Notes and Comments

Chemical compositions of amphiboles in hematite-bearing schists from the Saruta-gawa area in the Sanbagawa belt, central Shikoku, Japan

Yasuyuki Banno¹

Yasuyuki BANNO (2001) Chemical compositions of amphiboles in hematite-bearing schists from the Saruta-gawa area in the Sanbagawa belt, central Shikoku, Japan. *Bull. Geol. Surv. Japan*, vol. 52 (9), p. 425–443, 3 figs, 10 tables.

Abstract: Amphibole and other minerals in the hematite-bearing basic and quartz schists from the Saruta-gawa area in the Sanbagawa belt, central Shikoku were analyzed by the electron microprobe. The data presented comprise 221 analyses of amphibole, and 90 analyses of epidote, chlorite, garnet, muscovite, albite, hematite, magnetite and stilpnomelane. All the minerals in this study occur from the hematite-bearing schists in the albite-biotite zone of high metamorphic grade. These chemical data were used in order to discuss the Sanbagawa retrograde metamorphism in the Saruta-gawa area (Banno, 2000).

1. Introduction

The Sanbagawa belt is a regional coherent high-P/T metamorphic belt that extends from east to west for about 800 km in the Southwest Japan. The peak metamorphic condition has been estimated in many previous studies, and characteristics of the metamorphic field gradient were compiled by Banno and Sakai (1989) and Enami *et al.* (1994).

The chemistry of amphibole in hematite-bearing basic and quartz schists of the Sanbagawa belt can be used as a sensitive indicator of metamorphic grade (Otsuki and Banno, 1990; Enami et al., 1994). Otsuki and Banno (1990) studied the compositional zonation of amphibole crystals in the hematite-bearing basic schists in the Asemi-gawa area, central Shikoku, and showed that the zoned amphibole exhibited decreasing Al_2O_3 contents towards the crystal margin and was usually rimmed with actinolite. They proposed the phase relation of the amphiboles associated with chlorite, epidote, muscovite, albite, quartz and hematite, and considered that the zonal structure indicates the rapid pressure release during the early stage of retrograde metamorphism. The amphibole in the hematite-bearing basic schists from the Saruta-gawa area located in 8km north of the Asemi-gawa area (Fig. 1), however, has usually a rim of retrograde sodic

2. Sample numbers

Each sample has two sample numbers as shown in Table 1. One is the original number (e.g., YB108), which was presented in Banno (2000), and the other is registration number of the petrological collection of the Geological Museum, AIST, Tsukuba (e.g., GSJ R76512). In this paper, only the original numbers are given to simplify the description.

3. Abbreviations in the text

Abbreviations used in the text are as follows:

amphibole instead of actinolite (Hara *et al.*, 1990), and Banno (2000) showed that the Saruta-gawa samples experienced retrograde metamorphism under higher P/T condition than the Asemi-gawa samples. Thus, the compositional trend of zoned amphiboles in hematite-bearing schists is important for understanding retrograde metamorphism, although, in the literature, few analytical data on amphibole chemistry were given due to editorial limitations. Therefore, in this paper, (1) all the chemical data of the Saruta-gawa amphiboles and (2) representative analyses of minerals associated with the amphibole, which were studied in Banno (2000), are presented.

Keywords : chemical composition, amphibole, basic schist, quartz schist, Sanbagawa belt, Saruta-gawa area

¹ Institute of Geoscience, GSJ

Fig. 1 Metamorphic zones in the Sanbagawa metamorphic belt, central Shikoku (simplified from Higashino, 1990). Small rectangles marked with a and b indicate the locations of traverse maps shown in Fig. 2a and b, respectively.

 $^{[4]}Al = tetrahedral aluminum, {}^{[A]}(Na + K) = sodium and potassium in A sites, {}^{[B]}Na = sodium in M4 sites, {}^{[6]}Ti = octahedral titanium.$

4. Outline of geology and mineral assemblages

The Saruta-gawa area is located in Iyo-Mishima city, Ehime Prefecture in central Shikoku, and a part of the Sazare area of Higashino et al. (1984). Traverse maps and sample locations of the Saruta-gawa area are shown in Fig. 2. The Sanbagawa schists generally trend E-W and dip to the north. However, in the Saruta-gawa area, local southward dips caused by later folding are observed. The bed of this area strikes roughly WNW and dips about 40° to 90° south. On the basis of the mineral assemblages in pelitic schists, this area is divided into three mineral zones, the chlorite, the garnet and the albite-biotite zones in ascending order of metamorphic grade (e.g., Higashino, 1990). The analyzed samples were four basic schists and four quartz schists and were all collected from the albitebiotite zone (Fig. 2). Mineral assemblages of the samples are shown in Table 1. All the samples contain chlorite, epidote, muscovite, albite, quartz and hematite. Garnet was found exclusively in quartz schist.

5. Outline of mineral chemistry

The chemical characteristics of amphibole and other minerals listed in Tables 2 to 10 are briefly described in this chapter. Minerals in eight samples were examined by a JEOL JXA-8800R electron-probe microanalyzer at AIST. Accelerating voltage, specimen current and beam diameter were kept at 15 kV, 12 nA on a Faraday cup and 3 μ m, respectively. More detailed descriptions were given in Banno (2000).

5.1 Amphibole

All the analyses of amphiboles are listed in Table 2. The Fe^{3+}/Fe^{2+} of amphibole is calculated for assuming 13 total cations exclusive of K, Na and Ca on the basis of 23 O atoms. The nomenclature of amphibole conforms to Leake *et al.* (1997). Some sodic-calcic amphiboles with ^[4]Al contents higher than 0.5 per for-

Fig. 2 Traverse maps and sample locations of the Saruta-gawa area.

mula unit (pfu) show ^[A](Na+K)>0.5 pfu, and these are magnesiokatophorites. All the sodic-calcic amphiboles containing ^[4]Al>0.5 pfu are classified as barroisite in this paper to simplify the mineral description.

Amphibole occurs as matrix minerals and inclusions in the albite porphyroblasts. In this study, only matrix amphiboles were analyzed. The amphiboles possess Al-rich core and Al-poor mantle. Zoned crystals of amphiboles were examined by line scanning profiles from Al-rich core to Al-poor mantle. In Table 2, chemical data obtained from different spots in the same amphibole crystal are arranged in a sequence from core to rim. The Al-rich core has a barroisitic composition. In the mantle part, ^[B]Na increases with decreasing ^[4]Al towards margin, which has a winchite-magnesioriebeckite composition [cf. Fig. 3a and b in Banno (2000)]. The barroisite-winchite-magnesioriebeckite composite crystal is sometimes rimmed with actinolite and/or winchite with low ^[B]Na and ^[4]Al. In the mantle part of this zoning pattern, ^[B]Na increases with decreasing ^[4]Al, then decreases towards the margin [cf. Fig. 3c-e in Banno (2000)].

Compositional ranges of Al-rich cores and Al-poor mantles are shown on an ^[4]Al-^[B]Na diagram (Fig. 3). The barroisite core in basic schists is generally poorer in ^[B]Na than in quartz schists. The ^[B]Na content of the mantle in basic schists extends to lower values than in quartz schists. The systematic difference in ^[B]Na between basic and quartz schists can be explained by differences in oxygen fugacity between the two rock

Fig. 3 Compositional ranges of Al-rich core and Al-poor mantle in basic and quartz schists from the Saruta-gawa area. Ba=barroisite, Sa=sodic amphibole, Wi=winchite, Act= actinolite.

types (Banno, 2000).

5.2 Minerals other than amphibole

Representative analyses of epidote, chlorite, garnet, muscovite, albite, hematite, magnetite and stilpnomelane are tabulated in Tables 3-10, respectively. Epidote is commonly zoned with decreasing ferrian component [$Y_{Fe^{3+}} = Fe^{3+}/(Fe^{3+} + Al)$] from core to rim (e.g., ST2204, YB35), although the zoning with reverse sense is observed in YB108. The ranges of $Y_{Fe^{3+}}$ of epidotes in basic and quartz schists are 0.21–0.31 and 0.27–0.33, respectively. Total iron was assumed to be Fe₂O₃.

Compositional ranges of X_{Sps} (=spessartine component) in garnet are generally 0.19–0.72, although garnet in YB154 shows lower X_{Sps} (0.13–0.20). Except for YB154, garnet occurs as zoned crystals in which Mn contents decrease from core (X_{Sps} =0.55–0.72) to rim (X_{Sps} =0.19–0.43). X_{Grs} (=grossular component) in garnet from YB159 increases outwards, and attains its maximum of 0.20 at an intermediate position between core and rim, and then decreases towards the outermost rim. The chemical data showing the highest X_{Grs} contents are marked with "inter" in Table 5. Mn in garnet from YB154 decreases from the core (X_{Sps} =0.20) towards the rim (X_{Sps} =0.13). The ferric iron contents of garnet were calculated on the basis of (Al+Fe³⁺) : (Fe²⁺+Mn+Mg+Ca)=2:3.

Muscovite is phengitic with a Si content of 3.20-3.35 pfu (O=11). The Na/(Na+K) ratio is 0.05-0.15. Fer-

rous iron content was estimated as $Si+Ti - 3=Fe^{2+} + Mg + Mn$ (O=11), assuming (Fe²⁺, Mg, Mn) $SiAl_{-1}Al_{-1}$ and ^[4]Al^[6]TiSi₋₁Al₋₁ substitutions.

Hematite includes fine exsolution lamellae of ilmenite. Ti contents of the host hematite are less than 0.19 pfu. In ST2204, hematite including the ilmenite lamellae is rimmed with lamellae-free hematite. The former has higher Ti contents (0.15–0.19 pfu) than the latter (0.01–0.10 pfu). Fe³⁺/Fe²⁺ ratio was calculated assuming total cation=2 (O=3).

Magnetite occurs in YB108 and coexists with hematite. It contains small amounts of SiO₂ (0.6–0.7 wt.%). Fe^{3+}/Fe^{2+} ratio was calculated on the assumption of total cation=3 for O=4.

Stilpnomelane occurs in YB35, and is relatively rich in Mn (0.18–0.20 pfu). Formulae of stilpnomelane were calculated assuming Si=8 with total iron as Fe^{2+} .

Albite shows low Ca/(Ca+Na) (<0.02). Mg/(Mg+ $Fe^{2+})$ values of chlorite ranges from 0.45–0.69.

Acknowledgements: The author is indebted to M. Haruna for critical reading the manuscript and to M. Enami for providing the sample ST2204. Thanks are due to H. Hirano for his improvements of the manuscript.

References

- Banno, S. and Sakai, C. (1989) Geology and metamorphic evolution of the Sanbagawa metamorphic belt, Japan. *In*: Daly, J. S., Cliff, R. A., Yardley, B. W. D. eds., *Evolution of Metamorphic Belts*. Geol. Soc. London, Spec. Pub., no. 43, 519–532.
- Banno, Y. (2000) Intermediate high-pressure exhumation of the northern segment of the Sanbagawa belt, Saruta-gawa area, central Shikoku, Japan. *Lithos*, **50**, 289–303.
- Enami, M., Wallis, S. R. and Banno, Y. (1994) Paragenesis of sodic pyroxene-bearing quartz schists: implications for P-T history of the Sanbagawa belt. *Contrib. Mineral. Petrol.*, **116**, 182–198.
- Hara, I., Shiota, T., Hide, K., Okamoto, K., Takeda, K., Hayasaka, Y. and Sakurai, Y. (1990) Nappe structure of the Sambagawa belt. J. Metamorph. Geol., 8, 441–456.
- Higashino, T. (1990) Metamorphic zones of the Sambagawa metamorphic belt in central Shikoku, Japan. *Jour. Geol. Soc. Japan*, **96**, 703– 718. (in Japanese with English abstract)

- Higashino, T., Sakai, C., Kurata, H., Enami, M., Hosotani, H., Enami, Makiko and Banno, S. (1984) Electron microprobe analyses of rockforming minerals from the Sanbagawa metamorphic rocks, Shikoku Part II. Sazare, Kotu and Bessi areas. *Sci. Rep. Kanazawa Univ.*, 29, 37–64.
- Leake, B. E., Woolley, A. R., Arps, C. E. S., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Linthout, K., Laird, J., Mandarino, J., Maresch, W. V., Nickel, E. H., Rock, N. M. S., Schumacher, J. C., Smith, D. C., Stephenson, N. C. N., Ungaretti, L., Whittaker, E. J. W. and Youzhi, G. (1997) Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. *Eur. J. Mineral.*, 9, 623–651.
- Otsuki, M. and Banno, S. (1990) Prograde and retrograde metamorphism of hematite-bearing basic schists in the Sanbagawa belt in central Shikoku. J. Metamorph. Geol., 8, 425–439.

Received September 28, 2001 Accepted October 30, 2001

Abbreviations used in Tables 1-10 are as follows.

(Tables 1-10) BS=basic schist, QS=quartz schist.

- (Tables 2 and 4) $^{[4]}Al$ =tetrahedral aluminum, $^{[6]}Al$ =octahedral aluminum.
- $(Table 1) \quad Grt = garnet, \ Amp = amphibole, \ Ep = epidote, \ Chl = chlorite, \ Ms = muscovite, \ Car = carbonate, \ Ttn = titanite, \ Rt = rutile, \ Ms = muscovite, \ Car = carbonate, \ Ttn = titanite, \ Rt = rutile, \ Ms = muscovite, \ Car = carbonate, \ Ttn = titanite, \ Rt = rutile, \ Ms = muscovite, \ Car = carbonate, \ Ttn = titanite, \ Rt = rutile, \ Ms = muscovite, \ Ms = musc$
- Ab=albite, Qtz=quartz, Hem=hematite, Ap=apatite, Mag=magnetite, Tur=tourmaline, Ilm=ilmenite, Stp=stilpnomelane. (Table 2) Ba=barroisite, Wi=winchite, Mrb=magnesioriebeckite, Gln=glaucophane, Act=actinolite, ^[B]Na=sodium in M4 sites, ^[A]Na=sodium in A sites, $X_{Mg}=Mg/(Mg+Fe^{2+})$, $X_{Fe^{3+}}=Fe^{3+}/(Fe^{3+}+{}^{[6]}Al)$, *=total iron as FeO, #=the highest ^[B]Na
- position in the mantle, n.d.=not determined.

(Table 3) $Y_{Fe^{3+}} = Fe^{3+} / (Fe^{3+} + Al)$, *=total iron as Fe_2O_3 .

- $(Table \; 4) \quad X_{Mg} \!=\! Mg/(Mg \!+\! Fe^{2+}) \!.$
- (Table 5) inter=intermediate position, showing the highest grossular component, between core and rim, *=total iron as FeO.
- (Table 6) $X_{Na} = Na/(Na+K)$, *=total iron as FeO.

 $(Table \ 7) \quad X_{Ca} \!=\! Ca/(Ca\!+\!Na)\!.$

- (Table 8) *=total iron as FeO, #=lamellae-free hematite rim.
- (Table 9) *=total iron as FeO.
- (Table 10) $X_{Mg} = Mg/(Mg + Fe^{2+})$.

