地質調査所月報, 第50巻, 第4号, p. 245-267, 1999

神戸・芦屋周辺地域における反射法深部構造探査

横倉隆伸* 山口和雄* 加野直已* 宮崎光旗** 井川 猛*** 太田陽一*** 川中 卓*** 阿部 進***

Takanobu YOKOKURA, Kazuo YAMAGUCHI, Naomi KANO, Teruki MIYAZAKI, Takeshi IKAWA, Yohichi OHTA, Taku KAWANAKA and Susumu ABE (1999) Seismic profiling of deep geological structure in the Kobe and Ashiya areas. *Bull. Geol. Surv. Japan*, vol.50, (4), p. 245-267., 12figs., 1 appendix table.

Abstract: On January 17, 1995 the Kinki district, southwest Japan, was struck by a disastrous earthquake of M7.2, named as the 1995 Hyogo-ken Nanbu Earthquake. In order to clarify deep structures of this region, we conducted seismic surveys along 12 survey lines. Various types of evidence suggest that there exist many faults at the boundary regions between land and sea. To obtain integrated data in scrutinizing deep structure of these faults, we conducted continuous and uniform surveys traversing land, shallow water and sea, which are about 260 km long in total. In this paper we will discuss four survey lines of them in the Kobe and Ashiya areas.

Sources used in the survey were one to four vibrators (Y-2400) on land, and two airguns at shallow water. Receivers were over 240-ch geophones (natural frequency: 10 Hz) at the interval of 25 m on land, and maximum 96-ch baycables at the interval of 25 m at shallow water. Sources were shot at standard intervals of 50 m on land, and 25 m at shallow water. Common-mid points (CMP) were set at 12.5 m intervals. The standard CMP fold number was 48 both on land and at shallow water. Signals generated from vibrators and airguns were simultaneously received by geophones and baycables to integrate the profiling lines both on land and at shallow water.

After applying many noise-suppression methods, we have relatively clear images. The processing results indicate: (1) The Ashiya Fault is a reverse fault with relatively low angle. (2) A wide fracture zone exists between the Ashiya Fault and the Ashiya river mouth, where several concealed faults have been found . The northern end of the fracture zone corresponds to the extension of the Koyo Fault. (3) The Nishinomiya Flexure corresponds to a low-angle and small-scale fault near earth's surface which branches from the Koyo Fault. (4) Two new reverse faults have been found between the JR Kobe station and the Okura Hill. These faults together with the Egeyama Fault have lifted the Okura Hill. One of these is "the Motomachi Fault (a tentative name)" which is located beneath the Motomachi Flexure. (5) At the south of the Kobe Port, the Osaka-wan Fault branches off into three: the Wada-misaki Fault, the Maya Fault and "the Rokko Island Fault(a tentative name)". (6) The Wada-misaki Fault runs northward from 4km south of the Cape Wada-misaki via the Kobe Port. Then it gradually changes the strike, and runs northeastward via the Port Terminal and the Ikuta river mouth. The major branch of the Wada-misaki Fault runs further northeastward. Another small branch runs from the Ikuta river mouth toward the Gosukebashi Fault. (7) The Maya Fault runs northward from 2km south of the Port Island via east end of the Port Island, and changes the strike northeastward off the southeasteren Maya Wharf. It runs further northeastward via the Rokko-ohashi Bridge. (8) The Rokko Island Fault runs northward off the southeastern Port Island, changes the strike northeastward off the southwestern Rokko Island, and then may cross the Rokko Island. (9) These three branches of the Osaka-wan Fault are probably

*地殼物理部(Geophysics Department, GSJ) **企画室(Research Planning Office, GSJ) Keywords: 1995 Hyogo-ken Nanbu Earthquake, Kobe, Ashiya, seismic reflection method, Osaka-wan Fault, Wada-misaki Fault, Maya Fault, Koyo Fault, Ashiya Fault, deep structure, basement, vibrator, airgun, geophone, baycable

^{**(}株)地球科学総合研究所研究部(R&DDepartment, JAPEX Geoscience Institute Inc., 1-5-21, Ohtsuka, Bunkyo, Tokyo, 112-0012 Japan)

connected to the pre-exsisting active faults in the Rokko Mountains, and are probably boundaries of basement blocks beneath the Kobe and Ashiya area. (10) Beneath the so-called "damage belt", there is no concealed fault which runs paralel with the belt. The major cause of the damage belt may be due to some kind of interference of seismic waves produced by non-symmetrical distribution of basement depth. However some faults with a NE-SW trend may have some role in forming the damage belt.

要 旨

1995年1月17日に明石海峡周辺で発生した兵庫県南部 地震は近年まれに見る甚大な被害をもたらした. 我々は 当地域周辺の地下深部構造を解明するため,陸域・浅海 域・海域にまたがる12の測線において,反射法地震探査 を実施した.本論文ではこのうちの神戸市・芦屋市周辺 の陸域・浅海域における4測線の探査結果について詳述 する.使用した震源は,陸域では1-4台のバイブレータ (Y-2400),浅海域では2機のエアガンである.使用し た受振器は,陸域では25m間隔で240ch以上のジオフォン (固有周波数10Hz)を,また浅海域では25m間隔で最高 96chのベイケーブルを使用した.標準発震間隔は陸域で 50m,浅海域で25mである.共通中心点(CMP)間隔は 12.5mとした.標準CMP重合数は48である.陸域-浅海 域を接続するため,陸域発震に対してベイケーブルでも, また浅海域発震に対してジオフォンでも同時に観測した.

処理結果から以下のことが示された. (1) 芦屋断層 は低角の逆断層である. (2) 芦屋川沿いの阪急神戸線 - 芦屋川河口間には幅の広い破砕帯が存在する. この破 砕帯に数本の断層が認められる. この破砕帯の北端が甲 陽断層の延長に相当する. (3) 西宮撓曲は甲陽断層か ら派生した地表付近の小規模な低角逆断層に相当するも のと考えられる. (4) JR神戸駅と大倉山の間に低角の 逆断層が二つ認められる.これは会下山断層と対になり、 大倉山周辺を隆起させている. この低角逆断層のひとつ は"元町断層(仮称)"で、元町撓曲の位置に一致する. (5) 大阪湾断層は神戸港の南方で和田岬断層・摩耶断 層・"六甲アイランド断層(仮称)"に分岐する. (6) 和田岬断層は和田岬南方約4kmの地点で大阪湾断層から 分岐して神戸港内を北進し、やや東へ向きを変えながら ポートターミナル周辺を通り、その主要部は生田川河口 付近から更に北東へと続くと思われる。また生田川河口 付近から分岐する断層も考えられ、これは北北東の五助 橋断層方向へと続く可能性がある. (7) 摩耶断層はポ ートアイランド南方約2kmの地点から北方へ分岐し,ポ ートアイランドの東端付近を通り、摩耶埠頭沖で東北東 へ向きを変える. さらに六甲大橋周辺を通り, 北東へと 向きを変えて続く. (8) 六甲アイランド断層はポート アイランド南東端沖で北方へ向きを変え、また六甲アイ ランド南西沖で再び北東へ向かい、六甲アイランドを横 断している可能性がある. (9) 上記の大阪湾断層の北

方分岐は、六甲山塊の既存の断層群とおそらく連続して おり、これらは神戸・芦屋市街地下の基盤のブロック境 界となっている可能性がある. (10) 「震災の帯」の下 には、「震災の帯」に平行するような断層は存在してい ない. すなわち「震災の帯」の第一義的な原因は基盤構 造によるある種の地震波の増幅によるものと考えられる. しかし「震災の帯」のなかには、北東-南西方向の断層 あるいはある種の境界の影響が認められる.

1. はじめに

地質調査所では、1995年1月17日に明石海峡周辺で発 生した兵庫県南部地震の原因となった活断層系を含む周 辺地域の深部構造,活動履歴,断層の動的特性や微細構 造等を、地質学的、地球物理学的、地球化学的手法によ って明らかにするため、平成7年度補正予算により「阪 神・淡路大震災に係わる活断層等の緊急調査」を実施し た、当研究は、その中の「有馬・高槻・六甲断層系活断 層調査」の一環として行われた、反射法による深部構造 探査をとりまとめたものである。本論文では震源域周辺 における深部構造探査(第1図のインデックスマップを 参照)のうち、神戸・芦屋周辺における探査結果につい て報告する.大阪湾周辺から紀淡海峡にかけての海域測 線については横倉・他(1998)で既に報告している. 横 倉・他(1998)に引き続き本論文でも、探査結果・それ に基づく解釈・得られた基盤構造等の呈示が大きな目的 であるのはもちろんであるが、それ以外にもこれら探査 結果が広く利用可能となるよう、測線に関する記述をや や詳しくし、かつ可能なかぎり大きな断面図を呈示する ことも目的のひとつとしている.

現地調査・データ処理の詳細については井川・他(1996) で述べられている.また神戸港周辺から大阪湾にかけて の探査の概報は横倉・他(1996a)にまとめられているの で,あわせて参照されたい.以下の文中の測線名に付い た英字 L, B, Mはそれぞれ陸域,浅海域,海域を意味す る略号である.なお第1図ではこれらの区別をつけてい ない.例えば測線GS-2は,GS-2L,GS-2B,GS-2Mから なっているが、一つの測線として示している.

2. 調査地域地形および地質概要

地質図(藤田・笠間, 1982, 1983;藤田・前田, 1984) や地形図を参照すると、神戸市・芦屋市周辺の地形は以

-246-

第1図 測線インデックスマップ

GS, TK, HG, KB, HD, NP, ODはそれぞれ地質調査所,東京大学地震研究所,兵庫県,神戸市,海上 保安庁水路部,動力炉・核燃料開発事業団,大阪土質試験所の測線であることを示す.

Fig. 1 Indexmap of survey lines. GS, TK, HG, KB, HD, NP, OD mean abbreviations for Geological Survey of Japan, University of Tokyo, Hyogo Prefecture, Kobe City, Hydrographical Department, Power Reactor and Nuclear Fuel Development Corporation, and Geo-Research Institute, Osaka, respectively.

下のようになっている.六甲山系(摩耶山:699m,六甲 山:931m)はENE-WSW方向のトレンドを有しており, その5~8km程度南方の大阪湾に向かい,急激に標高を 減じている.この地域は六甲山系とほぼ平行な境界線に より北から南に,1)領家花崗岩を主体として,南落ち 急斜面による階段状地形からなる山地部,2)天王川や 芦屋川のような中小河川による,比較的緩傾斜の複合扇 状地,3)おもに砂質土からなる平坦な沖積平野部,4) ポートアイランドや六甲アイランドに代表される埋立地, 5)神戸港から芦屋港にかけての浅海域,の5地域に区 分される.山地と扇状地との境界は新神戸駅付近であり,

扇状地南縁は元町や三宮駅付近にあたり、兵庫県南部地 震時に震度Ⅶを示したゾーンに対応する.また、神戸港 から芦屋港にかけての浅海域は、摩耶大橋北側の水路内 を除けば水深は10m~16mと比較的平坦である.

もともと六甲地域は中・古生層である丹波層群によっ て被覆された地域であり,花崗岩貫入後の隆起により, この古生層は削剥された.この地域の花崗岩類は領家帯 に属する布引花崗岩類と六甲花崗岩類に分類されている. 前者は六甲山南縁に分布し,白亜紀中期に形成された. 後者は六甲山地の大部分を構成し,その形成期は有馬層 群以降の白亜紀後期とされる(藤田・笠間,1982,1983).

