# 日本海東部沿岸域海底表層堆積物中の重金属等の地球化学的挙動

## 今井 登\* 寺島 滋\* 片山 肇\*\* 中嶋 健\*\* 池原 研\*\* 谷口政碩\*\*\*

Noboru IMAI, Shigeru TERASHIMA, Hajime KATAYAMA, Takeshi NAKAJIMA, Ken IKEHARA and Masahiro TANIGUCHI (1997) Geochemical behavior of heavy metals in coastal marine sediments from the eastern margin of the Japan Sea. *Bull. Geol. Surv. Japan*, vol. 48 (9), p. 511–529, 14 figs., 4 tables.

**Abstract :** The distribution of eleven element concentrations were obtained for coastal marine sediments from the near shore of the Noto Peninsula to Off Akita. The distribution is explained by the transportation of detrital material from rivers and elemental migration within river water, sea water and marine sediments. The Fe is generally enriched in sandy sediments, in which smectite and glauconite commonly occur. The Mn is concentrated in the deep sea sediments. The enrichment is mainly due to the upward and lateral migration of dissolved Mn from deeper sedimentary layers. The Cu, Pb and Zn showed high concentrations in Toyama Bay and the northern part of Off Akita. The high concentrations of Ni and Cr which decrease from south to north are attributed to the ultramafic rocks in the hinterland of the Hime River. The coarse sediments originated from the mafic rocks in the northwest of the Noto Peninsula which contain high concentrations of Fe, Co, Ni and Be. The Mn and Pb in the coastal marine sediments from the eastern margin of the Japan Sea reflect much higher concentrations than those in the Pacific Ocean. This is probably because the local currents in the Japan Sea are less effective in transporting Mn distally compared to the Pacific Ocean. The reason for the higher concentration of Pb in the Japan Sea sediments is thought to be attributed to higher geological background values in land area.

## 要 旨

能登半島周辺海域から秋田沖までの広域的な底質地球 化学図の作成を目的として, 能登半島周辺海域から秋田 沖までの重金属等11元素の地球化学的挙動を検討した。 試料は日本海沿岸海域から表層堆積物665試料を採取し た. 元素は Fe, Mn, V, Cu, Pb, Zn, Co, Ni, Cr, Be, Li である、各元素のうち鉄は多くの場合に堆積速度 が遅い海域の砂質堆積物で高濃度を示した。一方、マン ガン濃度は採泥点の水深と良好な正相関を示し、マンガ ンの濃集は主として続成作用に起因すると考えられる。 銅,鉛,亜鉛は富山湾の湾奥部や秋田県北部の沿岸で高 い場合が多かった。能登半島北方の石灰質堆積物は銅を 始めほとんどの重金属が低濃度であった。本調査海域に おけるニッケル,クロムの主要供給源は姫川上流域の超 苦鉄質岩であり、堆積物中の両元素は姫川河口で最大値 を示し,北へ向かって漸減する。能登半島北西部の大陸 斜面には基盤岩由来と考えられる比較的粗粒な堆積物が 分布しており,鉄、コバルト、ニッケル、ベリリウム等 に富む特徴がある.また、日本海沿岸の堆積物中の重金 属濃度と太平洋沿岸のそれを比較すると、鉄、銅、亜鉛、 ニッケル、コバルトには有意差はないがマンガン、鉛は 日本海側で高かった.

#### 1. はじめに

沿岸海域における元素の移動を規制しているのは後背 地の地質を反映した流入河川からの砕屑物の供給と,汽 水域におけるイオン強度や酸化還元電位などの環境の変 化による沈殿および海洋における沈殿と再溶出による循 環などである。このような観点にたってわれわれは沿岸 海域における底質地球化学図の作成に関する基礎研究と 並行して,これまでに新潟沖(寺島・片山,1991,1993) および秋田-山形沖(寺島ほか,1992,1995)の海底表層 堆積物中の重金属等の地球化学的挙動を明らかにしてき た。このほか本調査海域に関しては,これまでに富山湾 については有田ほか(1979)により表層堆積物中の重金 属8元素の分布が求められており,また渡部ほか(1995) が富山湾内の底質試料中の23元素の化学組成から起源砕 屑物の特徴を解析しその起源を明らかにした。また,秋

<sup>\*</sup>地殻化学部 (Geochemistry Department, GSJ)

<sup>\*\*</sup>海洋地質部 (Marine Geology Department, GSJ)

<sup>\*\*\*</sup>地殼熱部 (Geothermal Research Department, GSJ)

Keywords: coastal marine sediment, elemental distribution, geochemical map, Off Ishikawa-Akita, Japan Sea

田沖では横田(1989)により底質試料中の重金属元素の 分布が求められている。本研究では能登半島周辺海域か ら秋田沖までの広域的な底質地球化学図の作成を目的と して,能登半島周辺海域の海底表層堆積物の重金属元素 等を新たに分析し,能登半島周辺海域から秋田沖までの 重金属等11元素の地球化学的挙動を検討した。

本研究で使用した試料は、当所における工業技術院特 別研究「西南日本周辺大陸棚の海底地質に関する研究」 および「日本海中部東縁大陸棚周辺海域の海洋地質学的 研究」の一環として地質調査船白嶺丸による研究航海で 採取されたもので,能登半島周辺海域では1988年6-7月 に,新潟沖では1990年4-5月に、秋田-山形沖では1991 年6-7月に採取された。本研究を行うに当たり、試料の 採取および船上データの取得等に関しては上記研究グ ループの方々をはじめとする関係各位に大変お世話に なった。厚く御礼申し上げる。本研究の一部は地球環境 研究総合推進費による「有害金属・化学物質の海洋底質 への蓄積と挙動の予察的研究」により実施された。

#### 2.調査海域の概要

今回対象とした試料は能登半島西側から秋田県北部に かけての日本海沿岸海域(第1図)で採取されたもので ある。海底の地形については,能登半島周辺海域では北 側に大陸棚が広がり縁辺台地を経て北方の大和海盆に続 き、東側では水深1000m以上の富山トラフが大和海盆か ら富山湾奥に向かってほぼ南北方向に入り込み、この間 は急傾斜の大陸斜面となっている。富山湾は海岸線から 中央部まで非常に傾斜の急な深い湾で、湾内から北方に 富山深海長谷がのびて大和海盆を横切って日本海盆に達 している。新潟市から佐渡島以北の海域は全体に水深が 浅く1000mを超えないが、佐渡島北東側の最上トラフお よび同島南方の佐渡海盆は周辺よりも水深がやや大きく 500m を越えている。 男鹿半島の北西では、 最上トラフの 北端が日本海盆の東端に達しており、調査海域の最大水 深はこの付近の沖合にあり約2500m である。酒田市の北 西部約40kmには飛島があり、飛島西方から佐渡島北方 海域にはいくつかの礁,堆が存在し,水深は1000m以下 である

富山湾に流入する河川としては神通川や黒部川等の河 川があり、河川周辺には新第三紀の火山岩類を主体とす るグリーンタフ層が露出し、上流には飛驒変成岩や岩船 花崗岩などの基盤岩類が露出する。神通川上流には金属 鉱床があり、流出河川にはその影響が見られる。また、 糸魚川に注ぐ姫川上流には周辺他地域には認められない 超苦鉄質岩類が分布し、元素の分布に大きな影響を与え





A:能登半島北西部海域, B:富山湾, C:新潟沖, D:山形·秋田沖 Fig.1 Sampling locations of the sediments from the near shore of the Noto Peninsula to Off Akita. A: Off Northwest of Noto Peninsula, B: Toyama Bay, C: Off Niigata, D: Off Yamagata and Akita



第2図 能登半島周辺-秋田沖海域における堆積物中の含泥率 Fig. 2 Mud contents of the coastal marine sediments from the near shore of the Noto Peninsula to Off Akita

ている。新潟市沿岸には信濃川や阿賀野川が流入する。 これらの河川の流域には主として新第三紀の火山岩類が 分布し,一部にそれ以前の深成岩類,堆積岩類が認めら れる。また,佐渡島には古くから採掘が行われた多数の 金・銀鉱山があり,酒田市沖には最上川が,秋田沖には 雄物川および米代川が流入する。

本海域の堆積物については有田ほか(1979)、片山 (1989), 片山ほか (1991, 1994), 中嶋・片山 (1992), 池原ほか (1994a, 1994b), 中嶋ほか (1995) によって詳 しく報告されている。第2図に能登半島周辺海域から秋 田沖までの海底の堆積物中の含泥率分布を示した。能登 半島北西側の海域には基盤岩(火山岩類、堆積岩類)が 露出し、その東方には石灰藻および貝殻片からなる粗粒 -細粒砂が分布する、大陸棚西部に向かって細粒砂-シル トが広く分布し、富山トラフ底部には中央粒径値が8 φ 以上の細粒堆積物が発達する。新潟沖では水深の浅い水 域には砂質またはシルト質堆積物が分布し、水深が500m が分布する。秋田沖では水深が200mを越える海域のほ とんどは泥質堆積物で覆われているが、大陸棚や飛島周 辺および佐渡海嶺上の浅い海域には砂質堆積物が分布す るか、露岩及び古期堆積物が露出している。これらの露 岩や古期堆積物が分布する堆の周辺斜面には多くの場合 海緑石に富む堆積物が分布する。また、富山トラフの水 深1000m以深と最上トラフの650m以深で堆積物表層に

マンガンに富む茶褐色層が広く分布しているのが認めら る.

#### 3. 試料及び分析方法

#### 3.1 試 料

表層堆積物試料は,能登半島北西海域から秋田沖にか けての日本海沿岸海域から,木下式グラブ採泥器を用い て665地点から採取した(第1図).これら試料のうち, 新潟沖(寺島・片山,1993),山形・秋田沖(寺島ほか, 1995)の試料についての結果は,分析値を含めて既に報 告した.また,庄川,常願寺川,黒部川等の河川堆積物 を別途採取し同様に分析を行った.