Table 1 Mineral assemblages of hematite-bearing schists in the albite-biotite zone from the Saruta-gawa area.

Sam	ple No.	_													
Original No.	Registration No.	Туре	Grt	Amp	Ep	Chl	Ms	Car	Ttn	Rt	Ab	Qtz	Hem	Ар	Other minerals
YB108	GSJ R76512	BS		+	+	+	+		+	+	+	+	+	+	Mag
YB120	GSJ R76513	QS	+	+	+	+	+				+	+	+	+	
ST2204	GSJ R76514	BS		+	+	+	+			+	+	+	+		
YB154	GSJ R76515	QS	+	+	+	+	+				+	+	+	+	Tur
YB155	GSJ R76516	QS	+	+	+	+	+				+	+	+	+	
YB159	GSJ R76517	QS	+	+	+	+	+				+	+	+	+	Tur
YB35	GSJ R76518	BS		+	+	+	+		+	+	+	+	+		llm Stp
YB46	GSJ R76519	BS		+	+	+	+	+	+		+	+	+	+	Tur

Sample No.	YB108	YB108	YB108	YB108	/B108	YB108	YB108	YB108	YB108	YB108	YB108	YB108	/B108 Y	B108 Y	B108 YI	3108 YE	3120 YB	120 YB	120 YE	120 YE	3120 Y	B120 Y	B120
Rock type	BS	BS	ß	ß	BS	BS	BS	BS	BS	BS	ß	ß	BS	BS	BS	BS	8	g	g	g	ß	g	8
Grain No.	N.	5	5	N.	N.	5	2	Ñ	3-а	3-a	3-а	3-а	3-а	3-a	3-а	3-a	q	q	þ	q	q	υ	°0
Point No.	29	28	27	26	25	24	23	22#	39	38	37	36	35	34	33	81# 2	213 2	12 2	11 2	10 1	85#	209	208
	core	core	core	core	core	mantle	mantle	mantle	core	core	core	core	core	core m	antle m	antle c	ore co	ore co	ore ma	untle m	antle	ore	core
	Ba	Ba	Ba	Ba	Ba	Mrb	Mrb	Mrb	Ba	Ba	Ba	Ba	Ba	Ba	Ba	Mrb	Ba	Ba	Ba	Ň	Arb	Ba	Ba
SiO2	48.5	48.1	48.4	48.0	48.4	55.5	55.6	55.4	46.8	45.9	45.9	46.0	45.7	45.2 4	19.2 5	4.4	9.5 49	9.6 50	0.0 53	3.1 5	4.9	0.0	19.3
TiO ₂	0.41	0.44	0.34	0.39	0.28	0.04	00.0	0.09	0.26	0.26	0.42	0.42	0.43	0.54	0.16	0.00	0.25 0	.26 0	0.18 0	0.05	0.07	0.23	0.18
Al ₂ O ₃	9.74	9.79	9.92	9.87	9.29	5.00	5.04	4.74	9.86	10.7	10.5	10.3	10.6	10.7	7.49	6.44 8	8.54 8	3.62 8	3.54 5	5.73	5.46	8.38	8.91
Cr_2O_3	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	.p.u	n.d.	n.d. (0.00	0.02 0	0.04 0	0.03	0.00	0.00	00.00
FeO*	16.8	16.4	16.9	16.9	17.0	18.4	19.3	18.5	17.3	17.4	17.4	17.4	17.1	17.2 1	6.7 1	7.9 1:	3.5 13	3.7 13	3.5 14	1.9	4.8	4.7	4.1
MnO	0.27	0.28	0.21	0.26	0.25	0.15	0.20	0.18	0.27	0.25	0.21	0.21	0.29	0.20	0.22	0.21 (0.67 0	0.73 0	0.60 (.52	0.47	0.81	0.71
MgO	10.4	10.4	10.5	10.6	10.2	9.64	9.55	9.28	10.2	10.1	9.88	10.2	10.1	10.1	۲. ۲.	9.41 1:	2.2 12	2.3 12	2.2	1.8	1.7 1	2.6	2.2
CaO	6.71	6.76	6.56	7.07	6.80	2.14	2.08	1.87	7.45	7.45	7.40	8.01	8.14	8.30	7.13	1.97 (6.89 6	69.6	3.86	3.80	3.25	6.47	6.72
Na_2O	4.60	4.61	4.79	4.52	4.41	5.88	5.92	6.11	3.91	4.08	4.09	4.03	3.84	3.84	3.84	5.91	4.73 4	7 66.1	t.92 E	.70	6.04	4.76	5.01
K ₂ 0	0.33	0.35	0.32	0.35	0.31	0.05	0.02	0.03	0.40	0.42	0.43	0.43	0.51	0.49	0.23	0.08 (0.20 0	0.22 0	0.17 0	.11	0.05	0.18	0.22
Total	97.8	97.1	97.9	98.0	96.9	96.8	97.7	96.2	96.5	9.96	96.2	97.0	96.7	96.6 9	96.1 9	6.3 9	6.5 97	1.1 97	36 0.7	5.7 9	6.7 5	8.1 5	7.4
Fe_2O_3	7.65	7.05	8.22	7.98	7.35	9.93	11.4	9.08	8.66	9.28	8.40	7.56	7.30	7.23	8.24 1	0.7 (6.01 6	3.64 E	5.28 8	.90	7.78 1	0.2	7.30
FeO	9.92	10.1	9.50	9.72	10.4	9.46	9.05	10.3	9.51	9.05	9.85	10.6	10.5	10.7	9.28	8.23 8	8.10 7	.73 8	3.75 6	68.	7.80	5.49	7.53
New total	98.5	97.9	98.8	98.8	97.7	97.8	98.9	97.1	97.3	97.5	97.1	97.8	97.4	97.3 9	96.9	7.4 9	7.1 97	7.8 97	7.5 96	6.69	7.5 9	9.1 9	8.1
	Atomic I	ratios (0-	=23)																				
N N	7.000	6.992	6.967	6.927	7.054	7.902	7.849	7.957	6.873	6.740	6.777	6.765	6.742 (5.690 7	.199 7	.757 7.	.166 7.	134 7.	205 7.	635 7	791 7	080.7	.080
^[4] AI	1.000	1.008	1.033	1.073	0.946	0.098	0.151	0.043	1.127	1.260	1.223	1.235	1.258	1.310 0	0.801 0	.243 0.	.834 0.	866 0.	795 0.	365 0	209 0	.920 (.920
Ι Α Ι	0.657	0.670	0.650	0.606	0.650	0.741	0.688	0.759	0.580	0.592	0.604	0.551	0.585 (0.557 0	0.490 0	.840 0.	.623 0.	595 0.	655 0.	607 0	704 0	478 0	.589
н	0.045	0.048	0.037	0.042	0.031	0.004	0.000	0.010	0.029	0.029	0.047	0.046	0.048 (0.060 0	0.018 0	0000.	.027 0.	028 0.	020 0.	005 0	007 0	.024 0	.019
ວັ																o	000 000	002 0.	005 0.	003 0	000	0000	000.
Fe ³⁺	0.831	0.772	0.890	0.867	0.807	1.064	1.210	0.982	0.957	1.025	0.933	0.837	0.810	0.805 0	1.908.1	.153 0.	654 0.	718 0.	573 0.	964 0	830 1	.091 0	.789
Fe ²⁺	1.197	1.222	1.144	1.173	1.265	1.127	1.069	1.240	1.168	1.112	1.216	1.304	1.300	1.324	.136 0	.982 0.	980 0	930 1.	054 0.	828 0	926 0	.650 0	.905
Mn	0.033	0.034	0.026	0.032	0.031	0.018	0.024	0.022	0.034	0.031	0.026	0.026	0.036	0.025 0	0.027 0	.025 0.	.082 0.	089 0.	073 0.	063 0	.056 0	0 200.	.086
Mg	2.238	2.254	2.253	2.280	2.216	2.046	2.010	1.987	2.233	2.211	2.175	2.236	2.221	2.229	2.421 2	.000 2.	.633 2.	637 2.	621 2.	530 2	475 2	.660	.612
S	1.038	1.053	1.012	1.093	1.062	0.326	0.315	0.288	1.172	1.172	1.171	1.262	1.287	1.316 1	.118 0	.301 1.	.069 1.	031 1.	059 0.	585 0	494 0	.982	.034
Na	1.287	1.299	1.337	1.265	1.246	1.623	1.620	1.702	1.113	1.162	1.171	1.149	1.098	1.102 1	.089 1	.634 1.	.328 1.	392 1.	375 1.	589 1	662 1	.307 1	.395
¥	0.061	0.065	0.059	0.064	0.058	0.009	0.004	0.005	0.075	0.079	0.081	0.081	0.096	0.093 0	0.043 0	.015 0.	.037 0.	040 0.	031 0.	020 0	0 600	.033 0	.040
Total	15.386	15.417	15.407	15.422 1	15.366	14.959	14.939	14.995	15.361	15.413	15.422 1	5.492 1	5.481 1	5.511 15	5.250 14	.950 15.	433 15.	463 15.	465 15.	195 15	.165 15	321 15	.469
^[B] Na	0.962	0.947	0.988	0.907	0.938	1.623	1.620	1.702	0.828	0.828	0.829	0.738	0.713	0.684 (0.882 1	.634 0.	.931 0.	969 0.	941 1.	415 1	506 1	.018 0	.966
[A] Na	0.325	0.352	0.349	0.358	0.308	0.000	0.000	0.000	0.286	0.334	0.341	0.411	0.385 (0.418 (0.207 0	0000	396 0.	423 0.	434 0.	175 0	.156 0	.288 0	429
XMg	0.651	0.648	0.663	0.660	0.637	0.645	0.653	0.616	0.657	0.665	0.641	0.632	0.631	0.627 0	0.681 0	.671 0.	.729 0.	739 0.	713 0.	753 0	728 0	.804 0	.743
XFe ³⁺	0.558	0.535	0.578	0.589	0.554	0.590	0.638	0.564	0.623	0.634	0.607	0.603	0.581	0.591 0	.649 0	.579 0.	.512 0.	547 0.	466 0.	614 0	541 0	.695 C	.573

