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Abstract: We developed a Mathematica® program for three-dimensional mapping of the porosity

and normalized apparent diffusion coefficient (tortuosity) of isotropic heterogeneous porous media.

The program, DMAP.m, is a package-type program for Mathematica® version 4 or later. DMAP.m

accepts three-dimensional (3D) digital image data for the porous media as an input. Such data may be

obtained by, for example, X-ray computed tomography (CT) as a set of text files of two-dimensional

contiguous CT slices (square matrices). DMAP.m reads the text files and divides the image set into

sub-cubes, then executes a non-sorbing random walk (lattice walk) through the discrete pore space in

each sub-cube. A specified number of voxels are chosen randomly as the start position of the random

walk. If the chosen voxel falls within a pore, random walk simulation is carried out until the walker

exits the sub-cube. If the chosen voxel falls within a solid, the random walk is not performed. The

porosity of each sub-cube is calculated as the probability of a successful hit on a pore voxel in this

random choice of the start position (Monte Carlo integral). The time required for the walkers to es-

cape from each sub-cube is recorded in the random walk simulation, representing an “out-diffusion”

or “out-leaching” numerical simulation.  The tortuosity (apparent diffusion coefficient in the free

space divided by that in porous media) is calculated by fitting the time-dependent cumulative number

of walkers that have escaped from the sub-cube to a theoretical curve.  DMAP.m was applied success-

fully here to the 3D X-ray CT image of a monosized sand pack.  DMAP.m is available for free down-

load on the author’s website (URL = http://staff.aist.go.jp/nakashima.yoshito/progeng.htm) to facili-

tate study on porous media by X-ray CT or nuclear magnetic resonance imaging.
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1. Introduction

Diffusion or random walk through pores is the pre-

dominant migration mechanism for groundwater and

contaminants in geological systems with small Péclet

numbers. Geological systems (e.g., water-saturated

porous soils or rocks) are usually heterogeneous, and

the transport properties of such porous media vary sig-

nificantly from position to position within the system

(e.g., Gibbs et al., 1993). Thus, it is important to map

the three-dimensional (3D) distribution of transport

properties (e.g., diffusivity and porosity) in order to

fully understand the processes involved in contaminant

hydrogeology. It is now possible to obtain high-reso-

lution 3D digital images of heterogeneous porous struc-

tures through the use of techniques such as X-ray com-

puted tomography (CT) and nuclear magnetic reso-

nance imaging (MRI) (e.g., Gleeson and Woessner,

1991; Wildenschild et al., 2002; Nakashima and

Watanabe, 2002). A computer program can then be

needed to obtain the 3D distribution of diffusivity and

porosity using such digital images. To the best of the

author’s knowledge, however, no such programs have

been made publicly available at little or no cost. Thus,

in the present study, we developed an original

Mathematica® program for 3D mapping of the tortu-

osity (normalized apparent diffusivity) and porosity of

heterogeneous porous media.

This program, DMAP.m, is a package-type program

for Mathematica® version 4 or later. DMAP.m reads a

3D image set, and divides the set into subsystems which

are then mapped in terms of diffusivity and porosity.

Random walkers migrate through the discrete pore

space in each subsystem by avoiding the solid ob-

stacles. The time required for the walkers to escape

from the subsystem is recorded to calculate the appar-

ent diffusion coefficient of the porous subsystem. A

specified number of voxels are chosen randomly as the
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start positions of the random walk. The porosity of each

subsystem is then calculated as the probability that the

chosen voxels are pore voxels (Monte Carlo integral).

DMAP.m has been briefly introduced by Nakashima

and Yamaguchi (2004), and applied to a CT image set

of a porous sandstone by Nakashima et al. (2004).

However, the detail of the algorithm and theoretical

background has not been described. In this paper, we

describe the detail of the DMAP.m program and the

results of a trial application using 3D X-ray CT im-

ages of a monosized sand pack to demonstrate the

program performance. This program is available for

free download from the author’s website (URL =

http://staff.aist.go.jp/nakashima.yoshito/progeng.htm)

to facilitate study on porous media using X-ray CT and

MRI.