能登半島北西部-富山湾海域における試料採取位置を 第3図に示した。これら試料の多くは泥質堆積物である が,能登半島北方の大陸棚上を中心に石灰藻や貝殻片を 主体とする石灰質堆積物が分布する。参考までに付表に 各試料中の CaO 含有量を示した。一般の泥質堆積物に おけるCaO含有量は数%以下であるため,これ以上の CaO が含有される試料には石灰藻や貝殻片等が含まれ ることを意味する。また,試料 No. 14, 150は基盤を構成 する泥質角れき岩片であるが,基盤岩の元素含有量を知 る目的もあって分析試料に含めた。今回分析した試料の うち,富山湾内の堆積物は主として周辺河川から供給さ れたものである(渡部, 1995)。能登半島北西部には上述

# 地質調査所月報(第48巻 第9号)



第3図 能登半島北西部-富山湾海域の堆積物の採取位置 Fig.3 Sampling locations of the sediments from Off Northwest Noto Peninsula to Toyama Bay

第1表 能登半島周辺,富山湾,新潟沖,秋田沖の四地域及び太平洋の各地域ごとの平均元素濃度 Table 1 Average concentrations of eleven elements in Off Northwest Noto Peninsula, Toyama Bay, Off-Niigata, Off -Akita and several areas in the Pacific Ocean.

| Sea area                     |     | Fe   | Mn    | Cu    | Pb    | Zn    | Со    | Ni    | Cr    | V     | Be    | Li    |
|------------------------------|-----|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                              | (n) | (%)  | (ppm) |
| (Japan Sea)                  |     |      |       |       |       |       |       |       |       |       |       |       |
| Off Northwest Noto Peninsula | 146 | 3.13 | 767   | 16.7  | 24.4  | 63    | 11.4  | 26.4  | 60.7  | 59.5  | 1.4   | 31.3  |
| Toyama Bay                   | 94  | 3.48 | 1045  | 25.1  | 37.2  | 93.3  | 9.4   | 51.2  | 104.3 | 86    | 1.7   | 38.6  |
| Off Niigata                  | 213 | 4.17 | 1600  | 19.1  | 33.7  | 91.2  | 9.3   | 31.2  | 65.5  | 93.2  | 1.2   | 36.9  |
| Off Yamagata-Akita           | 182 | 3.95 | 2046  | 25.9  | 36.8  | 104.6 | 10.8  | 27.3  | 47.1  | 95.8  | 1.4   | 38.1  |
| (Pacific Ocean)              |     |      |       |       |       |       |       |       |       |       |       |       |
| Suruga Bay                   | 14  | 3.70 | 581   | 31    | 19    | 93    | 14    | 28    | n.d.  | n.d.  | n.d.  | n.d.  |
| South of Kii Strait          | 14  | 2.91 | 401   | 26    | 14    | 98    | 11    | 30    | n.d.  | n.d.  | n.d.  | n.d.  |
| Sendai Bay                   | 145 | 3.30 | 655   | 16    | n.d.  | 92    | 9     | 8     | 20    | n.d.  | n.d.  | n.d.  |
| Off Northeast Japan          | 21  | 3.15 | 390   | 36    | 12    | 84    | 8     | 27    | n.d.  | n.d.  | n.d.  | n.d.  |
| The Japan Trench             | 26  | 3.25 | 672   | 76    | 13    | 81    | 10    | 24    | n.d.  | n.d.  | n.d.  | n.d.  |
| Central Pacific              | 139 | 4.12 | 7438  | 369   | 38    | 133   | 104   | 200   | n.d.  | n.d.  | n.d.  | n.d.  |

Data for the Pacific Ocean are from Terashima et al. (1995) and Ohshima et al. (1987). n.d. = not determined.

の石灰質堆積物が分布するほか,基盤岩砕屑物を含むと 考えられる試料が大陸斜面部を中心に分布しており,本 海域の基盤岩類としては安山岩や玄武岩等の火山岩類及 び泥質岩の分布が確認されている(片山,1989;池原, 1989)。

## 3.2 試料処理と分析法

表層試料は、グラブ採泥試料の表層部 2-3 cm をプラ スチックケースに入れて実験室に持ち帰り、約30g を分 取して約80°Cで乾燥し、めのう粉砕器で149 $\mu$ m(100メッ シュ)以下に粉砕して分析試料とした。各元素のうち Fe, Mn, V は ICP 発光分析法で分析し (今井、1987)、Cu, Pb, Zn, Co, Ni, Cr, Be, Li は ICP 質量分析法で分析 を行った (Imai, 1990). すなわち試料0.2g を HNO<sub>3</sub>、 HClO<sub>4</sub>, HF で分解し, 蒸発乾固した後希硝酸で溶解して 100mlの試料溶液とし ICP 発光分析法及び ICP 質量分 析法で分析を行った。

## 4. 結果と考察

各元素の分析結果を付表に示した。各地域の特徴を明 らかにするために本調査海域を能登半島北西部,富山湾, 新潟沖,秋田沖の4つの海域に分けて平均値を求めた(第 1表).また,重金属等10元素については広域的な濃度分 布図を作成し,第4-8図に示した。

#### 4.1 表層試料における元素分布の特徴

海底堆積物中の各元素の水平分布を解明することは,

Regional average of heavy metals in river sediments

|                      | _   | _    |        |      |       |     |         |      |      |     |       |     |       |     |       |
|----------------------|-----|------|--------|------|-------|-----|---------|------|------|-----|-------|-----|-------|-----|-------|
| River                |     | F    | Fe (%) |      | (ppm) | C   | u (ppm) | Pb ( | ppm) | Zn  | (ppm) | Ni  | (ppm) | Cr  | (ppm) |
| System               | (n) | F    | С      | F    | C     | F   | С       | F    | С    | F   | C     | F   | С     | F   | C     |
| [Toyama Bay]         |     |      |        |      |       |     |         |      |      |     |       |     |       |     |       |
| Shou                 | 3   | 3.59 | 1.34   | 1199 | 416   | 40  | 13      | 21   | 19   | 198 | 56    | 15  | 4     | 103 | 9     |
| Jintsu               | 17  | 4.28 | 2.41   | 1400 | 651   | 69  | 23      | 188  | 51   | 649 | 150   | 26  | 19    | 59  | 35    |
| Joganji              | 3   | 5.54 | 2.83   | 1334 | 817   | 23  | 13      | 8    | 14   | 121 | 59    | 9   | 4     | 21  | 6     |
| Hayatsuki            | 1   | 4.05 | 1.77   | 1128 | 552   | 34  | 12      | 37   | 15   | 113 | 45    | 84  | 8     | 146 | 17    |
| Kurobe               | 3   | 4.02 | 1.91   | 1367 | 598   | 59  | 17      | 17   | 15   | 171 | 49    | 89  | 34    | 133 | 50    |
| Hime                 | 9   | 4.74 | 4.03   | 930  | 953   | 27  | 25      | 6    | 11   | 93  | 68    | 177 | 283   | 256 | 370   |
| [Off Niigata]        |     |      |        |      |       |     |         |      |      |     |       |     |       |     |       |
| Shinano              | 6   | 4.27 | n.d.   | 862  | n.d.  | 34  | n.d.    | 20   | n.d. | 145 | n.d.  | 27  | n.d.  | 58  | n.d.  |
| Agano                | 8   | 3.41 | 1.95   | 1046 | 514   | 38  | 14      | 34   | 12   | 202 | 92    | 12  | 5     | 26  | 16    |
| Miomote*             | 8   | 2.99 | 1.68   | 915  | 362   | 40  | 10      | 38   | 14   | 167 | 59    | 18  | 6     | 42  | 23    |
| [Off Yamagata-Akita] |     |      |        |      |       |     |         |      |      |     |       |     |       |     |       |
| Mogami               | 3   | 4.45 | 2.44   | 1257 | 590   | 56  | 19      | 39   | 10   | 243 | 108   | 23  | 8     | 35  | 16    |
| Omono                | 6   | 4.43 | 3.07   | 842  | 555   | 38  | 27      | 31   | 11   | 201 | 120   | 21  | 10    | 32  | 19    |
| Yoneshiro            | 9   | 4.22 | 3.18   | 1129 | 779   | 178 | 76      | 107  | 22   | 491 | 164   | 17  | 8     | 30  | 17    |

第2表 河川堆積物中重金属含有量の平均値

\*Containing the sediments from the Ara River, Tainai River and Kaji River.

Table 2

F: Finer than 150 mesh; C: 10 - 40 mesh; n.d.: not determined.

4.1.1 鉄, マンガン

鉄については能登半島西側の大陸斜面、上越市の沿岸 からその北方海域、男鹿半島から飛島へかけての海域で 5%以上の高濃度が得られている(第4図)。鉄に富む堆 積物の特性を検討するため,能登半島北西海域から5試 料(No. 11, 14, 31, 42, 85), 上越市沿岸から4 試料(No. 8, 20, 25, 35) を選び X 線回折による鉱物分析を実施 した。その結果、スメクタイト、緑泥石、海緑石等の存 在が明らかになり、特にスメクタイトの存在量が卓越し ていることが分かった。したがって高濃度の鉄は主とし てスメクタイトに由来する可能性があると考えられた。 男鹿半島から飛島周辺海域に分布する鉄に富む砂質堆積 物には多量の海緑石が含有されている(池原ほか、1994 a). 全調査海域を通じて鉄に富む堆積物は比較的堆積速 度の遅い海域に分布する特徴があり,鉄の濃集機構につ いては今後の検討が必要である。一方、鉄に乏しい堆積 物は能登半島北方の大陸棚上に分布する(第4図)。鉄に 乏しい堆積物には例外なく多量の CaO が含有されてお り、いずれも石灰質堆積物であることが分かった。

海底堆積物中のマンガンの濃集機構については古くか ら多くの研究があり(Lynn and Bonatti, 1965; Bonatti et al., 1971; Yin et al., 1989), これらによれば還元的 環境下にある下層堆積物間隙から溶出したマンガンが, 酸化的環境下にある堆積物表層や海水中で酸化されて再 沈殿する.そして再沈殿したマンガンは,周辺よりも水 深が大きい海域に集積する.本研究結果においても水深 の大きい海域でマンガンが高濃度を示しており,佐渡島 北西部の富山トラフ及び男鹿半島西方の最上トラフでは 3000pm 以上である(第4図).しかしながら,周辺より も水深が大きいにもかかわらずマンガン濃度が高くない 海域もある.例えば佐渡島西方の富山トラフでは水深が 1500mを越えているがマンガン濃度が2000pm 以下の 試料が5個あり,その南方の水深1500m 以下の海域より も低い(第4図).水深が大きいにもかかわらず周辺より もてンガン濃度が低い原因は主として酸化還元電位が低 いためと考えられ,実際にマンガン濃度2000pm 以下の 5 試料における酸化還元電位はいずれも-57mV よりも 還元的であった.