六甲および帝釈地域の地質構造の大枠は, 第四紀更新 世中期以降の断層帯上昇運動によって決定された. 六甲 山地南側には、こうした山塊の傾動運動を示唆する地形 が発達している。特に調査域東部の芦屋地域では、六甲 山頂部に広がる準隆起平原(標高800~900m),奥池地区 を中心とする小起伏侵食面(標高450~500m),甲山を中 心とする標高200m級の侵食小起伏面等の階段上地形が明 瞭に見られる. これらの各面間を画する急崖がいずれも 北東-南西走向の衝上断層である五助橋断層, 芦屋断層 及び甲陽断層と位置づけられる.このうち,五助橋断層 は六甲山地を二分する大断層であり, 断層帯において六 甲花崗岩が大阪層群下部と見られる礫層に衝上し、幅数 100mの破砕帯を伴っている(藤田・笠間, 1982). 調査 域西部の神戸地域では, 諏訪山断層が布引花崗岩の南縁 部に位置し、地形的には断層崖を示す。また、南側の会 下山断層は諏訪山断層の西方への延長に位置し、諏訪山 の南で六甲花崗岩体と離れて会下山付近において尖滅し ている(藤田・笠間, 1983). これら神戸地域の断層群 は東北東-西南西の走向を示す.調査地域内の断層群は いずれも確実度 I,活動度A~B級とされ、六甲断層、芦 屋断層、甲陽断層、布引断層、諏訪山断層等の逆断層は いずれも100~400mの垂直変位を示す(活断層研究会編、 1991). ただし、大月断層、五助橋断層は右横ずれの成分 が卓越している.

六甲山地の南縁部から大阪湾域にかけては、大阪層群 が厚く潜在分布する.大阪層群は、山麓沿いに局所的に 地表に現れるが、海岸平野部の大半は沖積層に覆われて いる.下位の神戸層群、領家帯花崗岩類とは不整合ある いは断層関係で接する.大阪層群の層厚は南に向かって 急激に増加する.これはブーゲー重力異常図(Gravity Research Group in Southern Japan, 1994; 駒澤・他, 1996) からも示唆される.

本地域では、GS-2、GS-4、GS-5、GS-6の各測線を設 定した.測線GS-2、測線GS-4は、いわゆる「震災の帯」 を横切り、山側の断層をほぼ直交するように設定されて いる.また測線GS-5は測線GS-4と海域測線を結合するた めに、測線GS-6は山側の断層が海側まで連続するか否か を確認するために、それぞれ設定された.

3. 反射法探査測線および探査概要

調査測線は、GS-4L(神戸市)およびGS-2L(芦屋市) の陸上測線と、GS-2B、GS-4B、GS-5B、GS-6の浅海域 における測線からなる。GS-4BとGS-2Bは各々GS-4Lお よびGS-2L測線に接続する.測線の位置を第2図(国土 地理院発行1/50,000地形図、「大阪西北部」、「神戸」、「須 磨」を使用)に示す.図の実線は受振測線、黒丸は発震 点を示す.数字は受振点番号である.

陸上測線においては受振器は固定展開とし、震源とし

てバイブレータを使用した.一方,浅海域においてはベ イケーブルを用い,震源にはエアガンを使用した.

調査地域は、人口密集地であることや日本有数の通行 船舶の多い神戸港内であることに加え、まさに震災被災 地のまっただ中に位置しており、住民感情への配慮、損 傷を受けた道路・埋設物・被災住居を含む周辺の構造物 への考慮、陸域および岸壁周辺いたるところで実施され ている復旧工事との調整等、制約条件が極めて多かった. このような困難な状況下にもかかわらず、その記録の質 は、特にベイケーブルを使用した測線において、非常に 高い品質を示している.以下に各測線および調査の概要 を記す.以下の記述中のLoc、VP、SPはそれぞれ受振点 (Location)、バイブレータ発震点(Vibrating Point)、 エアガン発震点(Shot Point)の略号である.また測線に ついてさらに詳細に知りたい読者のために、以下ではFig. 201/50,000地形図には出ていない地名をもあげておく.

測線GS-2L

芦屋浜南端(Loc.1001)から芦屋川に沿って芦屋市中 央部を北上し, 芦有有料道路を経て奥池町に至る陸上バ イブロサイス測線である. 測線長は約7kmで、南北方向 の測線である. Loc.1016までは防波堤沿いで,これ以北 は芦屋川沿いとなる. 受振器は芦屋川河川敷内に設置し た. コンクリート防壁の箇所では三脚スタンドを用いて 受振器を設置した.また発震は河川沿いの道路上で行っ た.国道2号線との交差箇所(Loc.1074)以南では、公 園あるいは比較的敷地に余裕のある公共建築物に面した 箇所を利用して発震を実施したが,震源は2台稼働であ った.出力は最大でも70%(最小40%)である.Loc.1074~ 1171の約2.5kmの区間は道路幅が狭い上,被害をかなり受 けた住居が密集しているため発震可能箇所は非常に少な い.しかし発震点の大幅な欠落を避けるため、発震エネ ルギーを通常の5~40%に低減させ,300~500m間隔で発 震を行った. Loc.1171以北は発震路両側に建造物等もな く、交通量も比較的少ない. 測線北端のLoc.1279~1289 の区間は発震路両側に住宅地が存在するものの距離があ るため、発震が可能であった. ただし出力および発震回 数を落とした.

測線GS-2B

測線GS-2Lの南方延長で,南北方向の浅海ベイケーブ ル測線である.測線長は約3kmである.GS-6と交差する. 防波堤の内側で,海上ストリーマ測線GS-2Mに接続する. 南芦屋浜北岸・芦屋浜西岸・深江浜町(東部第4工区) 東部内貿埠頭東岸では潜水作業を伴う護岸工事が行われ ていた.エアガン発振による大振幅の水中音響が潜水夫 の作業に支障を来す恐れがあったため,護岸工事との時 間調整を実施した.さらに,芦屋浜沖はフェリーの係留 地であり,予定測線はこれらのアンカーを横切る危険性

第2図 神戸周辺測線受振点発震点詳細図.(a)測線GS-2とGS-6.

実線:受振測線.数字は受振点番号.黒小丸:発震点.黒大丸:東灘1500mボーリング位置.測線名は第1図参照.国土地理院発行 1/50,000地形図,「神戸」,「大阪西北部」,を使用.

Fig. 2 Detailed map for location points and shot points of Kobe-Ashiya survey lines. (a)lines GS-2 and GS-6.
 Solid line: receiver line. Numerals are receiver point number (location number). Small solid circle: shot point. Large solid circle: 1500m well at Higashi-nada. As for line names, see the explanation in Fig.1. Maps: 1/50,000 scale topographic maps "Kobe" and "Osaka-seihokubu", published by Geographical Survey Institute.

が高いため測線を東側に若干変更した.そのため日によって受振点位置が異なっている.エアガンの発震は深度5mを基準とした.

測線GS-4L

探査の都合上,測線GS-4は六甲山塊以北と以南に分け て探査を行った. 有馬街道沿いの天王ダムより南側をGS -4Lと, また北側をGS-4-1 (別途報告予定) とそれぞれ 名付ける. 測線GS-4Lは, ほぼNW-SE方向の陸上バイブ ロサイス測線であり、測線長は約6kmである.神戸市高 浜岸壁(Loc.1001)から北に神戸駅(Loc.1030), 湊川 神社(Loc.1045-1051),神戸大学病院(Loc.1067-1082), 祇園橋(Loc.1116)と神戸市の中央部を走り、祇園橋以 北では有馬街道沿いに天王山トンネル南端まで達する. 祇園橋以北では有馬街道旧道が受振測線、新道が発震測 線となる.神戸大学病院以南はビル街であり,これ以北 祇園橋付近までは商店および住宅街、祇園橋以北では、 旧道は新平野橋(Loc.1162)までは道路沿いに住居が点 在するが、新道沿いには建造物はほとんど存在しない。 Loc.1102の平野交差点以北の有馬街道は交通量が多く日 中は著しい交通渋滞を示した、本測線は会下山断層、長 田山断層,布引断層などを横断している.

測線GS-4B

測線GS-4Lの海上延長として,神戸市高浜岸壁から神 戸港内西部海域へ伸びる浅海ベイケーブル測線である. WNW-ESE方向を向き,受振測線長は第1航路西端まで の約250mである.本来は第1航路東側まで受振点を設定 する予定であったが,船舶の航行上の都合により西端ま でに制限された.しかし発震点のみは第2航路付近まで の約700mの測線長をとることができた.本測線は港内に おいて測線GS-5Bと交差する.第1航路は高浜岸壁およ びその南側に位置する川崎重工への船舶の通行が非常に 多い.川崎重工および中突堤岸壁は工事中であり,ダイ バーが潜水しているため,この付近では時間調整のうえ 発震作業を行った.

測線GS-5B

神戸港内第1航路西側で,同航路に平行する浅海ベイ ケーブル測線である.N-S方向の約5kmの測線である. 北端でGS-4Bと交差し,南端は和田岬沖まで延び海上ス トリーマ測線GS-5Mに接続する.第1航路を頻繁に通行 する船舶の回避,測線西側の川崎重工岸壁および兵庫突 堤での工事による多数の工事用船舶の停泊・入出港やダ イバーの潜水作業との調整が必要であった.観測車は兵 庫第2突堤に設置し,受振測線は北側に第1展開(80ch) を南側に第2展開(80ch)を設定した.和田岬沖は漁場 となっているため,漁が休みの日曜および水曜日に観測 を行った.

測線GS-6

神戸港摩耶埠頭から川崎製鉄,神戸製鋼,東灘発電所, 深江浜町それぞれの南岸壁沿いに,尼崎西宮芦屋港内の 埋立地芦屋沖地区に至る,東西方向の浅海ベイケーブル 測線である.測線長は約11kmである.東端部で測線GS-2Bと交差する.受振測線は1展開標準96chを基本として 計5展開である.このうち摩耶大橋北側の水路は東側に つながっていないため,Loc.88-100の区間はデッドチャ ンネルとなっている.また,この水路内の水深は浅いた め、エアガン深度を3mとした。

護岸工事は、摩耶大橋北側の水路内、東部第2および 3工区南側岸壁、六甲アイランド北東部岸壁で実施され ており、多数の工事用船舶の入出港と停泊中のアンカー 回避やダイバーとの時間調整が必要であり、測定可能日 時が極めて限定されたものとなった。一部の区間におい ては、発震路線を六甲アイランド側に移動させダイバー やアンカーを回避した。岸壁周囲では種々の工事が実施 中であり、エアガンをはるかに越える大きなエネルギー のノイズ(杭打ち,荷降ろし,削岩機)が頻繁に発生し、 再測を余儀なくされた。東部第3工区と第4工区の間は 東神戸航路にあたるため、航路横断は東神戸信号所と常 時連絡を取り合って実施した。

4. 調査仕様

以下に陸域,浅海域の各測線の調査仕様を列挙する. またあわせて井川・他(1996)も参照されたい.