2. Transport properties of porous media

The terminology of the transport properties of iso-

tropic porous media is explained here using the

Kozeny-Carman model (e.g., Guéguen and Palciauskas,

1994). The Kozeny-Carman model is a fluid-saturated

equiradii pipe network through which fluid/tracer

molecules migrate by diffusion or Poiseuille flow (Fig. 1).

The porosity, φ, refers to the volume fraction of the

pipes in the porous cube:

 
(1)

where l is the pipe length, r is the radius of the cy-

lindrical pipe, and n is the number of cylindrical pipes

in the l0
3 cube (Nakashima and Yamaguchi, 2004).

The diffusion coefficient is defined as the ratio of

the diffusion flux to the concentration gradient (Fick’s

first law; e.g., Crank, 1975). The tortuosity of the water-

saturated porous media is the degree of the elongation

of the pipe, and is defined as (l/l0)2 in Fig. 1. Because

the diffusion obeys a parabolic partial differential equa-

tion, (l/l0)2 is equal to Dbulk /D where Dbulk is the diffu-

sion coefficient of the tracer in the bulk fluid (i.e., φ=1)

and D is the apparent diffusion coefficient of the tracer

in the fluid-saturated porous media (e.g., Latour et al.,

1993; Nakashima and Watanabe, 2002):

 (2)

In general, Dbulk /D will be larger than unity because

the solid component of the porous media is an obstacle

to the tracers diffusing through the pore space.

The formation factor (normalized electrical resistiv-

ity) of porous rocks and sediments saturated with con-

ductive fluid is an important quantity in geophysical

exploration (e.g., Jinguuji and Kunimatsu, 1999;

Jinguuji et al., 2003). Assuming a Kozeny-Carman

model for the pore structure (Fig. 1), it is possible to

calculate the formation factor using the porosity and

tortuosity as follows. For bulk fluid system (i.e.,φ= 1),

the resistance of the l0
3 cube is ρ/l0 whereρ is the re-

sistivity of the bulk fluid. For the Kozeny-Carman

model withφ≠ 1, it isρl/(nπr 2/3) = 3ρl 2/(φl0
3), calcu-

lated using Eq. (1) and the assumption that one-third

of the pipes are parallel (i.e. run in the same direc-

tion). The factor 3 is derived from this assumption. The

formation factor, F, is defined as the ratio of the resis-

tances mentioned above:

(3)

where (l/l0)2 = Dbulk /D is the tortuosity (Eq. (2)).

Because F = 1 and Dbulk /D = 1 for bulk fluid system

(i.e., porous media of φ= 1), it is required that F →
1 as φ → 1 and Dbulk /D → 1. Thus, the numerical con-

stant, 3, in the right-hand side of Eq. (3) should be

omitted to obtain

(4)

Fig. 1  Kozeny-Carman model of the pore structure in a cubic

porous medium for the estimate of the formation factor.

Equiradii cylindrical pipes (diameter 2r) run orthogonally.

The pipes are completely filled with conductive fluid

(resistivityρ), and the resistivity of the solid is infinite.

The pipe length is l in the cube of l0
3
, and thus the tortu-

osity of the pipes is (l/l0)
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+
   ∂2c
∂x2=

 ∂c
∂t

D    ∂2c
∂y2 +

   ∂2c
∂z2

for 0 < x,y,z < a

This is the final expression of the formation factor

using the porosity and tortuosity.

3. Out-diffusion of non-sorbing tracers in

porous media

 The theory of non-sorbing tracer diffusion in iso-

tropic water-saturated porous media is reviewed here

briefly. DMAP.m simulates conventional “out-diffu-

sion” or “out-leaching” laboratory experiments using

non-sorbing random walkers.  The relevant mathemati-

cal expression for the out-diffusion experiment is as

follows. A tracer-rich water-saturated porous cubic

sample of side length a is immersed in a large con-

tainer filled with tracer-free bulk water at t = 0, where

t is time. The resultant escape of the tracer particles

from the cube into the container is monitored as a func-

tion of t. The tracer concentration, c, obeys the fol-

lowing parabolic partial differential equation:

(5)

where x, y, and z are the spatial coordinates, and D

is the apparent diffusion coefficient of the non-sorb-

ing tracer. The initial condition is set as

(6)

where c0 is a constant. It is assumed that tracer par-

ticles disappear as soon as they escape from the po-

rous cube. Thus, the boundary condition is given by

(7)

