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Abstract : Biostratigraphic investigations of siliceous and calcareous microfossils and the geo-
chronologic results of interbedded tuff layers of the Middle Miocene marine sequence in the Boso
Peninsula, central Japan, were reviewed. Diatom and radiolarian biostratigraphies were established
along the Meigawa section in the Kamogawa area, central part of the Boso Peninsula, using
calcareous nodules. Calcareous nannofossil biostratigraphy along the same section was recently
revised. The direct stratigraphic relations among the planktonic foraminiferal, calcareous nannofos-
sils, diatom and radiolarian biostratigraphies were clarified. The fission track age of the Kn-3
pumice tuff (15.0+0.5 Ma (1g error)) indicates the N.9/N.10 planktonic foraminiferal zone
boundary, and the K-Ar age of 11.7+0.2 Ma gives an age of the CN5a/CN5b calcareous nannofossil
zone boundary. The most serious problems concerning the time scale is the discrepancy between the
time scales of Berggren et al. (1995) and Wei (1995), which were constructed based on the different
geomagnetic polarity time scales of Cande and Kent’s (1995) and Baksi’s (1993) models. Combining
the established biostratigraphy with reported radiometric ages of tuff layers in the Meigawa section,
we can conclude that the Berggren et al.’s (1995) integrated stratigraphic time scale is preferable

to that of Wei (1995), when assuming the synchronism of the biohorizons across latitude.

1. Introduction

A succession of planktonic microfossil bio-events
has permited the construction of a biostratigraphic
time scale which is commonly employed for long-
distance correlations. We can understand the geologic
history in greater detail, combining the high resolution
biostratigraphies with magneto- and chronostratigra-
phies. It is obvious that it is necessary to always revise
the integrated time scale by the latest stratigraphic
constraints.

Recent advances of the integrated time scale are
dependent on the analysis of deep sea cores. However,
chronostratigraphic constraints are quite limited,
because datable volcaniclastic layers are rare in deep
sea sediments. The discrepancy between the time
scales of Berggren et al. (1995) and Wei (1995) is
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attributed to the lack of reliable radiometric ages for
the sedimentary sequences. It is thus desirable to
investigate the integrated stratigraphic study along
the on-land volcano-sedimentary sequences in Japan.
Fortunately, both calcareous and siliceous microfos-
sils are obtained from some Miocene sequences in
Japan, which enables us to elucidate stratigraphic
relations between these microfossils directly. The
Middle Miocene is a highly interesting terget because
the age discrepancy between Berggren et al’s and
Wet’s time scales amounts to more than 1.3 million
years around Early/Middle Miocene boundary.

In this paper we integrate the recently reported
biostratigraphic results of both the calcareous and
siliceous microfossils and the radiometric ages of
interbedded tuff layers in the Boso Peninsula. The
stratigraphic relations of the biohorizons and dated
tuff layers are clarified in order to discuss the validity
of previous time scales.

Keywords: integrated stratigraphy, Miocene, biostrati-
graphy, diatom, radiolaria, calcareous nannofossil, plank-
tonic foraminifera, time scale, fission track age, Boso
Peninsula, Japan
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2. Geology

The Boso Peninsula is one of the best areas in Japan
for late Cenozoic stratigraphic studies, because thick
continuous marine sediments, yielding calcareous
microfossils from most horizons, intercalates a large
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number of volcaniclastic layers. This sequence of
fossiliferous Neogene and Pleistocene strata has only
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one stratigraphic break, named the Kurotaki Uncon-
formity. Below the Kurotaki Unconformity, the thick
marine sediments are subdivided into the following
five formations in ascending order; the Kanigawa,
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Fig.1 Geological map of the Kamogawa area in the Boso Peninsula, central Japan, partly modified from Nakajima et al.
(1981). The location of the Meigawa section is indicated.
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Fig. 2 Photographs of the calcareous nodules within the hemipelagic sediments of the Kanigawa Formation (A)

and in the Amatsu Formation (B).