4.1 陸域バイブロサイス測線

[震源]	
震源	バイブレータ (Y-2400)
台数	郊外:2-4台 市街地:1-2台
スイープ周波数	8-50Hz
スイープ長	16s
スイープ数	4-16
発震点間隔	標準 50m
発震点	GS-2L:119点(VP.1291-VP.1009)
	GS-4L:96点(VP.1237-VP.1004)

受振点間隔	25m
受振点	GS-2L:292ch(固定)
	GS-4L:244ch(固定)
受振器(上下動)	HGS SM-7(ジオホン)
受振器パターン	1.39m×18個(25m linear array)

[レコーディング]

[严拒盟]

探鉱機	GDAPS-3
フォーマット	SEG-Y

地 質 調 査 所 月 報 (1999年 第50巻 第4号)

サンプリング間隔	4ms
記録長(相関後)	16s
標準重合数	48
フィルター	out
プリアンプゲイン	36dB

4.2 浅海域ベイケーブル測線

[震源]	
震源	エアガン
エアガン容量	(537+200) in ³ ; Bubbleless type
	(約12リットル;1.2x10 ⁻² m ³)
エアガン圧力	GS-4B:
	1500psi(約102気圧;1.0x10 ⁷ Pa)
	GS-2B, 5B, 6:
	1600psi(約109気圧;1.1x10 ⁷ Pa)
発震深度	5m
	3m(GS-6の摩耶水路内)
pop間隔	50m/75m/100m
発震点間隔	50m (GS-6)
	25m (GS-2B, 4B, 5B)
発震点	GS-2B:114点(SP.989-876)
	GS-4B: 29点(SP.992-965)
	GS-5B:計 232点
	展開1 128点(SP.1-128)
	展開2 104点(SP.81-184)
	GS-6:計 389点
	展開1 55点(SP.41-75,
	SP.111-183)
	展開2 96点(SP.101-291)
	展開3 91点(SP.197-377)
	展開4 95点(SP.293-481)
	展開5 52点(SP.379-481)
[受振ケーブル]	
严拒占即喧	25m

受振点間隔 25m GS-2B:96ch 受振点 GS-4B: 10chGS-5B:80ch 展開1 Loc.1-80 展開2 Loc.81-160 GS-6:96ch 展開1 Loc.12-87 展開2 Loc.101-196 展開3 Loc.197-292 展開4 Loc.282-377 展開5 Loc.377-472 受振器 P44-A (ハイドロフォン) 受振器パターン 4.0m×3個 (linear)

[レコーディング] 探鉱機 GDAPS-3 SEG-Y フォーマット サンプリング間隔 4ms 記録長(相関後) 16s (GS-2B, 4B) 8s (GS-5B, 6) 48 標準重合数 フィルター out プリアンプゲイン 24-36dB

4.3 陸域データと浅海域データの接続

測線GS-2L/2BおよびGS-4L/4Bでは, 測線の接続 (重 合数の確保)を考慮して、海陸の境界部の約1km区間の 陸上発震と全海上発震を、以下に示すような陸上ジオフ オンおよび浅海ベイケーブルで同時に記録した.

GS-2L/2B	Loc.904-1240(337ch) : VP.1046-1009
	SP.989-963

GS-4L/4B Loc.990-1244(255ch) : VP.1060-1004 SP.992-965

ここでLoc.1000は海陸境界にあたる.なおこれら接続調 杳の詳細は井川・他(1996)に示されている。

5. 反射法データ処理

第3図はジオフォンおよびハイドロフォンを用いた陸 域・浅海域測線の処理フローを示している. 今回の神戸 側の海陸接続測線(GS-2LとGS-2B, GS-4LとGS-4B) では、

陸上発震(バイブレータ)/陸上受振(ジオフォン) 陸上発震(バイブレータ)/海上受振(ハイドロフォン) 海上発震(エアガン)/陸上受振(ジオフォン)

海上発震(エアガン)/海上受振(ハイドロフォン) の4種類のデータが含まれている.これらのデータは互 いにオーバーラップして取得されており、処理の初期段 階で震源および受振器特性の補償を行ない、陸上と浅海 域の測線を接続した.この処理後はGS-2LとGS-2B,GS -4LとGS-4Bを接続して1本の測線とし、それぞれ測線 GS-2, 測線GS-4と呼称する.

また浅海域データのみの測線(GS-5BとGS-6)では, 第4図に示したフローで処理を行った.以下に各処理に ついて述べる。処理の順序は測線により若干異なる、ま た以下の処理すべてを適用していない場合もある.

(1) フォーマット変換およびデータ編集

データは全てGDAPS-3探鉱機を用いSEG-Yフォーマ ットで取得されているが、データ処理用の内部フォーマ ットへの変換を行なった. さらに大型車両通行, おもに 震災復興に関わる道路・建造物の工事区間、大型船舶航 行、おもに震災復興に関わる護岸復旧工事区間、企業専 用埠頭の資機材および製品の搬出入箇所などでの、人工

第3図 測線GS-2およびGS-4データ処理フロー Fig. 3 Data processing flow for lines GS-2 and GS-4.

ノイズが卓越している不良トレース,信号レベルが著し く低いため初動が判別できないトレース等を除去した.

(2) トレースヘッダーへの測線情報の入力

発震点・受振点座標,標高値,オフセット距離,基準 面標高値等の測線情報を入力した.データ解析における 基準面は平均海水面(M.S.L.)に設定した.なお測線GS -2B, GS-4B, GS-5B, GS-6において,ベイケーブル敷 設位置は港湾内の状況によって異なる場合があるため, 観測日ごとに別受振点として扱った.

(3) 屈折波初動解析

測線中の陸域部データに関し,改良型タイムターム法 による屈折初動解析を行って,受振点・発震点タイムタ ームと表層基底層速度を算出した.

(4) 初動ミュート

屈折初動の振幅の大きい部分を、以下のパラメターを

用いてミュートにより除去した. テーパー長 : 200ms (GS-2, 4) : 150ms (GS-5B, 6) ミュート位置のス ライディング速度: 1500-4000m/s (GS-2, 4) (space variant) 1600m/s (GS-5B, 6) (5) 異種震源および受振器特性補償

[震源特性補償]

零位相であるバイブレータのスイープ波形を最小位相 であるエアガン波形に合わせるため,GS-2L,4Lのバイ ブレータデータに関して以下のスイープ波形の最小位相 変換オペレーターを作成し適用した.

オペレーター長 : 300ms プリホワイトニングファクター: 5%

最小位相変換後,ハイドロフォンデータについて,バイ ブレータ震源から構成される重合記録,エアガン震源か ら構成される重合記録をそれぞれ作成した.その重複部 分を用いて統計的に時間シフトを計算し,バイブロサイ スデータに+20ms (shift down)の時間シフトを適用し た.

[受振器特性補償]

上記の震源特性補償を適用後,ジオフォンデータから 構成される重合記録とハイドロフォンから構成される重 合記録を作成した.その重複部分を用いて,ジオフォン に対するハイドロフォンの位相のずれを補償するマッチ ングフィルターを設計し,適用した.時間シフトは,GS -2B,GS-4Bに対し-26ms必要となった.GS-5B,GS-6 に関しては,受振特性補償処理をCMP重合後に適用した. (6)プレフィルター

おもに表面波,それに付随する高次モード波,および 高周波帯域の人工ノイズを抑制する目的で,以下の最小 位相型バンドパスフィルターを適用した. オペレーター長 : 300ms ホワイトニングファクター: 5% 通過帯域 : 4-60Hz (GS-5B, 6) 8-60Hz (GS-2L, 2B, 4L) 8-50Hz (GS-4B)

(7)振幅補償

弾性波の震源からの伝播に伴う幾何減衰,多層構造内 を透過・多重反射することによる伝播損失および非弾性 効果による減衰,さらには受振点・発震点ごとのカップ リングの相違に起因する振幅特性の変化を補償すること を目的として,振幅補償を行った.テストの結果,下記 のAGCスケーリングを採用した.

ウインドー長:600ms(GS-2,4)

800ms (GS-5B, 6)

(8) 速度フィルター

水深10-15mの海底面に関わる屈折波の多重反射が,浅

Fig. 5 Detailed map for CMP stacking lines of Kobe-Ashiya survey lines. (a)lines GS-2 and GS-6.

Solid circle: CMP point. Numerals are CMP number. Open circle: Shot point for marine survey lines conducted by GSJ. Numerals are shot point number. Thin line: marine survey lines by other organizations (numerals: SP number). Middle line: land-shallow water survey lines by other organizations (numerals: CMP number). As for line names, see the explanation in Fig.1. Thick line: faults after Hujita and Kasama (1982, 1983). A: Ashiya Fault. G: Gosukebashi Fault. K: Koyo Fault. O: Otsuki Fault. S: Suwayama Fault. Maps: 1/50,000 scale topographic maps "Kobe" and "Osaka-seihokubu", published by Geographical Survey Institute.

- 第5図 CMP重合測線図.(b) 測線GS-4とGS-5B.
- 黒丸:CMP.数字はCMP番号.白丸:地質調査所海域測線.数字はSP番号.細線:他機関海域測線(数字はSP番号).中線:他機関陸域・ 浅海域測線(数字はCMP番号).測線名についてはFig.1参照.太線:藤田・笠間(1983),藤田・前田(1984)による断層.E:会下山断 層.Na:長田山断層.Nu:布引断層.S:諏訪山断層.W:和田岬断層.基図:国土地理院発行1/50,000地形図,「神戸」,「須磨」を使用.
 Fig. 5 Detailed map for CMP stacking lines of Kobe-Ashiya survey lines. (b)lines GS-4 and GS-5B.
- Solid circle: CMP point. Numerals are CMP number. Open circle: Shot point for marine survey lines conducted by GSJ. Numerals are shot point number. Thin line: marine survey lines by other organizations (numerals: SP number). Middle line: land-shallow water survey lines by other organizations (numerals: CMP number). As for line names, see the explanation in Fig.1. Thick line: faults after Hujita and Kasama(1983)and Hujita and Maeda(1984). E: Egeyama Fault. Na: Nagatayama Fault. Nu: Nunobiki Fault. O: Otsuki Fault. S: Suwayama Fault. W: Wada-misaki Fault. Maps: 1/50,000 scale topographic maps "Kobe" and "Suma", published by Geographical Survey Institute.

- 第6図 東灘ボーリング, 測線GS-NPおよびGS-6における海成粘土層の対比. 大阪層群の海成粘土層Ma-1, Ma 3, Ma 6, Ma 10および基盤を示した. 左側:衣笠・水野(1996)の第2図より(一部修正). 右側: 測線GS-6の一部
- Fig. 6 Correlation of marine clay beds among the Higashi-nada borehole, lines GS-NP and GS-6. Marine clay beds Ma-1, Ma 3, Ma 6, Ma 10, and basement are shown. Left hand side: after Kinugasa and Mizuno (1996), modified and added. Right hand side: part of time section of line GS-6.

海域測線上において著しく卓越したため、GS-5B、GS-6測線に対して以下の速度フィルターを適用した.ただし 速度フィルター適用前にNMO補正・基準面補正をいった ん適用し、速度フィルター適用後これら補正を除去して、 次の処理ステップに移行した.

オペレーター長 :124ms

トレース数 :11トレース

通過帯域 : |V|>3500m/s(V:速度)

(9)デコンボリューション

地層の非弾性や観測系の諸特性により伸長した地震波 形をインパルスに戻すとともに,短周期の多重反射を除 去するためにホワイトニングデコンボリューションを適 用した.テストの結果に基づき以下のパラメターを採用 した.

ゼロオフセット位置

における設計ゲート	: 200-2200ms (GS-2, 4)
	250-2500ms (GS-5B, 6)
オペレーター長	: 240ms (GS-2, 4)
	300ms(GS-5B, 6)
予測距離	:4ms
ホワイトニングファ	クター:5%

(10) CMP編集

各測線の反射点分布図に基づき,受振測線に出来るだ け近づけるように重合測線を設定し,CMP編集を行った. CMP間隔は12.5mであり,標準重合数は48重合以上とな る.なおここで設定した各測線のCMPを第5図に示す. 第5図には併せて藤田・笠間(1982,1983),藤田・前 田(1984)に示されている断層を書き入れてある.

(11) 浮動基準面に対する静補正

基準面は平均海水面(M.S.L.)に設定したが,陸上部 分の測線の標高変化は例えばGS-2測線では450m,GS-4 測線では250mにもおよぶ.絶対値の大きい標高補正値の 適用を避けるため,CMPアンサンブル内の平均標高を浮 動基準面とした.先の改良タイムターム法を用いて推定 した表層速度構造に基づき,浮動基準面まで表層速度を 表層基底層速度で置き換えた場合の補正値を求め,静補 正を実施した.浅海域データについては発震点深度・受 振点深度の標高補正のみを行った.

(12) 速度解析

定速度重合法により速度解析を行ない、測線毎に速度 プロファイルを作成した.構造変化の大きい部分が多い ので解析は500m間隔で行った.なお残差静補正後に再解 析がなされている.速度解析の結果はAppendixに示され ている.