	YB120	8	θ	244	core	Ba	49.5	0.22	8.50	00.00	13.7	0.66	12.5	7.28	4.54	0.18	97.1	6.64	7.73	97.8		7.124	0.876	0.565	0.024	0.000	0.719	0.930	0.080	2.682	1.122	1.267	0.033	15.422	0.878	0.389	0.743	0.560
	YB120	8	Φ	245	core	Ba	49.3	0.15	8.54	0.00	13.6	0.66	12.4	7.02	4.47	0.19	96.3	7.25	7.07	97.1		7.129	0.871	0.585	0.016	000.0	0.789	0.855	0.081	2.673	1.088	1.253	0.035	15.376	0.912	0.341	0.758	0.574
	YB120	8	θ	246	core	Ba	49.7	0.10	8.26	0.03	14.4	0.69	12.4	7.09	4.90	0.22	97.8	6.87	8.21	98.5		7.128	0.872	0.524	0.011	0.003	0.742	0.985	0.084	2.651	1.089	1.363	0.040	15.492	0.911	0.452	0.729	0.586
	YB120	8	θ	247	core	Ba	49.3	0.17	8.99	0.00	14.5	0.59	12.3	6.71	4.98	0.19	97.7	8.31	7.03	98.6		7.044	0.956	0.558	0.018	0.000	0.893	0.840	0.071	2.620	1.027	1.380	0.035	15.441	0.973	0.407	0.757	0.616
	YB120	8	θ	248	core	Ba	49.5	0.16	9.10	0.00	13.6	0.66	12.6	6.91	4.77	0.20	97.5	7.73	6.64	98.3		7.067	0.933	0.598	0.017	0.000	0.831	0.793	0.080	2.682	1.057	1.320	0.036	15.414	0.943	0.377	0.772	0.582
	YB120	8	θ	249	core	Ba	49.0	0.21	9.55	0.03	13.9	0.69	12.3	6.85	4.67	0.18	97.4	8.53	6.23	98.2		7.001	0.999	0.610	0.023	0.003	0.917	0.744	0.084	2.620	1.049	1.294	0.033	15.375	0.951	0.342	0.779	0.601
	YB120	8	θ	250	core	Ba	48.9	0.12	10.1	00.0	13.4	0.66	11.8	6.43	5.19	0.24	96.8	6.40	7.64	97.5		7.044	0.956	0.758	0.013	000.0	0.694	0.921	0.081	2.534	0.992	1.450	0.044	15.486	1.008	0.442	0.734	0.478
	YB120	S	θ	251	core	Ba	49.5	0.20	9.84	0.05	13.9	0.56	11.4	5.92	5.00	0.21	96.6	7.26	7.37	97.3		7.120	0.880	0.788	0.022	0.006	0.786	0.886	0.068	2.444	0.912	1.394	0.039	15.345	1.088	0.307	0.734	0.499
inued).	YB120	g	θ	252	core	Ba	49.2	0.20	10.0	0.03	14.1	0.78	11.7	5.80	5.42	0.23	97.5	8.43	6.52	98.3		7.024	0.976	0.707	0.021	0.003	0.906	0.778	0.094	2.490	2 0.887	1.500	0.042	15.429	3 1.113	3 0.388	t 0.762	t 0.562
ole (cont	VB120	8	θ	253	core	Ba	50.4	0.33	9.84	00.0	13.8	0.71	11.6	4.82	6.04	0.17	97.7	7.84	6.75	98.5		9 7.147	0.853	1 0.791	1 0.035	0.000	3 0.836	0.800	0.085	3 2.452	3 0.732	0 1.661	9 0.031	1 15.424	7 1.268	2 0.393	3 0.754	1 0.514
umphibo) YB120	g	θ	254	core	Ba	50.3	0.20	9.83	0.01	14.2	0.96	11.7	4.72	6.11	0.16	98.3	9.55	5.61	99.2		7 7.089	3 0.91	5 0.73	5 0.02	-00 ^{.0} 8	3 1.013	3 0.66	4 0.115	5 2.458	0.71	3 1.67(5 0.029	4 15.41	0 1.287	3 0.38	1 0.788	2 0.58
ons of a	0 YB120	8	Ð	255	e core	Ba	50.1	3 0.15	9.58	I 0.03	13.9	9 0.78	11.7	5 4.98	5.82	5 0.20	97.2	7 8.56	1 6.20	98.1		0 7.137	0 0.863	8 0.746	3 0.016	1 0.00	7 0.918	5 0.738	8 0.094	7 2.48	9 0.76	1 1.608	9 0.03(9 15.40	1 1.24(0 0.36	0 0.77	0 0.55;
mpositi	0 YB120	8 8	σ	229#	e mantle	Mrb	56.7	7 0.03	9 5.39	5 0.01	14.9	3 0.49	11.4	2.46	7 6.20	4 0.05	97.6	4 7.77	3 7.91	98.4		5 7.93	5 0.07	1 0.81	7 0.00	6 0.00	4 0.81	8 0.92	3 0.05	1 2.37	3 0.36	6 1.68	7 0.00	6 15.05	7 1.63	9 0.05	0 0.72	5 0.50
nical co	0 YB12(g	σ	228	e mantl	Mrb	55.8	0.0	5 5.39	0.0E	14.1	5 0.53	11.9	7 2.6(3 6.1	0.0	96.7	3 8.2	0.66	97.5		1 7.86	9 0.13	6 0.76	00.00	00.0 0	2 0.87	9 0.78	6 0.06	7 2.50	3 0.39	6 1.68	9 0.00	8 15.08	7 1.60	9 0.07	7 0.76	7 0.53
2 Cher	0 YB12	g	σ	227	e mantl	Mrb	55.8	8 0.0(4 5.7	0.0(14.1	7 0.5	11.7	9 2.2	2 6.4	1 0.0	96.7	9 8.2	6 6.7	97.5		8 7.86	2 0.13	6 0.81	8 0.00	00.0 0	1 0.87	4 0.78	6 0.06	4 2.45	8 0.34	2 1.75	00.0 0:	0 15.10	2 1.65	60.0 0	0 0.75	4 0.51
Table 2	0 YB12	8	σ	226	mantl	Wi	53.9	3 0.0	0 6.5	0.0	14.7	4 0.4	11.9	2 3.4	2 6.2	3 0.1	97.4	1 8.4	4 7.0	98.3		0 7.60	0 0.39	69.0 69	24 0.00	00.0 00	06.0 00	13 0.83	7 0.05	97 2.50	8 0.52	84 1.70	11 0.02	3 15.25	22 1.47	\$2 0.23	8 0.75	11 0.56
	0 YB12	g	σ	188	core	Ba	49.6	1 0.2	9.3	4 0.0	13.9	4 0.6	12.8	1 7.1	0 4.3	2 0.2	98.1	9.9.4	1 5.4	99.1		1 7.01	90.99	2 0.55	3 0.02	5 0.00	7 1.00	1 0.64	0.07	3 2.69	9 1.07	3 1.18	0 0.04	2 15.30	1 0.92	2 0.26	4 0.80	0 0.64
	VB12	g	σ	230	core	Ba	49.2	0.2-	9.23	0.0	13.4	7.0 0	12.4	3 7.2	4.9(0.2	97.6	5.9	8.0	98.2		2 7.06	9 0.93	0 0.62	6 0.02	1 0.00	2 0.64	3 0.96	1 0.09	7 2.65	9 1.10	1 1.36	5 0.04	5 15.51	1 0.89	0 0.47	0 0.73	5 0.51
	YB120	8	σ	231	core	Ba	49.2	0.24	9.33	0.01	13.8	0.55	12.6	7.26	4.80	0.19	98.1	7.01	7.49	98.8		2 7.01	3 0.98	0.58	1 0.02	00.00	0.75	0.89	3 0.07	9 2.67	1.10	5 1.35	4 0.03	0 15.49	9 0.89	0.46	3 0.75	5 0.56
	YB120	g	υ	219#	mantle	đ	55.2	0.04	4.92	0.06	16.4	0.36	11.4	1.79	6.45	0.02	96.6	12.0	5.63	97.9		7.792	0.208	0.61	00.0	0.00	1.27	0.66	0.04	2.399	0.27	1.76	0.00.0	\$ 15.04(1.72	3 0.03	7 0.78	7 0.67
	YB120	SO	U	218	mantle	Ň	54.0	0.05	5.35	00.0	16.2	0.54	11.8	3.32	6.02	0.07	97.4	10.9	6.41	98.5)=23)	7.635	0.365	0.527	0.005	0.000	1.158	0.758	0.065	2.487	0.503	1.650	0.013	15.166	1.497	0.153	0.767	0.687
	YB120	So	υ	217	mantle	Mrb	55.5	0.03	5.19	00.0	15.5	0.39	12.1	2.30	6.34	0.07	97.4	11.4	5.26	98.6	ratios (C	7.760	0.240	0.616	0.003	0.000	1.197	0.616	0.046	2.522	0.345	1.719	0.012	15.076	1.655	0.063	0.804	0.660
	YB120	g	υ	207	core	Ba	49.9	0.18	8.36	0.00	13.9	0.69	12.9	6.78	5.09	0.23	98.0	7.83	6.86	98.8	Atomic	7.103	0.897	0.505	0.019	0.000	0.839	0.816	0.083	2.737	1.034	1.405	0.042	15.481	0.966	0.439	0.770	0.624
	Sample No.	Rock type	Grain No.	Point No.			SiO2		AI_2O_3	Cr_2O_3	FeO*	MnO	MgO	CaO	Na_2O	K₂0	Total	Fe_2O_3	FeO	New total		<u>ت</u>	^[4] AI	IA ^[6]	ц	ບັ	Fe ³⁺	Fe ²⁺	Nn	Mg	S	Na	¥	Total	^[8] Na	^[A] Na	SMg	XFe ³⁺

ST2204	ß	ო	27	mantle	Wi	54.0	0.10	1.74	n.d.	14.6	0.27	14.6	9.05	2.21	0.07	96.6	6.65	8.62	97.3		7.771	0.229	0.067	0.011		0.720	1.037	0.033	3.132	1.395	0.617	0.013	15.025	0.605	0.012	0.751	0.915
ST2204	ß	ო	28	mantle	Wi	53.2	0.07	2.40	n.d.	14.9	0.33	14.4	8.95	2.23	0.09	96.6	7.91	7.78	97.4		7.660	0.340	0.067	0.008		0.857	0.937	0.040	3.091	1.381	0.623	0.017	15.020	0.619	0.003	0.767	0.927
ST2204	ß	ო	29#	mantle	Mrb	54.4	0.13	4.45	n.d.	19.1	0.14	10.3	2.36	6.24	0.03	97.2	11.8	8.51	98.4		7.755	0.245	0.503	0.014		1.263	1.014	0.017	2.189	0.360	1.725	0.005	15.091	1.640	0.085	0.683	0.715
ST2204	ß	ო	30	mantle	Wi	53.8	0.15	3.85	n.d.	17.7	0.16	11.8	4.32	4.97	0.07	96.8	11.5	7.39	98.0		7.687	0.313	0.336	0.016		1.232	0.883	0.019	2.514	0.661	1.377	0.013	15.051	1.339	0.038	0.740	0.786
ST2204	BS	ო	31	mantle	Mi	53.6	0.02	2.91	n.d.	16.7	0.30	13.7	6.93	3.53	0.04	97.7	11.5	6.35	98.9		7.600	0.400	0.086	0.002		1.227	0.753	0.036	2.896	1.053	0.970	0.007	15.030	0.947	0.023	0.794	0.935
ST2204	BS	ო	32	core	Ba	45.1	0.36	10.9	n.d.	16.3	0.24	10.7	8.40	4.13	0.51	96.6	6.84	10.1	97.3		6.662	1.338	0.560	0.040		0.760	1.254	0.030	2.356	1.329	1.183	0.096	15.609	0.671	0.512	0.653	0.576
ST2204	ß	ო	33	core	Ba	44.9	0.43	11.3	n.d.	16.9	0.26	10.6	8.26	3.84	0.54	97.0	9.11	8.70	97.9		6.581	1.419	0.533	0.047		1.005	1.066	0.032	2.316	1.297	1.091	0.101	15.489	0.703	0.388	0.685	0.654
ST2204	BS	ო	34	core	Ba	44.5	0.63	11.6	n.d.	17.4	0.27	10.2	8.14	4.36	0.60	97.7	8.07	10.1	98.5		6.527	1.473	0.532	0.069		0.891	1.243	0.034	2.230	1.279	1.240	0.112	15.631	0.721	0.519	0.642	0.626
ST2204	BS	ო	35	core	Ba	45.7	0.43	10.7	n.d.	17.2	0.15	10.8	8.17	4.20	0.44	97.8	8.55	9.51	98.7		6.657	1.343	0.494	0.047		0.937	1.158	0.019	2.345	1.275	1.186	0.082	15.543	0.725	0.461	0.669	0.655
ST2204	BS	ო	36	core	Ba	44.6	0.48	11.4	n.d.	17.0	0.16	10.3	8.60	4.07	0.59	97.2	6.80	10.9	97.9		6.581	1.419	0.563	0.053		0.755	1.343	0.020	2.266	1.360	1.164	0.111	15.635	0.640	0.524	0.628	0.573
ST2204	BS	e	37	core	g	44.4	0.47	11.5	n.d.	16.9	0.25	10.2	8.36	4.21	0.62	96.9	6.96	10.6	97.6		6.570	1.430	0.575	0.052		0.775	1.316	0.031	2.250	1.325	1.208	0.117	15.650	0.675	0.533	0.631	0.574
YB120	So	Ð	232#	mantle	Mrb	54.7	0.05	5.33	0.00	16.0	0.39	11.3	1.43	6.91	0.02	96.1	11.5	5.67	97.3		7.765	0.235	0.657	0.005	0.000	1.227	0.673	0.047	2.391	0.218	1.902	0.004	15.123	1.782	0.119	0.780	0.651
YB120	g	Ð	233	mantle	Mrb	55.8	0.05	5.25	0.01	16.1	0.61	11.4	1.81	6.91	0.01	98.0	10.5	6.62	0.06		7.799	0.201	0.664	0.005	0.001	1.109	0.773	0.072	2.375	0.271	1.873	0.002	15.145	1.729	0.144	0.754	0.625
YB120	8	Φ	234	mantle	Mrb	56.6	0.09	5.41	0.04	15.5	0.40	11.8	2.08	6.62	0.04	98.6	9.94	6.56	9.66		7.830	0.170	0.712	0.009	0.004	1.035	0.759	0.047	2.434	0.308	1.776	0.007	15.091	1.692	0.084	0.762	0.592
YB120	SO	Ð	235	mantle	Mrb	56.2	00.0	5.73	00.0	15.4	0.36	11.3	1.77	6.36	0.05	97.2	10.2	6.18	98.2		7.857	0.143	0.802	000.0	0.000	1.078	0.723	0.043	2.355	0.265	1.724	0.009	14.998	1.724	000.0	0.765	0.574
YB120	g	θ	236	mantle	п	55.3	0.08	5.82	0.06	13.6	0.44	11.3	2.19	6.39	0.07	95.3	6.62	7.64	95.9		7.912	0.088	0.894	0.009	0.007	0.713	0.914	0.053	2.410	0.336	1.773	0.013	15.121	1.664	0.108	0.725	0.444
YB120	g	Φ	237	mantle	Mrb	55.6	0.08	6.36	0.04	15.1	0.45	11.6	2.33	6.43	0.07	98.1	9.88	6.21	99.1		7.731	0.269	0.774	0.008	0.004	1.034	0.722	0.053	2.405	0.347	1.734	0.012	15.093	1.653	0.081	0.769	0.572
YB120	g	θ	238	mantle	Mrb	55.2	0.02	6.32	00.00	15.1	0.42	11.7	1.86	6.58	0.04	97.2	11.4	4.89	98.4		7.709	0.291	0.749	0.002	0.000	1.193	0.571	0.050	2.436	0.278	1.782	0.007	15.067	1.722	0.060	0.810	0.614
YB120	g	Ð	239	mantle	Δrb	54.9	0.03	6.06	0.02	14.4	0.62	11.7	2.90	6.44	0.07	97.1	7.82	7.36	97.9		7.750	0.250	0.758	0.003	0.002	0.831	0.865	0.074	2.462	0.435	1.763	0.013	15.214	1.561	0.201	0.739	0.523
YB120	g	Ø	240	mantle	Ň	53.5	0.09	6.18	00.0	15.2	0.61	12.4	3.98	6.01	0.11	98.1	10.2	6.03	99.1		7.514	0.486	0.537	0.010	0.000	1.077	0.708	0.073	2.596	0.599	1.637	0.020	15.255	1.401	0.235	0.786	0.667
YB120	g	Ð	241	mantle	Ŵ	52.4	0.20	6.45	0.02	14.0	0.55	12.1	5.20	5.32	0.17	96.4	6.18	8.43	97.0)=23)	7.537	0.463	0.630	0.022	0.002	0.669	1.015	0.067	2.595	0.801	1.484	0.031	15.316	1.196	0.285	0.719	0.515
YB120	g	Ð	242	mantle	æ	51.1	0.07	6.82	0.00	14.3	0.67	12.4	5.90	4.44	0.19	95.9	9.22	6.01	96.8	: ratios (C	9 7.364	0.636	1 0.523	900.06	3 0.000	5 1.000	1 0.724	2 0.082	2 2.664	2 0.911	7 1.241	9 0.035	3 15.187	3 1.085	9 0.152	3 0.786	0.657
, YB120	g	Ð	243	mantle	Å	50.3	0.18	7.58	0.03	14.2	0.51	12.5	6.82	4.90	0.16	97.2	6.42	8.42	I 97.8	Atomic	7.235	0.761	0.524	0.015	300.0	0.695	1.014	0.062	2.682	1.052	1.36	0.026	15.448	0.946	0.415	0.72(0.57(
Sample No	Rock type	Grain No.	Point No.			SiO ₂	TiO2	Al ₂ O ₃	Cr_2O_3	FeO*	MnO	MgO	CaO	Na ₂ O	K₂0	Total	Fe ₂ 0 ₃	FeO	New tota		ิเว	^[4] AI	IA ^[6]	н	ບັ	Fe ³⁺	Fe ²⁺	ЧN	Mg	Q	Na	¥	Total	^[B] Na	^[A] Na	gMX	XFe ³⁺

Table 2 Chemical compositions of amphibole (continued).