Kinone, Amatsu, Kiyosumi and Anno Formations.
The lower half of this sequence, comprising the Kani-
gawa, Kinone and Anno Formations, is composed
mainly of siltstones, while the upper half, constituted
by the Kiyosumi and Anno Formations, is character-
ized by rhythmic alternations of sandstone and silt-
stone (Fig. 1).

Magnetostratigraphic analysis was applied to this
sequence by many workers (Kawai, 1951; Nakagawa
et al., 1969; Kimura, 1974; Niitsuma, 1976), but only
the last 6 m.y. history was established owing to
magnetic instability (Nakagawa et al., 1977).
Detailed biostratigraphic studies (Oda, 1977; Honda,
1981) in conjunction with lithostratigraphic investiga-
tions clarified the relation between the many biostrati-
graphic events and key tuff layers. Oda (1977) estab-
lished the planktonic foraminiferal biostratigraphy
along the Kanayamagawa section (Fig. 1), while
Honda (1981) investigated the calcareous nannofossil
biostratigraphy along the Meigawa section, about 1
km west of the Kanayamagawa River. As so many
key tuff layers are well correlated between these two
sections, that stratigraphic relations of biohorizons
between two sections are easily established. Recently
the biostratigraphic investigations of siliceous mi-
crofossils (diatom and radiolaria), and an additional
study of the calcareous nannofossil biostratigraphy,
were performed along the Meigawa section.

As for the chronostratigraphic study, only a few
fission track ages (Kasuya, 1990; Takahashi and
Danhara, 1997) and K-Ar age (Takahashi et al, 1999)
were reported.

3. Biostratigraphy

In this section, we give a brief description of bio-

stratigraphic results of studies using diatoms
(Watanabe and Takahashi, 1997), radiolaria
(Motoyama and Takahashi, 1997), calcareous nan-
nofossils (Mita and Takahashi, 1998) and planktonic
foraminifera (Oda, 1977).

3.1 Diatom

Watanabe and Takahashi (1997) tried to find
siliceous microfossils from the calcareous nodules in
the Meigawa section. They recognized four diatom
zones from the Denticulopsis lauta Zone (NPD4A) to
the D. praedimorpha Zone (NPD5B) of Yanagisawa
and Akiba’s (1998) zonation (Fig. 3).

Samples KNG-27 and KNG-30 in the lower part of
the Kinone Formation were assigned to the D. lauta
Zone (NPD4A). The last occurrence (LO) of
Cavitatus lanceolatus (D43.2) from KNG-27 indicates
that this horizon is in the middle part of the D. lauta
Zone (NPD4A). Samples KNG-35 to KNG-47 in the
middle to uppermost part of the Kinone Formation
were assigned to the D. hyalina Zone (NPD4B). The
first occurrence (FO) of D. hyalina (D45) was recog-
nized in sample KNG-35. The FO of D. simonsenii
(D47) was tentatively placed in sample KNG-45. The
last common occurrence (LCO) of D. hyalina (D50)
was found in sample KNG-47 and the first common
occurrence (FCO) of D. simonsenii (D50) is at near
horizon (KNG-48). As sample KNG-48 from the
uppermost part of the Kinone Formation did not yield
Denticulopsis praedimorpha, this sample was assigned
to the C. nicobarica Zone (NPD 5A). The FO of D.
praedimorpha var. minor (D51) was recognized in
sample KNG-49. Samples KNG-49 to KNG-79 in the
lower part of the Amatsu Formation were assigned to
the D. praedimorpha Zone (NPD5B). The LO of C.
nicobarica (D52) was recognized in sample KNG-51.
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Fig.3 Geological route map, columnar section with sample localities (horizons), stratigraphic distribu-
tion of selected diatoms and diatom zones along the Meigawa section (Watanabe and Takahashi, 1997).
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Fig. 4 Columnar section with sample horizons and stratigraphic distribution of selected radiolarians of
the Meigawa section (Motoyama and Takahashi, 1997).
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The FO of D. praedimorpha var. praedimorpha (D53)
was recognized in sample KNG-66.