(13) NMO補正

上記速度解析により求められた速度関数を時間空間方 向に内挿し、その速度テーブルを用いてNMO補正を実施 した.同時にNMO補正に伴う初動付近の波形歪の大きな 部分をストレッチミュートにより除去した. (14) ミュート

オフセットの大きいトレースに残る屈折波初動部分を 抑制する目的で、ミュートを適用した.

(15) 振幅調整

ウィンドー長300msのAGCにより振幅を調整した.

(16) 残差静補正

トレース間の相互相関を求め、最大相関値を与えるラ グのCMP内の平均値からのずれを誤差と定義し、その誤 差を統計的に発震点、受振点の補正値に分離して補正を 行なう残差静補正を適用した.

(17) 共通オフセットディップムーブアウト

測線GS-2, GS-4に対し, 空間・時間領域における共通 オフセットDMOを適用した. その目的は第一に, 反射点 ゼロオフセット位置にマッピングし, 傾斜面に沿った反 射点の拡がりを除去して重合効果を高めることであり,

第二に重合速度の傾斜依存性を解消することである.

構成オフセットパネル : 69パネル

(100-3500m, 50m間隔)

: 70°

解析対象の最大傾斜角

解析対象の最小基準速度 : 1400m/s

DMOオペレータの片側最大長 :1600m

なおこの前処理として,DMO適用後のアンサンブルに対して速度解析を実施した.

(18) 共通反射点重合

標準48重合のCMP重合を行なった.この際の規格化は, トレース数の平方根で除することによって行った.オフ セット距離は,GS-2,GS-4においては50-3500mの範囲 を,GS-5B,GS-6においては50-3250mの範囲を用いて重 合を実施した.

(19) FX prediction filter

ランダムノイズを軽減させ記録のS/Nの向上を図る目 的で,FX予測フィルターを適用した.適用パラメターは, 以下のとおりである.

オペレータ長 : 3CMPs (forward) 空間ウィンドー長:50CMPs 時間ウィンドー長:500ms

(20) バンドパスフィルター

CMP重合後およびマイグレーション後のそれぞれの記録に対し、いくつかの周波数レンジをもったバンドパスフィルターを、時間が大きくなるにつれて狭帯域になるようにして適用した。各フィルターの境界は構造変化に対応させながら水平方向にも変化させた。

オペレーター長 : 240ms 周波数通過帯域(GS-2,4) : gate1 8-55Hz (space-variant) gate2 8-50Hz gate3 8-40Hz gate4 8-35Hz 周波数通過帯域(GS-5B,6) : 0.0s 8-55Hz 1.0s 5-55Hz
 2.0s 5-40Hz
 8.0s 5-30Hz

(21) 基準面補正

浮動基準面から基準面への標高補正を実施した.この際,基準面はMSLとし、補正速度としてはCMP内の平均的な表層基底層速度を用いた.

(22) FDマイグレーション

時間断面上の反射点位置を実際の位置に移動させ,回 折波を回折点に復元することを目的として,陰解法によ る45度差分方程式時間マイグレーションを適用した.マ イグレーション速度は速度解析結果を水平方向に平滑化 し,datum plane (MSL)からの速度に変換したものを 使用した.マイグレーション速度はテストの結果,上記 の速度値を85%にしたものを使用した.

(23) 深度変換

時間マイグレーション後の記録に対し、マイグレーション速度(速度解析結果を水平方向に平滑化し、datum planeからの速度に変換)を用いて深度に変換した.深度 領域のサンプリング間隔は4.0mである.

6. 反射法データ処理結果のおもな特徴

速度に関しては、地表(海底)付近の完新世堆積物の 1500m/s程度から徐々に増大し、基盤岩直上で2500-3200 m/s程度となり、典型的な大阪層群の速度分布を示す.基 盤岩速度の推定に関しては花崗岩基盤以深の有意な反射 波が確認できないために困難である.陸域測線の花崗岩 露出部では、表層基底層の速度が求められているが、そ の値は典型的な花崗岩に比較すると小さい値となってい る.GS-4では4000-4200m/s程度とやや小さく、GS-2で は3500-3800m/s程度とかなり小さい.

花崗岩基盤からの反射波は強振幅を伴い,5-20Hzの低 周波成分が卓越する.したがって10-40Hzの周波数成分を 持つ上位の大阪層群反射波とは非常に対照的であり,同 定は比較的に容易である.特に,港湾域を東西に横断す る測線GS-6では,最大オフセット距離を3000m以上に取 ることが可能であったため,海上ストリーマー測線と比 較して基盤反射面の把握が容易である.

東灘(第5図(a)の黒大丸)で1500mのオールコアの 掘削が行われ、さらにVSP、反射法探査が同時に実施さ れている(衣笠・水野、1996;小林・他、1996).第1図 や第5図(a)に見られるように、陸上測線の一部を除き、 関係諸機関の測線はすべてどこかで交差するように設定 されているため、東灘ボーリングと接続されている測線 GS-NPを介して、これらの測線において特徴的な反射面 を追跡することができる.大阪層群の海成粘土層のうち、 Ma-1、Ma 3、Ma 6、Ma 10はその直近に振幅の大きい 反射面が存在していることにより、各測線にわたって追 跡可能である.第9図に基盤と上記海成粘土層の位置も 示した.また第6図に対比の根拠となった測線GS-NPと 測線GS-6の対比図を示す.

以下にそれぞれの測線のおもな特徴を記す. なおここ では横倉・他(1998)で報告した海域測線の一部も含め て議論する.また以下では「逆断層」という言葉を多用 し,かつFig. 9ではそれを示す矢印を付してある.しかし 横倉・他(1998)で述べたように,これは断面での見か けの形態を示しているに過ぎない.当地域の広域応力場 を考慮すると,実際には横ずれ成分が卓越しているもの と考えられる.

測線GS-2

第7図 (a), 第8図 (a) にGS-2の時間マイグレーシ ョン断面,深度断面をそれぞれ示す.北端の奥池町から CMP.260付近の芦屋断層までが、花崗岩の露出部である. 芦屋断層はCMP.260付近で低角の逆断層として現れてい る. 六甲花崗岩内では低角の断層面に沿った反射波列は 確認できるものの, 散乱波が卓越している. CMP.266-360 の往復走時0.3-0.4s (深度200-400m)の部分が基盤上面と 思われる. CMP.360-380のJRや国道2号線あたりでこの 基盤は突然切れて見えなくなり、CMP.430付近の阪神高 速3号線直下の往復走時1.3s (深度1500m) 付近からまた 姿を現す.この間の大阪層群は海側に比べ急傾斜構造を 呈し、その傾きは深部ほど大きくなり最大で20°に達する など、幅1km以上の撓曲帯を形成している。またこの間 の大阪層群の反射波列がいくつかの断層によって区切ら れていることも見て取れる.この間の基盤ははっきりと しないが、これらの断層により階段上に落ち込んでいる 可能性がある.しかし堆積層内に見える個々の断層が重 要なのではなく、全体として大きな破砕帯を形作ってい るということが重要である. CMP.360-430の部分はちょ うど甲陽断層延長線上にある.これについては後述する. CMP.430以南では基盤は緩やかに深くなって行き、海域 測線GS-2Mの南半部で約2.0s(約2200m)まで達する(横 倉・他, 1998). その上位の大阪層群も緩やかに層厚を増 していく. 海成粘土層Ma-1, Ma 3, Ma 6, Ma 10はGS -2の南端でそれぞれ0.75s (650m), 0.5s (450m), 0.4s (300 m), 0.2s (150m) 付近にあり, 北に向かい徐々に浅くな り、CMP.400付近で0.5s (450m)、0.3s (250m)、0.2s (180 m), 0.1s (70m) 付近に達する、しかしこれ以北では断層 等による反射波の乱れにより、対比は困難である.第9 図(a)にGS-2の解釈図を示す.当測線の市街地部と遠藤 ・他(1996b)の測線とはほぼ同一地点を通っている。し かしこれらのCMP間隔ならびに探査深度には大きな違い があることに注意されたい.

測線GS-4

第7図(b), 第8図(b)にGS-4の時間マイグレーシ

CDP NO. - FLOATING DATUM

Fig. 7 Time sections after migration. (c)line GS-5B.

第8図 深度断面. (a) 測線GS-2. Fig. 8 Depth sections. (a)line GS-2.

CDP NO.

- FLOATING DATUM

Depth (m)

CDP NO.

第8図 深度断面. (b) 測線GS-4. Fig. 8 Depth sections. (b)line GS-4.

第8図 深度断面. (c) 測線GS-5B. Fig. 8 Depth sections. (c)line GS-5B.

第8図 深度断面. (d) 測線GS-6. Fig. 8 Depth sections. (d)line GS-6.

第9図 解釈図(深度断面)(a)測線GS-2.

断層,基盤,大阪層群の海成粘土層Ma-1, Ma 3, Ma 6, Ma 10などを示した.

Fig. 9 Interpretation results for depth sections. (a)lines GS-2.

Faults, basement, marine clay beds Ma-1, Ma 3, Ma 6, Ma 10 in the Osaka Group, and so on , are shown.

第9図 解釈図(深度断面)(b) 測線GS-4およびGS-5B.

断層, 基盤, 大阪層群の海成粘土層Ma-1, Ma 3, Ma 6, Ma 10などを示した.

Fig. 9 Interpretation results for depth sections. (b)lines GS-4 and GS-5B.

Faults, basement, marine clay beds Ma-1, Ma 3, Ma 6, Ma 10 in the Osaka Group, and so on , are shown.

第9図 解釈図(深度断面)(c)測線GS-6.

断層, 基盤, 大阪層群の海成粘土層Ma-1, Ma 3, Ma 6, Ma 10などを示した.

Fig. 9 Interpretation results for depth sections. (c)line GS-6. Faults, basement, marine clay beds Ma-1, Ma 3, Ma 6,Ma 10 in the Osaka Group, and so on , are shown.

ョン断面,深度断面をそれぞれ示す.GS-4では,JR神戸 駅と大倉山の間(CMP.320付近)に低角の逆断層が2つ 認められる.これは会下山断層(CMP.260付近)と対に なり、大倉山周辺を隆起させていると解釈できる. これ らはすべて活断層であると考えられる. CMP.320付近の 断層のうち,北側の低角逆断層は位置的に鈴木・他(1996), 渡辺・他(1996)の元町撓曲に対応している.以下では 横倉・他(1996b)と同様、これを"元町断層"と仮称す る.会下山断層-元町断層間では、大阪層群の成層構造 は海側に比べて整然としてはいないが、北に向って急傾 斜で上昇しているのが分る. 会下山断層から長田山断層 (CMP.220付近) に到る区間では大阪層群の成層構造は 見られない、これは、破砕されているためかもしれない し、あるいは散乱波などにより構造が隠されているため かもしれない. 元町断層-長田山断層間の形態は測線GS -2の芦屋断層南側の構造と類似している。あたかも両側 からの圧縮により中間部が上に突き上げているかのよう な構造をしている. ただし長田山断層の傾斜は芦屋断層 に比してやや高角である.長田山断層の部分は散乱波な どのため断層位置は明瞭とはいえないが、散乱波列の乱 れる部分を断層と推定した.その北方の布引断層も判然 とはしないが、CMP.150付近を境に浅部の反射波の様相 が異なっており、ここが布引断層に相当すると思われる。 基盤は神戸港付近で約1.2s (1500m) から北に向かうにつ れ,断層に切られながら浅くなり,会下山断層直下周辺 の約0.8s (1300m) まで追跡できる. 会下山断層-長田山 断層間の基盤位置がどの反射イベントに対応するかを判 断するのはむずかしいが、村田・他(1996)のブーゲー 異常の1次微分値・2次微分値の分布を参照すると、長 田山断層に大きな基盤落差を想定しなければならない. このことから約0.7~0.8s (1200から1300m) 付近の不明瞭 な反射面が基盤に対応するものと考えられる.また大阪 層群の海成粘土層は神戸港から元町断層付近までしか追 跡できない. Ma-1, Ma 3, Ma 6は神戸港でそれぞれ0. 5s (500m), 0.35s (370m), 0.2s (200m) 程度, 元町断層 付近で0.4s (400m), 0.25s (270m), 0.2s (150m) 程度で ある. なおMa10は浅すぎるため, 断面上でははっきりと しない. 第9図 (b) にGS-4, GS-5Bを接続した解釈図 を示す.