4.1.2 鉰, 鉛, 亜鉛

銅もマンガンと同様に水深の大きい海域で高濃度を示 す傾向があるが、佐渡島北西部及び男鹿半島西方の深海 域に比べて能登半島北西部の大陸斜面では特に高い(第 5図).本海域で40ppm以上の銅を含有する試料は6個 (No.9,10,14,51,54,117)であり、このうち14は 前に述べたように泥質角れき岩片で、51にも泥質角れき 岩片が含有されており、基盤を構成する岩石が銅に富む ことを示唆している。全調査海域を通じて水深が小さい 海域には銅に乏しい堆積物が分布し、特に能登半島北方 には広い低濃度域が認められるが、これらはほかの重金 属類と同様に石灰質堆積物が分布することによってい る.

銅と亜鉛は富山湾の湾奥部で顕著な高濃度を示し(第 5図,第6図),そこから離れるに従って濃度を減じてお り、河川からの供給を示唆している。第2表によれば, 富山湾に流入する河川のうち堆積物中の鉛,亜鉛濃度が 最も高いのは神通川であり,他河川に比べて3倍以上で ある。第5,6図からわかるように,鉛については70ppm 地質調査所月報(第48巻 第9号)







第5図 表層堆積物中の銅, 鉛濃度の広域分布 Fig. 5 Distributions of Cu and Pb concentrations in surface sediments from the near shore of the Noto Peninsula to Off Akita



第7図 表層堆積物中のニッケル,クロム濃度の広域分布 Fig. 7 Distributions of Ni and Cr concentrations in surface sediments from the near shore of the Noto Peninsula to Off Akita

地質調查所月報(第48巻 第9号)



第6図 表層堆積物中の亜鉛, コバルト濃度の広域分布 Fig.6 Distributions of Zn and Co concentrations in surface sediments from the near shore of the Noto Peninsula to Off Akita

地質調査所月報(第48巻 第9号)



第8図 表層堆積物中のバナジウム、ベリリウム濃度の広域分布 Fig. 8 Distributions of V and Be concentrations in surface sediments from the near shore of the Noto Peninsula to Off Akita

以上の高濃度域は富山湾の湾奥部に限定されるのに対 し、亜鉛の場合は秋田県北部沿岸にも高濃度域がある。 秋田県沿岸海域に分布する細粒堆積物の供給源として は、男鹿半島以北では主として米代川,男鹿半島以南で は主として雄物川で,一部は最上川と考えられる(Ikehara *et al.*, 1996)ので,高濃度の亜鉛もこれら河川か らの供給と考えられる。上記三河川の堆積物中の亜鉛濃 度を比較すると米代川が最も高く(第2表),この河川の 上流域には日本を代表する黒鉱鉱床が分布している。

4.1.3 ニッケル,クロム,コバルト

ニッケル,クロムは、いずれも糸魚川市の沿岸に流入 する姫川の河口で最高濃度を示し、そこから北方の水深 の増加する方向にのびる顕著な高濃度域がある(第7 図).この図を詳しく見ると、ニッケル、クロムの高濃度 域は北方の富山深海長谷方向のほかに、富山湾中央部方 向及び佐渡島南部方向へも広がっている。富山深海長谷 方向及び富山湾中央部への広がりは、渡部ほか(1995) が指摘しているように重力流を主体とした移動と考えら れるが、佐渡島南部方向への拡散は主として海流の作用 によると考えられる。本海域へのニッケル、クロムの主 要供給源は姫川流域に分布する蛇紋岩を主体とする超塩 基性岩類であり(寺島ほか、1995)、このことは河川堆積 物中のニッケル、クロムの分析値(第2表)にも良くあ らわれている。

姫川河口とその北方海域についでニッケル,クロムに 富む堆積物は能登半島北西部の大陸棚から大陸斜面にか けて分布している(第7図).これら試料の粒度組成はシ ルトー中粒砂であり,またその分布域からみて現在の河川 から供給された部分は少なく,主として基盤岩由来の砕 屑物と考えられる.

コバルトは、その物理化学的な性質からニッケルと同様な広域分布を示すと予想された.しかし、姫川河口-富山トラフの堆積物が22ppm以下のコバルト濃度であるのに対し、能登半島北西部には22-40ppmを示す試料が10個存在する(付表、第6図).このことは、能登半島北西部には、姫川上流域の超塩基性岩類よりもコバルトに富む基盤岩類が分布することを強く示唆する.

4.1.4 バナジウム, ベリリウム, リチウム

バナジウムは,能登半島北西部の水深の大きい海域等 全体として鉄に富む堆積物で高濃度を示す傾向があり, また他元素と同様に石灰質堆積物では低濃度である(第 8図).各種岩石中のバナジウム含有量は,珪長質岩より も苦鉄質岩中で高濃度を示す傾向があり,能登半島北西 部における高濃度は苦鉄質基盤岩類に由来すると考えら れる.ベリリウムについても能登半島北西部の大陸斜面 の堆積物で2 ppm 以上の高濃度が得られた(第8図). 苦鉄質火山岩類中のベリリウム濃度は一般に1 ppm 以 下であるため,ベリリウムの濃集については他の要因を 考える必要がある.山形・秋田沖で採取された海緑石を 含む粗粒堆積物には高濃度のベリリウムが含有されてお り,主として続成作用に伴う濃集と考えられた(寺島ほ か,1995)。リチウムに関しては,全体としては砂質堆積 物で少なく,粘土質堆積物中で多い傾向があった。海域 別では,能登半島北西部のベリリウムに富む試料を中心 として60ppm 以上の高濃度が得られ,石灰質堆積物が卓 越する能登半島北部の大陸棚上では20ppm 以下の低濃 度であり,富山湾内では30-50ppm の平均的濃度であっ た.

#### 4.2 沿岸海域における微量金属の移動形態

沿岸域における微量重金属の移動形態を解明すること は、各種元素の物質収支や海域での挙動を把握する上で 極めて重要である。赤木・原口(1984)は、多摩川河口 -東京湾において河川水-海水中の重金属を分析し、ほと んどの重金属濃度が塩分量の増加に従って急速に減少す ることを報告した。このことは、溶存態として供給され る重金属は、河口域で沈殿することを示している。一方、 鉄をはじめとする重金属は砂岩よりも頁岩に多く含有さ れることは古くから知られている。したがって、沿岸海 域における重金属は、主として微細な粘土質堆積物に 伴って移動していることが予想される。

微量重金属の移動形態を研究する場合,多くの供給源 が存在すると個々の影響評価が難しくなるため,銅,鉛, 亜鉛については富山湾の湾奥部の31試料,ニッケル,ク ロム,コバルトについては姫川河口とその北方海域の44 試料を選び,堆積物中のシルト及び粘土含有率との関係 を検討した。その結果,銅,鉛,亜鉛,ニッケル,クロ ム,コバルトのいずれについても粘土含有率よりもシル ト含有率との間の正相関が高いことが分かった(第3, 4表;第9,10図).特にニッケル,クロム,コバルトに ついては、シルトとの間には0.58以上の正相関があるの に対して粘土との間には明らかな負相関があり,相対的 に粗粒な堆積物と挙動を共にしていることが分かった。 粗粒堆積物がニッケル,クロムに富む傾向は,姫川の河 川堆積物においても認められる(第2表).

以上のことから,本沿岸海域における微量重金属の移動形態としては堆積物を構成する各種岩石の砕屑物中に 含有される元素量が重要であり,特に超塩基性岩類に伴 うニッケル,クロム,コバルトに関しては岩石の風化に 伴う溶出や河口域における沈殿の影響はさほど大きくな いと判断される.

# 4.3 海底堆積物中重金属の広域分布特性

能登半島から秋田県沿岸海域における元素分布の特徴 を把握するため、試料採取地点の緯度と堆積物中の鉛、 亜鉛、ニッケル、クロム含有量の関係をプロットして第 11図に示した。いずれの元素についても南部海域でいく つかの高値が認められるが、これらは4.1で述べたよう

第3表 富山湾の湾奥部堆積物における測定値の相関 (n=31)

Table 3 The correlation between Fe, Cu, Pb, Zn concentrations and silt, clay contents in sediments collected from the inner most shore of Toyama Bay

|      | Silt | Clay | Fe   | Cu   | Pb.  |  |
|------|------|------|------|------|------|--|
| Clay | 0.29 |      |      |      |      |  |
| Fe   | 0.62 | 0.10 |      |      |      |  |
| Cu   | 0.64 | 0.51 | 0.35 |      |      |  |
| Pb   | 0.38 | 0.28 | 0.27 | 0.59 |      |  |
| Zn   | 0.50 | 0.23 | 0.40 | 0.65 | 0.93 |  |

第4表 姫川河口とその北方海域堆積物における測定値 の相関 (n=44)

Table 4 The correlation between Fe, Ni, Cr, Co concentrations and silt, clay contents in marine sediments collected from north and near the mouth of the Hime River

|               | Silt | Clay   | Fe   | Ni   | Cr   |  |
|---------------|------|--------|------|------|------|--|
| Clay          | 0.86 |        |      |      |      |  |
| Fe            | 0.58 | - 0.53 |      |      |      |  |
| Ni            | 0.66 | - 0.63 | 0.81 |      |      |  |
| $\mathbf{Cr}$ | 0.67 | - 0.66 | 0.85 | 0.98 |      |  |
| Со            | 0.58 | - 0.57 | 0.50 | 0.82 | 0.75 |  |



第9図 堆積物中の銅,鉛,亜鉛濃度とシルト及び粘土 含有率の関係

Fig. 9 The relation between Cu, Pb, Zn concentrations and silt, clay contents in surface sediments from the near shore of the Noto Peninsula to Off Akita



第10図 堆積物中のニッケル,クロム濃度とシルト及び 粘土含有率の関係

Fig. 10 The relation between Ni, Cr concentrations and silt, clay contents in surface sediments from the near shore of the Noto Peninsula to Off Akita

に、神通川由来の鉛、亜鉛及び姫川から供給されたニッ ケル、クロムの影響である.これらの高値を除外すると、 鉛については顕著な南北変化はなく、亜鉛は北に向かっ てやや増加し、ニッケル、クロムは南から北に向かって 減少している。ニッケル、クロム濃度が北に向かって漸 減するのは、これら海域に流入する河川の流域にはニッ ケル、クロムに富む岩石の分布が少ないことを意味して おり、堆積物中のニッケル、クロム濃度を支配する要因 として姫川上流域の超苦鉄質岩体の影響が極めて大きい ことを示している。