YB154	g	18	132	core	Ba	45.3	0.34	11.9	0.04	16.6	0.46	9.81	7.49	4.23	0.40	96.6	8.29	9.14	97.4		6.654	1.346	0.713	0.038	0.005	0.916	1.123	0.057	2.148	1.179	1.205	0.075	15.458	0.821	0.383	0.657	0.562
YB154	g	18	131	core	Ba	45.4	0.28	11.5	0.01	17.8	0.36	9.47	7.52	4.63	0.34	97.3	7.73	10.8	98.0		6.670	1.330	0.662	0.031	0.001	0.855	1.333	0.045	2.074	1.184	1.319	0.064	15.566	0.816	0.503	0.609	0.564
YB154	g	11b	109	mantle	Ň	52.8	0.06	3.06	00.0	19.1	0.66	11.5	7.48	3.44	0.10	98.2	8.69	11.3	99.1		7.616	0.384	0.136	0.007	0.000	0.943	1.361	0.081	2.473	1.156	0.962	0.018	15.136	0.844	0.118	0.645	0.874
YB154	8	11b	108	mantle	Ň	53.1	0.06	3.75	00.0	20.7	0.39	10.1	5.31	4.77	0.10	98.3	9.84	11.8	99.2		7.648	0.352	0.284	0.006	0.000	1.066	1.427	0.048	2.169	0.819	1.332	0.018	15.170	1.181	0.151	0.603	0.790
YB154	g	11b	107#	mantle	Ņ	53.6	0.08	4.03	0.02	20.3	0.28	9.88	4.21	5.32	0.08	97.8	9.97	11.3	98.86		7.711	0.289	0.394	0.009	0.002	1.080	1.363	0.034	2.119	0.649	1.484	0.015	15.147	1.351	0.133	0.609	0.733
YB154	g	11b	106	mantle	Ņ	52.6	0.09	5.11	0.00	19.5	0.39	9.87	4.66	5.21	0.13	97.6	9.19	11.2	98.5		7.594	0.406	0.464	0.010	0.000	0.998	1.356	0.048	2.124	0.721	1.458	0.024	15.203	1.279	0.179	0.610	0.683
YB154	g	11b	105	mantle	g	50.3	0.17	7.30	0.01	17.9	0.44	10.2	5.61	5.19	0.18	97.3	8.03	10.7	98.1		7.299	0.701	0.547	0.019	0.001	0.877	1.295	0.054	2.207	0.872	1.460	0.033	15.366	1.128	0.332	0.630	0.616
YB154	g	11b	104	mantle	g	50.0	0.17	7.57	0.01	17.5	0.43	10.4	6.03	4.78	0.20	97.1	8.18	10.1	97.9		7.258	0.742	0.553	0.019	0.001	0.894	1.231	0.053	2.250	0.938	1.345	0.037	15.320	1.062	0.283	0.646	0.618
YB154	g	11b	103	mantle	g	48.0	0.26	8.96	0.02	17.1	0.35	10.1	6.83	4.68	0.24	96.5	6.72	11.1	97.3		7.057	0.943	0.609	0.029	0.002	0.743	1.359	0.044	2.214	1.076	1.334	0.045	15.455	0.924	0.410	0.620	0.550
YB154	g	11b	102	mantle	g	46.7	0.29	9.45	0.00	17.1	0.44	10.0	7.14	4.33	0.21	95.7	7.83	10.1	96.5		6.927	1.073	0.580	0.032	0.000	0.874	1.248	0.055	2.211	1.135	1.245	0.040	15.420	0.865	0.380	0.639	0.601
YB154	g	11b	101	mantle	Ba	46.8	0.23	10.5	0.00	17.2	0.37	10.3	7.78	4.41	0.34	97.9	7.39	10.5	98.6		6.805	1.195	0.605	0.025	0.000	0.809	1.283	0.046	2.233	1.212	1.243	0.063	15.519	0.788	0.455	0.635	0.572
YB154	So	11b	100	core	g	46.1	0.22	10.9	0.01	16.9	0.34	9.93	7.95	4.40	0.36	97.1	5.98	11.5	97.7		6.784	1.216	0.674	0.024	0.001	0.663	1.417	0.042	2.178	1.253	1.255	0.068	15.576	0.747	0.509	0.606	0.496
YB154	SO	11b	66	core	Ba	45.9	0.34	10.9	0.00	17.6	0.27	9.72	7.75	4.45	0.34	97.3	6.96	11.3	97.9		6.747	1.253	0.635	0.038	0.000	0.770	1.394	0.034	2.130	1.221	1.268	0.064	15.553	0.779	0.489	0.604	0.548
YB154	g	11b	98	core	Ba	45.6	0:30	11.1	00.0	16.6	0.41	9.38	7.46	4.26	0.33	95.4	6.16	11.1	96.1		6.804	1.196	0.756	0.034	0.000	0.691	1.380	0.052	2.087	1.193	1.232	0.063	15.488	0.807	0.425	0.602	0.478
YB154	SO	11b	97	core	g	45.6	0.32	11.6	0.00	17.2	0.26	9.80	7.59	4.19	0.36	96.9	8.37	9.66	97.8		6.681	1.319	0.684	0.035	0.000	0.923	1.184	0.032	2.141	1.192	1.190	0.067	15.449	0.808	0.382	0.644	0.574
YB154	g	11b	96	core	g	46.9	0.26	9.63	00.0	18.5	0.39	9.60	7.50	4.47	0.33	97.6	7.37	11.9	98.4		6.885	1.115	0.551	0.029	0.000	0.814	1.457	0.048	2.101	1.180	1.272	0.062	15.514	0.820	0.452	0.590	0.596
YB154	g	11b	95	core	g	45.7	0.22	11.1	00.0	17.2	0.38	9.48	7.54	4.87	0.39	96.9	5.51	12.2	97.4		6.768	1.232	0.705	0.024	0.000	0.614	1.516	0.048	2.093	1.196	1.398	0.074	15.668	0.804	0.595	0.580	0.466
YB154	g	11b	94	core	g	45.0	0.38	11.9	0.03	16.8	0.24	9.53	7.68	4.51	0.44	96.5	6.23	11.2	97.1		6.663	1.337	0.740	0.042	0.004	0.694	1.387	0.030	2.104	1.218	1.295	0.083	15.596	0.782	0.513	0.603	0.484
YB154	8	11b	63	core	B	45.2	0.34	12.2	0.03	15.8	0.35	8.96	7.35	4.82	0.40	95.5	3.33	12.8	95.8		6.775	1.225	0.931	0.038	0.004	0.375	1.605	0.044	2.002	1.180	1.401	0.076	15.658	0.820	0.581	0.555	0.287
YB154	g	11b	92	core	Ba	45.2	0.33	11.8	0.02	17.3	0.40	9.54	7.23	4.76	0.33	96.9	8.02	10.1	97.7		6.647	1.353	0.692	0.036	0.002	0.888	1.240	0.050	2.091	1.139	1.357	0.062	15.558	0.861	0.496	0.628	0.562
YB154	8	11b	06	core	Ba	44.9	0.32	12.3	0.02	17.4	0.40	9.80	6.73	4.95	0.35	97.2	10.5	7.95	98.2)=23)	6.547	1.453	0.661	0.035	0.002	1.152	0.970	0.049	2.130	1.051	1.399	0.065	15.516	0.949	0.451	0.687	0.635
YB154	g	11b	89	core	Ba	45.3	0.28	12.2	0.04	17.4	0.46	9.38	6.96	5.24	0.37	97.6	7.59	10.6	98.4	ratios (C	6.628	1.372	0.732	0.031	0.005	0.835	1.294	0.057	2.046	1.091	1.487	0.069	15.647	0.909	0.578	0.613	0.533
YB154	g	11b	88	core	Ba	44.5	0.26	11.8	0.02	17.6	0.41	9.46	6.85	4.73	0.38	96.0	9.85	8.74	97.0	Atomic	6.590	1.410	0.649	0.029	0.002	1.097	1.082	0.051	2.088	1.087	1.358	0.072	15.517	0.913	0.445	0.659	0.628
Sample No	Rock type	Grain No.	Point No.			SiO ₂	TiO₂	AI_2O_3	Cr_2O_3	FeO*	MnO	MgO	CaO	Na ₂ O	K₂0	Total	Fe ₂ 0 ₃	FeO	New total		ŝ	^[4] AI	IA ^[6]	F	ບັ	Fe ³⁺	Fe ²⁺	Ч	Mg	Q	Na	¥	Total	^[B] Na	[A] Na	XMg	XFe ³⁺

Table 2 Chemical compositions of amphibole (continued).

Chemical compositions of amphiboles from the Sanbagawa belt (BANNO)

YB155	8	27	50	core	æ	47.1	0.18	10.9	0.03	11.8	1.13	13.4	7.13	4.73	0.38	96.8	10.1	2.73	97.8		6.735	1.265	0.572	0.019	0.003	1.084	0.327	0.137	2.857	1.092	1.311	0.069	15.473	0.908	0.404	0.897	0.654
YB155	g	27	49	core	Ba	47.1	0.21	10.4	0.05	12.1	1.16	13.9	6.84	4.38	0.34	96.5	13.5	0.00	97.9		6.702	1.298	0.446	0.022	0.006	1.440	0.000	0.140	2.949	1.043	1.208	0.062	15.316	0.954	0.254	1.000	0.763
YB155	S	27	47	core	Ba	46.5	0.25	10.9	00.0	11.1	1.00	13.3	7.15	4.82	0.31	95.3	8.50	3.45	96.2		6.755	1.245	0.621	0.027	0.000	0.929	0.420	0.123	2.880	1.113	1.358	0.057	15.528	0.887	0.470	0.873	0.599
YB155	g	27	46	core	Ba	46.6	0.28	10.5	0.00	11.3	1.14	13.4	6.97	4.73	0.36	95.3	9.63	2.63	96.2		6.763	1.237	0.559	0.031	0.000	1.052	0.319	0.140	2.899	1.084	1.331	0.067	15.481	0.916	0.415	0.901	0.653
YB155	g	27	45	core	Ba	48.6	0.29	8.82	0.00	13.2	1.01	12.9	6.41	4.84	0.34	96.4	9.83	4.35	97.4		6.994	1.006	0.490	0.031	0.000	1.065	0.524	0.123	2.767	0.988	1.350	0.062	15.401	1.012	0.339	0.841	0.685
YB155	g	27	44	core	Ba	47.8	0.22	10.5	0.02	11.5	1.02	13.5	6.75	4.71	0.33	96.4	10.1	2.41	97.4		6.831	1.169	0.600	0.024	0.002	1.087	0.288	0.123	2.876	1.034	1.305	0.060	15.399	0.966	0.339	0.909	0.644
YB155	g	27	43	core	Ba	47.9	0.20	10.5	0.00	11.5	1.02	13.6	7.19	4.72	0.37	97.0	9.00	3.40	97.9		6.829	1.171	0.594	0.021	0.000	0.966	0.406	0.123	2.891	1.098	1.305	0.067	15.470	0.902	0.403	0.877	0.619
YB155	g	27	42	core	Ba	47.8	0.17	10.6	0.00	11.6	1.11	13.3	7.02	4.58	0.39	9.96	9.38	3.16	97.5		6.837	1.163	0.624	0.018	0.000	1.010	0.378	0.134	2.836	1.076	1.270	0.071	15.417	0.924	0.346	0.882	0.618
YB155	g	27	41	core	Ba	47.3	0.36	10.4	0.07	11.2	1.07	13.2	6.93	4.54	0.36	95.4	8.83	3.26	96.3		6.845	1.155	0.619	0.039	0.008	0.961	0.394	0.131	2.848	1.074	1.274	0.066	15.415	0.926	0.348	0.878	0.608
YB155	g	27	39	core	Ba	47.1	0.26	10.7	0.00	11.8	1.00	13.6	6.93	4.56	0.35	96.3	11.3	1.64	97.4		6.736	1.264	0.540	0.028	0.000	1.216	0.196	0.121	2.900	1.062	1.265	0.064	15.390	0.938	0.326	0.937	0.693
YB154	8	18	145#	mantle	Ŵ	53.1	0.02	4.70	0.01	17.4	0.22	10.9	5.21	4.71	0.08	96.4	7.64	10.5	97.1		7.700	0.300	0.503	0.002	0.001	0.833	1.277	0.027	2.356	0.809	1.324	0.015	15.149	1.191	0.134	0.649	0.624
YB154	g	18	144	mantle	Wi	52.8	0.00	4.82	0.01	17.1	0.38	11.3	5.66	4.57	0.12	96.8	7.93	9.97	97.6		7.630	0.370	0.451	0.000	0.001	0.862	1.205	0.047	2.434	0.876	1.281	0.022	15.179	1.124	0.157	0.669	0.656
YB154	g	18	143	mantle	Ba	47.4	0.24	9.71	0.01	17.1	0.37	8.97	7.25	4.59	0.27	95.9	3.30	14.1	96.2		7.081	0.919	0.791	0.027	0.001	0.371	1.766	0.047	1.998	1.160	1.330	0.051	15.541	0.840	0.490	0.531	0.319
YB154	g	18	142	mantle	Ba	48.1	0.24	9.06	0.04	17.3	0.44	10.7	6.67	4.69	0.24	97.5	9.52	8.73	98.4		6.965	1.035	0.511	0.026	0.005	1.037	1.058	0.054	2.310	1.035	1.317	0.044	15.396	0.965	0.351	0.686	0.670
YB154	So	18	141	core	Ba	46.8	0.23	9.99	00.0	16.9	0.40	9.98	7.54	4.61	0.27	96.7	5.81	11.7	97.3		6.906	1.094	0.643	0.026	0.000	0.646	1.440	0.050	2.195	1.192	1.319	0.051	15.562	0.808	0.511	0.604	0.501
YB154	g	18	140	core	Ba	46.9	0.31	10.2	0.01	16.1	0.43	9.61	7.42	4.39	0.28	95.7	4.35	12.2	96.1		6.983	1.017	0.772	0.035	0.001	0.487	1.518	0.054	2.133	1.184	1.267	0.053	15.504	0.816	0.451	0.584	0.387
YB154	g	18	139	core	g	46.7	0.25	10.5	0.01	16.7	0:30	10.1	7.73	4 43	0.25	97.0	6.11	11.2	97.6		6.856	1.144	0.673	0.028	0.001	0.675	1.376	0.037	2.211	1.216	1.261	0.047	15.524	0.784	0.477	0.616	0.501
YB154	g	18	138	core	Ba	46.6	0.31	10.8	0.04	17.0	0.41	10.3	7.78	4.55	0.28	98.1	7.22	10.5	98.8		6.768	1.232	0.616	0.034	0.005	0.789	1.275	0.050	2.230	1.211	1.281	0.052	15.544	0.789	0.492	0.636	0.562
YB154	S	18	137	core	æ	45.8	0.26	11.1	00.0	16.2	0.33	9.38	7.84	4.56	0.36	95.8	3.32	13.2	96.2		6.852	1.148	0.810	0.029	0.000	0.374	1.653	0.042	2.092	1.257	1.323	0.069	15.648	0.743	0.580	0.559	0.316
YB154	g	18	136	core	Ba	45.6	0.30	11.5	00.0	17.4	0.34	9.87	7.62	4.73	0.35	97.7	7.53	10.6	98.4		6.666	1.334	0.647	0.033	000.0	0.829	1.298	0.042	2.151	1.193	1.341	0.065	15.599	0.807	0.534	0.624	0.562
YB154	g	18	135	core	Ba	45.8	0.29	11.5	0.01	17.4	0.35	9.86	7.67	4.63	0.36	97.9	7.51	10.6	98.6	=23)	6.680	1.320	0.657	0.032	0.001	0.824	1.299	0.043	2.144	1.199	1.309	0.067	15.575	0.801	0.508	0.623	0.556
YB154	S	18	134	core	Ba	45.2	0.39	11.1	00.0	17.3	0.49	9.98	7.62	4.60	0.35	97.0	8.16	96.6	97.9	ratios (C	6.652	1.348	0.577	0.043	0.000	0.904	1.226	0.061	2.190	1.201	1.313	0.066	15.580	0.799	0.514	0.641	0.610
YB154	S	18	133	core	Ba	44.6	0.31	11.4	00.0	17.0	0.41	9.84	7.91	4.50	0.40	96.4	7.09	10.6	97.1	Atomic	6.626	1.374	0.622	0.035	0.000	0.792	1.320	0.052	2.179	1.259	1.296	0.076	15.631	0.741	0.555	0.623	0.560
Sample No.	Rock type	Grain No.	Point No.			SiO ₂	TiO ₂	Al ₂ O ₃	Cr_2O_3	FeO*	NnO	MgO	CaO	Na ₂ O	K ₂ 0	Total	Fe ₂ 03	FeO	New total		<u>S</u>	^[4]	IA ^[6]	Ħ	ບັ	Fe ³⁺	Fe ²⁺	Mn	Mg	Ca	Na	¥	Total	^[B] Na	^[A] Na	SMg	XFe ³⁺