測線GS-5B

第7図(c), 第8図(c)にGS-5Bの時間マイグレー ション断面,深度断面をそれぞれ示す. 横倉・他(1998) で述べたように, GS-5Bの南方海上では大きな基盤の起 伏が存在する例えばGS-5B約3km南方の大阪湾断層,ま た測線GS-5MとGS-7の交点付近の基盤の盛り上がりなど がある. しかしGS-5Bでは,基盤はほぼ1.6s(1800m)程 度の深度となる. 測線5BのCMP.60, CMP.100, CMP.140 付近に断層が存在する. またGS-5Bでは反射波が複雑で,

しかも基盤が二重になっており、GS-4から続く基盤と海 側から続く基盤の両者を追跡することが可能である.GS -5Bに見られる断層はそれぞれ独立した断層と考えても良 いが、ひとつの断層と考えることも可能である、海上保 安庁水路部(1995)や岩淵他(1995)によれば、大阪湾 断層の1分岐を和田岬方面に引いている。測線GS-5Bと 和田岬断層がほぼ平行にならび、いくつかの地点で互い に交差する、あるいは交差しないまでも非常に近接する と考えると、これらの断層形態は良く説明される. また 基盤の二重性も説明できる. すなわち測線と断層が近接 していると、測線GS-11においても見られた(横倉・他, 1998)ように、断層の上盤側と下盤側の基盤面ならびに その他の反射面が同時に断面上に現れてしまうからであ る.和田岬断層のここでの基盤落差は約0.3s(約400-500 m程度) である. Ma-1, Ma 3, Ma 6, Ma 10はGS-5 B南端付近でそれぞれ0.75s (700m), 0.55s (500m), 0.4 s (350m), 0.2s (150m) 程度に, 北端付近で0.5s (430m), 0.37s (330m), 0.25s (200m), 0.2s (80m) 程度にある. 第9図(b)にGS-4, GS-5Bを接続した解釈図を示す.

測線GS-6

第7図(d), 第8図(d)にGS-6の時間マイグレーシ ョン断面, 深度断面をそれぞれ示す. GS-5の説明のよう に,和田岬断層が神戸港内深くまで入り込んでいるとす ると、CMP.25付近の断層は和田岬断層の北方延長に相当 すると考えられる.ただし後述するように、この周辺で 断層とGS-6は大きく斜交しているので、その位置・基盤 の落差はそれほど正確ではない可能性がある。この測線 では、基盤およびその上位の大阪層群とも、比較的に大 きな凹凸はない、しかし基盤の凹凸の上で大阪層群が緩 い撓曲を示しており、いくつかの部分では断層となって いる.考察で述べるように、北方の六甲山塊の断層群あ るいは南方の大阪湾断層の分岐などとの関連も視野に入 れて考えるべきであろう. 基盤はほぼ1.5s (1500-1600m) 程度にある.また海成粘土層もほぼ一定の深度で、Ma-1, Ma 3, Ma 6, Ma 10はそれぞれ0.8s (700m), 0.55 s (450m), 0.4s (350m), 0.25s (180m) 程度である. 第 9図(c)にGS-6の解釈図を示す.

7.考察

以上の結果に基づいて、当地域におけるいくつかの問 題について、ここで考察を加える.

7.1 大阪湾断層の北方分岐断層について

横倉・他(1998)で簡単に述べた大阪湾断層の北方分 岐の3断層について、ここで少し詳しく述べておこう. 既に推定されている断層名を用いると、西端の分岐は和 田岬断層に、中央の分岐は摩耶断層に相当する.東端の 分岐は名前がないのでここでは"六甲アイランド断層" と仮称する.

7.1.1 和田岬断層

和田岬周辺において存在が推定されてきた和田岬断層 に関しては、大阪湾側へも神戸港側へも続いている. 横 倉・他 (1998) で述べたように、 測線GS-7, GS-5Mにお ける断層位置と、GS-5Mの基盤盛り上がり部から考える と、和田岬断層はGS-7との交点付近で急激に測線GS-5M に近接したのち、測線GS-5とほぼ平行に北方へ向うこと が推定される、その延長上に、兵庫県の実施した測線HG -2-2(横田・他, 1997)のCMP.120付近の断層が存在す る. またその近傍のGS-5BのCMP.40付近(神戸港フェリ ーターミナル周辺) にも断層が存在する. これらを接続 すると、この周辺でその向きを北東方向に変えるように 見える.和田岬断層は、ボーリング資料(藤田・前田、 1984)からポートターミナル駅周辺を通ることが予想さ れていた. その延長上のHG-3-1のCMP.1050~1150付近 (生田川河口付近)に(横田・他, 1997;藤田, 1996; 横倉・他, 1996a), 測線GS-6西端部周辺にも断層が存在 することから、これらは連続していると解釈できる. ま たHG-4-1のCMP.640付近にも断層が存在する(横田・他, 1997) ことから、更に北東部へと続く可能性がある.以 上は基盤落差の大きい部分を追跡した場合であるが、こ れ以外にも生田川河口付近から、遠藤・他(1996c)の脇 浜測線のJR付近の断層, HG-4-1のCMP.840付近の断層 を通り、さらに北北東の五助橋断層方向に続く分岐も考 えられる.

7.1.2 摩耶断層

摩耶断層は藤田・前田(1984)によれば、ポートアイ ランド東方の神戸信号所付近を通ると推定されている. 摩耶断層を南方に追跡すると、GS-7のSP.650付近に(横 倉・他、1998)、またさらに南方の神戸空港想定地中央部 から同南方沖へと続き(神戸市、1995)、海域の大阪湾断 層延長部へと達する.北方へは、HG-3-1のCMP.430へと 続く(横田・他、1997).さらにHG-4-1のCMP.160付近 を通り、GS-6のCMP.400付近に達すると考えられる.た だしこれらの鉛直落差は小さい.また顕著な断層構造で はないが、さらに北東のGS-NPのCMP.80付近、HG-5の CMP.160付近にも基盤形状の盛り上がりや変曲点が存在 し、摩耶断層が連続している可能性がある.

7.1.3 六甲アイランド断層

第3の分岐は、神戸空港想定地中央部付近からGS-7の SP.730付近を通り、北上する.ここからHG-4-2MのSP. 740付近、HG-3-1のCMP.160付近を経て、北東へ方向を 変え、六甲アイランドへと達すると考えられる.ただし これらの鉛直落差も小さい.この北東方向には、GS-NP のCMP.240付近とGS-6のCMP.510付近に基盤の落差ある いは基盤形状の異常が存在する.HG-3-1とGS-NPの間 の六甲アイランドに断層が伏在しているという直接的な 証拠はないが,香川・他(1995)の兵庫県南部地震時の 沈下分布がその間接的な証拠を提示するかも知れない. これによれば,護岸付近を除く島内部で沈下の大きい部 分は,まさにここで想定した六甲アイランド断層の近傍 に分布している.したがって六甲アイランド断層が六甲 アイランド下に伏在している可能性がある.

これらの連続性を図示したものが第10図である.本来 ならば、断層をその傾きに沿って地表まで投影した位置 を図示する方が地表付近のデータとの比較が容易である. しかしそれにはかなりの任意性が伴う場合もあるため、 第10図では基盤における断層位置を示した.他の地表付 近のデータと比較するときには、このことを念頭におく 必要がある.上記の六甲アイランド断層の場合、断層面 はほぼ垂直であると考えられるので、問題はない.また 断層は多かれ少なかれある幅を有している.例えば大阪 湾断層は地下では1kmにおよぶ破砕帯を、地表(海底) では2km以上もの撓曲帯をともなっている(横倉・ほか、 1998).図中の線が2重になっているところが破砕帯に相 当する.その他の部分も本来「線」で表せるものではな いが、特に広いところを除きここでは便宜上「線」とし て示している.

第10図に示した断層以外にも、神戸港内のいくつかの 測線において基盤の落差・形状の異常を示唆する部分が あり、これらも北東方向に連続している可能性がある. 神戸港より北では、これらの断層の基盤の垂直変位量は 小さくなる.また上位の大阪層群へ与える擾乱の程度も 小さく、この部分が活断層であるかどうかは確言できな い.反射法では、基盤の垂直方向の変位量は良く分かる が、水平方向の変位量は一般に分からない.しかし当地 域周辺では横倉・他(1998)でも述べたように横ずれ成 分が卓越すると考えられるため、垂直変位量が小さいこ とがただちに活動度の低いことを意味するわけではない 可能性がある.

7.2 六甲山塊の断層の南方延長問題

測線GS-6の六甲アイランド北方部分では、上位の大阪 層群にゆるい撓曲構造を起こしている100m前後の基盤の 落差が存在する。上記のようにこれらは南方の大阪湾断 層の延長部と連続している可能性があり、その走向はど れも北東-南西方向である。それではこれらと北方の六 甲山塊の断層群との関係はどうなっているのだろうか。 次に神戸・芦屋の市街地下の部分での断層の連続性につ いて考える。

第11図に六甲山塊の断層と大阪湾側から続く断層とを 図示した.測線GS-2のところで述べたように,CMP.360 付近から始まる破砕帯はちょうど甲陽断層の延長線上に

「大阪西北部」,「大阪西南部」を使用.

Fig. 10 Presumed distribution map of faults in the Kobe-Ashiya area. Tics: subsiding side of a fault. W: Wada-misaki Fault. M: Maya Fault.
 R: Rokko Island Fault. Maps: 1/50,000 scale topographic maps "Kobe", "Suma", "Osaka-seihokubu" and "Osaka-seinanbu", published by Geographical Survey Institute.

A: 芦屋断層,G: 五助橋断層,K:甲陽断層,M:摩耶断層,Nu: 布引断層,O: 大月断層,R: 六甲アイランド断層,S: 諏訪山断層,W: 和田岬断層,F.Z.: GS-2の破砕帯,基図: 地質調査所発行1/50,000地質図,「神戸」および「大阪西北部」(藤田・笠間,1982,1983) を使用.

Fig. 11 Faults in the Rokko Mountains and in the sea side.

A: Ashiya Fault. G: Gosukebashi Fault. K: Koyo Fault. M: Maya Fault. Nu: Nunobiki Fault. O: Otsuki Fault. R: Rokko Island Fault. S: Suwayama Fault. W: Wada-misaki Fault. F.Z.: Fracture zone of GS-2. Maps: 1/50,000 scale geological maps "Kobe" and "Osaka-seihokubu" published by Geologi-cal Survey of Japan (Hujita and Kasama: 1982, 1983).

ある.単に延長線上にあるというだけでは,実際に連続 しているかどうかは明らかではないが,連続性を示唆す るいくつかの観測データが存在する.一つは宮田・前田 (1996,1998),苦瓜・宮田(1997)の電柱やマンホー ルの変形・破壊の北東-南西方向のトレンドである.こ れらのトレンドは北方の甲陽断層・芦屋断層・五助橋断 層などの延長線上に対応している.もう一つは藤谷(1996) の地表ガンマ線強度分布に基づくデータである.ガンマ 線の強異常を結ぶ線がまさに甲陽断層・芦屋断層などの 延長線上に分布している.また遠藤・他(1996a)によれ ば,主要なビル・高架等の損壊分布がやはりこれら六甲 山塊の断層の延長方向に並ぶ.これらのことは,六甲山 塊の断層群の南方延長線上に何らかの断層あるいは断裂 構造の存在を示唆している.