3.2 Radiolaria

Motoyama and Takahashi (1997) studied 62 sam-
ples collected from the Meigawa section and recog-
nized the following four radiolarian zones of
Motoyama and Maruyama (1998), including two sub-
zones (Fig. 4).

The Calocycletta costata Zone is defined by the inter-
val from the FO of C. costata to the FO of Eucyrtidium
asanoi. In the Meigawa section, samples KNG-27 and
KNG-28 in the lower part of the Kinone Formation
(around key tuff bed Kn-1) were assigned to this
zone, based on the presence of C. costata and the
absence of E. asanoi.

The Eucyrtidium asanoi Zone is the interval from
the FO of E. asanoi to the FO of E. inflatum. How-
ever, FOs of these two species were recognized in the
same sample (KNG-30) and the E. asanoi Zone was
not defined in the Meigawa section in the sence of the
original zonal definition. Motoyama and Takahashi
(1997) adopted the first consistent occurrence (FC) of
E. inflatum as an upper limit of this interval zone. The
LOs of C. costata and C. verginis and the FO of S.
peregrina fall in this zone.

The Eucyrtidium inflatum Zone is defined as the
interval from the FC of E. inflatum to the FO of L.
magnacornuta in this sequence. This zone can be
subdivided into lower and upper Subzones, a and b
respectively, by the rapid decrease (RD) of C.
tetrapera. As Motoyama and Takahashi (1997) have
not assessed abundance of C. fetrapera in the samples
examined, they used the last consistent occurrence
(LC) in sample KNG-57 as the boundary event
between the two subzones tentatively. Therefore, the
upper part of the Kinone Formation and lowest part
of the Amatsu Formation correspond to the E. in-
flatum Zone a Subzone. The radiolarian biochorizons
of the LOs of D. tubaria, D. mammifera, Eucyrtidium
sp. B, E. asanoi, S. armata, L. venzae and the FO of L.
thornburgi were recognized in this subzone. In con-
trast, E. inflatum Zone b Subzone was not recognized,
due to the absence of radiolaria from a thick interval
between the LO of C. tetrapera (KNG-57) and the FO
of L. magnacornuta (KNG-66).

The Lychnocanoma magnacornuta Zone is a partial
-range zone defined between the FO and LC of L.
magnacornuta (Motoyama, 1996). Motoyama and
Takahashi (1997) found the FO of this species near
the Am-19 Tuff, so that the uppermost part of this
section corresponds to the L. magnacornuta Zone. The
LO of E. inflatum is located in this zone.

3.3 Calcareous Nannofossil
A calcareous nannofossil biostratigraphy was first
reported along the Meigawa section by Honda (1981),

and recently revised by Mita and Takahashi (1998).
Mita and Takahashi (1998) recognized three calcar-
eous nannofossil zones of Okada and Bukry’s (1980)
zonation namely, CN3~CN4, CN5a and CN5b (Fig.
5).

Samples MEI-2 to MEI-31 are assigned to zones
CN3~CN4, because Sphenolithus heteromorphus oc-
curred in each sample. The CN3/CN4 boundary is
originally defined by the LO of Helicosphaera am-
pliaperta (Bukry, 1973, 1975), however, unfortunately
this biohorizon was not recognized in the Meigawa
section. The RD of the D. deflandrei group (i.e. the
sum of the short-arm Discoaster and D. deflandrei) is
one of the most useful biohorizons to determine the
CN3/CN4 boundary (Sato et al., 1991; Rio et al.,
1990). Therefore Mita and Takahashi (1998)
examined the RD of D. deflandrei group in the Mei-
gawa section and concluded that the lower part of the
Kinone Formation, except for its lowest two samples
(MEI-1 and MEI-2), belongs to the CN4. The top of
the CN4, defined by the LO of S. heteromorphus, was
well determined between the sample MEI-31 and MEI
-31.5 in the upper part of the Kinone Formation.