第1表には、日本海沿岸海域における堆積物中の元素 濃度を太平洋側のそれと比較して示してある。太平洋側 試料の採取海域は、仙台湾(水深約10-130m,大嶋ほか、 1987)、駿河湾(水深約17-2000m),紀伊水道南方(水深 約1355-2070m)、東北沖(水深約750-4770m)、日本海溝 周辺(水深約5180-8805m;以上Terashima et al., 1995) 等であり、分析試料数は日本海側のそれより少ないが(第 1表)、元素濃度の広域的な比較は可能と思われる。第1 表によれば、鉄、銅、亜鉛、コバルト、ニッケルに関し ては日本海側と太平洋側で大きな差は存在しないが、マ ンガン及び鉛については明らかに日本海の堆積物が高濃 度である。海底堆積物中の元素濃度は試料採取地点の水 深によって変化する場合が多いため、マンガン、銅、鉛



第11図 堆積物中の鉛,亜鉛,ニッケル,クロム濃度の南北変化 ●:富山湾から秋田 沖 +:能登半島北西部海域

Fig. 11 The changes in concentration of Pb, Zn, Ni and Cr in surface sediments with latitude from the near shore of the Noto Peninsula to Off Akita : Toyama Bay-Off Akita +: Off Northwest Noto Peninsula



第12図 堆積物中のマンガン濃度と試料採取位置の水深の関係

Fig. 12 The relation between Mn concentration in surface sediments and water depth for both Japan Sea and Pacific Ocean



第13図 堆積物中の銅濃度と試料採取位置の水深の関係 Fig. 13 The relation between Cu concentration in surface sediments and water depth for both Japan Sea and Pacific Ocean

を例としてこの関係を検討した.その結果,銅について は日本海側と太平洋側で明瞭な差はなかったが,マンガ ン,鉛は明らかに異なる位置にプロットされた(第12, 13,14図).4.1で述べたように,海底堆積物中のマンガ ンの濃集は主として続成作用に伴うものであり,生成し たマンガン酸化物等は細粒堆積物と挙動を共にしている と考えられる。沿岸海域の堆積物中のマンガン濃度が太 平洋側と日本海側で異なる主な原因は,太平洋沿岸に比 べて海流の影響が小さい日本海ではマンガンに富む微細 堆積物が陸域に近い海底で沈積するのに対して太平洋で



第14図 堆積物中の鉛濃度と試料採取位置の水深の関係 Fig. 14 The relation between Pb concentration in surface sediments and water depth for both Japan Sea and Pacific Ocean

は沿岸域で沈積しにくく、遠洋域まで運ばれることが考 えられる。実際に太平洋の中央部の堆積物には多量のマ ンガンが濃集されている(第1表)。第5図からわかるよ うに、鉛は供給源の河口域で高濃度を示す特徴がある。 しかし、富山湾の湾奥部を除外すると特別高濃度を示す 場所はなく、また第11図の南北変化からみても特定な供 給源は存在しないと考えられる。したがって日本海沿岸 域の堆積物中の鉛濃度が高い理由は沿岸陸域の地質特性 に由来するバックグラウンド値が高いことによると解釈 される。

# 5.まとめ

広域的な底質地球化学図の作成を主目的とし,能登半 島から秋田沖までの日本海沿岸で採取された堆積物中の 重金属等11元素の地球化学的挙動を研究し,以下の結果 を得た。

1)鉄は多くの場合に堆積速度が遅い海域の砂質堆積 物で高濃度を示し、スメクタイトや海緑石等の生成に 伴う濃集の可能性が考えられた。マンガン濃度は、採 泥点の水深と良好な正相関を示し、マンガンの濃集は 主として続成作用に起因する。

2) 銅, 鉛, 亜鉛は, 富山湾の湾奥部や秋田県北部の 沿岸で高い場合が多かった. 銅が比較的沖合まで移動 するのに対して鉛, 亜鉛は河川域で堆積しやすい. 能 登半島北方の石灰質堆積物は銅を始めほとんどの重金 属が低濃度であった.

3)本調査海域におけるニッケル,クロムの主要供給 源は姫川上流域の超苦鉄質岩であり,堆積物中の両元 素は姫川河口で最大値を示し,北へ向かって漸減する. 4) 能登半島北西部の大陸斜面には基盤岩由来と考え られる比較的粗粒な堆積物が分布しており、鉄、コバ ルト、ニッケル、ベリリウム等に富む特徴がある。

5)海底堆積物中の微量重金属は、一般に細粒堆積物 に伴って移動すると考えられてきた。しかし、本研究 結果によれば粘土よりも粗粒なシルト質砕屑物中の元 素含有量が重要であり、特に超苦鉄質岩に由来する ニッケル、クロム、コバルトの大部分は砕屑物中に含 有された状態で移動すると考えられた。

6)本調査域の堆積物中の重金属濃度を、太平洋沿岸 のそれを比較すると、鉄、銅、亜鉛、ニッケル、コバ ルトには有意差はないが、マンガン、鉛は本調査域で 高かった。続成作用で濃集したマンガンが本調査域で は沿岸近くで堆積するのに対して太平洋では遠洋域ま で移動すると考えられた。本調査域の堆積物における 鉛の高濃度は陸域の地質特性に由来すると解釈され た。

## 文 献

- 赤木 右・原口 炁紘(1984) 多摩川河口-東京湾域に おける微量重金属元素の分布と挙動,地球化学, 18,81-88.
- 有田正史・野原昌人・木下泰正・小野寺公児(1979) 富山湾の海底堆積物.環境庁環境保全研究成果集, 60-53~61-85.
- Bonatti, E., Fisher, D.E., Joensuu, O. and Rydell, H. S. (1971) Postdepositional mobility of some transition elements, phosphorus, uranium and thorium in deep-sea sediments. Geochim. Cosmochim. Acta. 35, 189-201.
- 池原 研(1989) GH88-4航海で得られた採泥試料. 西南日本周辺大陸棚の海底地質に関する研究,昭 和63年度研究概要報告書一能登半島周辺海域一, 地質調査所,50-65.
- 池原 研・中嶋 健・片山 肇(1994a) 海洋地質図 「秋田西方表層堆積図」,地質調査所。
- 池原 研・中嶋 健・片山 肇(1994b) 海洋地質図 「粟島周辺表層堆積図」,地質調査所。
- Ikehara, K., Katayama, H. and Nakajima T. (1996) Mode of mud deposition on shelf to basin area off Akita, northeast Japan Sea, La mer, **34**, 137 -151.
- 片山 肇(1989) 能登半島周辺海域の表層堆積物. 西南日本周辺大陸棚の海底地質に関する研究,昭 和63年度研究概要報告書一能登半島周辺海域一, 地質調査所,66-98.
- 片山 肇・中嶋 健・池原 研(1991) 新潟沖の表 層堆積物。日本海中部東縁部大陸棚周辺海域の海

洋地質学的研究,平成2年度研究概要報告書一新 潟県沖海域一,地質調査所,47-73.

- 片山 肇・中嶋 健・池原 研(1994) 海洋地質図 「佐渡島南方表層堆積図」,地質調査所。
- 今井 登(1987) 誘導結合プラズマ発光分析法によ る河川たい積物の分析.分析化学,36,T41-T45.
- Imai, N. (1990) Multielement analysis of rocks with the use of geological certified reference material by inductively coupled plasma mass spectrometry, Analytical Sciences, 6, 389-395.
- Lynn D.C. and Bonatti, E.F. (1965) Mobility of manganese in diagenesis of deep-sea sediments. Marine Geol., 3, 457-474.
- 中嶋 健・片山 肇(1992) 酒田・秋田沖の表層堆 積物.日本海中部東縁部大陸棚周辺海域の海洋地 質学的研究,平成3年度研究概要報告書一山形-秋 田沖海域一,地質調査所,105-130.
- 中嶋 健・片山 肇・池原 研(1992) 海洋地質図 「佐渡島北方表層堆積図」,地質調査所。
- 大嶋和雄・横田節哉・斉藤文紀・鈴木泰輔・松本英二・ 池田国昭・羽坂俊一・村瀬 正(1987) 開口性 沿岸海域開発に伴う底質汚染予測技術に関する研 究,昭和62年度国立機関公害防止等研究報告,54 -1-54-34 (通産省).
- 寺島 滋・片山 肇(1991) 新潟県沖表層堆積物の 重金属を中心とした地球化学的特徴。日本海中部 東縁部大陸棚周辺海域の海洋地質学的研究,平成 2年度研究概要報告書一新潟県沖海域一,地質調 査所,158-172.
- 寺島 滋・片山 肇(1993) 新潟沖海底表層堆積物 中の重金属12元素の地球化学的挙動。地調月報, 44,55-74.
- 寺島 滋・中嶋 健・片山 肇(1992) 山形-秋田沖 表層堆積物中の重金属分布.日本海中部東縁部大 陸棚周辺海域の海洋地質学的研究,平成3年度研 究概要報告書―山形-秋田沖海域―,地質調査所, 185-196.
- Terashima, S., Nakao, S., Mita, N., Inouchi, Y. and Nishimura, A. (1995) Geochemical behavior of Au in terrigenous and pelagic marine sediments, Applied Geochemistry, **10**, 35–44.
- 寺島 滋・中嶋 健・片山 肇・池原 研・今井 登・ 谷口政碩(1995) 秋田-山形沖海底堆積物におけ る重金属等の地球化学的研究.地調月報,46,153 -176.
- Yin, J.H., Kajiwara, Y. and Fujii, T. (1989) Distribution of transition elements in surface sediments of the southwestern margin of Japan Sea. Geochem. J., 23, 161–180.

横田節哉(1989) 秋田沖表層堆積物の重金属元素。 秋田沖の海底地形と堆積物,「開口性沿岸海域開発 に伴う底質汚染予測技術に関する研究」成果報告 書,地質調査所,71-85.

渡部芳夫・片山 肇・今井 登(1995) 化学組成か

ら見た海成泥質堆積物の起源判別:富山湾表層泥 質堆積物の例.地質学雑誌,101,633-647.