先に述べた和田岬断層および分岐断層の北東延長上に は、宮田・前田(1996, 1998)の電柱・マンホールの変 形の大きい部分や、遠藤・他(1996a)の主要ビル・高架 等の損壊箇所のデータのトレンドがある.摩耶断層の北 東延長には、宮田・前田(1996, 1998)、遠藤・他(1996 a)、藤谷(1996)のデータのトレンドが存在する.六甲 アイランド断層の延長部には比較すべきデータが少ない が、藤谷(1996)の最も南方のトレンドが対応するかも しれない.言い換えれば、和田岬断層および分岐断層は 五助橋断層からその南方にある無名断層に到る部分に、 摩耶断層は、甲陽断層およびその南方地下に存在する破 砕帯の北端付近に、六甲アイランド断層は破砕帯内の断 層のどれかに、それぞれ連続する可能性があるというこ とである.これについては今後詳しい検討が必要であろ う.

ここで述べたことは断層を「線」として扱った場合で ある. 測線GS-2に見られる破砕帯という観点にたてば, 後述のように, 摩耶断層・六甲アイランド断層近傍は甲 陽断層から続く幅広い破砕帯そのものに相当すると言っ ても良いであろう. また和田岬断層・その分岐断層周辺 は全体として五助橋断層系の作る破砕帯に相当するもの と考えることもできるかもしれない.

7.3 地表における断層・撓曲と反射断面の対応

鈴木・他(1996),渡辺・他(1996)や国土地理院(1996 a, b)によれば、地表にいくつかの撓曲構造の存在が指 摘されている.これらのうち測線GS-2は元町撓曲と交差 している.また測線GS-4の近傍には西宮撓曲が存在して いる.既存の断層やこれらの位置関係を明確にするため、 第12図を作成した.

第12図(a)には測線GS-2の一部と甲陽断層・西宮撓曲 を示した.CMP.360~460付近の表層部については,分解 能の点から幾通りかの解釈が可能である.しかし現時点 でもっとも妥当な解釈を示した.表層にはCMP.360付近 の断層から派生したいくつかの断層が存在し,ほぼ地表 付近に達しているように見える。また大局的に見ると西 宮撓曲は甲陽断層の南東側約1kmにほぼ平行にまとわり つくように分布し、両者を素直に延長すると測線GS-2の CMP.360付近, CMP.430付近にそれぞれ達する. すなわ ち甲陽断層はGS-2の最も主要な断層帯の北端付近に,ま た西宮撓曲は表層の低角な分岐断層の南端に対応するも のと解釈できる。すなわち重要な意味を持つものは、甲 陽断層およびその南方地下に存在する大きな破砕帯であ り、西宮撓曲(あるいは断層)はこの測線周辺では表層 に存在する小規模な派生断層に過ぎないということであ る. 逆に言うと,藤田・笠間(1982)に図示された甲陽 断層,鈴木・ほか(1996)の西宮撓曲の下にも測線GS-2 に見られるものと同様な大破砕帯が存在しており、その 地表への小さな現れが甲陽断層・西宮撓曲に相当すると 言えそうである. さらに南西延長方向にある測線GS-6の 摩耶断層・六甲アイランド断層を含むCMP.400~600付近 の基盤の断層群も、基盤の落差は小さいが全体として破 砕帯を形成していると考えるべきであろう.

第12図 (b) には測線GS-4の一部と元町撓曲を示した. すでに述べたが, CMP.260, CMP.320付近の断層はそれ ぞれ会下山断層,元町撓曲の位置に一致する.大局的に 見れば,これら断層も長田山断層あるいは布引断層など の六甲南縁を限る断層へと収れんするような形態を呈し ている.甲陽断層周辺と同様に,ここでも全体として大 きな破砕帯あるいは断層帯となっていると考えることも できよう.

これらの断層のような軟弱な厚い堆積物中に延びてい る断層は、地下数~十数kmで起こる地震活動(断層すべ り)を常に記憶あるいは記録しているものなのだろうか? 例えば地下深部のあるところでほぼ一定の再来周期で地 震が起こったとしても、あるときにはAという断層を通じ て地表にその痕跡を残し、その前の活動のときは近傍の B断層を通じて地表に痕跡を残したかもしれない.あるい は別の複数の断層に痕跡を残したかもしれないし、場合 によっては地表に痕跡を生じなかったかもしれない. こ れまでの活断層調査の中で見出されているように、地下 深部の活動と地表での痕跡が1対1に対応する活断層が 数多く存在することは事実である.しかし堆積物の厚い 地域での活断層にそのことが成り立つかどうかは疑問で ある.こういった地域での地震(断層)活動の評価には, 近隣のすべての活断層が地下でどのように収れんしてい くのか、あるいは相互の関連はどうなのかを知り、個々 の活断層の活動履歴を統合することが必要である。例え ば、横倉・他(1998)で大阪湾断層のいくつかの地点の 過去100万年間の平均変位速度(垂直成分)が湾中央部で 約0.5~0.6m/kyであるが、北部で3つに分岐しながら変 位速度がだんだん小さくなることを示した. しかし測線 GS-7上の3分岐断層(Fig.10参照)の変位速度をすべて を合わせると、中央部とほぼ同等の0.5m/kyという値を持

第12図 地表の撓曲と探査断面との比較(a) 測線GS-2.

A: 芦屋断層, K: 甲陽断層 (藤田・笠間, 1982). N: 西宮撓曲. 国土地理院 (1996a) を使用. Fig.12 Comparison between flexures found in the earth's surface and seismic sections. (a) line GS-2. A: Ashiya Fault, K: Koyo Fault after Hujita and Kasama(1982). N: Nishinomiya Flexure. Map: Geographical Survey Institute(1996a).

第12図 地表の撓曲と探査断面との比較(b)測線GS-4.

E:会下山断層. M:元町撓曲. Na:長田山断層. Nu:布引断層. 国土地理院(1996b)を使用.
 Fig.12 Comparison between flexures found in the earth's surface and seismic sections. (b)line GS-4.
 E: Egeyama Fault, M: Motomachi Flexure, Na: Nagatayama Fault, and Nu: Nunobiki Fault. Map: Geographical Survey Institute(1996b).

っている.つまり大阪湾断層系としては,垂直変位速度 0.5m/kyという活動度を有する区域はもっと北部まで及ん でいるということを意味している.このように,すべて の関連断層を統合することによってはじめて,地下深部 の地震活動の詳細,たとえば断層系としての変位速度, 再来周期,単位変位量などの評価が可能になるのではな いだろうか.

7.4 「震災の帯」について

兵庫県南部地震に伴い,神戸市から西宮市にかけて幅 1~2kmほどの,「震災の帯」と呼ばれる特に被害の著 しい地域が出現した.神戸市須磨区から中央区にかけて は北東-南西方向,中央区から西宮市西部にかけては東 西もしくは東北東-西南西方向のトレンドを有している. この原因について多くの研究者が様々なデータに基づき 説明を試みてきた.それらを大きく分けると,(1)こ の「帯」の地下にこれに沿う形で未知の地震断層が存在 する(例えば,嶋本(1995),嶋本・他(1996),澤・ 他(1996),渡辺・他(1996)など),(2)基盤構造の 形状等により地震波が増幅された(例えば,入倉(1995 a,b),中川(1996)など),という2種類に分類する ことができる.

このほか宮田・前田 (1996, 1998), 苦瓜・宮田 (1997) は、神戸市街直下の北東-南西方向の未知の断層と被害 との関連を示唆している.また地震直後に浅層反射法を 行った遠藤・他 (1996d) は、伏在断層に挟まれた部分の 直上が「震災の帯」に対応している可能性を示唆してい る.

本論文で述べた測線ならびに兵庫県測線(横田・他、 1997)を総合すると、「震災の帯」そのものに沿う明瞭 な断層は存在していないと考えられる。神戸市周辺の断 層構造の最も顕著なものは、「震災の帯」の1~2km北 側の六甲山塊の南縁に存在する.基盤形状は、基本的に は六甲山塊の南縁で1000m以上もの基盤の落ち込みがあり、 その断層から南方へは比較的に緩やかに海側に傾斜する. また推定される断層あるいは断層(破砕)帯を連ねた線 は、前述のようにむしろ北東-南西方向を示している. つまり「震災の帯」の下では基本的には北東-南西方向 のトレンドである可能性がある.ただしそれも「帯」直 下では基盤のほんの小さなずれないし凹凸を示すに過ぎ ない.これらから言えることは、「震災の帯」は少なく ともその直下に平行して伏在する断層によるものではな いと考えられる. 一部には, 遠藤・他 (1996d) の言うよ うに、伏在断層に挟まれた部分の被害が著しいところも 存在する。例えば芦屋川沿いではそのように見える。し かし「震災の帯」の全域にわたってそうであるという証 拠はないと考えられる.

石川・他(1995), 石川(1995)による詳細な深度7 の分布をみると, 深度7のうちでも特に被害の大きい部 分(超震度7)は甲陽断層, 芦屋断層, 五助橋断層など といった北東-南西方向の断層あるいは断層系の延長線 上にあるように見える.また前述の遠藤・他(1996a)の 主要ビル・高架等の損壊箇所の分布,宮田・前田(1996, 1998), 苦瓜・前田(1997)の電柱のずれの分布・マン ホールの飛びの量の分布などにも同様の方向のトレンド が見える.つまり,神戸市周辺の地下に北東-南西方向 のトレンドを有する断層・断層帯,あるいは基盤のある 種の境界が存在する可能性が高い.また市街地直下での これらに沿う基盤の落差は神戸港沖に比してきわめて小 さい.現在のところ,これらが活断層であるのか,ある いは今回の地震時に活動したかどうかは明らかではない.

これらを総合すると、「震災の帯」は基本的には基盤 形状による増幅作用の結果であるが、北東-南西方向の 断層・断層帯あるいはある種の境界によってブロック化 した基盤の差動によって、ブロック境界付近がさらに大 きな被害を受けたという可能性がある、というものであ ると考えられる.

8. まとめ

断面上には多くの断層が認められるが、これら断層に ついて簡単にまとめると以下のようになる.

- ・ 芦屋断層は低角の逆断層である.
- ・芦屋川沿いの阪急神戸線-芦屋川河口間には幅の広い 破砕帯が存在する.この破砕帯に数本の断層が認めら れる.この破砕帯の北端が甲陽断層の延長に相当する.
- ・西宮撓曲は甲陽断層から派生した地表付近の小規模な
 低角逆断層に相当するものと考えられる。
- JR神戸駅と大倉山の間に低角の逆断層が二つ認められる.これは会下山断層と対になり、大倉山周辺を隆起させている.この低角逆断層のひとつは"元町断層(仮称)"で、元町椿曲の位置に一致する.
- ・大阪湾断層は神戸港の南方で和田岬断層・摩耶断層・ "六甲アイランド断層(仮称)"に分岐する.
- ・和田岬断層は和田岬南方約4kmの地点で大阪湾断層から分岐して神戸港内を北進し、やや東へ向きを変えながらポートターミナル周辺を通り、その主要部は生田川河口付近から更に北東へと続くと思われる。また生田川河口付近から分岐する断層も考えられ、これは北北東の五助橋断層方向へと続く可能性がある。
- ・摩耶断層はポートアイランド南方約2kmの地点から北 方へ分岐し、ポートアイランドの東端付近を通り、摩 耶埠頭沖で東北東へ向きを変える.さらに六甲大橋周 辺を通り、北東へと向きを変えて続く.
- ・六甲アイランド断層はポートアイランド南東端沖で北 方へ向きを変え、また六甲アイランド南西沖で再び北 東へ向かい、六甲アイランドを横断している可能性が ある。

- ・上記の大阪湾断層の北方分岐は、六甲山塊の既存の断 層群とおそらく連続しており、これらは神戸・芦屋市 街地下の基盤のブロック境界となっている可能性があ る.
- ・「震災の帯」の下には、「震災の帯」に平行するよう な断層は存在していない、すなわち「震災の帯」の第 一義的な原因は基盤構造によるある種の地震波の増幅 によるものと考えられる、しかし「震災の帯」のなか には、北東-南西方向の断層あるいはある種の境界の 影響が認められる。

謝辞 本調査を行うにあたって,調査全体に関連して兵 庫県阪神・淡路大震災復興本部土木部土木復興局,陸域 調査に関連して神戸市震災復興本部総括局,芦屋市建設 部,兵庫県神戸警察署,兵庫県芦屋警察署,有限会社芦 有開発,浅海域調査に関連して神戸市港湾局管理部,第 5管区海上保安本部水路部監理課,神戸海上保安部航行 安全課,神戸港航行安全情報センター,神戸旅客船協会, 神戸フェリー協議会,兵庫県漁業協同組合連合会,など の多くの機関・団体・会社のご協力を得た.また建設省 土木研究所主任研究官稲崎富士氏(地質調査所地殻物理 部併任)のきめの細かい査読により,原稿の不備が大い に改善された.ここに心からの感謝の意を表する.