It is straightforward to solve Eqs. (5)-(7) analytically

by separation of variables. As a result, the exact solu-

tion for the cumulated flux of tracer, M (t), emergent

from the six faces of the cube is expressed by:

(8)

where M(∞) is c0a3. In the early stages, Eq. (8) re-

duces to Eq. (9), indicating that M (t) increases linearly

with the square-root of time (Hespe, 1971):

(9)

where (S/V ) is the surface-to-volume ratio of the

sample (e.g., (S/V ) = 6/a for the cube).

Fitting the experimental data to Eq. (9) is performed

in conventional out-diffusion experiments (Hespe,

1971; Siitari-Kauppi et al., 1997; Sardini et al., 2003).

However, using only the M (t) data for the early stages

implies that pore structure information from deep in-

side the cube is discarded, precluding calculation of

the diffusion coefficient averaged over the cubic sys-

tem. Another drawback is that the number of data points

obeying Eq. (9) is small, which may lead to signifi-

cant statistical estimation errors. Thus, the original

form, Eq. (8), was fitted to the simulation results in

this study to estimate the apparent diffusion coefficient.

4. The DMAP.m program

The original program DMAP.m simulates the out-

diffusion of non-sorbing tracers in sub-cubes of po-

rous media. DMAP.m is a package-type program for

Mathematica® version 4 or later. The program list of

DMAP.m,  an  example  of  program execut ion

(Mathemat ica® Notebook) ,  and  usage  no tes

‘readme.txt’ are available at the author’s website (URL

= h t t p : / / s t a f f . a i s t . g o . j p / n a k a s h i m a . y o s h i t o /

progeng.htm). An example of program execution is also

given in Table 1. Refer to the usage notes (readme.txt)

for details of how to use DMAP.m.

DMAP.m (i) reads data on a three-dimensional po-

rous structure as a set of text files of two-dimensional

images in a directory, (ii) performs a lattice walk in

the pore space, and (iii) exports the simulation results

(e.g., integrated flux, M ) as text files. The input pa-

rameters and output files are listed in Tables 2 and 3,

respectively.

In process (i), DMAP.m accepts 3D digital image data

on the porous media obtained by, for example, X-ray

CT as a set of text files of contiguous two-dimensional

CT slices (square matrices).  The digital image should

be cubic in terms of both spatial resolution (i.e., voxel

dimension) and total system size. It should be noted

that binary files (e.g., TIFF images) cannot be pro-

cessed by DMAP.m and should be converted to text

files without headers using, for example, Graphic Con-

verter (http://www.lemkesoft.de/en/graphcon.htm).

DMAP.m reads the text files to divide the image set

into sub-cubes (Fig. 2). For example, if the image

c o n s i s t s  o f  2 5 6 3 v o x e l s  a n d  t h e  v a r i a b l e

c(x,y,z,t) = c0                              at    t = 0

c(x,y,z,t) = 0   
   on the six faces of the cube (i.e., x,y, or z = 0 or a)  

M(t)=c0a3－∫∫∫    c(x,y,z,t)dxdydz
a a a

0 0 0

512M(∞)
π6 Σ

∞

n1=1,3,5,7,...
Σ
∞

n2=1,3,5,7,...
Σ
∞

n3=1,3,5,7,...n1n2n3
2 2 2
1 1－exp －

D
a2

π2

(n1+n2+n3)t

=
512M(∞)
π6

M(∞) － Σ
∞

n1=1,3,5,7,...

－ a2

π2D
exp

n1t2

n1
2

3

= 2 2 2

S
V

M(t)∝ √Dt as t → 0
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NumberOfDivision in Table 2 is 2, 23 = 8 sub-cubes

are generated (each sub-cube consists of 1283 voxels).

If NumberOfDivision = 3, 33 = 27 sub-cubes are gen-

erated (256 = 3x85 +1), each consisting of 853 voxels,

and the residual 2563 – 27x853 = 195,841 voxels are

discarded. The random walk simulations are performed

in each sub-cube to obtain the spatial distribution of

the diffusion coefficients and porosities.