(受付:1997年6月4日;受理:1997年8月22日)

# 付 表 海底表層堆積物の分析結果

Appendix Analytical data for the studied sediments

| location | Fe %  | Mn ppm     | Cuppm    | Ph ppm | Zn nnm | Coppm    | Ni ppm | Crnnm | Vnnm         | Bannm | Timm |       | Danth m |
|----------|-------|------------|----------|--------|--------|----------|--------|-------|--------------|-------|------|-------|---------|
| 1        | 3 74  | 721        | 8        | 16     | 55     | <u>Q</u> | 12     | 24    | *,ppin<br>66 | 1 2   | 25   | 1.67  | Depui,m |
| 2        | 2 97  | 521        | 11       | 25     | 67     | 12       | 15     | 20    | 45           | 1.5   | 2.5  | 1.07  | 43      |
| 2        | 2.97  | JZ1<br>407 | 11       | 25     | 02     | 15       | 15     | 30    | 45           | 1.0   | 18   | 6.40  | 93      |
| 3        | 2.47  | 427        | 10       | 21     | 50     | 14       | 16     | 29    | 38           | 1.0   | 21   | 6.40  | 111     |
| 4        | 3.33  | 583        | 12       | 28     | 72     | 10       | 15     | 50    | 59           | 1.1   | 31   | 3.29  | 70      |
| 5        | 3.69  | 532        | 13       | 23     | 71     | 11       | 18     | 52    | 73           | 1.7   | 35   | 3.97  | 129     |
| 6        | 3.22  | 583        | 14       | 25     | 80     | 11       | 15     | 45    | 64           | 1.8   | 38   | 3.69  | 61      |
| 7        | 3.82  | 551        | 15       | 37     | 76     | 12       | 19     | 59    | 66           | 11    | 24   | 4 10  | 126     |
| 8        | 2.82  | 600        | 17       | 28     | 73     | ā        | 16     | 40    | 62           | 1.1   | 27   | 2.10  | 120     |
| 0        | 2.02  | 1277       | 11       | 20     | 15     | 9        | 10     | 49    | 02           | 1.2   | 27   | 2.76  | 78      |
|          | 4.47  | 13//       | 40       | 42     | 80     | 0        | 34     | 104   | 106          | 1.4   | 40   | 1.13  | 2228    |
| 10       | 2.93  | 1235       | 44       | 43     | 88     | 7        | 36     | 85    | 85           | 1.1   | 31   | 1.06  | 1644    |
| 11       | 8.23  | 1186       | 20       | 23     | 79     | 6        | 22     | 150   | 120          | 3.3   | 35   | 1.60  | 885     |
| 12       | 2.98  | 573        | 33       | 31     | 82     | 9        | 32     | 80    | 69           | 16    | 45   | 2 71  | 616     |
| 13       | 3 1 1 | 5130       | 25       | 19     | 60     | 4        | 25     | 79    | 75           | 1.0   | 40   | 0.00  | 010     |
| 14       | 6 16  | 5150       | £.5      | 10     | 09     | 10       | 25     | 105   | 15           | 1.0   | 50   | 0.88  | 2034    |
| 14       | 0.15  | 507        | 54       | 24     | 88     | 10       | 27     | 125   | 172          | 1.9   | 73   | 0.81  | 2024    |
| 15       | 2.88  | 471        | 39       | 42     | 85     | 9        | 36     | 77    | 73           | 1.0   | 33   | 1.66  | 997     |
| 16       | 2.78  | 397        | 38       | 40     | 86     | 10       | 36     | 77    | 69           | 1.1   | 38   | 2.13  | 689     |
| 17       | 3.04  | 531        | 29       | 29     | 72     | 11       | 30     | 76    | 63           | 14    | 38   | 3 30  | 441     |
| 18       | 3 58  | 472        | 17       | 24     | 58     | 8        | 54     | 67    | 61           | 1.2   | 22   | 2.52  | 071     |
| 10       | 7 37  | 075        | 21       | 27     | 70     | 20       | 20     | 50    | 01           | 1.2   | 22   | 2.74  | 2/1     |
| 19       | 1.57  | 973        | 21       | 27     | 19     | 20       | 30     | - 59  | 81           | 1.7   | 35   | 4.36  | 233     |
| 20       | 4.00  | 572        | 24       | 28     | 73     | 22       | 49     | 130   | 72           | 1.5   | 27   | 9.29  | 219     |
| 21       | 3.33  | 894        | 21       | 28     | 63     | 14       | 28     | 65    | 70           | 1.5   | 30   | 6.02  | 183     |
| 22       | 4.00  | 616        | 13       | 22     | 59     | 15       | 25     | 122   | 58           | 1.8   | 23   | 7.39  | 183     |
| 23       | 3.53  | 490        | 12       | 20     | 62     | 15       | 28     | 124   | 65           | 13    | 27   | 618   | 185     |
| 24       | 2.96  | 130        | 16       | 25     | 66     | 11       | 10     | 60    | 60           | 1.5   | 50   | 2.64  | 100     |
| 25       | 2.70  | 500        | 10       | 25     | 60     | 11       | 19     | 00    | 02           | 1.0   | 50   | 3.64  | 183     |
| 25       | 3.19  | 592        | 9        | 20     | 59     | 12       | 18     | 57    | 49           | 2.1   | 29   | 18.02 | 134     |
| 27       | 3.15  | 4035       | 36       | 29     | 87     | 7        | 44     | 78    | 89           | 1.7   | 72   | 0.93  | 2539    |
| 28       | 3.06  | 2237       | 26       | 26     | 79     | 3        | 29     | 75    | 87           | 2.4   | 85   | 0.90  | 2423    |
| 29       | 2.86  | 989        | 34       | 33     | 81     | 6        | 29     | 67    | 73           | 29    | 81   | 1 15  | 1767    |
| 30       | 2.92  | 376        | 29       | 29     | 84     | õ        | 28     | 66    | 71           | 2.2   | 75   | 374   | 447     |
| 21       | 5 56  | 522        | 14       | 20     | 70     | ó        | 1.5    | 00    | 71           | 2.7   | 75   | 3.20  | 500     |
| 51       | 5.50  | 555        | 14       | 20     | 70     | 9        | 15     | 90    | 74           | 3.4   | 50   | 2.47  | 272     |
| 32       | 3.82  | 352        | 17       | 22     | 64     | 11       | 19     | 88    | 64           | 2.9   | 60   | 3.92  | 234     |
| 33       | 3.78  | 548        | 14       | 21     | 67     | 9        | 16     | 67    | 64           | 2.1   | 43   | 3.69  | 208     |
| 34       | 2.99  | 445        | 21       | 28     | 74     | 13       | 27     | 68    | 64           | 2.8   | 97   | 4.65  | 190     |
| 35       | 3.27  | 386        | 14       | 23     | 61     | 13       | 22     | 54    | 62           | 29    | 77   | 3.88  | 170     |
| 36       | 2 90  | 507        | 13       | 25     | 50     | 14       | 22     | 61    | 49           | 2.2   | 60   | 20.72 | 112     |
| 27       | 1.09  | 950        | 15       | 21     | 22     | 14       | 15     | 01    | 40           | 2.5   | 02   | 20.73 | 113     |
| 57       | 1.08  | 839        | 4        | 21     | 23     | 2        | 15     | 25    | 18           | 0.6   | 16   | 42.67 | 100     |
| 38       | 0.50  | 779        | 2        | 13     | 13     | 4        | 17     | 21    | 14           | 0.4   | 8    | 48.45 | 65      |
| 39       | 1.04  | 1202       | 5        | 16     | 20     | 8        | 29     | 38    | 23           | 0.5   | 11   | 45.12 | 107     |
| 40       | 2.60  | 507        | 6        | 15     | 47     | 7        | 13     | 42    | 32           | 1.3   | 18   | 18 00 | 146     |
| 42       | 4.83  | 496        | 10       | 19     | 65     | 9        | 15     | 64    | 62           | 21    | 26   | 3 35  | 106     |