文 献

- 遠藤秀典・村田泰章・ト部厚志(1996a)平成7年度 兵庫県南部地震による神戸市・芦屋市・西宮市 における家屋の被害分布,地調月報,47,67-77.
- 遠藤秀典・渡辺史郎・牧野雅彦・卜部厚志・阿蘇弘 生・是石康則・江尻寿延(1996b)兵庫県芦屋市 における芦屋川測線の反射法弾性波探査.地調 月報,47,79-94.
- 遠藤秀典・渡辺史郎・牧野雅彦・横田 裕・野田利 ー・香川敏幸(1996c)兵庫県神戸市における脇 浜第2測線の反射法弾性波探査.地調月報,47, 95-108.
- 遠藤秀典・渡辺史郎・牧野雅彦・村田泰章・渡辺和 明・卜部厚志 (1996d) 1995年兵庫県南部地震に よる阪神地域の被害と伏在断層との関係.第四 紀研究,35,165-178.
- 藤谷達也(1996)神戸東部市街地の地表ガンマ線探 査,地震,49,285-293.
- Gravity Rsearch Group in Southwest Japan (1994) A Bouguer gravity map in central Japan. Rept. Geol. Surv. Japan, no.280, 29-36 and an appended map.
- 藤田和夫(1996)阪神地域活断層調査について.大 阪湾の深部構造を考える《資料集》,1-10.

- 藤田和夫・笠間太郎(1982)大阪西北部地域の地質. 地域地質研究報告(5万分の1図幅),地質調査 所,112p.
- 藤田和夫・笠間太郎(1983)神戸地域の地質.地域 地質研究報告(5万分の1図幅),地質調査所, 115p.
- 藤田和夫・前田保夫(1984)須磨地域の地質.地域 地質研究報告(5万分の1図幅),地質調査所, 101p.
- 井川 猛・川中 卓・清水信之・阿部 進・横倉隆 伸・加野直巳・山口和雄・宮崎光旗(1996)1995 年兵庫県南部地震震源域の深部反射法調査につ いて、物理探査、49、420-434.
- 入倉孝次郎(1995a) 兵庫県南部地震による強震動. 月刊地球, 号外no.13, 54-62.
- 入倉孝次郎(1995b) 兵庫県南部地震の震源断層, 強 震動と基盤構造.物理探査, 48, 463-489.
- 石川浩次(1995) 兵庫県南部地震による建造物の被 害と地形・地質および地盤条件.地質ニュース, no.491, 17-23.
- 石川浩次・溝口昭二・大鹿明文(1995) 兵庫県南部 地震の神戸の地盤と被災状況調査.応用地質, 36, 62-80.
- 岩淵 洋・春日 茂・穀田昇一(1995) 兵庫県南部 地震による海底変動の調査. 地質ニュース, no. 490, 44-49.
- 香川 淳・楡井 久・楠田 隆・佐藤賢司・古野邦 雄・酒井 豊・香村一夫・風岡 修・森崎正昭 (1995) 1995年兵庫県南部地震における液状化 ・流動化現象-人工島の液状化現象(1)-. 第5回環境地質学シンポジウム論文集, 13-18.
- 海上保安庁水路部(1995)明石海峡及び大阪湾.海 底地質構造図,1/100,000.
- 活断層研究会(1991)新編 日本の活断層-分布図 と資料-.東京大学出版会,437p.
- 衣笠善博・水野清秀(1996)神戸地域の地下地質. 兵庫県南部地震の地質学的背景.第11回地質調 査所研究講演会資料,77-80.
- 小林啓美・衣笠善博・長谷川明生・井川 猛・大西 正純・溝市茂治(1996)神戸市東灘区における 反射法探査.日本地震学会講演予稿集1996年度 秋季大会,A38.
- 神戸市(1995)神戸空港に係わる地震対策調査委員 会報告書.78p.
- 国土地理院(1996a)1:25,000都市圏活断層図,VIII 近畿圏中部地区,1.大阪西北部.(財)日本地 図センター.
- 国土地理院(1996b)1:25,000都市圏活断層図,IX近 畿圏西部地区,1.神戸.(財)日本地図センタ

-.

- 駒澤正夫・太田陽一・渋谷昭栄・熊井 基・村上 稔(1996)大阪湾海底重力調査とその構造.物 理探査,49,459-473.
- 宮田隆夫・前田保夫(1996)地盤変状からの潜在活 断層.日本地質学会環境地質研究委員会編"阪 神・淡路大震災 都市直下型地震と地質環境特 性",地質環境と地球環境シリーズ3,東海大学 出版会,東京,135-146.
- 宮田隆夫・前田保夫(1998)1995年兵庫県南部地震 による神戸市街地の地盤変状.地質学論集, no. 51, 89-101.
- 村田泰章・牧野雅彦・遠藤秀典・渡辺和明・渡辺史 郎・卜部厚志(1996)神戸市・芦屋市・西宮市 における精密重力探査(1)-重力異常と伏在 断層-.地調月報,47,109-132.
- 中川康一(1996)深部地下構造と被害.日本地質学 会環境地質研究委員会編"阪神・淡路大震災 都市直下型地震と地質環境特性",地質環境と地 球環境シリーズ3,東海大学出版会,東京,257 -269.
- 苦瓜泰秀・宮田隆夫(1997)汚水桝の変位からみた 兵庫県南部地震による神戸市東部の地盤変状. 構造地質,42,63-67.
- 澤祥・池田安隆・東郷政美・加藤茂弘・限元 集 (1996) 地震動による墓石の移動と伏在断層の 挙動.日本地質学会環境地質研究委員会編"阪 神・淡路大震災 都市直下型地震と地質環境特 性",地質環境と地球環境シリーズ3,東海大学 出版会,東京,147-156.
- 嶋本利彦(1995)"震災の帯"の不思議. 科学, 65, 195-198.

- 嶋本利彦・川本英子・堤 昭人・大友幸子(1996) 震災の帯と活断層-伏在地震断層説は甦るか?. 日本地質学会環境地質研究委員会編"阪神・淡 路大震災 都市直下型地震と地質環境特性",地 質環境と地球環境シリーズ3,東海大学出版会, 東京,122-134.
- 鈴木康弘・渡辺満久・吾妻 崇・岡田篤正(1996) 六甲-淡路島活断層系と1995年兵庫県南部地震 の地震断層-変動地形学的・古地震学的研究と 課題-.地理学評論,69A-7,469-482.
- 渡辺満久・鈴木康弘・廣内大助・尾崎陽子・奥野慎 太郎・松多信尚・加藤雅彦(1996)元町撓曲と 震災の帯.地球惑星科学関連学会1996年合同大 会予稿集,55.
- 横倉隆伸・井川 猛・横田 裕(1996a):1995年兵 庫県南部地震震源域周辺の深部反射法探査につ いて.大阪湾の深部構造を考える《資料集》,11 -25.
- 横倉隆伸・加野直巳・山口和雄・宮崎光旗・井川 猛・太田陽一・川中 卓(1996b)1995年兵庫県 南部地震震源域周辺の断層・基盤構造について (概報).物理探査,49,435-451.
- 横倉隆伸・加野直巳・山口和雄・宮崎光旗・井川
 猛・太田陽一・川中 卓・阿部 進(1998)大
 阪湾における反射法深部構造探査.地調月報,
 49, 571-590.
- 横田 裕・井川 猛・佐野正人・竹村恵二(1997) 大阪湾から六甲山にかけての反射法地震探査. 阪神・淡路大震災と六甲変動,兵庫県南部地震 域の活構造調査報告.57-89.

(受付:1998年9月9日;受理1998年12月11日)

APPENDIX STACKING VELOCITY FUNCTION FOR LINE GS-2 These velocity functions are defined from floating datum point CDP. No (SP. No) 53 (1260) T(ms) V(m/s) 5 3721 191 3989 CDP. No (SP. No) 133 (1211) T (ms) V (m/s) 5 3674 136 3720 194 3811 277 4000 CDP. No (SP. No) 173 (1191) T (ms) V (m/s) 5 3517 127 3576 250 3615 288 3699 416 4000 CDP. No (SP. No) 213 (1172) T(ms) V(m/s) 5 2917 179 3013 250 3282 CDP. No (SP. No) 93 (1236) T (ms) V (m/s) 5 3659 141 3748 276 399 3895 4135 4276 4375 4490 329 444 277 344 459 421 4437 4220 4395 4203 4361 602 858 1069 3952 1346 2053 3013 3980 5000 <u>971</u> 4642 4710 2527 3779 5000 4439 4503 4552 4597 4637 1933 3393 5000 4614 4665 CDP. No (SP. No) 293 (1120) T(ms) V(m/s) 5 1801 CDP. No (SP. No) 253 (1144) T (ms) V (m/s) 5 2382 86 2408 CDP. No (SP. No) 413 (1057) T(ms) V(m/s) 5 1622 169 1651 309 1685 CDP. No (SP. No) 333 (1104) T(ms) V(m/s) 5 1716 CDP. No (SP. No) 373 (1074) T (ms) V (m/s) 5 1669 336 413 542 722 885 1103 1538) 151 4308 5383 7905 1223 19339 2377 2377 1790 2587 2734 2947 3110 3335 3615 1955 2300 2704 3050 3335 3668 3898 4107 1840 2002 2154 2430 2873 3474 3763 3763 310 597 793 2006 2136 2647 3481 3690 557 716 2002 2099 826 954 90<u>5</u> 1110 1692 2291 2863 3729 5000 1153 1339 2253 2444 2743 3104 2598 3758 2577 3743 4034 4332 4592 2441 3028 3937 4425 3679 **0** 387Ō CDP. No (SP. No) 493 (1019) T (ms) V (m/s) 5 1567 165 1600 336 1685 482 1715 657 1837 933 2001 1234 2162 1372 2377 1539 2658 1947 3109 CDP. No (SP. No) 573 (971) T(ms) V(m/s) 5 1563 155 1653 410 1693 670 1732 842 1759 1054 1897 1160 1985 CDP. No (SP. No) 533 (989) T(ms) V(m/s) 5 1549 147 1601 307 1682 398 1715 525 1756 584 1780 859 1846 CDP. No (SP. No) 453 (1040) T(ms) V(m/s) 5 1585 177 1610 254 1660 353 1758 454 1925 CDP. No (SP. No) 613 (951) T(mg) V(m/s) 342 506 621 2021 2128 2256 2464 859 2044 2129 2230 2330 2760 3267 3710 1242 1324 1083 1165 1324 1997 1280 1903 3109 3295 3628 3893 2205 2906 2658 3025 3301 1553 1818 2369 2469 2777 1689 2369 3064 3929 2985 4058 908 2326 2749 3550 4316 3763 4005