Zone CNba was recognized between the uppermost
part of the Kinone Formation and the lowest part of
the Amatsu Formation (samples MEI-31.5 to MEI-
42), in which Cyclicargolithus flovidanus and
Reticulofenestra pseudoumbilicus occurred dominantly.
The CN5a/CN5b boundary is originally defined by the
FO of Discoaster kugleri, however the typical form of
D. kugleri was not encountered in the Meigawa sec-
tion. The LO of C. floridanus, however, was used for
determining the CN5a/CN5b boundary in the Mei-
gawa section, because its biohorizon coincides with
the FO of D. kugleri (Bukry, 1973). In this section, the
LO of C. floridanus was recognized in MEI-42, close
to the Am-4 Tuff horizon in the lowest Amatsu
Formation. Therefore, Mita and Takahashi (1998)
concluded that the CN5a/5b boundary was situated in
the lowest part of the Amatsu Formation.

The top of the CN5b is defined by the FO of
Catinaster coalitus, which was not found from the
Meigawa section. Therefore, the lower part of the
Amatsu Formation, between the Am-4 and Am-24
Tuff horizons, is placed in the CNbb.

3.4 Planktonic Foraminifera

Oda (1977) established planktonic foraminiferal
biostratigraphy along the Kanayamagawa River, 1
km east of the Meigawa section. Figure 6 shows the
biostratigraphic result of Oda (1977), for the Kinone
and the lower part of the Amatsu Formations.

The FO of the genus Orbulina defines the base of
the N.9 planktonic foraminiferal zone (Blow, 1969),
that is regarded as one of the most reliable datum
levels for long-distance stratigraphic correlation. The
biohorizon was recognized in sample K52, about 50 m
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Fig.5 Geological route map, columnar section with sample localities (horizons), stratigraphic distribu-
tion of selected calcareous nannofossils and nannofossil zones along the Meigawa section modified from

Mita and Takahashi (1998).
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Planktonic Foraminifera
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Fig. 6 Geological route map, columnar section with sample localities (horizons), stratigraphic distribu-
tion of selected planktonic foraminifera and foraminiferal zones of the Kanayamagawa section, adja-
cent to the Meigawa route, modified from Oda (1977). Some key tuff layers are correlated between the
Kanayamagawa and Meigawa sections, enabling to recognize the stratigraphic relations of biohorizons
between the two sections.
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below the Kn-3 Tuff in the upper part of the Kinone
Formation. The lowest two samples (K59 and 62)
both yielded Globigerinoides sicanus, which appears
from the bottom of zone N.8, so that the lower and
middle part of the Kinone Formation is correlative to
zone N.8, and the N.8/N.9 boundary is located about
50m below the Kn-3 Tuff.

The FO of Globorotalia peripheroacuta, which
defines the base of the N.10 zone (Blow, 1969), was
recognized in sample K51, 10-15m below the Kn-3
Tuff.

The FO of Globigerina nepenthes defines the base of
zone N.14 (Blow, 1969). The FO of G. nepenthes is
recognized in the sample K34, in between the Am-1
and Am-19 Tuff horizons. Therefore, the uppermost
part of the Kinone Formation up to the lower part of
the Amatsu Formation are correlated with zone N.10
-N.13, and the uppermost part of this section is corre-
lative to zone N.14.

4. Geochronology

Two fission track ages and one K-Ar age were
reported from the Meigawa section. The pumice tuff
Kn-3 (Figs. 7 and 8) in the Kinone Formation is
located about 10-15 m above the FO of Globorotalia
peripheroacuta (Oda, 1977). Takahashi and Danhara
(1997) reported a zircon fission track age of 15.0+0.5
Ma (1g error) for the Kn-3 Tuff, which directly
represents the geochronological age of the N.9/N.10
boundary of the planktonic foraminiferal zones.