Table 1   Example of the execution of DMAP.m program. The electronic file (Mathematica® Notebook) of Table 1 is

available for free download at the author’s website.

Table 2   Explanation of parameters used in Table 1.

Table 3   Explanation of output text files.

The details of the algorithm of process (ii), which

forms the main part of the program, are as follows.

The random walk algorithm is a lattice walk in a simple

cubic lattice, and walkers migrate via discrete voxels

with gray-levels corresponding to pore space. A voxel

in a sub-cube is chosen randomly as a start position

for the lattice walk atτ= 0 whereτis dimensionless

integer time. The walker executes a random jump to

Timing[

DMAP["C:\\temp\\dmap\\256text", 2,

NumberOfDivision→3,

PixelRange→ {-1, 58.5},

NumberOfWalkers 30000,

MaxTime�→ 20000,

TimeDataFileDirectory→ "C:\\temp\\dmap\\allTout",

CumulateDataFileDirectory→"C:\\temp\\dmap\\cumulate",

OutputFileDirectory→"C:\\temp\\dmap",

Verbose→ True]

<< DMAP`In[1]:= 

In[2]:=

→

]

 ----------------------------------------------------------------------------------------------------------------------------------------------
 Parameter   Meaning
 ----------------------------------------------------------------------------------------------------------------------------------------------
 Timing   Return the CPU time used
 C:\\temp\\dmap\\256text Directory where 3D image data (set of 2D text files) are located
 2    Integer parameter k for the calculation of Tout

 NumberOfDivision  Number of division of the cube
 PixelRange       Minimum and maximum values of the gray-level of pore space
 NumberOfWalkers   Number of trails of choosing voxels as the start positions of the lattice walk
 MaxTime    Maximum number of the lattice-walk time step
 C:\\temp\\dmap\\allTout Directory where simulation results (Tout)  are saved
 C:\\temp\\dmap\\cumulate Directory where simulation results (cumulated flux) are saved
 C:\\temp\\dmap  Directory where simulation results (except for Tout and cumulated flux) are saved
 Verbose -> True  Show the current status of the program execution step by step
 ----------------------------------------------------------------------------------------------------------------------------------------------

File name  Contents
cumulated  Cumulated flux, M(τ), for 1 < τ  <  MaxTime
tout    Tout of all lattice walk trials
TimeOverWalkers  Number of the lattice walk trials in which walkers still remain in the sub-cube at τ  =  MaxTime 
TimeAverage  Averaged Tout 
DiffusionCoeffs (sub-cube size)2/TimeAverage where“sub-cube size”= a/(voxel dimension)
PoreRatio  Porosity (in vol.%) calculated by Eq. (10) 
PoreWalkers  Hit number of the pore voxels in the random choice of the start position
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one of the six nearest unoccupied sites, andτis

incremented by unit time after the jump to advance the

time toτ+1. If the randomly selected site or voxel is

occupied by an obstacle or solid, the jump is not per-

formed, but the time is incremented toτ+1 (e.g.,

Stauffer, 1985). Because DMAP.m calculates the geo-

metrical tortuosity of the pore structure, the random

walkers are assumed to be non-sorbing, and no elec-

trochemical interaction (e.g., sorption) between the

walkers and solid obstacles is considered.

If the pore space in which a walker is located is

connected to the surface of the sub-cube, the walker

eventually escapes from the sub-cube. The quantity Tout

(dimensionless integer time required for walkers to

escape from the sub-cube) is recorded to calculate the

cumulated flux, M (τ), of the walkers that escaped from

the sub-cube in time,τ. The apparent diffusion coeffi-

cient, D, for the sub-cube is estimated by fitting M (τ) to

a theoretical curve, as given by Eq. (8). It is also pos-

sible to calculate Dbulk for the sub-cube if PixelRange

(intensity range of voxels through which walkers can

migrate) in Table 2 is sufficiently large to cover the

intensity range of both pore space and solid. Thus, Dbulk /

D can be calculated for each sub-cube. In this way,

DMAP.m can be used for a three-dimensional mapping

of tortuosity.

Although the main function of DMAP.m is to calcu-

late the tortuosity, the porosity of the sub-cube is also

obtained as a byproduct. A large number of voxels are

chosen randomly as a start position for the lattice walk.