ŠÕÕÕ

3870 4051

5000

3679 3836

422Ŏ

067

4360

CDP. No 653 T (ms) 206 375 544 725 923 1037 1149 1345 1503 1689 2112 2484 3006 3908 5000	(SP.No) (931) V(m/s) 1588 1611 1629 1736 1778 1837 1924 2074 2263 2443 2957 3233 3487 3735 3910 4150	CDP. No (5 693 (T (ms)) 180 370 526 785 933 1072 1312 1553 1654 1838 1955 2205 2570 3543 5000 8000	SP. No) 911) 1599 1627 1652 1652 1685 1771 1847 23666 23666 23121 23571 3904 4190						
STACKT	NG VELOC hese vel	ocity fun	ctions	are defi	-45 ned from	floating	g datum	point	
CDP. No 53 T (ms) 104 176 241 423 592 885 1641 2663 3951 5000 8000	(SP. No) (1215) V(m/s) 3911 3932 4111 4302 4559 4674 4766 4862 4907 4935 4948 4970	CDP.No(93 (139 196 264 370 550 945 1658 3419 5000 8000	SP.No) 1187) (m/s) 4009 4219 4360 44855 4595 47666 49355 4970	CDP. No 133 T(ms) 193 324 516 1169 1598 2620 3608 5000 8000	(SP.No) (1164) V(m/s) 3940 4130 4411 4600 4806 4849 4900 4927 4967	CDP. No (173 T (ms) 90 123 217 319 580 756 1091 1838 2440 3376 5000 8000	(SP. No) 1143) 3625 3678 3790 4075 4298 4498 4554 4620 4682 4769 4823 4870	CDP. No 213 T(ms) 112 202 352 495 662 920 1212 1890 2251 3367 5000 8000	(SP. No) (1117) 2491 2610 2795 3291 35355 4090 4248 4455 4510 4614 4676 4750
CDP. No 253 T (ms) 352 490 585 736 894 1177 1667 2233 3822 5000 8000	9 (SP. No) (1093) V (m/s) 2204 23755 28201 325326 35376 4173 4328 4569 4650	CDP. No (293 T (ms) 293 432 642 738 946 1045 1409 2173 2852 3917 5000 8000	SP. No) 1063) 2053 2277 2417 25049 3359 3751 4093 4237 4389 4473 4600	CDP. No 333 T(ms) 193 320 428 576 811 970 1057 1194 1366 1727 2302 3161 4020 5000 8000	(SP.No) (1044) V(m/s) 1711 1746 1826 2027 22451 2702 2878 3123 3379 3714 3995 4209 4327 4417 4570	CDP. No 373 T(ms) 197 266 349 514 631 850 1007 1081 1154 1399 1607 1804 2105 2903 3917 5000 8000	(SP.No) (101/s) 1675 1710 17808 2071 2199 2334 2401 2508 3402 3402 3402 3402 3402 3402 3402 3402	CDP. No 413) T(ms) 255 329 430 539 823 974 1164 1461 1881 2345 3728 5000 8000	(SP. No) (993) 1687 1760 1818 1868 2013 2201 2332 2541 3090 3504 3763 4175 4344 4535

STACKING VELOCITY FUNCTION FOR LINE GS-5B

CDP. No (SP. No 21 (10 T (ms) V (m/s) 108 1595 208 1646 315 1714 437 1794 566 1897 728 2020 963 2164 1165 2306 1462 2516 1904 2942 2363 3427 3250 3973 4994 4811 8000 5400	$ \begin{array}{c} \text{CDP. No} (\text{SP. No}) \\ 61 & (30) \\ 7 & (\text{ms}) & V & (\text{m/s}) \\ 4 & 1550 \\ 136 & 1612 \\ 265 & 1680 \\ 423 & 1792 \\ 559 & 1888 \\ 730 & 2016 \\ 917 & 2180 \\ 1160 & 2349 \\ 1324 & 2503 \\ 1604 & 2712 \\ 1990 & 3122 \\ 2427 & 3578 \\ 3214 & 4110 \\ 4989 & 4849 \\ 8000 & 5400 \\ \end{array} $	CDP. No (SP. No) 101 (51) T (ms) V (m/s) 4 1552 158 1620 301 1688 480 1792 609 1878 730 1967 952 2125 1160 2245 1353 2396 1582 2565 1876 2807 2398 3444 3271 4093 5000 4865 8000 5400	CDP. No (SP. No) 141 (71) T (ms) V (m/s) 4 1552 158 1615 380 1716 673 1858 945 2008 1153 2148 1389 2293 1689 2548 2140 2939 3192 3927 4974 4765 8000 5300	CDP. No (SP. No) 181 (91) T (ms) V (m/s) 4 1557 222 1637 451 1718 745 1819 974 1933 1303 2162 1697 2415 2076 2698 2527 3041 3393 3833 4982 4630 8000 5200
CDP. No (SP. No 221 (111) T (ms) V (m/s 4 1560 280 1653 494 1723 730 1804 931 1878 1095 1965 1274 2070 1446 2188 1647 2319 1976 2553 2298 2822 2885 3336 3500 3873 4982 4513 8000 5200) CDP. No (SP. No) 261 (132) T (ms) V (m/s) 4 1554 179 1608 444 1664 716 1749 924 1822 1038 1893 1224 1994 1410 2121 1639 2276 1940 2487 2520 2965 3414 3672 5000 4429 8000 5200	CDP. No (SP. No) 301 (152) T (ms) V (m/s) 4 1555 230 1627 530 1700 766 1781 1103 1900 1375 2040 1632 2233 2076 2542 2842 3216 3686 3833 4996 4446 8000 5200		
CDP. No (SP. No 41 (47) T (ms) V (m/s) 4 1544 79 1599 194 1668) CDP.No(SP.No)) 81 (67)) T(ms)V(m/s) 4 1558 94 1602 230 1659	CDP.No(SP.No) 121 (1111) T(ms)V(m/s) 4 1567 81 1595 215 1651	CDP.No(SP.No) 161 (107) T(ms)V(m/s) 4 1550 86 1619 222 1675	CDP.No(SP.No) 201 (127) T(ms)V(m/s) 4 1542 158 1653 401 1754
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	365 1755 501 1817 666 1879 945 1959 1239 2103 1396 2260 1525 2365 1868 2622 2491 3179 3071 3582 5000 4325 8000 5200	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{ccccccc} 401 & 1760 \\ 702 & 1881 \\ 967 & 1987 \\ 1196 & 2132 \\ 1439 & 2275 \\ 1561 & 2428 \\ 1775 & 2657 \\ 2248 & 2985 \\ 2899 & 3431 \\ 4989 & 4376 \\ 8000 & 5200 \\ \end{array}$	738 1864 1038 2035 1174 2148 1482 2387 1818 2663 2405 3141 2906 3456 4982 4407 8000 5200

地 質 調 査 所 月 報 (1999年 第50巻 第4号)

$\begin{array}{c} \text{CDP. No} \left(\text{SP. No}\right) \\ 241 \left(147\right) \\ 7 \left(\text{ms}\right) V \left(\text{m/s}\right) \\ 4 1544 \\ 81 1578 \\ 218 1645 \\ 386 1705 \\ 695 1774 \\ 859 1827 \\ 1024 1894 \\ 1224 2029 \\ 1539 2387 \\ 1818 2610 \\ 2133 2804 \\ 2491 3027 \\ 3064 3469 \\ 3965 3922 \\ 5000 4325 \\ 8000 5200 \\ \end{array}$	CDP. No (SP. No) 281 (167) T (ms) V (m/s) 4 1544 81 1578 218 1645 386 1705 695 1761 988 1846 1246 2008 1568 2383 1754 2528 2135 2766 2494 2956 3142 3469 4996 4360 8000 5200	CDP. No (SP. No) 321 (189) T (ms) V (m/s) 4 1544 129 1603 237 1647 394 1692 616 1734 766 1790 952 1839 1160 1959 1475 2192 1604 2303 1783 2452 2033 2657 2377 2911 3142 3469 4058 3910 4982 4407 8000 5200	CDP. No (SP. No) 361 (209) T (ms) V (m/s) 4 1543 76 1569 194 1624 351 1671 616 1725 945 1829 1196 1928 1375 2069 1589 2264 1961 2588 2477 2960 3064 3380 3965 3822 5000 4325 8000 5200	CDP. No (SP. No) 401 (229) T (ms) V (m/s) 4 1536 115 1588 251 1627 430 1677 580 1712 809 1781 1060 1856 1282 1984 1468 2126 1754 2378 2090 2645 2563 2977 3142 3431 3822 3759 4989 4407 8000 5200
$\begin{array}{c} \text{CDP. No} (\text{SP. No}) \\ 441 (249) \\ \text{T(ms)} & \text{(m/s)} \\ 4 & 1543 \\ 76 & 1569 \\ 239 & 1610 \\ 401 & 1654 \\ 688 & 1725 \\ 909 & 1807 \\ 1153 & 1890 \\ 1418 & 2035 \\ 1632 & 2257 \\ 1961 & 2491 \\ 2291 & 2747 \\ 2699 & 3053 \\ 3579 & 3620 \\ 5000 & 4325 \\ 8000 & 5200 \\ \end{array}$	CDP. No (SP. No) 481 (269) T(ms) V(m/s) 4 1547 172 1596 401 1650 666 1712 981 1803 1203 1888 1460 2013 1575 2138 1704 2279 1961 2517 2341 2811 3221 3380 4065 3859 5000 4360 8000 5200	CDP. No (SP. No) 521 (289) T (ms) V (m/s) 4 1551 125 1598 301 1641 433 1672 601 1714 831 1788 1105 1905 1254 1968 1403 2075 1600 2305 1782 2457 2162 2717 3099 3388 5000 4325 8000 5200	CDP. No (SP. No) 561 (309) T (ms) V (m/s) 4 1554 194 1627 430 1675 580 1707 816 1756 1053 1848 1248 1969 1389 2095 1575 2267 1754 2414 2160 2734 3078 3456 5000 4325 8000 5200	CDP. No (SP. No) 601 (329) T (ms) V (m/s) 4 1554 208 1619 423 1660 580 1688 816 1739 1067 1839 1067 1839 1248 1969 1389 2083 1582 2238 1754 2414 1933 2582 2169 2797 3085 3469 5000 4470 8000 5200
CDP. No (SP. No) 641 (351) T (ms) V (m/s) 96 1569 199 1589 391 1625 566 1660 711 1694 874 1742 1066 1819 1203 1904 1332 2026 1611 2220 1890 2486 2334 2902 3013 3481 5000 4313 8000 5200	CDP. No (SP. No) 681 (369) T (ms) V (m/s) 4 1547 172 1582 315 1613 494 1656 781 1722 995 1813 1160 1894 1303 2005 1468 2148 1697 2315 1947 2543 2291 2877 2849 3342 3686 3771 4996 4376 8000 5200	CDP. No (SP. No) 721 (389) T (ms) V (m/s) 4 1550 86 1579 222 1608 394 1642 602 1688 759 1735 959 1801 1124 1875 1289 1962 1446 2095 1647 2249 1897 2486 2105 2728 2384 2977 2992 3431 3729 3822 4996 4439 8000 5200	CDP. No (SP. No) 761 (409) T (ms) V (m/s) 4 1547 108 1574 215 1598 373 1620 552 1651 788 1715 1021 1822 1179 1922 1359 2020 1606 2210 1892 2515 2369 2944 3013 3408 5000 4257 8000 5200	CDP. No (SP. No) 801 (429) T (ms) V (m/s) 4 1547 108 1582 301 1628 537 1663 738 1717 952 1790 1146 1877 1310 1974 1432 2060 1575 2154 1775 2348 1961 2576 2198 2826 2434 3027 2985 3443 5000 4328 8000 5200

CDP. No	(SP. No)
T(ms)	V(m/s)
129	1583
550 659	1671
866 1081	1753
1260 1439	1928 2032
1661 1954	2189 2476
	2760
3300	3557
5000	4297
8000	5200