-434-

YB159	SO	17	43	mantle	Ba	51.3	0.12	5.86	00.0	16.5	0.48	11.7	6.26	4.41	0.11	96.7	8.75	8.63	97.6		7.415	0.585	0.413	0.013	0.000	0.952	1.043	0.059	2.521	0.969	1.236	0.020	15.226	1.031	0.205	0.707	0.697
YB159	SO	17	41	mantle	Ba	50.5	0.12	6.52	0.02	16.5	0.45	11.3	6.81	4.40	0.16	96.8	6.91	10.3	97.5		7.350	0.650	0.469	0.013	0.002	0.757	1.251	0.055	2.452	1.062	1.242	0.030	15.333	0.938	0.304	0.662	0.618
YB159	ଷ୍ପ	17	40	mantle	Ba	50.1	0.16	6.77	0.01	16.5	0.46	11.4	7.03	3.62	0.19	96.2	9.00	8.40	97.1		7.286	0.714	0.446	0.017	0.001	0.985	1.022	0.057	2.472	1.095	1.021	0.035	15.151	0.905	0.116	0.707	0.688
YB159	8	17	39	mantle	Ba	49.6	0.18	7.13	0.04	16.4	0.47	11.5	7.14	3.60	0.18	96.2	9.52	7.83	97.2		7.210	0.790	0.432	0.020	0.005	1.042	0.952	0.058	2.492	1.112	1.015	0.033	15.160	0.888	0.127	0.724	0.707
YB159	g	17	38	core	Ba	49.1	0.13	7.52	00.00	16.7	0.49	11.1	7.20	4.43	0.23	96.9	7.09	10.3	97.6		7.173	0.827	0.467	0.014	0.000	0.780	1.261	0.061	2.417	1.127	1.255	0.043	15.425	0.873	0.382	0.657	0.625
YB159	8	17	37	core	Ba	49.2	0.23	7.33	0.00	15.9	0.43	11.5	7.21	4.33	0.23	96.4	6.80	9.78	97.0		7.201	0.799	0.466	0.025	0.000	0.749	1.197	0.053	2.509	1.131	1.229	0.043	15.402	0.869	0.360	0.677	0.617
YB159	8	17	35	core	Ba	49.5	0.17	8.09	00.00	16.8	0.56	10.5	6.03	4.67	0.20	96.5	8.54	9.12	97.4		7.203	0.797	0.590	0.019	000.0	0.935	1.110	0.069	2.278	0.940	1.318	0.037	15.295	1.060	0.258	0.672	0.613
YB159	g	17	34	core	Ba	49.0	0.22	8.78	00.0	16.5	0.50	10.8	6.72	4.81	0.29	97.6	7.22	10.0	98.3		7.091	0.909	0.588	0.024	0.000	0.786	1.210	0.061	2.330	1.042	1.350	0.054	15.445	0.958	0.391	0.658	0.572
YB159	g	17	33	core	Ba	48.1	0.17	8.79	0.01	17.4	0.40	9.98	6.38	4.52	0.30	96.1	8.38	9.86	96.9		7.076	0.924	0.601	0.019	0.001	0.927	1.213	0.050	2.189	1.006	1.289	0.056	15.351	0.994	0.295	0.643	0.607
YB159	g	17	32	core	Ba	48.9	0.22	8.96	0.03	17.2	0.57	9.95	5.12	5.54	0.20	96.7	9.01	9.09	97.6		7.115	0.885	0.651	0.024	0.003	0.986	1.107	0.070	2.158	0.798	1.563	0.037	15.398	1.202	0.361	0.661	0.602
YB159	g	17	30	core	Ba	48.9	0.20	9.71	00.00	17.0	0.49	9.40	4.87	5.74	0.27	96.6	7.55	10.2	97.3		7.131	0.869	0.800	0.022	0.000	0.829	1.244	0.061	2.044	0.761	1.623	0.050	15.434	1.239	0.384	0.622	0.509
YB159	g	17	29	core	Ba	49.0	0.23	9.12	0.02	16.7	0.46	9.91	5.62	5.13	0.24	96.4	7.47	9.98	97.2		7.152	0.848	0.721	0.025	0.002	0.820	1.218	0.057	2.156	0.879	1.452	0.045	15.375	1.121	0.331	0.639	0.532
YB155	g	27	61#	mantle	Wi	53.2	0.04	3.59	0.02	15.5	0.72	12.9	6.50	3.66	0.09	96.2	9.36	7.07	97.2		7.661	0.339	0.270	0.004	0.002	1.015	0.852	0.088	2.769	1.003	1.022	0.017	15.041	0.997	0.025	0.765	0.790
YB155	g	27	60	mantle	Ŵ	53.2	00.0	3.70	00.0	14.8	0.82	13.3	6.45	3.29	0.13	95.7	10.7	5.18	96.8		7.645	0.355	0.272	0.000	0.000	1.156	0.623	0.100	2.849	0.993	0.917	0.024	14.934	0.917	000.0	0.821	0.809
YB155	So	27	59	mantle	Ň	53.0	0.04	4.20	0.03	14.2	0.63	13.7	7.01	3.96	0.08	96.9	7.86	7.13	97.6		7.585	0.415	0.293	0.004	0.003	0.846	0.853	0.076	2.923	1.075	1.099	0.015	15.188	0.925	0.174	0.774	0.743
YB155	8	27	58	mantle	Ņ	53.1	0.08	4.14	0.00	13.4	0.66	13.5	7.01	3.79	0.12	95.8	6.16	7.86	96.4		7.676	0.324	0.381	0.009	0.000	0.670	0.950	0.081	2.909	1.086	1.062	0.022	15.170	0.914	0.148	0.754	0.637
YB155	g	27	57	mantle	g	51.7	0.11	6.39	0.01	12.4	0.64	14.2	7.15	3.81	0.14	96.6	8.81	4.47	97.4		7.353	0.647	0.424	0.012	0.001	0.943	0.532	0.077	3.011	1.090	1.051	0.025	15.166	0.910	0.140	0.850	0.690
YB155	g	27	56	mantle	g	50.5	0.19	7.69	0.04	11.6	0.69	14.2	6.80	4.33	0.12	96.2	9.03	3.47	97.1		7.199	0.801	0.491	0.020	0.005	0.969	0.414	0.083	3.018	1.039	1.197	0.022	15.257	0.961	0.235	0.879	0.664
YB155	8	27	55	mantle	g	50.1	0.13	8.29	0.06	11.4	0.70	14.4	7.65	4.22	0.16	97.1	7.90	4.29	97.9		7.110	0.890	0.496	0.014	0.007	0.844	0.509	0.084	3.046	1.163	1.161	0.029	15.353	0.837	0.324	0.857	0.630
YB155	So	27	54	core	g	47.8	0.17	10.3	0.01	12.4	0.75	12.9	7.54	4.71	0.25	96.8	7.08	6.03	97.5		6.881	1.119	0.628	0.018	0.001	0.767	0.726	0.091	2.768	1.163	1.315	0.046	15.523	0.837	0.477	0.792	0.550
YB155	g	27	53	core	g	47.5	0.21	10.5	00.0	11.6	1.07	13.1	7.06	4.86	0.33	96.2	8.05	4.35	97.0	=23)	6.848	1.152	0.632	0.023	0.000	0.874	0.525	0.131	2.816	1.091	1.359	0.061	15.510	0.909	0.449	0.843	0.580
YB155	8	27	52	core	g	47.4	0.27	10.6	0.00	11.6	0.99	13.3	7.02	4.73	0.36	96.3	9.04	3.47	97.2	ratios (C	6.812	1.188	0.607	0.029	0.000	0.977	0.417	0.121	2.849	1.081	1.318	0.066	15.465	0.919	0.399	0.872	0.617
YB155	g	27	51	core	g	46.9	0.23	9.73	00.0	12.3	0.95	13.1	6.87	4.73	0.37	95.2	9.56	3.70	96.1	Atomic	6.838	1.162	0.510	0.025	0.000	1.049	0.451	0.117	2.847	1.073	1.337	0.069	15.479	0.927	0.410	0.863	0.673
Sample No.	Rock type	Grain No.	Point No.			SiO ₂	TIO ₂	AI_2O_3	Cr203	FeO*	MnO	MgO	CaO	Na_2O	K₀0	Total	Fe_2O_3	FeO	New total		Si	^[4] AI	IA ^[6]	F	ບັ	Fe ³⁺	Fe ²⁺	ЧM	Mg	Q	Na	¥	Total	^[B] Na	^[A] Na	SMg	XFe ³⁺

-435-

	YB35	BS	2,2	25	core	Ba	45.6	0.25	10.8	0.00	17.3	0.28	9.82	8.22	3.63	0.39	96.3	7.60	10.5	97.1		6.747	1.253	0.630	0.028	0.000	0.846	1.295	0.035	2.166	1.303	1.041	0.074	15.418	0.697	0.344	0.626	0.573
	YB35	BS	2,2	24	core	Ba	45.4	0.42	11.8	0.02	17.5	0.35	9.72	8.59	3.85	0.55	98.2	6.76	11.4	98.9		6.627	1.373	0.657	0.046	0.002	0.743	1.393	0.043	2.115	1.343	1.090	0.102	15.535	0.657	0.433	0.603	0.531
	YB35	BS	2,2	23	core	Ba	45.4	0.44	11.6	0.05	17.5	0.31	9.88	8.34	3.96	0.51	98.0	7.52	10.7	98.7		6.626	1.374	0.622	0.048	0.006	0.826	1.311	0.038	2.150	1.304	1.121	0.095	15.520	0.696	0.425	0.621	0.570
	YB35	BS	2,2	22	core	Ba	45.9	0.37	11.8	00.0	17.2	0.33	9.89	8.49	3.94	0.48	98.4	6.61	11.3	99.1		6.668	1.332	0.688	0.040	000.0	0.722	1.367	0.041	2.142	1.321	1.110	0.089	15.520	0.679	0.431	0.610	0.512
	YB35	BS	2,2	21	core	Ba	45.4	0.35	11.6	0.00	17.2	0.48	9.57	8.75	3.94	0.42	97.7	5.40	12.3	98.2		6.677	1.323	0.688	0.039	0.000	0.598	1.518	0.060	2.098	1.379	1.124	0.079	15.581	0.621	0.502	0.580	0.465
	YB159	g	29	111	mantle	Wi	51.8	0.09	4.98	00.0	17.5	0.46	10.9	5.79	4.37	0.12	96.0	8.38	9.96	96.9		7.565	0.435	0.423	0.010	0.000	0.921	1.217	0.057	2.373	0.906	1.237	0.022	15.166	1.094	0.144	0.661	0.685
	YB159	g	29	110#	mantle	Wi	51.2	0.08	5.63	0.00	17.5	0.54	10.5	5.55	4.64	0.16	95.8	8.14	10.2	96.6		7.509	0.491	0.482	0.009	0.000	0.898	1.248	0.067	2.296	0.872	1.319	0.030	15.221	1.128	0.192	0.648	0.651
	YB159	8	29	108	mantle	Ba	49.3	0.18	7.44	0.01	17.3	0.55	10.5	6.44	4.37	0.28	96.4	8.42	9.72	97.2		7.217	0.783	0.501	0.020	0.001	0.928	1.190	0.068	2.292	1.010	1.240	0.052	15.303	066.0	0.251	0.658	0.649
tinued).	YB159	g	29	107	mantle	Ba	48.3	0.20	8.42	0.13	16.7	0.52	10.5	6.77	4.33	0.28	96.2	8.00	9.50	97.0		7.092	0.908	0.549	0.022	0.015	0.884	1.166	0.065	2.298	1.065	1.233	0.052	15.350	0.935	0.298	0.663	0.617
le (cont	YB159	g	29	106	mantle	Ba	46.2	0.19	10.5	0.07	17.3	0.49	9.21	6.81	4.31	0.32	95.4	7.93	10.2	96.2		6.873	1.127	0.714	0.021	0.008	0.888	1.265	0.062	2.043	1.085	1.243	0.061	15.389	0.915	0.329	0.618	0.554
mphibc	YB159	SO	29	105	core	Ba	45.8	0.21	11.1	0.00	17.4	0.61	9.37	6.82	4.94	0.33	96.6	7.83	10.4	97.4		6.760	1.240	0.691	0.023	0.000	0.870	1.278	0.076	2.062	1.079	1.414	0.062	15.554	0.921	0.492	0.617	0.557
ons of a	YB159	g	29	104	core	Ba	46.1	0.22	11.2	0.01	17.3	0.57	9.27	6.78	4.96	0.29	96.7	7.32	10.7	97.4		6.791	1.209	0.736	0.024	0.001	0.811	1.320	0.071	2.036	1.070	1.417	0.055	15.541	0.930	0.487	0.607	0.524
mpositic	YB159	g	29	103	core	Ba	46.2	0.20	11.2	00.00	17.3	0.46	9.57	6.27	5.03	0.32	9.96	9.20	9.02	97.5		6.773	1.227	0.708	0.022	000.0	1.015	1.106	0.057	2.092	0.985	1.430	0.060	15.474	1.015	0.415	0.654	0.589
iical coi	YB159	8	29	102	core	Ba	46.9	0.15	10.3	0.01	17.1	0.59	9.64	6.74	4.91	0.29	96.6	7.16	10.7	97.4		6.902	1.098	0.689	0.017	0.001	0.793	1.312	0.074	2.115	1.063	1.401	0.054	15.518	0.937	0.464	0.617	0.535
Chem	YB159	g	29	101	core	Ba	45.7	0.23	11.0	0.11	17.1	0.51	9.15	6.29	5.15	0.32	95.6	7.49	10.4	96.4		6.805	1.195	0.736	0.026	0.013	0.839	1.291	0.064	2.031	1.004	1.487	0.061	15.551	0.996	0.491	0.612	0.533
Table 2	YB159	g	29	100	core	g	46.3	0.12	11.2	0.04	16.7	0.47	9.41	6.09	5.41	0.31	96.1	7.26	10.2	96.8		6.839	1.161	0.788	0.013	0.005	0.806	1.256	0.059	2.072	0.964	1.549	0.058	15.572	1.036	0.513	0.623	0.506
	YB159	g	29	66	core	g	47.2	0.20	10.6	00.00	17.2	0.55	9.55	5.54	4.81	0.27	95.9	10.7	7.54	97.0		6.900	1.100	0.726	0.022	0.000	1.181	0.922	0.068	2.081	0.868	1.363	0.050	15.281	1.132	0.231	0.693	0.619
	YB159	8	29	98	core	Ba	47.7	0.20	10.1	00.00	17.2	0.56	9.92	5.17	5.45	0.24	96.5	10.6	7.65	97.6		6.936	1.064	0.667	0.022	0.000	1.161	0.931	0.069	2.150	0.805	1.537	0.045	15.387	1.195	0.342	0.698	0.635
	YB159	8	29	97	core	Ba	47.4	0.19	10.2	00.0	16.7	0.58	9.44	5.05	5.52	0.27	95.4	8.71	8.86	96.2		6.995	1.005	0.769	0.021	0.000	0.967	1.094	0.072	2.077	0.798	1.579	0.051	15.429	1.202	0.378	0.655	0.557
	YB159	8	29	96	core	Ba	48.1	0.21	10.6	00.0	16.5	0.56	9.78	4.88	5.83	0.26	96.7	8.97	8.43	97.6		6.978	1.022	0.791	0.023	0.000	0.979	1.023	0.069	2.115	0.759	1.640	0.048	15.447	1.241	0.399	0.674	0.553
	YB159	8	29	63	core	Å	48.5	0.19	10.0	0.04	16.4	09.0	9.40	5.25	5.49	0.23	96.1	6.87	10.2	96.8	=23)	7.108	0.892	0.836	0.021	0.005	0.757	1.253	0.074	2.054	0.824	1.560	0.043	15.428	1.176	0.385	0.621	0.475
	YB159	8	17	46#	mantle	Ŵ	52.2	0.04	4.51	0.01	18.0	0.34	10.9	4.82	4.84	0.14	95.8	9.93	9.07	96.8	atios (0-	7.612	0.388	0.388	0.004	0.001	1.089	1.106	0.042	2.370	0.753	1.369	0.026	15.148	1.247	0.122	0.682	0.738
	YB159	g	17	44	mantle	Ba	51.0	0.11	5.56	0.00	16.9	0.49	11.2	6.03	4.31	0.09	95.7	8.81	8.97	96.6	Atomic n	7.459	0.541	0.418	0.012	0.000	0.970	1.098	0.061	2.442	0.945	1.222	0.017	15.184	1.055	0.167	0.690	0.699
	Sample No.	Rock type	Grain No.	Point No.	-		SiO ₂		Al ₂ O ₃	Cr ₂ 03	FeO*	MnO	MgO	CaO	Na_2O	K₂0	Total	Fe ₂ 0 ₃	FeO	New total	-	Si	[4] AI	[6] AI	μ	ŗ	Fe ³⁺	Fe ²⁺	Mn	ВМ	Qa	Na	¥	Total	^[B] Na	[A] Na	gMX	XFe ³⁺