Kasuya (1990) obtained a zircon fission track age
of 11.5+0.8 Ma for the Am-4 Tuff that is intercalated
in the lowest part of the Amatsu Formation (Figs. 7
and 8). Takahashi et al. (1999) recently reported a
11.7£0.2 Ma K-Ar hornblende age for the same tuff.
As the LO of C. flovidanus, defining the CN5a/CN5b
boundary of calcareous nannofossil zones, was recog-
nized 2m below the Am-4 Tuff horizon (Fig. 5), the
geochronological data indicate the absolute age of
CNb5a/CNb5b boundary.

5. Discussions

5.1 Stratigraphic relations of biohorizons and
radiometric ages

Oda (1986) established a magneto-biostratigraphic
time scale for both calcareous and siliceous microfos-
sils. This time scale has been widely used for age
determination and correlation of Neogene strata in
Japan. Figure 10 shows the stratigraphic relations of
some selected biohorizons on the Oda’s (1986) time
scale and of the Kanigawa section (Fig. 9). The
stratigraphic order of each biohorizon is almost fully
consistent, except for some horizons.

As for the relation between the FO of E. inflatum
and the FO of genus Orbulina, the inconsistency may

be attributed to the sporadic occurrence of planktonic
foraminifera in the studied sections. The evolutionary
lineage of the genus Orbulina was not recognized in
the study area, so the first appearance datum (FAD)
of Orbulina might be located below the FO horizon of
Orbulina.

The LO of E inflatum is located higher than the FO
of G. nepenthes, which indicates that these two species
have coexisted during the Miocene. The stratigraphic
ranges of C. flovidanus and D. praedimorpha also
overlap. Some radiolarian biohorizons including E.
inflatum, C. costata and L. neofera show remarkable
inconsistency between Oda (1986) and the present
study. This inconsistency is a serious problem because
these radiolarian biohorizons are used by Oda (1986)
as reference points for the age estimation of other
microfossil biohorizons. The isolated occurrence of E.
inflatum in the sample KNG-30 places the FO of this
species at much lower stratigraphic horizon than the
FC event of the species in the Meigawa section. Incon-
sistency of the FOs of E. inflatum with diatom events
exist between Noto Peninsula (Funayama, 1988) and
DSDP Leg 57 from Site 438 (Reynolds, 1980). Thus,
the biostratigraphic utility of the FO of E. inflatum
seems to be uncertain. Similarly, the biostratigraphic
usefulness of the LO of C. costata and the FO of L.
neotera has not been well established, although both
were correlated directly to magnetostratigraphy in
the equatorial Pacific cores (Therer et af., 1978).
Definition of the FO and LO of a radiolarian species
sometimes is a troublesome work, because the spo-
radic occurrences usually precede and follow the
consistent and common occurrence. Very rare and
sporadic occurrences of L. neotera from Site 438
samples (Reynolds, 1980) may have shortened the
stratigraphic range of the species in the sedimentary
sequence. The more than 8000 radiolarians obtained
by Motoyama and Takahashi (1997) in the every
sample gives a high reliability for the radiolarian
events recognized in the Meigawa section. Therefore,
the radiolarian stratigraphy from the section is the
most reliable of the Miocene radiolarian stratigra-
phies in and around Japan.

The refined integrated stratigraphic time scale of
the interval between 15.5 and 11.5 Ma was presented
by Motoyama and Takahashi (1997), as shown in Fig.
11. The time scale is based on the geomagnetic polar-
ity time scale of Cande and Kent (1995). The
radiometric ages of the Am-4 and Kn-3 are also
plotted. The biostratigraphic zonations of microfos-
sils were integrated, while magnetostratigraphy was
not established along this section.

5.2 Recent controversy in the time scale

The most important controversy concerning the
integrated stratigraphic time scale is the discrepancy
of age estimates between the time scales of Berggren
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Fig. 8 Photographs of the Kn-3 (A) in the upper part of the Kinone Formation and the Am-4 (B) in the

lowermost Amatsu Formation.

et al. (1995) and Wei (1995). This discrepancy is
attributed to the use of different geomagnetic polarity
time scales. The Berggren et al.’s (1995) time scale is
constructed on the Cande and Kent’'s (1995)
geomagnetic polarity time scale, while Wei (1995)
constructed a time scale based on the Baksi’s (1993)
polarity time scale.