| 43       | 3.09  | 441        | 16       | 26     | 72     | 13       | 22     | 50    | 66           | 1 4   | 20   | 5.10  | 170     |
| 43       | 2.02  | 475        | 14       | 20     | (7     | 1.5      | 22     | 50    | 00           | 1.4   | 32   | 5.12  | 1/0     |
| 44       | 2.93  | 4/3        | 14       | 25     | 0/     | 14       | 21     | 47    | 66           | 1.4   | 30   | 5.43  | 160     |
| 45       | 3.32  | 607        | 10       | 22     | 59     | 10       | 16     | 51    | 67           | 1.1   | 19   | 3.95  | 123     |
| 46       | 2.65  | 596        | 10       | 19     | 65     | 9        | 42     | 47    | 40           | 0.8   | 17   | 25.72 | 102     |
| 47       | 0.53  | 864        | 3        | 17     | 14     | 4        | 55     | 10    | 17           | 0.1   | 3    | 50 43 | 63      |
| 48       | 0.42  | 254        | 3        | 9      | 11     | 4        | 53     | 15    | 0            | 0.1   | 2    | 48 74 | 66      |
| 50       | 1 26  | 405        | 5        | 11     | 54     | 14       | 22     | 20    | 51           | 0.1   | 2    | 40.74 | 142     |
| 50       | 7.20  | 405        |          | 11     |        | 14       | 25     | 39    | 54           | 0.8   | 9    | 21.33 | 143     |
| 21       | 3.52  | 485        | 47       | 23     | 82     | 18       | 31     | 122   | 157          | 1.3   | 47   | 1.32  | 1713    |
| 52       | 3.47  | 1024       | 19       | 26     | 82     | 8        | 30     | 85    | 94           | 1.6   | 43   | 1.18  | 960     |
| 53       | 8.26  | 891        | 12       | 20     | 86     | 7        | 16     | 106   | 112          | 3.1   | 31   | 2.34  | 374     |
| 54       | 6.36  | 550        | 44       | 8      | 75     | 30       | 86     | 340   | 82           | 16    | 12   | 2.81  | 248     |
| 55       | 4 63  | 433        | 29       | 8      | 61     | 25       | 52     | 195   | 61           | 1.0   | 11   | 2.01  | 240     |
| 56       | 7.41  | 1222       | 25       | 10     | 67     | 20       | 55     | 105   | 47           | 1.5   | 11   | 3.28  | 202     |
| 50       | 2.41  | 1225       | 35       | 10     | 03     | 39       | 84     | 94    | 4/           | 0.9   | 14   | 12.26 | 163     |
| 57       | 2.59  | 621        | 28       | 10     | 63     | 27       | 64     | 86    | 52           | 0.9   | 15   | 13.50 | 153     |
| 58       | 3.72  | 450        | 24       | 12     | 66     | 34       | 66     | 79    | 60           | 1.1   | 18   | 17.73 | 134     |
| 60       | 2.39  | 1856       | 8        | 17     | 31     | 11       | 89     | 23    | 26           | 0.4   | 6    | 41.70 | 88      |
| 61       | 2.59  | 428        | 15       | 12     | 55     | 24       | 44     | 65    | 40           | 0.9   | 13   | 18 40 | 104     |
| 62       | 3 00  | 443        | 13       | 15     | 40     | 30       | 55     | 150   | 11           | 1.0   | 14   | 17.46 | 104     |
| 62       | 716   | 200        | 1.5<br>E | 1.4    | 20     | 50       | 55     | 100   |              | 1.0   | 14   | 17.43 | 98      |
| 03       | 2.10  | 007        | 10       | 14     | 39     | ~        |        | 39    | 20           | 0.5   | 8    | 39.85 | 108     |
| 64       | 2.32  | 445        | 10       | 15     | 44     | 23       | 51     | 90    | 35           | 0.8   | 13   | 24.92 | 127     |
| 65       | 2.34  | 1181       | 9        | 17     | 48     | 15       | 20     | 46    | 36           | 1.1   | 22   | 14.90 | 157     |
| 66       | 2.50  | 652        | 12       | 21     | 52     | 14       | 18     | 54    | 45           | 1.1   | 20   | 6 50  | 191     |
| 67       | 2.54  | 495        | 20       | 34     | 60     | 14       | 23     | 60    | 56           | 0.6   | 12   | 5 3 7 | 227     |
| 68       | 3 26  | 560        | 22       | 28     | 68     | 11       | 24     | 91    | 69           | 1.0   | 22   | 2.52  | 210     |
| 40       | 2.04  | 407        | 17       | 20     | 67     | 10       | 24     | 61    | 00           | 1.2   | 23   | 3.27  | 312     |
| 09       | 5.04  | 427        | 17       | 28     | 57     | 12       | 22     | 61    | 52           | 0.9   | 17   | 5.65  | 186     |
| 70       | 2.57  | 711        | 14       | 24     | 59     | 8        | 27     | 40    | 37           | 0.6   | 11   | 19.34 | 155     |
| 71       | 3.24  | 900        | 14       | 23     | 64     | 15       | 28     | 45    | 48           | 1.2   | 27   | 17.82 | 147     |
| 72       | 3.34  | 789        | 17       | 28     | 68     | 23       | 23     | 56    | 62           | 1.0   | 20   | 10 90 | 138     |
| 73       | 3 34  | 716        | 16       | 21     | 68     | 21       | 22     | 51    | 66           | 1 4   | 26   | 0.40  | 100     |
| 71       | 2 70  | 610        | 10       | 17     | 20     | 21       | 22     | 54    | 00           | 1.5   | 30   | 9.39  | 120     |
| /4       | 3.40  | 040        | 12       | 17     | 00     | 19       | 22     | 40    | 20           | 1.6   | 40   | 14.00 | 103     |
| 75       | 2.67  | 548        | 12       | 17     | 57     | 22       | 26     | 41    | 45           | 1.1   | 25   | 19.10 | 100     |
| 76       | 0.82  | 677        | 4        | 12     | 13     | 6        | 46     | 22    | 20           | 0.1   | 3    | 47.76 | 66      |
| 77       | 0.66  | 1670       | 3        | 12     | 13     | 6        | 52     | 12    | 17           | 0.1   | 3    | 47 98 | 57      |
| 78       | 1.68  | 1170       | 7        | 22     | 28     | 11       | 38     | 63    | 31           | 0.5   | 0    | 78 75 | 07      |
| 70       | 2 11  | 240        | ,<br>o   | 12     | 20     | 10       | 20     | 60    | 34           | 1.0   | ¥    | 20.23 | 5/      |
| 17       | 2.11  | 559        | 0        | 15     | 38     | 12       | 26     | 20    | 30           | 1.2   | 23   | 18.12 | 121     |
| 80       | 3.29  | 626        | 8        | 15     | 47     | 18       | 32     | 67    | 46           | 1.4   | 22   | 22.31 | 123     |
| 81       | 3.92  | 627        | 9        | 14     | 63     | 21       | 30     | 66    | 64           | 2.0   | 31   | 18.49 | 141     |
| 82       | 3.02  | 3340       | 32       | 20     | 72     | 4        | 28     | 72    | 85           | 1.6   | 49   | 1.02  | 1430    |
| 83       | 2.69  | 1389       | 25       | 23     | 74     | 8        | 24     | 57    | 60           | 2.0   | 62   | 2 24  | 680     |
| 84       | 3 40  | 833        | 24       | 25     | 79     | ő        | 27     | 20    | 74           | 1.0   | 47   | 2.24  | 200     |
| 04       | 5.43  | 033        | 24       | 20     | /6     | 9        | 20     | 63    | 75           | 1.8   | 47   | 3.21  | 388     |
| 85       | 1.13  | 022        | 14       | 18     | -77    | 8        | 16     | 74    | 71           | 3.4   | 37   | 2.57  | 258     |