Bulletin of the Geological Survey of Japan, vol. 52 (9), 2001

YB35 YB46 YB46 YB46 YB	YB46 YB46 YB46 YB46 YB	YB46 YB46 YB46 YB	<u>ҮВ46 ҮВ46 ҮВ</u>	YB46 YB	۹ ۲	46 T	able 2 YB46	Chemic YB46	cal comp YB46 \	Dosition:	s of am _l /B46 /	phibole B46 Y	(continu B46 Y	led). B46 YI	346 YE	346 YB	46 YB4	6 YB46	YB46	YB46	YB46
BS		BS	BS	BS	BS	ß	BS	BS	BS	BS	BS	BS	SB	SB	3S E	S	SB	BS	B	BS	BS
7,5		13,2	13,2	13,2	13,2	13,2	13,2	13,2	13,2 1	13,2 1	13,2 1	3,2	3,2 1	3,2 13	3,2 13	,2 13	,2 13,2	2 13,2	13,2	13,2	18,3
75		42	43	44	45	46	47	48	49	50	51#	52	60	54	55 5	6	7 58	59	60	61	83
mantle		core	core	core	core	core	core	core n	nantle m	nantle m	nantle m	antle m	antle ma	antle me	untle ma	ntle mar	ntle mant	le mantle	e mantle	mantle	core
Ŵ		ß	Ra	Ba	Ba	Ba	Ba	Ba	Ba	Mrb	Mrb	Wi	wi	Wi V	Ni V	Vi V	li Act	t Act	Act	Act	g
54.0		46.6	46.7	47.4	47.5	47.2	46.5	46.2	48.4 5	54.4 5	56.4 5	5.5 5	4.3 5	4.9 55	5.3 54	.7 53	.8 55.3	55.4	55.2	54.2	47.1
0.0	ო	0.46	0.48	0.37	0.42	0.42	0.41	0.35	0.19	0.11	0.04	0.07	0.11	0.04 0	0.06 0	.0 60.	01 0.0	0 0.01	00.00	0.05	0.37
3.1	2	10.4	9.95	9.88	9.84	9.88	9.84	10.0	7.94	6.59	3.47	2.77	2.31	2.48 2	2.73 2	.18 2.	94 1.7	2 1.81	0.84	2.02	9.71
0.0	g	0.00	0.03	00.0	0.02	0.00	0.03	0.03	0.03	0.00	0.00	0.00	0.01	0.00	0 00.0	.04 0.	0.0 00.	0 0.03	0.06	00.0	0.03
19.	æ	15.8	15.5	15.2	16.2	16.0	15.5	16.1	17.1	16.7 1	18.2 1	5.8 1	3.5	3.5 14	4.1 12	.7 13	.7 11.5	12.6	12.5	12.8	14.2
0	24	0.00	0.05	0.11	0.08	0.04	0.11	0.05	0.06	0.08	0.05	0.10	0.18	0.18 0	0.16 0	.16 0.	23 0.2	1 0.23	0.26	0.19	0.22
ŋ	96	11.3	11.0	11.1	11.3	11.3	11.3	10.8	11.1	10.7 1	10.9 1	2.9	5.1	4.5 14	t.6 15	.2 14	.8 16.5	16.7	15.9	15.4	11.7
ഹ	99.	7.74	7.74	7.82	7.85	7.93	8.40	8.37	7.68	2.90	1.76	4.30	3.46	8.00 7	7.83 9	.68 9.	56 10.4	10.3	10.2	9.78	8.48
4	.40	4.31	4.24	4.39	4.41	4.16	4.01	4.01	3.57	6.05	6.32	4.95	2.82	3.25 3	3.00 2	.18 2.	40 1.6	6 1.63	1.67	1.98	3.86
0	0.12	0.57	0.51	0.47	0.41	0.48	0.55	0.57	0.32	0.08	0.04	0.04	2.07	0.07 0	0.05 0	.12 0.	11 0.0	6 0.08	0.07	0.07	0.50
6	7.4	97.2	96.2	96.7	98.0	97.4	96.7	96.5	96.4 5	3 9.76	97.2 9	9.4 9	6.9	6.9 97	7.8 97	1 97	.6 97.4	98.8	96.7	96.5	96.2
Ŭ	5.51	7.32	5.83	4.72	6.85	6.94	5.55	5.35	8.50	9.46	11.4	9.70	5.54	4.71 7	7.13 3	.20 4.	81 3.8	5 6.73	3.70	4.52	4.53
÷	3.9	9.21	10.3	11.0	10.0	9.75	10.5	11.3	9.45	8.19	7.96	7.07	7.62	9.26 7	6. 69.7	.82 9.	37 8.0	3 6.54	9.17	8.73	10.1
ຄັ	B.O	97.9	96.8	97.3	98.7	98.1	97.2	97.0	97.2 §	3 9.86	<u> 98.3</u> G	97.4 9	7.5 9	7.4 96	3.6 97	4 98	7.76 0.	99.5	97.1	96.9	96.6
rati	os (0	=23)																			
2	.855	6.787	6.882	6.949	6.869	6.862	6.844	6.834	7.084 7	7.667 7	7.967 7	.898 7	.751 7	.850 7.	792 7.8	333 7.6	87 7.83	88 7.726	3 7.919	7.791	6.930
0	.145	1.213	1.118	1.051	1.131	1.138	1.156	1.166	0.916 ().333 C	0.033 0	.102 0	249 0	.150 0.	208 0.	167 0.3	13 0.16	32 0.272	2 0.081	0.209	1.070
۰ ۷	399	0.572	0.610	0.656	0.547	0.555	0.550	0.578	0.453 ().762 C	0.544 0	0.363 0	.140 0	.268 0.	246 0.2	201 0.1	82 0.12	25 0.026	0.061	0.133	0.614
0	003	0.050	0.053	0.041	0.046	0.046	0.045	0.039	0.021 0	0.012 0	0.004 0	0.007 0	.012 0	004 0.	006 0.(010 0.0	01 0.00	0.001	0.000	0.005	0.041
0 ~	000	0.000	0.003	0.000	0.002	0.000	0.003	0.004	0.003 (0.000.0	0.000.0	0 000.0	001 0	.000 0.	000 0.0	0.0 200	00 0.00	00.003	3 0.007	0.000	0.003
0	.712	0.802	0.646	0.521	0.745	0.759	0.615	0.596	0.936	1.004	1.209 1	039 0	702 0	.507 0.	756 0.3	345 0.5	18 0.41	1 0.707	0.400	0.489	0.501
-	.696	1.122	1.264	1.343	1.214	1.186	1.293	1.396	1.157 0	0.965 (0.941 0	.841 0	909 1	.107 0.	906 1.	176 1.1	19 0.95	52 0.763	3 1.100	1.050	1.246
0	.030	0.000	0.006	0.014	0.010	0.005	0.014	0.006	0.007 0	0.010 0	0.006 0	0.012 0	022 0	.022 0.	019 0.0	019 0.0	28 0.02	25 0.027	0.032	0.023	0.027
2	.160	2.453	2.417	2.426	2.436	2.449	2.479	2.382	2.422 2	2.248 2	2.295 2	2.737 3	214 3	.091 3.	067 3.2	245 3.1	52 3.48	36 3.473	3 3.401	3.300	2.566
5	.882	1.208	1.222	1.228	1.216	1.235	1.325	1.327	1.204 (0.438 (0.266 0	0.656 1	294 1	.226 1.	182 1.4	485 1.4	63 1.57	9 1.535	9 1.568	1.506	1.337
	.241	1.217	1.212	1.248	1.237	1.173	1.144	1.150	1.013	1.653 1	1.731 1	.366 0	.781 0	.901 0.	820 0.6	305 0.6	65 0.45	6 0.441	0.465	0.552	1.101
	0.022	0.106	0.096	0.088	0.076	0.089	0.103	0.108	0.060 (0.014 0	0 200.0	0 200.0	.013 0	.013 0.	0 600	0.0 220	20 0.01	1 0.014	1 0.013	0.013	0.094
15	5.145	15.531	15.529 1	15.564 1	5.529 1	15.497 1	5.572 1	5.584 1	5.277 15	5.106 15	5.004 15	029 15	.087 15	.140 15.	011 15.	112 15.1	48 15.04	14.995	15.045	15.071	5.532
-	.118	0.792	0.778	0.772	0.784	0.765	0.675	0.673	0.796	1.562 1	1.731 1	.344 0	706 0	.774 0.	818 0.4	515 0.5	37 0.42	21 0.441	0.432	0.494	0.663
0	.123	0.425	0.434	0.476	0.453	0.408	0.469	0.477	0.217 (0.091 0	0.000.0	0.022 0	.074 0	.127 0.	002 0.0	090 0.1	28 0.03	36 0.000	0.032	0.058	0.438
-	560	0.686	0.657	0.644	0.667	0.674	0.657	0.630	0.677 () 002.0	0.709 0	0.765 0	.779 0	.736 0.	772 0.7	734 0.7	38 0.76	36 0.82C	0.756	0.759	0.673
о. О.	641	0.584	0.514	0.443	0.577	0.578	0.528	0.508	0.674 (0.568 (0.690 0	.741 0	834 0	.654 0.	755 0.6	532 0.7	40 0.76	36 0.965	0.867	0.786	0.449

-438 -

	2107		VDAE	VD 46	VDAE	VDAE	VDAE	VDAE	VDAE	ADAR VDAR	VDAR	VDAE	VDAE	VDAR
Hock type Grain No	и 18 19 19 19 19 19 19 19 19 19 19 19 19 19	19 G	18.3 18.3	2 B 3	18.3 18.3	18.3 18.3	18.3 18.3	18.3	18.3 18.3	18.3 V 18.3	18.3 18.3	18.3 18.3	18.3 18.3	18.3
Point No.	84 84	85	86	87	88	68	#06	91	92	93	94	95	96	97
	core	core	core	core	core	mantle	mantle	mantle	mantle	mantle	mantle	mantle	mantle	mantle
	Ba	Ba	Ba	Ba	Ba	W	Wi	Wi	Wi	Wi	Wi	Act	Act	Act
SiO ₂	47.1	47.2	47.3	47.4	47.3	55.9	55.9	55.9	55.9	54.6	54.0	55.0	56.1	56.4
TiO ₂	0.37	0.38	0.39	0.47	0.40	0.05	0.03	0.04	0.03	00.0	0.01	0.01	0.02	0.05
Al ₂ O ₃	9.60	9.58	9.71	9.48	9.82	2.26	2.62	2.62	2.31	2.58	1.85	1.65	0.77	0.69
Cr ₂ 03	00.0	0.02	00.0	00.0	0.05	0.00	00.0	00.0	0.04	0.07	0.01	0.00	0.00	0.01
FeO*	15.0	16.0	16.0	15.4	15.4	16.5	16.4	15.5	15.4	14.5	13.2	13.8	12.6	12.9
MnO	0.19	0.18	0.19	0.10	0.10	0.21	0.18	0.20	0.18	0.26	0.29	0.31	0:30	0.36
MgO	12.0	11.4	11.4	11.7	11.5	12.9	13.0	13.1	13.4	14.2	14.9	15.4	16.6	15.6
CaO	8.37	7.82	8.16	8.51	8.53	4.46	3.68	4.41	4.79	8.13	9.16	9.82	11.0	9.93
Na_2O	3.88	3.88	3.87	3.88	3.97	4.79	5.36	4.85	4.74	3.13	2.20	1.68	1.33	1.46
K₂O	0.47	0.55	0.43	0.55	0.55	0.03	0.06	0.00	0.04	0.06	0.09	0.08	0.06	0.06
Total	97.0	97.0	97.5	97.5	97.6	97.1	97.2	96.6	96.8	97.5	95.7	97.8	98.8	97.5
Fe ₂ 0 ₃	6.96	8.18	7.49	5.71	5.22	10.4	11.5	9.63	9.23	5.93	5.02	6.29	4.04	4.06
FeO	8.74	8.64	9.26	10.3	10.7	7.15	6.06	6.84	7.09	9.16	8.68	8.14	8.97	9.25
New total	97.7	97.8	98.2	98.1	98.1	98.2	98.4	97.6	97.8	98.1	96.2	98.4	99.2	97.9
	Atomic r	atios (O:	=23)											
<u>in</u>	6.858	6.870	6.865	6.898	6.884	7.915	7.877	7.927	7.926	7.782	7.827	7.796	7.879	8.004
^[4] AI	1.142	1.130	1.135	1.102	1.116	0.085	0.123	0.073	0.074	0.218	0.173	0.204	0.121	0.000
IA ^[6]	0.505	0.513	0.526	0.524	0.569	0.292	0.312	0.364	0.312	0.215	0.143	0.072	0.007	0.115
F	0.041	0.042	0.043	0.051	0.044	0.005	0.003	0.004	0.003	0.000	0.001	0.001	0.002	0.005
ර්	0.000	0.002	0.000	0.000	0.006	000.0	0.000	0.000	0.004	0.008	0.001	0.000	0.000	0.001
Fe ³⁺	0.762	0.896	0.818	0.625	0.571	1.108	1.219	1.027	0.985	0.636	0.548	0.671	0.427	0.433
Fe ²⁺	1.064	1.051	1.124	1.249	1.303	0.846	0.714	0.811	0.841	1.092	1.052	0.965	1.053	1.098
Mn	0.023	0.022	0.023	0.012	0.012	0.025	0.021	0.024	0.022	0.031	0.036	0.037	0.036	0.043
Mg	2.605	2.474	2.467	2.538	2.495	2.723	2.731	2.769	2.832	3.017	3.219	3.254	3.476	3.300
Q	1.306	1.219	1.269	1.327	1.330	0.677	0.556	0.670	0.728	1.242	1.422	1.491	1.655	1.510
Na	1.095	1.095	1.089	1.095	1.120	1.315	1.464	1.333	1.303	0.865	0.618	0.462	0.362	0.402
¥	0.087	0.102	0.080	0.102	0.102	0.005	0.011	0.000	0.007	0.011	0.017	0.014	0.011	0.011
Total	15.488	15.416	15.437	15.524	15.553	14.997	15.031	15.003	15.038	15.117	15.057	14.968	15.028	14.922
^[B] Na	0.694	0.781	0.731	0.673	0.670	1.315	1.444	1.330	1.272	0.758	0.578	0.462	0.345	0.402
^[A] Na	0.401	0.314	0.358	0.422	0.450	0.000	0.020	0.003	0.031	0.106	0.041	0.000	0.017	0.000
XMg	0.710	0.702	0.687	0.670	0.657	0.763	0.793	0.773	0.771	0.734	0.754	0.771	0.767	0.750
XFe ³⁺	0.602	0.636	0.609	0.544	0.501	0.791	0.796	0.738	0.759	0.747	0.793	0.904	0.985	0.790