Cande and Kent (1992) have constructed a magnetic
polarity time scale for the Late Cretaceous and Ceno-
zoic based on a systematic analysis of marine mag-
netic profiles from the world’s oceans and an im-
proved set of age calibration points, and recently
revised it (Cande and Kent, 1995). The latest version
of the Cenozoic time scale constructed by Berggren et
al. (1995)was based on the Cande and Kent’s (1995)
geomagnetic polarity time scale (Fig. 12).

On the other hand, Baksi (1990) carried out the
“°Ar/3°Ar incremental heating studies on whole-rock
basalt samples from the Columbia River Basalt and
the Steens Basalt. He combined high precision, accu-
rate ages (standard error <1%) with the known
magnetostratigraphy of the Columbia River Basalt
and concluded that the currently used time scales have
underestimated the ages of various chrons around 16
Ma by a maximum of 0.9 m.y. Baksi (1993) construct-
ed a Late Cenozoic geomagnetic polarity time scale,
following the technique of the Cande and Kent (1992),
using *°Ar/*°Ar plateau ages for selected field rever-
sals younger than 1, 2, 10, 16 and 34 Ma. His time scale
was markedly different from the previous time scales,
especially during the Middle-Late Miocene. As the
differences between Cande and Kent’s (1992, 1995)
and Baksi’s (1993) time scale are most marked at 4-
8 Ma and 11-18 Ma, the estimations of each biozone
boundary, synchronized with the geomagnetic polar-
ities, became older (Fig. 12). Wei (1995) recalculated

the ages of the magnetic reversals using the revised
calibration points based on recently available
radioisotopic dates and magnetostratigraphic data of
Baksi (1993), while the newest version of the Ceno-
zoic time scale of Berggren ef al. (1995) adopted the
geomagnetic polarity time scale of Cande and Kent
(1995). Thus, the recent controversy concerning the
estimation of the numerical ages of biostratigraphic
zonation originates from the different interpretation
of the marine magnetic anomaly patterns.

Figure 12 shows the relationships between the
radiometric ages of the Kn-3 Tuff and Am-4 Tuff and
estimated geochronometric ages for the N.9/N.10,
N.13/N.14 and CN5a/CN5b boundaries. The N.9/N.10
foraminiferal boundary in the sedimentary sequence
in the Boso area is correlated with a radiometric age
by Takahashi and Danhara (1997). If we assume the
synchronism of the FO or LO horizons of each plank-
tonic microfossil across latitude, the estimated ages of
biohorizons should be consistent with the radiometric
ages of tuff layers intercalated close to them. There-
fore, the absolute ages of the N.9/N.10 boundary of
each time scale should be equal to the fission track
age of sample Kn-3 (15.0+0.5 Ma). It is clear that the
Berggren ef al’s (1995) estimation of 14.8 Ma for the
age of the N.9/N.10 boundary is well consistent with
the fission track age of the Kn-3 Tuff, while Wei
(1995), assuming 15.9 Ma, has overestimated it.
Therefore, the fission track age of the Kn-3 Tuff may
suggest that the time scales of Wei (1995) and Baksi
(1993) have been overestimated the age of the Early/
Middle Miocene boundary (Fig. 12).