--- 527 ----

# 地質調查所月報(第48巻 第9号)

| location | Fe,% | Mn,ppm      | Cu,ppm  | Pb,ppm   | Zn,ppm   | Co,ppm | Ni,ppm  | Cr,ppm   | V,ppm | Be,ppm | Li,ppm | CaO, % | Depth,m   |
|----------|------|-------------|---------|----------|----------|--------|---------|----------|-------|--------|--------|--------|-----------|
| 86       | 2.95 | 995         | 22      | 29       | 77       | 12     | 24      | 48       | 54    | 1.4    | 35     | 5.79   | 193       |
| 87       | 3.65 | 445         | 15      | 32       | 68       | 16     | 23      | 46       | 45    | 1.3    | 26     | 14.51  | 151       |
| 88       | 3.63 | 412         | 14      | 27       | 67       | 11     | 19      | 52       | 60    | 1.3    | 29.    | 4.27   | 158       |
| 89       | 3.28 | 487         | 13      | 39       | 66       | 7      | 15      | 47       | 67    | 0.6    | 14     | 3.05   | 142       |
| 90       | 3.58 | 514         | 16      | 33       | 71       | 11     | 19      | 61       | 72    | 1.2    | 32     | 2.84   | 130       |
| 91       | 2.98 | 447         | 13      | 48       | 62       | 9      | 15      | 40       | 56    | 0.4    | 10     | 3.06   | 110       |
| 93       | 0.82 | 603         | 3       | 39       | 15       | 4      | 28      | 10       | 23    | 0.1    | 1      | 47.29  | 61        |
| 94       | 0.57 | 436         | 4       | 26       | 21       | 3      | 23      | 8        | 7     | 0.0    | 1      | 48.37  | 56        |
| 95       | 1.41 | 675         | 7       | 23       | 23       | 8      | 31      | 40       | 26    | 0.2    | 6      | 30.51  | 71        |
| 98       | 2.17 | 1283        | 7       | 43       | 32       | 9      | 37      | 44       | 35    | 0.2    | . 4    | 39.52  | 112       |
| 99       | 2.73 | 419         | 10      | 22       | 51       | 19     | 21      | 64       | 40    | 1.3    | 21     | 11.28  | 190       |
| 100      | 2.89 | 391         | 13      | 21       | 96       | 10     | 17      | 54       | 51    | 1.3    | 29     | 3.53   | 273       |
| 101      | 2.77 | 400         | 23      | 33       | 77       | 9      | 26      | 57       | 62    | 13     | 33     | 2.88   | 394       |
| 102      | 2.61 | 517         | 32      | 24       | 86       | 7      | 30      | 51       | 78    | 22     | 67     | 1 20   | 1372      |
| 103      | 2.68 | 3231        | 15      | 15       | 60       | 3      | 14      | 44       | 66    | 1.8    | 59     | 1 04   | 1/35      |
| 104      | 3 49 | 743         | 11      | 16       | 64       | 14     | 21      | 22       | 40    | 2.0    | 12     | 12.62  | 1433      |
| 105      | 2.68 | 314         | 14      | 21       | 57       | 13     | 18      | 12       | 40    | 1.5    | 21     | 5 45   | 103       |
| 105      | 2.00 | 409         | 15      | 21       | 68       | 10     | 10      | 42<br>50 | 47    | 1.5    | 22     | 2.45   | 150       |
| 107      | 3.10 | 469         | 16      | 20       | 72       | 10     | 20      | 50       | 20    | 1.0    | 20     | 3.03   | 130       |
| 107      | 2.50 | 408         | 10      | 32       | 70       | 10     | 20      | 33       | 60    | 1.4    | 30     | 2.64   | 134       |
| 100      | 3.39 | 433         | 11      | 24       | 18       | 8      | 14      | 40       | 64    | 1./    | 39     | 2.40   | 111       |
| 109      | 3.20 | 473         | 11      | 23       | 0/       | 10     | 16      | 44       | 69    | 1.5    | 38     | 2.91   | 104       |
| 110      | 3.15 | 399         | 17      | 27       | 75       | 14     | 23      | 57       | 64    | 1.7    | 45     | 4.62   | 103       |
| 111      | 2.08 | 361         | 8       | 22       | 42       | 8      | 13      | 37       | 35    | 1.0    | 26     | 19.35  | 80        |
| 112      | 1.96 | 541         | 16      | 14       | 42       | 5      | 12      | 41       | 33    | 0.7    | 18     | 28.20  | 91        |
| 113      | 1.59 | 311         | 3       | 15       | 28       | 6      | 7       | 17       | 30    | 0.5    | 11     | 19.76  | 90        |
| 114      | 0.26 | 521         | 1       | 4        | 10       | 0      | 2       | 1        | 6     | 0.0    | 2      | 48.11  | 91        |
| 115      | 2.21 | 356         | 4       | 23       | 36       | 5      | 9       | 20       | 25    | 0.7    | 14     | 20.11  | 112       |
| 116      | 2.73 | 311         | 6       | 20       | 43       | 10     | 11      | 40       | 35    | 1.3    | 23     | 13.04  | 140       |
| 117      | 2.84 | 486         | 73      | 35       | 104      | 9      | 38      | 56       | 81    | 1.9    | 56     | 1.97   | 900       |
| 118      | 3.47 | 754         | 25      | 26       | 74       | 14     | 28      | 64       | 76    | 1.9    | 48     | 3.70   | 406       |
| 120      | 3.17 | 888         | 11      | 19       | 64       | 8      | 14      | 31       | 38    | 1.2    | 22     | 23.77  | 148       |
| 121      | 3.53 | 484         | 11      | 23       | 55       | 12     | 18      | 45       | 45    | 1.8    | 29     | 5.30   | 165       |
| 122      | 3.35 | 470         | 19      | 41       | 80       | 13     | 23      | 61       | 75    | 1.8    | 49     | 3.35   | 164       |
| 123      | 3.75 | 473         | 23      | 30       | 88       | 13     | 24      | 63       | 87    | 1.9    | 52     | 3.18   | 138       |
| 124      | 3.29 | 572         | 22      | 32       | 85       | 13     | 21      | 57       | 79    | 2.0    | 51     | 2.57   | 115       |
| 125      | 3.41 | 475         | 17      | 25       | 82       | 10     | 21      | 63       | 80    | 1.6    | 43     | 2.52   | 105       |
| 126      | 3.74 | 512         | 17      | 29       | 66       | 18     | 24      | 58       | 62    | 19     | 44     | 5 62   | 87        |
| 127      | 0.53 | 572         | 3       | 13       | 14       | 2      | 5       | 5        | 11    | 01     | 4      | 47.88  | 65        |
| 128      | 2.93 | 534         | 10      | 24       | 108      | 13     | 15      | 50       | 56    | 1 4    | 38     | 5 50   | 80        |
| 129      | 2.50 | 521         | 6       | 22       | 45       | 10     | 15<br>Q | 20       | 38    | 1.4    | 20     | 3.81   | 00        |
| 130      | 2.50 | 994         | Š       | 28       | 41       | 10     | 10      | 20       | 12    | 1.7    | 10     | 7 79   | 90        |
| 131      | 1 54 | 323         | 4       | 12       | 78       | 5      | 6       | 15       | 27    | 1.2    | 13     | 2.05   | 93<br>09  |
| 132      | 1.80 | 442         | 5       | 20       | 20       | 10     | 9       | 22       | 27    | 1.2    | 25     | 2.95   | 90<br>100 |
| 132      | 3 08 | 2025        | 5       | 20       | 55<br>61 | 10     | 10      | 25       | 32    | 1.4    | 25     | 7.11   | 501       |
| 133      | 2 01 | 424         | 0       | 32       | 67       | 0      | 18      | 30       | 49    | 1.4    | 18     | 22.85  | 87        |
| 125      | 2.01 | 545         | 0<br>20 | 27       | 57       | 14     | 12      | 29       | 51    | 1.8    | 22     | 14.04  | 235       |
| 135      | 2.71 | 920         | 20      | 37       | 89       | 0      | 29      | /1       | 80    | 1.8    | 50     | 1.89   | 650       |
| 120      | 2.13 | 039         | 28      | 40       | 13       | 4      | 24      | 00       | 77    | 1.5    | 45     | 1.14   | 1163      |
| 137      | 3.43 | 2390        | 10      | 28       | 15       | 2      | 18      | 74       | 88    | 1.3    | 46     | 1.20   | 1703      |
| 138      | 3.97 | 930         | 31      | 38       | 106      | 12     | 114     | 164      | 110   | 1.5    | 40     | 1.86   | 1759      |
| 139      | 3.69 | 620         | 11      | 26       | 64       | 13     | 14      | 45       | 48    | 2.1    | 31     | 11.29  | 148       |
| 140      | 3.45 | 587         | 15      | 27       | 78       | 8      | 18      | 55       | 74    | 1.7    | 43     | 3.13   | 168       |
| 141      | 3.42 | 699         | 21      | 35       | 97       | 10     | 21      | 59       | 84    | 1.9    | 50     | 3.23   | 145       |
| 142      | 3.21 | 651         | 19      | 31       | 91       | 8      | 18      | 46       | 83    | 1.7    | 46     | 2.51   | 112       |
| 143      | 3.04 | 700         | 18      | 34       | 84       | 9      | 18      | 42       | 76    | 1.8    | 49     | 2.69   | 98        |
| 144      | 3.02 | 551         | 11      | 28       | 63       | 10     | 18      | 49       | 59    | 1.5    | 31     | 3.63   | 80        |
| 145      | 2.92 | 712         | 12      | 26       | 60       | 9      | 17      | 54       | 61    | 1.6    | 35     | 3.25   | 72        |
| 146      | 5.46 | 778         | 12      | 28       | 78       | 10     | 20      | 82       | 76    | 1.7    | 33     | 2.86   | 78        |
| 147      | 3.78 | 719         | 10      | 56       | 71       | 11     | 17      | 74       | 78    | 1.4    | 25     | 5.25   | 80        |
| 148      | 4.73 | 706         | 9       | 35       | 66       | 13     | 24      | 61       | 63    | 1.8    | 24     | 6.30   | 72        |
| 149      | 5.14 | 716         | 11      | 30       | 69       | 20     | 27      | 84       | 71    | 1.4    | 20     | 9.28   | 70        |
| 150      | 3.36 | 2114        | 51      | 17       | 92       | 11     | 46      | 133      | 133   | 1.4    | 23     | 2.11   | 51        |
| 151      | 2.13 | 448         | 12      | 22       | 55       | 14     | 16      | 41       | 45    | 1.1    | 25     | 9.64   | 275       |
| 152      | 2.61 | 484         | 23      | 30       | 81       | 10     | 24      | 55       | 68    | 12     | 34     | 4 36   | 615       |
| 153      | 3.14 | 620         | 16      | 26       | 76       | 9      | 19      | 42       | 67    | 1.6    | 39     | 3 39   | 165       |
| 154      | 3.35 | 682         | 21      | 30       | 88       | 11     | 21      | 57       | 79    | 2.0    | 57     | 3 42   | 143       |
| 155      | 3 04 | 618         | 19      | 28       | 86       | â      | 16      | 17       | 74    | 1.0    | 45     | 2.42   | 102       |
| 156      | 2 03 | 532         | 21      | 20       | 80       | 12     | 22      | 41<br>61 | 74    | 1.5    | 20     | £ 10   | 204       |
| 157      | 2.55 | 571         | 25      | 20       | 96       | 12     | 24      | 55       | 73    | 1.4    | 30     | 5.12   | 394       |
| 140      | 2.03 | 511         | 20      | 22       | 00       | 12     | 20      | 55       | /1    | 1.4    | 40     | 3.03   | 936       |
| 140      | 2.00 | 510         | 32      | 34<br>37 | 88       | 10     | 33      | 00       | /8    | 1.9    | 59     | 2.54   | 1239      |
| 109      | 2.70 | JZU<br>1400 | 33      | 31       | 93       | 8      | 33      | 72       | 91    | 1.8    | 55     | 1.25   | 1546      |
| 100      | 3.96 | 1499        | 27      | 26       | 85       | 9      | 99      | 189      | 99    | 1.6    | 36     | 1.84   | 1721      |
| 161      | 3.86 | 856         | 33      | 47       | 111      | 7      | 61      | 110      | 99    | 1.6    | 43     | 1.77   | 1575      |
| 162      | 4.05 | 1375        | 27      | 40       | 91       | 5      | 33      | 72       | 97    | 1.6    | 37     | 1.41   | 1614      |
| 163      | 3.55 | 671         | 13      | 39       | 71       | 16     | 23      | 85       | 80    | 1.3    | 21     | 8.41   | 83        |
| 164      | 3.67 | 534         | 13      | 21       | 71       | 13     | 24      | 87       | 69    | 1.4    | 26     | 6.25   | 67        |
| 165      | 3.50 | 661         | 13      | 21       | 72       | 15     | 23      | 84       | 74    | 1.6    | 26     | 7.12   | 89        |
| 166      | 3.41 | 483         | 10      | 21       | 63       | 11     | 18      | 49       | 58    | 1.6    | 25     | 5.03   | 147       |
| 167      | 2.93 | 575         | 14      | 23       | 65       | 12     | 19      | 57       | 62    | 1.7    | 33     | 5.56   | 293       |
| 168      | 2.77 | 967         | 24      | 43       | 81       | 6      | 25      | 59       | 72    | 1.5    | 43     | 2.65   | 703       |
| 169      | 2.74 | 628         | 30      | 33       | 86       | 7      | 30      | 61       | 89    | 1.6    | 48     | 1.64   | 1315      |
| 170      | 2.95 | 1021        | 27      | 37       | 93       | 6      | 36      | 68       | 99    | 1.2    | 36     | 1.30   | 1134      |

付表 つづき (Continued)