Table 2 Chemical compositions of amphibole (continued).

Sample No.	YB108	YB108	YB120	YB120	ST2204	ST2204	YB154	YB155	YB159	YB159	YB35	YB35	YB46	YB46
Rock type	BS	BS	QS	QS	BS	BS	QS	QS	QS	QS	BS	BS	BS	BS
Grain No.	7	7	2	2	7,1	7,1	16	25	34,1	34,2	2	2	11,1	16
Point No.	33	36	21	16	53	56	60	10	137	136	37	41	13	80
	core	rim			core	rim					core	rim		
SiO2	38.4	37.5	37.3	37.6	37.2	38.2	37.2	37.1	37.5	37.3	37.2	37.6	37.1	38.1
TiO₂	0.04	0.10	0.05	0.01	0.07	0.09	0.06	0.08	0.16	0.05	0.08	0.08	0.12	0.08
AI_2O_3	25.7	22.6	23.1	22.4	22.6	23.7	21.2	22.5	21.6	21.5	22.4	23.8	22.3	24.0
Cr_2O_3	0.02	0.00	0.00	0.00	0.00	0.00	0.07	0.03	0.00	0.05	0.02	0.02	0.00	0.01
Fe ₂ O ₃ *	10.4	13.6	13.1	14.1	15.2	13.3	16.0	12.8	14.6	14.8	15.0	13.2	15.0	12.7
MnO	0.21	0.30	0.83	0.70	0.49	0.19	0.59	1.19	0.79	0.67	0.78	0.34	0.12	0.05
MgO	0.02	0.01	0.06	0.03	0.02	0.07	0.01	0.07	0.03	0.00	0.00	0.09	0.02	0.00
CaO	23.6	22.6	22.2	21.2	22.9	23.6	22.0	22.0	22.5	22.7	22.2	22.9	23.2	23.6
Na₂O	0.01	0.01	0.01	0.04	0.00	0.01	0.00	0.00	0.00	0.04	0.02	0.00	0.00	0.05
K₂O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.01	0.00
Total	98.4	96.7	96.7	96.1	98.5	99.2	97.1	95.8	97.2	97.1	97.7	98.0	97.9	98.6
	Atomic	ratios (O	=12.5)											
Si	3.008	3.026	3.010	3.049	2.969	3.002	3.016	3.026	3.030	3.021	2.989	2.988	2.978	3.006
Ti	0.002	0.006	0.003	0.001	0.004	0.005	0.004	0.005	0.010	0.003	0.005	0.005	0.007	0.005
AI	2.373	2.149	2.197	2.141	2.126	2.195	2.025	2.163	2.057	2.052	2.122	2.229	2.110	2.232
Cr	0.001	0.000	0.000	0.000	0.000	0.000	0.004	0.002	0.000	0.003	0.001	0.001	0.000	0.001
Fe ³⁺	0.613	0.823	0.796	0.861	0.914	0.789	0.976	0.784	0.885	0.901	0.907	0.791	0.906	0.752
Mn	0.014	0.021	0.057	0.048	0.033	0.013	0.041	0.082	0.054	0.046	0.053	0.023	0.008	0.003
Mg	0.002	0.001	0.007	0.004	0.002	0.008	0.001	0.009	0.004	0.000	0.000	0.011	0.002	0.000
Ca	1.981	1.954	1.919	1.842	1.958	1.987	1.911	1.923	1.948	1.970	1.911	1.950	1.995	1.995
Na	0.002	0.002	0.002	0.006	0.000	0.002	0.000	0.000	0.000	0.006	0.003	0.000	0.000	0.008
к	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.000	0.000	0.000	0.001	0.000
Total	7.997	7.982	7.991	7.952	8.007	8.001	7.978	7.994	7.991	8.001	7.992	7.997	8.008	8.001
YFe ³⁺	0.205	0.277	0.266	0.287	0.301	0.264	0.325	0.266	0.301	0.305	0.300	0.262	0.300	0.252

Table 3 Chemical compositions of epidote.

Table 4 Chemical compositions of chlorite.

Sample No	. YB108	YB108	YB120	YB120	ST2204	ST2204	ST2204	YB154	YB154	YB155	YB159	YB35	YB46	YB46
Rock type	BS	BS	QS	QS	BS	BS	BS	QS	QS	QS	QS	BS	BS	BS
Grain No.	7,1	7,2	5	1	11	16	17	12	13	29	31	3,1	11	16
Point No.	42	45	108	129	86	92	93	84	112	79	129	55	10	78
SiO ₂	26.2	26.4	27.4	27.4	26.6	26.5	26.3	26.2	26.9	28.0	26.6	25.9	27.2	27.8
TiO2	0.02	0.02	0.03	0.02	0.02	0.06	0.15	0.10	0.08	0.00	0.03	0.02	0.08	0.00
Al ₂ O ₃	18.6	18.7	19.6	19.6	18.7	19.1	18.7	19.0	19.0	18.8	18.8	18.5	19.4	19.2
Cr_2O_3	0.00	0.00	0.03	0.04	0.04	0.04	0.00	0.00	0.00	0.01	0.05	0.02	0.00	0.00
FeO	23.2	24.5	17.6	18.4	24.2	22.4	24.3	23.2	24.0	16.8	21.9	28.7	19.5	17.9
MnO	0.45	0.45	0.77	0.99	0.45	0.42	0.58	0.41	0.51	0.99	1.04	0.40	0.26	0.26
MgO	16.8	16.2	20.1	20.1	16.5	17.4	16.5	16.8	16.3	21.4	17.3	13.2	19.6	20.1
CaO	0.04	0.03	0.03	0.00	0.09	0.07	0.08	0.02	0.01	0.04	0.04	0.03	0.01	0.02
Na ₂ O	0.00	0.00	0.00	0.01	0.00	0.00	0.02	0.00	0.00	0.03	0.03	0.00	0.00	0.00
K₂O	0.00	0.01	0.01	0.00	0.02	0.00	0.01	0.01	0.00	0.00	0.00	0.02	0.00	0.00
Total	85.3	86.3	85.6	86.6	86.6	86.0	86.6	85.7	86.8	86.1	85.8	86.8	86.1	85.3
	Atomic	ratios (O	=14)											
Si	2.818	2.822	2.843	2.826	2.828	2.810	2.802	2.801	2.846	2.880	2.830	2.819	2.830	2.889
^[4] Al	1.182	1.178	1.157	1.174	1.172	1.190	1.198	1.199	1.154	1.120	1.170	1.181	1.170	1.111
^[6] Al	1.175	1.179	1.241	1.209	1.172	1.198	1.150	1.195	1.215	1.159	1.187	1.192	1.208	1.241
Ti	0.002	0.002	0.002	0.002	0.002	0.005	0.012	0.008	0.006	0.000	0.002	0.002	0.006	0.000
Cr	0.000	0.000	0.002	0.003	0.003	0.003	0.000	0.000	0.000	0.001	0.004	0.002	0.000	0.000
Fe ²⁺	2.087	2.191	1.527	1.587	2.152	1.987	2.165	2.074	2.124	1.445	1.948	2.612	1.697	1.556
Mn	0.041	0.041	0.068	0.086	0.041	0.038	0.052	0.037	0.046	0.086	0.094	0.037	0.023	0.023
Mg	2.693	2.582	3.110	3.091	2.616	2.751	2.621	2.677	2.571	3.281	2.744	2.142	3.040	3.114
Ca	0.005	0.003	0.003	0.000	0.010	0.008	0.009	0.002	0.001	0.004	0.005	0.003	0.001	0.002
Na	0.000	0.000	0.000	0.002	0.000	0.000	0.004	0.000	0.000	0.006	0.006	0.000	0.000	0.000
к	0.000	0.001	0.001	0.000	0.003	0.000	0.001	0.001	0.000	0.000	0.000	0.003	0.000	0.000
Total	10.002	9.998	9.955	9.980	9.998	9.989	10.015	9.995	9.963	9.983	9.990	9.993	9.975	9.935
XMg	0.563	0.541	0.671	0.661	0.549	0.581	0.548	0.563	0.548	0.694	0.585	0.451	0.642	0.667

Sample No.	YB120	YB120	YB120	YB120	YB120	YB120	YB120	YB120	YB154	YB154	YB154	YB154	YB154	YB154
Rock type	QS	QS	QS	QS	QS	QS	QS	QS	QS	QS	QS	QS	QS	QS
Grain No.	7	7	4	4	x	х	2	2	14	14	14	14	14	14
Point No.	5	2	146	142	161	153	166	164	13	2	58	53	64	60
	core	rim	core	rim	core	rim	core	rim	core	rim	core	rim	core	rim
SiO ₂	36.5	37.3	36.4	37.3	36.7	37.0	36.9	37.3	37.4	37.4	37.3	37.6	37.7	37.1
TiO ₂	0.11	0.04	0.16	0.14	0.19	0.10	0.11	0.10	0.09	0.01	0.12	0.07	0.08	0.05
Al_2O_3	19.8	20.9	19.8	20.8	19.6	20.7	20.0	20.6	20.9	21.3	20.6	21.1	20.8	20.5
Cr_2O_3	0.00	0.04	0.00	0.01	0.00	0.00	0.00	0.01	0.03	0.02	0.01	0.01	0.05	0.01
FeO*	12.8	18.2	13.7	18.7	12.3	17.1	13.9	17.2	26.5	27.9	26.1	27.1	27.4	27.9
MnO	22.9	15.0	22.8	14.7	24.4	17.0	24.6	16.5	8.06	5.96	7.94	6.45	6.57	5.51
MgO	0.72	1.81	0.67	1.85	0.42	1.30	0.84	1.35	1.37	2.21	1.27	2.20	1.63	1.99
CaO	5.64	6.08	5.52	6.63	6.42	6.67	4.43	6.98	5.95	5.83	6.90	6.05	6.61	6.18
Total	98.5	99.4	99.1	100.1	100.0	99.9	100.8	100.0	100.3	100.6	100.2	100.6	100.8	99.2
Fe ₂ O ₃	1.18	0.10	1.42	0.63	2.02	0.63	1.65	0.76	0.24	0.14	0.76	0.31	0.65	0.72
FeO	11.7	18.1	12.4	18.1	10.5	16.5	12.4	16.5	26.3	27.8	25.4	26.8	26.8	27.3
New total	98.6	99.4	99.2	100.2	100.3	99.9	100.9	100.1	100.3	100.7	100.3	100.6	100.9	99.4
	Atomic	ratios (O	=12)											
Si	3.004	3.007	2.986	2.988	2.985	2.985	2.984	2.998	3.004	2.983	2.997	2.996	3.004	3.000
Ti	0.007	0.002	0.010	0.008	0.012	0.006	0.007	0.006	0.005	0.001	0.007	0.004	0.005	0.003
Al	1.920	1.986	1.915	1.964	1.879	1.968	1.906	1.951	1.978	2.002	1.951	1.981	1.954	1.954
Cr	0.000	0.003	0.000	0.001	0.000	0.000	0.000	0.001	0.002	0.001	0.001	0.001	0.003	0.001
Fe ³⁺	0.073	0.006	0.088	0.038	0.124	0.038	0.100	0.046	0.015	0.009	0.046	0.019	0.039	0.044
Fe ²⁺	0.808	1.221	0.852	1.215	0.713	1.115	0.840	1.110	1.765	1.852	1.708	1.787	1.787	1.843
Mn	1.596	1.024	1.584	0.998	1.681	1.161	1.685	1.123	0.548	0.403	0.540	0.435	0.443	0.377
Mg	0.088	0.218	0.082	0.221	0.051	0.156	0.101	0.162	0.164	0.263	0.152	0.261	0.194	0.240
Ca	0.497	0.525	0.485	0.569	0.559	0.576	0.384	0.601	0.512	0.498	0.594	0.516	0.564	0.535
Total	7.993	7.993	8.002	8.002	8.003	8.006	8.006	7.997	7.993	8.011	7.997	8.000	7.993	7.998

Table 5 Chemical compositions of garnet.

Table 5 Chemical compositions of garnet (continued).

