J. Arid Land Studies*, 11, 307-314.
- Kanai, Y., Ohta, A., Kamioka, H., Terashima, S., Imai, N., Matsuhisa, Y., Kanai, M., Shimizu, H., Takahashi, Y., Kai, K., Xu, B., Hayashi, M. and Zhang, R. (2003)
 Variation of concentrations and physicochemical properties of aeolian dust obtained in east China and Japan from 2001 to 2002. *Bull. Geol. Surv. Japan*, 54, 251-267.
- Mori, I., Nishikawa, M., Tanimura, T. and Quan, H. (2003) Change in size distribution and chemical composition of kosa (Asian dust) aerosol during long-range transport. *Atmospheric Environment*, **37**, 4253-4263.

- 名古屋大学水圏科学研究所 (1991) 大気水圏の科学 黄砂一. 古今出版, 328p.
- 西川雅高·金森 悟·金森暢子·溝口次夫 (1987) 大気エア ロゾル中の水溶性成分と不溶性成分の粒径別濃度 分布とその化学組成.エアロゾル研究, **2**, 294-303.
- Ohta, A., Terashima, S., Kanai, Y., Kamioka, H., Imai, N., Matsuhisa, Y., Shimizu, H., Takahashi, Y., Kai, K., Hayashi, M. and Zhang, R. (2003) Grain-size distribution and chemical composition of water-insoluble components in aeolian dust collected in Japan in spring 2002. *Bull. Geol. Surv. Japan*, **54**, 303-322.
- Ohta, A., Tsuno, H., Kagi, H., Kanai, Y. and Nomura, M. (2004) XAFS analysis of Fe, Mn, and Zn of an aeolian dust during transportation from China to Japan. *KEK Report*, **21B**, 20.
- Ohta, A., Terashima, S., Kanai, Y., Kamioka, H., Imai, N., Matsuhisa, Y., Shimizu, H., Takahashi, Y., Kai, K., Hayashi, M. and Zhang, R. (2005a) Grain-size distribution of chemical composition of water-insoluble components in aeolian dust collected in China in spring 2002. *Bull. Geol. Surv. Japan* (submitted).
- Ohta, A., Kanai, Y., Terashima, S., Kamioka, H., Imai, N., Matsuhisa, Y., Shimizu, H., Takahashi, Y., Kai, K., Hayashi, M., Zhang, R., Tsuno, H., Kagi, H. and Nomura, M. (2005b) Elucidation of elemental behavior of aeolian dust transported from China to Japan. Proceedings of Forth ADEC Workshop -Aeolian Dust Experiment on Climate Impact, 297-300.
- Yabuki, S., Kanayama, S., Fu, F., Honda, M., Yanagisawa, F., Wei, W., Zeng, F., Liu, M., Shen, Z. and Liu, L. (2002) Physical and chemical characteristics of aeolian dust collected over Asian dust source regions in China-Comparison with atmospheric aerosols in an urban area at Wako, Japan. *J. Arid Land Studies*, **11**, 273-289.
- Zhang, D. and Iwasaka, Y. (1998) Morphology and chemical composition of individual dust particles colleted over Wakasa Bay, Japan. *J. Aerosol Sci.*, **29**, S217-S218.
- Zhang, R., Shi, G., Kanai, Y., Ohta, A., Xu, Y., Gong, Y. and Chen, H. (2002) TSP mass concentration and number concentration of particles in dust storm weather in 2002 spring of Beijing. *The Chinese Journal of Process Engineering*, **2**, 289-292. (in Chinese with English abstract).

(受付:2005年1月14日; 受理:2005年5月19日)