If the chosen voxel falls within a pore, the random walk

simulation is carried out until the walker exits the digi-

tal CT image system. If the chosen voxel falls within

a solid, the random walk will not be performed. The

porosity of each sub-cube is then calculated as the prob-

ability that the start position is a pore in this random

choice process (Monte Carlo integral).

The apparent diffusion coefficient could also be

calculated by taking the time-derivative of the mean-

square displacement of random walkers (e.g . ,

Nakashima and Watanabe, 2002). For a successful

simulation, this algorithm requires that a (system size

of the sub-cube) is sufficiently large to satisfy the re-

lation: (pore size/voxel dimension)2 << random walk

time step << (a/voxel dimension)2 (Watanabe and

Nakashima, 2002). However, this condition often

breaks down in the DMAP.m program because the

image system is divided into small sub-cubes of simi-

lar dimensions to the pore size. Hence, M (τ) was cal-

culated in DMAP.m, and D was estimated by fitting

M (τ) to Eq. (8).

The input parameters required to execute DMAP.m

as shown in Table 1 are explained in Table 2. The pa-

rameter, NumberOfWalkers, should be as large as

possible to ensure reliable simulation, otherwise the

stochastic nature of the random walk and Monte Carlo

Fig. 2   Rule concerning the division of sub-cubes. Division starts

from the origin (x, y, z) = (0, 0, 0) of the right-handed

coordinate system, and ends at the corner farthest from

the origin. Examples of the generated sub-cubes with se-

rial sub-cube numbers are shown for NumberOfDivision

= 1, 2, and 3.
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integral reduce the accuracy of the calculated tortuos-

ity and porosity. Each lattice walk trial stops (i) if the

voxel chosen as the start position is a solid voxel, (ii)

when the walker escapes from the sub-cube, or (iii)

whenτreaches MaxTime. MaxTime should be set

appropriately for a successful simulation: if MaxTime

is too low, walkers cannot escape from the sub-cube.

A low multiple of (a/voxel dimension)2 should be rea-

sonable as the MaxTime value, representing the char-

acteristic time required for walkers to escape from a

sub-cube ofφ= 1 (i.e., no obstacles). If a voxel in an

isolated pore is chosen as the start position of the lat-

tice walk, the walker is confined in the pore region

and never leaves the sub-cube, resulting in an infinite

Tout where Tout is an integer time required for a walker

to escape from the sub-cube. In order to avoid this

numerical difficulty, when the time step,τ, exceeds

MaxTime, the lattice walk is terminated and Tout is taken

to be MaxTime +1. Thus, a lattice walk trial of Tout =

MaxTime +1 suggests that the walker is confined in

an isolated pore, and should be discarded in the calcu-

lation of tortuosity because only a random walk through

the percolation cluster of pore space in the cubic sys-

tem can contribute to long-distance macroscopic ma-

terial transport across the system.

The program outputs are listed in Table 3. Raw Tout

data are saved in a text file named “tout”. The most

important output is the time-dependent cumulated flux,

M (τ). By fitting M (τ) to Eq. (8) it is possible to esti-

mate D of the sub-cube. A nonzero TimeOverWalkers

would suggest that some walkers were trapped in iso-

lated pores. The undesirable effect of isolated pores

mentioned above is negligible in the estimate of D

using Eq. (8) because M (τ) is for 1 ≤τ≤ MaxTime,

whereas Tout of walkers in isolated pores is MaxTime

+1 (i.e., out of range of the M (τ) data).

The total porosity of each sub-cube is calculated

using the entries in the output files of Table 3 accord-

ing to the Monte Carlo integral:

(10)

It should be noted that both isolated pores and pores

connected to the surface of the sub-cube contribute to

this porosity value. On the other hand, the quantity

defined by

(11)

gives the effective porosity of only pores connected

to the surface of the sub-cube. Users are requested to

choose Eq. (10) or (11) depending on the purpose of

the study.