Sample No.	YB154	YB154	YB155	YB155	YB155	YB155	YB159	YB159	YB159	YB159	YB159	YB159
Rock type	QS	QS	QS	QS	QS	QS	QS	QS	QS	QS	QS	QS
Grain No.	14	14	31	31	31	31	35	35	35	31	31	31
Point No.	74	67	21	17	26	23	34	31	30	47	40	38
	core	rim	core	rim	core	rim	core	inter	rim	core	inter	rim
SiO ₂	37.5	37.3	37.4	37.5	36.9	37.9	36.9	37.6	37.4	36.7	37.4	37.1
TiO2	0.10	0.05	0.08	0.07	0.09	0.06	0.18	0.07	0.05	0.11	0.05	0.04
Al_2O_3	20.8	21.0	21.0	21.0	20.6	21.0	20.3	20.8	20.9	20.5	20.6	20.8
Cr_2O_3	0.00	0.00	0.00	0.03	0.01	0.00	0.01	0.00	0.05	0.00	0.00	0.02
FeO*	26.1	27.2	12.7	14.1	12.3	13.6	9.16	23.8	26.9	7.60	21.9	26.7
MnO	8.67	6.16	23.0	18.7	21.6	18.9	28.2	10.3	8.52	30.0	11.9	8.41
MgO	1.17	2.58	2.31	2.71	2.06	2.70	0.81	1.35	2.01	0.65	1.31	2.04
CaO	6.37	5.35	4.01	5.55	4.80	6.10	4.77	6.81	4.71	4.75	6.75	3.71
Total	100.7	99.6	100.5	99.7	98.4	100.3	100.3	100.7	100.5	100.3	99.9	98.8
Fe_2O_3	0.51	0.22	0.38	0.26	0.20	0.43	1.05	0.62	0.43	0.84	0.62	0.00
FeO	25.6	27.0	12.4	13.9	12.1	13.2	8.21	23.2	26.5	6.84	21.3	26.7
New total	100.7	99.7	100.6	99.7	98.4	100.3	100.4	100.8	100.6	100.4	99.9	98.8
	Atomic	ratios (O	=12)									
Si	3.003	2.995	2.991	3.000	3.007	3.009	2.987	3.003	2.996	2.977	3.010	3.018
Ti	0.006	0.003	0.005	0.004	0.006	0.004	0.011	0.004	0.003	0.007	0.003	0.002
Al	1.963	1.988	1.980	1.980	1.979	1.965	1.937	1.958	1.973	1.960	1.954	1.994
Cr	0.000	0.000	0.000	0.002	0.001	0.000	0.001	0.000	0.003	0.000	0.000	0.001
Fe ³⁺	0.031	0.013	0.023	0.016	0.012	0.026	0.064	0.037	0.026	0.051	0.037	0.000
Fe ²⁺	1.717	1.813	0.827	0.928	0.826	0.877	0.556	1.552	1.776	0.464	1.437	1.816
Mn	0.588	0.419	1.558	1.267	1.491	1.271	1.934	0.697	0.578	2.061	0.811	0.579
Mg	0.140	0.309	0.275	0.323	0.250	0.320	0.098	0.161	0.240	0.079	0.157	0.247
Ca	0.547	0.460	0.344	0.476	0.419	0.519	0.414	0.583	0.404	0.413	0.582	0.323
Total	7.994	8.001	8.003	7.996	7.991	7.991	8.001	7.995	8.000	8.011	7.991	7.982

Sample No.	YB108	YB108	YB120	YB120	ST2204	ST2204	ST2204	YB154	YB155	YB159	YB159	YB159	YB35	YB46
Rock type	BS	BS	QS	QS	BS	BS	BS	QS	QS	QS	QS	QS	BS	BS
Grain No.	8	8	6,1	6,2	17,1	17,2	11	17	25	20,1	20,2	25	2	12
Point No.	46	47	262	270	95	100	104	57	11	64	65	91	34	17
SiO ₂	47.7	49.0	48.9	47.9	48.0	47.9	47.8	47.7	47.6	49.2	48.7	48.4	47.8	49.0
TiO ₂	0.52	0.36	0.39	0.37	0.49	0.62	0.56	0.37	0.46	0.26	0.47	0.30	0.53	0.57
Al_2O_3	27.2	26.8	26.8	28.6	26.6	26.6	27.1	27.2	28.0	27.3	26.6	26.8	27.1	26.2
Cr_2O_3	0.00	0.03	0.02	0.00	0.02	0.03	0.05	0.02	0.00	0.00	0.00	0.00	0.00	0.00
FeO*	4.86	4.46	4.17	4.37	5.05	5.40	5.67	4.26	4.06	4.38	5.37	5.33	4.94	5.25
MnO	0.00	0.04	0.00	0.01	0.04	0.02	0.03	0.08	0.01	0.02	0.00	0.01	0.00	0.02
MgO	2.68	2.89	2.69	2.48	2.74	2.41	2.50	0.77	2.28	3.08	2.99	2.98	2.46	2.91
CaO	0.02	0.00	0.02	0.03	0.05	0.01	0.02	0.02	0.00	0.02	0.02	0.02	0.01	0.01
Na ₂ O	0.76	0.70	1.03	1.12	0.50	0.59	0.60	0.88	1.16	0.76	0.52	0.74	1.00	0.52
K₂O	11.1	11.4	10.9	10.1	11.7	11.2	11.4	10.7	10.5	10.6	11.1	10.4	10.7	11.4
Total	94.8	95.7	94.9	95.0	95.2	94.8	95.7	92.0	94.1	95.6	95.8	95.0	94.5	95.9
	Atomic	ratios (O	=11)											
Si	3.235	3.293	3.308	3.219	3.254	3.261	3.223	3.352	3.243	3.286	3.268	3.263	3.250	3.293
Ti	0.027	0.018	0.020	0.019	0.025	0.032	0.028	0.020	0.024	0.013	0.024	0.015	0.027	0.029
Al	2.174	2.122	2.137	2.265	2.126	2.135	2.153	2.253	2.248	2.149	2.104	2.130	2.172	2.075
Cr	0.000	0.002	0.001	0.000	0.001	0.002	0.003	0.001	0.000	0.000	0.000	0.000	0.000	0.000
Fe ³⁺	0.276	0.232	0.179	0.246	0.286	0.260	0.320	0.000	0.197	0.245	0.301	0.301	0.253	0.266
Fe ²⁺	0.000	0.019	0.057	0.000	0.000	0.047	0.000	0.250	0.034	0.000	0.000	0.000	0.028	0.029
Mn	0.000	0.002	0.000	0.001	0.002	0.001	0.002	0.005	0.001	0.001	0.000	0.001	0.000	0.001
Mg	0.271	0.290	0.271	0.248	0.277	0.245	0.251	0.081	0.232	0.307	0.299	0.300	0.249	0.292
Ca	0.001	0.000	0.001	0.002	0.004	0.001	0.001	0.002	0.000	0.001	0.001	0.001	0.001	0.001
Na	0.100	0.091	0.135	0.146	0.066	0.078	0.078	0.120	0.153	0.098	0.068	0.097	0.132	0.068
к	0.960	0.977	0.941	0.866	1.012	0.973	0.981	0.959	0.913	0.903	0.950	0.895	0.928	0.977
Total	7.044	7.046	7.051	7.012	7.053	7.034	7.040	7.041	7.044	7.004	7.015	7.002	7.040	7.030
XNa	0.094	0.085	0.126	0.144	0.061	0.074	0.074	0.111	0.144	0.098	0.066	0.098	0.124	0.065

Table 6 Chemical compositions of muscovite.

Table 7 Chemical compositions of albite.

Sample No.	YB108	YB120	YB120	ST2204	YB154	YB155	YB159	YB35	YB35	YB46
Rock type	BS	QS	QS	BS	QS	QS	QS	BS	BS	BS
Grain No.	5	8	10	15	23	29	25	4	з	18
Point No.	40	98	142	84	1	78	86	1	54	101
SiO ₂	69.0	70.1	70.0	69.2	69.7	68.2	68.8	69.6	69.5	69.7
TiO2	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00
Al_2O_3	19.4	19.6	19.7	19.5	19.5	19.1	19.8	19.7	19.6	20.0
Cr_2O_3	0.00	0.04	0.00	0.01	0.00	0.03	0.00	0.00	0.00	0.00
FeO	0.05	0.00	0.00	0.07	0.10	0.07	0.15	0.04	0.10	0.03
MnO	0.04	0.00	0.04	0.00	0.01	0.04	0.02	0.02	0.04	0.01
MgO	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.00
CaO	0.13	0.11	0.18	0.31	0.18	0.23	0.09	0.12	0.15	0.13
Na ₂ O	11.7	11.9	11.9	11.6	11.8	11.6	11.6	11.3	11.8	12.1
K₂O	0.04	0.03	0.01	0.04	0.03	0.01	0.03	0.06	0.06	0.02
Total	100.4	101.8	101.8	100.7	101.3	99.3	100.5	100.8	101.3	102.0
	Atomic	ratios (O	=8)							
Si	3.002	3.005	3.001	3.000	3.004	3.001	2.990	3.006	2.998	2.987
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000
Al	0.995	0.990	0.995	0.996	0.991	0.991	1.014	1.003	0.996	1.010
Cr	0.000	0.001	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000
Fe ²⁺	0.002	0.000	0.000	0.003	0.004	0.003	0.005	0.001	0.004	0.001
Mn	0.001	0.000	0.001	0.000	0.000	0.001	0.001	0.001	0.001	0.000
Mg	0.000	0.001	0.000	0.001	0.000	0.000	0.000	0.000	0.001	0.000
Ca	0.006	0.005	0.008	0.014	0.008	0.011	0.004	0.006	0.007	0.006
Na	0.987	0.989	0.989	0.975	0.986	0.990	0.977	0.946	0.987	1.005
к	0.002	0.002	0.001	0.002	0.002	0.001	0.002	0.003	0.003	0.001
Total	4.995	4.994	4.996	4.991	4.995	4.998	4.993	4.967	4.998	5.011
XCa	0.006	0.005	0.008	0.015	0.008	0.011	0.004	0.006	0.007	0.006

	Tabl	e8 Ch	emical	compos	sitions o	of hema	tite.	
Sample No.	YB108	YB108	YB120	ST2204	ST2204	ST2204	ST2204	ST2204
Rock type	BS	BS	QS	BS	BS	BS	BS	BS
Grain No.	5	4	4	7	7	7	8	8
Point No.	30	52	25	74	77	65#	72	71#
SiO2	0.28	0.91	0.34	0.03	0.04	0.35	0.25	0.21
TiO ₂	0.03	0.08	4.74	7.62	9.01	2.28	9.38	2.72
AI_2O_3	0.27	0.91	0.23	0.05	0.00	0.07	0.07	0.01
Cr_2O_3	0.00	0.02	0.00	0.06	0.05	0.00	0.09	0.03
FeO*	89.1	86.4	85.3	84.2	82.5	87.3	81.9	87.4
MnO	0.00	0.01	0.05	0.01	0.00	0.00	0.06	0.00
MgO	0.13	0.34	0.02	0.00	0.01	0.02	0.06	0.06
CaO	0.04	0.13	0.09	0.02	0.06	0.22	0.18	0.16
Total	89.9	88.8	90.8	92.0	91.7	90.2	92.0	90.6
Fe_2O_3	98.9	95.6	89.8	86.0	82.7	94.6	81.8	94.5
FeO	0.08	0.38	4.47	6.85	8.06	2.15	8.34	2.39
New total	99.7	98.4	99.7	100.6	99.9	99.7	100.2	100.1
	Atomic	ratios (O	=3)					
Si	0.007	0.024	0.009	0.001	0.001	0.009	0.007	0.006
Ti	0.001	0.002	0.094	0.150	0.178	0.045	0.185	0.054
Al	0.008	0.029	0.007	0.002	0.000	0.002	0.002	0.000
Cr	0.000	0.000	0.000	0.001	0.001	0.000	0.002	0.001
Fe ³⁺	1.975	1.919	1.786	1.695	1.640	1.888	1.613	1.880
Fe ²⁺	0.002	0.008	0.099	0.150	0.177	0.048	0.183	0.053
Mn	0.000	0.000	0.001	0.000	0.000	0.000	0.001	0.000
Mg	0.005	0.014	0.001	0.000	0.000	0.001	0.002	0.002
Ca	0.001	0.004	0.003	0.001	0.002	0.006	0.005	0.005
Total	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000

position	p		
Sample No.	YB108	YB108	1
Rock type	BS	BS	Sa
Grain No.	5	5	Ro
Point No.	27	28	Gr
SiO ₂	0.67	0.62	Po
TiO₂	0.01	0.02	S
AI_2O_3	0.10	0.08	T
Cr_2O_3	0.00	0.03	A
FeO*	92.8	92.5	С
MnO	0.00	0.01	F
MgO	0.01	0.05	M
CaO	0.04	0.02	M
Total	93.6	93.3	С
Fe_2O_3	67.6	67.5	N
FeO	32.0	31.8	ĸ
New total	100.4	100.1	Т
Atomic	ratios (C	D=4)	,
Si	0.026	0.024	5
Ti	0.000	0.001	1
Al	0.005	0.004	
Cr	0.000	0.001	(
Fe ³⁺	1.944	1.947	F
Fe ²⁺	1.024	1.020	Ν
Mn	0.000	0.000	N
Mg	0.001	0.003	(
Ca	0.002	0.001	٢
Total	3.000	3.000	٢
			Т
			Х

Table 9 Chemical com-

Table 10	Cł	nem	ical	com-
positic	ons	of	stilp	nome-
lane.				

YB35 ample No. YB35 BS BS ock type 2 2 rain No. 35 36 oint No. iO2 47.9 47.2 "iO₂ 0.00 0.01 1₂O₃ 6.01 6.01 Cr₂O₃ 0.04 0.00 еO 27.1 26.9 /InO 1.25 1.39 1gO 7.28 7.01 αO 0.52 0.56 la₂O 0.15 0.10 20 0.52 0.51 otal 90.8 89.7 Atomic ratios (Si=8) Si 8.000 8.000 Ti 0.000 0.001 1.183 1.201 41 0.005 0.000 Cr =e²⁺ 3.785 3.813 Мn 0.177 0.200 1.813 1.771 Иg 0.093 0.102 Са Na 0.049 0.033 ĸ 0.111 0.110 Fotal 15.215 15.230 ٢Mg 0.324 0.317

資料・解説

四国中央部三波川帯猿田川地域より産する含赤鉄鉱片岩中の角閃石の化学組成

坂野靖行

要 旨

四国中央部三波川変成帯猿田川地域から産する含赤鉄鉱塩基性片岩及び石英片岩中の角閃石及び角閃石と共存 する鉱物の EPMA 分析を行い,角閃石 221 点及びその他の鉱物(緑れん石・緑泥石・ざくろ石・白雲母・曹長 石・赤鉄鉱・磁鉄鉱・スティルプノメレン)90 点の分析値を示した.分析が行われた試料は比較的高変成度である 曹長石-黒雲母帯から採集された.これらの化学組成データは,三波川変成帯猿田川地域における後退変成作用を 議論するために用いられた (Banno, 2000).