In addition, the radiometric age of the Am-4 Tuff
also offers the geochronological constraints for the
latest Middle Miocene time scale. The Am-4 Tuff is
located below the N.13/N.14 foraminiferal zone
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Stratigraphic Relation of the Biohorizons
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Fig. 9 Stratigraphic relationship between each microfossil biohorizon along the Meigawa section. The
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Kanayamagawa section (Oda, 1977), are also plotted based on the tuff correlations between two
sections.
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boundary, defined by the FO of G. nepenthes, and near
the CNb5a/CN5b boundary of calcareous nannofossil
zones, defined by the FO of D. kugleri or the LO of C.
floridanus. The FO of G. nepenthes has been calibrat-
ed to early Chron Cbr in DSDP Holes 563 (Miller et
al., 1985) and 608 (Miller et al., 1991) and occurred at
approximately the same level in the Buff Bay section
of Jamaica (Berggren, 1993) with an age estimate of
11.8 Ma. As for the CN5a/CN5b boundary, the FO of
D. kugleri is located in the lower Polarity Subchrono-
zone Cbr.3r with an estimated age of 11.8 Ma (Berg-
gren et al., 1995), same as the N.13/N.14 boundary.
The LO of C. floridanus was well determined in the
Meigawa section in lowest Amatsu Formation (Fig.
5). On the contrary, the FO of G. nepenthes was
recognized at about 200m above the CNb5a/CN5b
boundary in the Meigawa section (Fig. 13).

The sediment accumulation history of the Meigawa
section based on the Cande and Kent’s (1995) and
Baksi’s (1993) geomagnetic polarity time scales are
shown in Fig. 13. The age estimations of each biohor-

izons, based on the Cande and Kent’s (1995) time
scale, are after Berggren et al. (1995), and Yanagi-
sawa and Akiba (1998). The ages of each biohorizon
based on the Baksi’s (1993) time scale were recal-
culated assuming the proportional positioning on the
polarity pattern of Berggren et al. (1995), and
Yanagisawa and Akiba (1998) relative to the Cande
and Kent’s (1995) polarity time scale.

The lower part of the Amatsu Formation is char-
acterized by the high sediment accumulation rate of
more than 100 cm/year. The Am-4 Tuff is located at
the CN5a/CN5b boundary and below the N.13/N.14
biozone boundary, whose estimated age is 11.8 Ma on
the Cande and Kent’s (1995) time scale or 12.2 Ma on
the Baksi’s (1993) scale. The radiometric age of the
Am-4 Tuff (11.7£02 Ma (K-Ar), 115+08 Ma
(FT)) is consistent with the Berggren ef al.’s (1995)
estimate of the age. This suggests that the Cande and
Kent’s (1995) geomagnetic polarity time scale is cor-
rect, while the Baksi’s (1993) time scale has overes-
timated its age. Therefore, we conclude that the
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Fig. 13 Age-thickness plots based on the Cande and Kent’s (1995) and Baksi’s (1993) geomagnetic polarity time scales for
the Kinone and lower Amatsu Formations in the Meigawa section. Radiometric ages of the Am-4 and Kn-3 Tuff beds, that
are also plotted, are concordant with the Cande and Kent’s (1995) time scale. However the use of the Baksi’s (1993) time
scale leads to an overestimation of the age of the boundary
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Berggren et al’s (1995) integrated stratigraphic time
scale, constructed based on the Cande and Kent’s
(1995) geomagnetic polarity time scale, is preferable
to Wei (1995) and Baksi (1993), assuming the
synchronism of the biohorizons across latitude. As the
discrepancy of the estimated ages of each magnetic
polarity zones between two models exceeds 1.3 million
years around the Early/Middle Miocene boundary
(Fig. 12), the geochronologic age determination of the
Kn-1 Tuff in the Kinone Formation, containing fresh
biotite, is potentially important.

Biostratigraphy is one of the most useful tools for
determining geologic ages. In contrast, radiometric
dating yields the absolute age of intercalated volcani-
clastic layers directly. Magnetostratigraphy provides
worldwide time-horizons, but it only shows the digital
signals of normal and reversed polarities. If we want
to know the geological age of given strata, it is indis-
pensable to obtain reliable biostratigraphic, magneto-
stratigraphic and geochronologic data that permit to
establish a high-resolution integrated stratigraphic
time scale. This requires that future research, such as
biostratigraphy of other microfossils, high precision,
“Ar/%Ar dating of tuffs, magnetostratigraphy and
chemostratigraphy, should be applied to the same
section.
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