One limitation is related to adsorption on the solid

surface. There are two possible reasons for a tortuos-

ity greater than unity: (i) high geometrical complexity

of the porous structure and (ii) bound or less mobile

walkers absorbed on the solid surface. The effects of

absorption on the solid surface are neglected in the

program at present, and as such renders the program

inapplicable to systems such as H2O self-diffusion in

porous clay gels (Nakashima, 2003ab), where the ef-

fects induced by bound water near negatively charged

clay surfaces are not negligible. Another limitation is

related to the anisotropy of the porous media. The

porous structure is assumed to be isotropic in the tor-

tuosity calculation, and thus D is a scalar. Therefore,

the program is not applicable to highly anisotropic

porous samples (e.g., schist), where D is a tensor, rather

than a scalar.

5. Application to a sand pack

In order to demonstrate the capabilities of DMAP.m,

the program was used to estimate the tortuosity and

porosity of a monosized sand pack. The monosized

sand pack was chosen as a good analogue of well-sorted

natural sandy sediments. The sand sample used was

granodioritic sand grains collected at the coast of

Uchinoura, Kagoshima, Japan. The dominant mineral

species of the sand were quartz, feldspar, biotite, and

cummingtonite. The sand sample was sieved, so that

the grain size is 0.85–1.18 mm in diameter. The sand

grains were packed in a plastic cylinder, and the 3D

images were obtained by microfocus X-ray CT

(Nakashima and Yamaguchi, 2004).

An X-ray CT image of a randomly packed pile of

the sand grains is shown by Fig. 3. The 8-bit voxel

intensities of the sand grains and air-filled pores are

high and low, corresponding to high and low density,

respectively. According to Nakashima and Yamaguchi

(2004), the ranges of voxel intensity of the pores and

grains were set at 0-58 and 59-255, respectively. The

cluster labeling analysis using this threshold value for

the discrimination of grains and pores revealed that the

total porosity was 0.34 and effective porosity (i.e.,

porosity of the largest  pore cluster) was 0.33

(Nakashima and Yamaguchi, 2004).  A free program,

Kai3D.m (Watanabe et al., 1999; Nakashima and

Watanabe, 2002), was used for the cluster labeling

analysis. The analysis also revealed 323 isolated small

pores in the 3D image system probably derived from

the noise in the CT system or from the small pores in

sand grains.  The 323 isolated pores (total 1573 voxels)

are responsible for the slight difference between the

total porosity (0.34) and effective porosity (0.33), but

should be disused in terms of the calculation of the

tortuosity of the 2563 image system because the mac-

roscopic material transport across the 2563 system is

performed on the largest pore cluster.

φ=
PoreRatio

100
=

PoreWalkers
NumberOfWalkers

φ=
M(MaxTime)

NumberOfWalkers
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creased with time (Fig. 4a) and the cumulated flux

approached a constant value (Fig. 4b). This is a char-

acteristic feature of the diffusion process. It is diffi-

cult in Fig. 4b to distinguish the simulation data and

the fitted curve (Eq. (12)) owing to the high accuracy

of the fit. Therefore, Fig. 4b demonstrates that Eq. (12)

is useful for analyzing the simulation data. Eq. (9) was

then fitted to exactly the same data (Fig. 4c), revealing

that Eq. (9) is applicable only for short times (τ1/2 < 50).

The characteristic migration distance of walkers (root-

mean-square displacement) isτ1/2 for the lattice walk

in a simple cubic lattice if the lattice constant is unity.

Therefore, if D is determined using only the data set

forτ1/2 < 50, the D value obtained is the diffusivity of

the pore structure very close to the surface of the cube

(50 voxels in depth from each surface). Thus, data

analysis using Eq. (9) fails to probe the pore structure

deep inside the 2563 cube, demonstrating the advan-

tage of Eq. (12) over Eq. (9).

The results of the lattice walk through the pore space

in the 2563 cube are shown in Fig. 5. The CPU time

was 11 hours for this simulation using the same per-

sonal computer mentioned above. In this case,

PoreWalkers = 10009 and NumberOfWalkers = 30000,

and the total  porosi ty defined by Eq.  (10)  is

PoreWalkers/NumberOfWalkers = 10009/30000 ≈ 0.33.

The ratio of the “in the sand pack” M (τ) to the “in the

free space” M (τ) asτ → ∞ in Fig. 5 is equal to the

effective porosity. TimeOverWalkers was only 4 and

M (MaxTime) is 10005, indicating that the effective

porosity calculated by Eq. (11) is 10005/30000 ≈ 0.33.

According to the cluster labeling analysis, the total

porosity was 0.34 and effective porosity was 0.33.

These values agree well with the results obtained by

In this section, the obtained M (τ) data were fitted to

the following theoretical curve according to Eq. (8):

where K∝3π2D/a2.  The cumulated flux atτ=

MaxTime, M (MaxTime), is in the entry of the output

file, “cumulated”.  Eq. (12) was obtained by choosing

the first 5 terms from the infinite series in Eq. (8).

Because the truncated terms disappear rapidly asτ→
∞ owing to the large decay constant, Eq. (12) is a rea-

sonable approximation for largeτ. The tortuosity Dbulk /

D was then calculated using dimensionless K as fol-

lows.

(13)

where Kbulk is K for the lattice walk in free space (i.e.,

φ= 1).

To evaluate the general features of the out-diffusion

phenomena, DMAP.m was first applied to out-diffu-

sion from a free space (φ= 1) without dividing the

image system (Fig. 4). The CPU time was 19 hours for

t h i s  s i m u l a t i o n  u s i n g  a  p e r s o n a l  c o m p u t e r

(Mathematica® ver. 4.1 on Microsoft Windows XP®

with Pentium® 4 processor of 1.5 GHz). The flux de-

Fig. 3  Three-dimensional X-ray CT image of a monosized (diameter 0.85-1.18 mm) sand pack. 256x256x256 voxels ≈ 7.3x7.3x7.3

mm
3
. (a) Front view. (b) Rear view. The 8-bit voxel-intensity ranges from black (0) to white (255).

(12)

(a) (b)

M(τ)=
512M(MaxTime)

π6
－exp

Kτ
3512

π6

[－Kτ]
3

1
exp

11

18225

2212
exp[－9Kτ]－

27

1
exp

Kτ
3

－
19

asτ            →∞

－ －

－

=
Kbulk

K
Dbulk

D
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DMAP.m. From Fig. 5, the tortuosity calculated by Eq.

(13) was Kbulk /K = 7.34x10-5/3.99x10-5 = 1.84. On the

other hand, the tortuosity calculated using the time-

derivatives of the mean-square displacement of walk-

ers is 1.84 for the same image data of 2563 voxels

(Nakashima and Yamaguchi, 2004). The tortuosity

value again agrees well with the result obtained by

DMAP.m, demonstrating that DMAP.m is capable of

probing the pore structure of porous media accurately.

Three-dimensional mapping of the porosity and tor-

tuosity was performed using Eqs. (10) and (13), re-

spectively (Fig. 6). The value of NumberOfDivision

was set at 1-3, corresponding to 13, 23, and 33 sub-cubes

(Fig. 2). Data for the early stage of the walk satisfying

M (τ)/M (MaxTime) < 0.25 were discarded, and the

remaining data was fitted to Eq. (12) in order to re-

duce the error derived from the truncation. The CPU

t i m e  u s e d  w a s ,  f o r  e x a m p l e ,  2 4  h o u r s  f o r

NumberOfDivision = 3. Fig. 6 shows that the degree

of scatter in the data increased as the sub-cube size

decreased. This is due to the local heterogeneity of the

pore structure within the 2563 cube. Fig. 6 also shows

that the tortuosity increased with decreasing porosity.

This relationship between tortuosity and porosity has

been confirmed through laboratory experiments and

numerical simulations (e.g . ,  Nakashima, 1995;

Boudreau, 1996; Trinh et al., 2000). Although there

are some fluctuations in the data, Fig. 6 is consistent

with the literature.

The data of Fig. 6 were converted into a logarithmic

F-φplot (Archie plot) using Eq. (4). Fig. 7 shows that

the formation factor increases with decreasing poros-

ity. This is a consequence of the obstruction effect of

sand grains withρ = ∞ on the electrical conductivity

of the porous media system. The regression line, F =

Fig. 4   Results for the lattice walk simulation in free space (φ=

1). NumberOfDivision =1, NumberOfWalkers = 30000

and MaxTime = 300000. (a) Histogram of Tout. Each col-

umn is 3000 wide. TimeAverage = 8072. (b) Cumulated

flux, M, as a function ofτ. The simulation result (solid

line) was fitted using a model (Eq. (12), broken line) to

obtain Kbulk = 7.34x10
-5
. (c) Cumulated flux, M, as a func-

tion ofτ1/2
. The simulation result (solid line) was fitted

using a model (Eq. (9), broken line). Note that fitting the

data to Eq. (9) is good only for the earliest time stage (τ1/2

< 50).

(b)

(c)(a)
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0.54φ-2.0, is similar to those obtained by laboratory

experiments (Jinguuji and Kunimatsu, 1999), demon-

strating that DMAP.m is also useful for the estimate of

the formation factors of porous media.

Our random walk program was therefore applied

successfully to the 3D mapping of tortuosity, porosity,

and formation factor in a bead pack. One of the advan-

tages of diffusion simulation over conventional labo-

ratory experiments (e.g., Shackelford, 1991) is the

significant saving in time by eliminating time-consum-

ing practical steps (e.g., slicing the sample into thin

sections, extracting target species, and determining the

concentration). It should be noted that the simulation

time (about one day for Figs. 4-6) is much shorter than

the time required for conventional laboratory diffusion

experiments (typically several weeks). The digital

image acquisition time for X-ray CT or MRI is also as

short as several hours. Thus, computer simulation us-

ing digital images can be expected to reduce the ac-

quisition time for diffusion data. It is hoped that mak-

ing this program freely available will also facilitate

diffusion studies on rock and sediment samples in many

fields of geoscience.
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Fig. 6   Distribution of porosity and tortuosity in each sub-cube.

The total number of sub-cubes determined by

NumberOfDivision is indicated. The input values for

NumberOfWalkers and PixelRange are identical to those

for Fig. 5.

Fig. 7   Archie plot of Fig. 6. The formation factor was calcu-

lated by Eq. (4). The least-squares fitting was applied to

the data points for “number of division = 27” to obtain

F = 0.54φ-2.0
 and indicated by a solid line.

Fig. 5   Results for the lattice walk simulation through the pore

space of the bead pack. Cumulated flux M (τ) for

NumberOfDivision = 1, NumberOfWalkers = 30000,

PixelRange = -1 to 58.5, and MaxTime = 200000. Data

points forτ ≤ 3000 were discarded in fitting the data to

Eq. (12) to reduce the error caused by truncation. It is

difficult to distinguish the data points and Eq. (12) ow-

ing to the accuracy of the fit. Estimated K is indicated.

Data from Fig. 4b are superimposed for reference.
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DMAP.m: 多孔質媒体中の屈曲度と空隙率の３次元分布を
調べるためのMathematica®プログラム

中島善人中島善人中島善人中島善人中島善人･････山口　哲山口　哲山口　哲山口　哲山口　哲

要　旨要　旨要　旨要　旨要　旨

等方的で不均一な多孔質媒体の空隙構造パラメータ（屈曲度と空隙率）を３次元マッピングする機能をもつ Mathematica
プログラムを作成した．そのプログラム，DMAP.m は，パッケージタイプのプログラムで，Mathematica バージョン４あるいは
それ以降で動作する．DMAP.m は，Ｘ線ＣＴや核磁気共鳴イメージングで取得した，多孔質堆積物や岩石等の３次元画像を
読み込む．読み込んだ画像はサブシステムに細分化され，各サブシステムの空隙にランダムに散布された非吸着性のランダ
ムウォーカーが酔歩（単純立方格子上の lattice walk）で系外に漏れ出ていくという，いわゆる out-diffusion シミュレーショ
ンを行う．系外に漏れたウォーカーの積算値の時間変動データをもちいて屈曲度を計算し，酔歩の出発点をランダムに選ぶ過
程で空隙の画素にヒットした確率として空隙率を計算した（モンテカルロ積分）．このプログラムのデモンストレーションとして，
ランダムパッキングした砂質堆積物のＣＴ画像を用いて，屈曲度と空隙率のサブシステムサイズ依存性を計算した．なお，こ
のプログラムは，http://staff.aist.go.jp/nakashima.yoshito/progeng.htmで無料ダウンロードできる．