| location | Fe,%  | Mn,ppm | Cu,ppm | Pb,ppm | Zn,ppm | Co,ppm   | Ni,ppm | Cr.ppm     | V.ppm | Be.ppm | Li.ppm | ppm | CaO. % | Depth m |
|----------|-------|--------|--------|--------|--------|----------|--------|------------|-------|--------|--------|-----|--------|---------|
| 171      | 3.27  | 2715   | 17     | 23     | 69     | 2        | 19     | 61         | 84    | 1.0    | 29     | 20  | 1 13   | 1171    |
| 172      | 3 55  | 587    | 8      | 19     | 61     | 12       | 16     | <b>6</b> 0 | 40    | 0.7    | 12     | 12  | 10.66  | 11/1    |
| 172      | 5.55  | 582    | 0      | 10     | 01     | 13       | 10     | 59         | 49    | 0.7    | 13     | 13  | 19.55  | 70      |
| 173      | 2.48  | 601    | 9      | 18     | 50     | 14       | 15     | 71         | 47    | 1.2    | 17     | 17  | 10.03  | 90      |
| 174      | 1.33  | 1273   | 7      | 16     | 33     | 6        | 17     | 26         | 25    | 0.2    | 10     | 10  | 26.22  | 01      |
| 175      | 4.00  | 700    | 10     | 10     | 55     |          | 17     | 20         | 25    | 0.5    | 10     | 10  | 30.32  | 91      |
| 1/5      | 4.20  | /90    | 12     | 22     | 76     | 19       | 25     | 90         | 63    | 1.9    | 30     | 30  | 9.18   | 91      |
| 176      | 2.80  | 422    | 12     | 23     | 58     | 13       | 17     | 68         | 49    | 19     | 26     | 26  | 7.04   | 170     |
| 177      | 2.86  | 619    | 25     | 21     | 94     |          | 20     | 00         | 70    | 1.2    | 20     | 20  | 7.04   | 170     |
| 1//      | 2.00  | 010    | 25     | 31     | 84     | 9        | 28     | 83         | 78    | 1.9    | 46     | 46  | 2.90   | 508     |
| 178      | 2.91  | 503    | 20     | 30     | 78     | 9        | 25     | 71         | 74    | 1.8    | 39     | 39  | 3.62   | 474     |
| 179      | 3 10  | 527    | 14     | 24     | 66     | 12       | 20     | 70         | 65    | 2.0    | 20     | 20  | 4.60   |         |
| 100      | 2.40  | 527    | 14     | 24     | 00     | 15       | 20     | 19         | 05    | 2.0    | 30     | 30  | 4.58   | 224     |
| 180      | 3.40  | 606    | 15     | 24     | 69     | 12       | 21     | 76         | 70    | 1.8    | 34     | 34  | 4.50   | 253     |
| 181      | 3.13  | 733    | 20     | 26     | 72     | 9        | 25     | 78         | 74    | 10     | 44     | 11  | 2 92   | 254     |
| 197      | 2 80  | 547    | 21     | 20     | 04     | <u>_</u> | 23     | 70         | /4    | 1.5    | 44     |     | 2.93   | 354     |
| 102      | 2.00  | 545    | 51     | 32     | 84     | 8        | 31     | 73         | 82    | 1.9    | 53     | 53  | 2.14   | 885     |
| 183      | 3.90  | 1401   | 31     | 29     | 89     | 10       | 116    | 225        | 102   | 1.9    | 43     | 43  | 1.68   | 1455    |
| 184      | 3 37  | 974    | 30     | 41     | 03     | 7        | 42     | 02         | 04    | 17     | 50     | 50  | 1 46   | 1044    |
| 104      | 5.57  | 514    | 50     | 41     | 93     | ,        | 42     | 92         | 94    | 1./    | 50     | 50  | 1.45   | 1044    |
| 182      | 3.10  | 658    | 9      | 22     | 64     | 17       | 20     | 55         | 40    | 1.3    | 25     | 25  | 17.56  | 78      |
| 186      | 3.52  | 596    | 10     | 24     | 61     | 12       | 19     | 81         | 61    | 17     | 24     | 24  | 6 1 2  | 210     |
| 107      | 2.00  | 5/2    |        | 20     | 01     | 12       | 1,     | 01         | 01    | 1.7    | 24     | 24  | 0.15   | 219     |
| 10/      | 2.90  | 202    | 29     | 39     | 93     | 1        | 31     | 82         | 85    | 1.8    | 49     | 49  | 1.84   | 747     |
| 188      | 2.92  | 459    | 24     | 20     | 62     | 17       | 26     | 82         | 69    | 1.5    | 38     | 38  | 10.53  | 301     |
| 189      | 3 23  | 578    | 20     | 40     | 117    | 7        | 22     | 70         | 01    | 2.0    | £1     | £1  | 10.55  | 1000    |
| 169      | 5.25  | 578    | 29     | 49     | 117    | ,        | 32     | 79         | 91    | 2.0    | 21     | 21  | 1.74   | 1080    |
| 190      | 3.69  | 986    | 30     | 44     | 124    | 7        | 49     | 103        | 93    | 1.9    | 42     | 42  | 1.98   | 1187    |
| 191      | 3.64  | 822    | 28     | 49     | 114    | 7        | 20     | 58         | 07    | 20     | 45     | 45  | 1.01   | 1071    |
| 100      |       | 1200   | 20     |        | 114    |          | 23     | 50         | 31    | 2.0    | 45     | 45  | 1.91   | 10/1    |
| 192      | 4.44  | 1389   | 30     | 21     | 94     | 11       | 134    | 257        | 105   | 1.7    | 46     | 46  | 2.02   | 1269    |
| 193      | 3.97  | 1119   | 32     | 34     | 95     | 11       | 100    | 185        | 101   | 16     | 46     | 46  | 1 97   | 1168    |
| 10/      | 3 84  | 1666   | 26     | 21     | 07     |          | 00     | 190        | -01   | 1.0    | 40     | 40  | 1.57   | 1100    |
| 194      | 3.04  | 1000   | 20     | 51     | 92     |          | 88     | 182        | 94    | 1.9    | 40     | 40  | 2.14   | 1240    |
| 195      | 4.08  | 1450   | 29     | 31     | 90     | 7        | 104    | 209        | 105   | 1.5    | 40     | 40  | 1.69   | 1335    |
| 196      | 3 88  | 1781   | 23     | 33     | 70     | 3        | 24     | 05         | 02    | 16     | 4.4    | 4.4 | 1 70   | 1075    |
| 100      | 0.00  | 1701   | 25     | 55     | 15     | 5        | 34     | 95         | 92    | 1.0    | 44     | 44  | 1.30   | 1075    |
| 197      | 3.57  | 705    | 28     | 49     | 105    | 6        | 61     | 105        | 108   | 1.8    | 43     | 43  | 1.56   | 843     |
| 199      | 3.29  | 519    | 26     | 49     | 109    | 8        | 27     | 67         | 87    | 17     | 41     | 41  | 2 63   | 530     |
| 200      | 4 21  | 501    | 14     | 21     | 0.4    | 10       | 10     |            | 67    | 1.7    | 41     | 41  | 2.03   | 550     |
| 200      | 4.21  | 591    | 14     | 51     | 04     | 10       | 10     | 23         | 53    | 1.6    | 23     | 23  | 17.79  | 171     |
| 202      | 3.82  | 927    | 36     | 49     | 130    | 10       | 38     | 83         | 96    | 2.2    | 47     | 47  | 2.26   | 1190    |
| 203      | 4 05  | 1564   | 28     | 46     | 00     | 6        | 36     | 85         | 99    | 17     | 26     | 26  | 1.90   | 1006    |
| 200      | 2.40  | 1004   | 20     | 40     |        | -        | 50     | 85         | 00    | 1.7    | 30     | 30  | 1.02   | 1000    |
| 204      | 3.40  | 888    | 27     | 52     | 114    | 7        | 39     | 82         | 94    | 1.9    | 39     | 39  | 1.85   | 1058    |
| 205      | 3.47  | 950    | 28     | 51     | 106    | 5        | 43     | 92         | 98    | 19     | 41     | 41  | 1 5 8  | 963     |
| 206      | 3 76  | 797    | 25     | 42     | 04     | 6        | 16     | 05         | 00    | 1.0    | 40     | 40  | 1.50   | 2005    |
| 200      | 5.20  | /8/    | 25     | 42     | 94     | 0        | 40     | 95         | 90    | 1.9    | 40     | 40  | 1.61   | 1017    |
| 207      | 3.92  | 1740   | 23     | 28     | 83     | 9        | 108    | 209        | 99    | 1.6    | 36     | 36  | 1.98   | 829     |
| 208      | 4.08  | 1640   | 27     | 28     | 91     | 11       | 128    | 221        | 106   | 1.6    | 37     | 27  | 1.05   | 954     |
| 200      | 2 00  | 1104   | 20     | 10     |        |          | 120    | 221        | 100   | 1.0    | 57     | 57  | 1.95   | 854     |
| 209      | 3.99  | 1104   | 20     | 40     | 94     | 8        | 86     | 168        | 106   | 1.7    | 39     | 39  | 1.73   | 819     |
| 210      | 3.35  | 579    | 27     | 63     | 142    | 8        | 26     | 73         | 94    | 1.8    | 43     | 43  | 1 92   | 472     |
| 211      | 3 68  | 704    | 24     | 64     | 142    | Ő.       | 20     | 62         | 02    | 2.2    | 42     | 42  | 2.00   | 472     |
| 211      | 5.00  | 704    | 24     | 04     | 145    | 9        | 20     | 02         | 92    | 2.2    | 43     | 43  | 2.00   | 209     |
| 212      | 3.84  | 1224   | 34     | 54     | 164    | 9        | 22     | 61         | 96    | 2.0    | 40     | 40  | 1.80   | 838     |
| 213      | 3.40  | 898    | 30     | 56     | 119    | 8        | 31     | 66         | 100   | 17     | 38     | 38  | 1 92   | 026     |
| 21.0     | 2.00  | 1120   | 20     | 20     |        | 0        | 51     | 00         | 100   | 1./    | 30     | 30  | 1.02   | 930     |
| 214      | 3.00  | 1136   | 23     | 29     | 75     | 8        | 41     | 79         | 67    | 2.0    | 31     | 31  | 2.16   | 873     |
| 215      | 3.22  | 1228   | 26     | 36     | 80     | 9        | 60     | 108        | 68    | 2.1    | 32     | 32  | 2 33   | 494     |
| 216      | 3 51  | 1107   | 28     | 35     | 04     | 0        | 67     | 125        | 74    | 2.1    | 20     | 20  | 2.00   | 100     |
| 210      | 3.51  | 1197   | 20     | 35     | 24     | 9        | 07     | 133        | 74    | 2.1    | 38     | 38  | 2.26   | 198     |
| 217      | 3.61  | 2166   | 25     | 33     | 89     | 6        | 52     | 116        | 78    | 2.1    | 40     | 40  | 1.91   | 485     |
| 218      | 3.86  | 926    | 31     | 47     | 109    | 10       | 90     | 158        | 96    | 18     | 41     | 41  | 1 82   | 107     |
| 210      | 2 91  | 1250   | 10     | 1.6    | 70     | 16       | 100    | 150        |       | 1.0    |        |     | 1.62   | 497     |
| 219      | 5.61  | 1250   | 10     | 15     | 12     | 12       | 185    | 240        | 84    | 1.5    | 25     | 25  | 2.89   | 700     |
| 220      | 4.43  | 2598   | 30     | 32     | 89     | 22       | 236    | 339        | 102   | 1.7    | 39     | 39  | 1.89   | 628     |
| 221      | 4 20  | 806    | 30     | 37     | 05     | 14       | 116    | 201        | 110   | 1 0    | 40     | 40  | 1.04   | 051     |
| 221      | 7.20  | 000    | 50     | 52     | 35     | 14       | 110    | 201        | 119   | 1.0    | 49     | 49  | 1.84   | 251     |
| 222      | 3.58  | 864    | 31     | 68     | 152    | 8        | 25     | 61         | 98    | 2.0    | 47     | 47  | 1.58   | 557     |
| 223      | 3.90  | 1015   | 36     | 93     | 187    | 9        | 27     | 67         | 99    | 21     | 49     | 49  | 1 97   | 304     |
| 224      | 2 02  | 007    | 26     | 04     | 200    | 10       |        |            | 101   | 2.1    |        |     | 1.57   | 554     |
| 224      | 5.02  | 965    | 30     | 94     | 200    | 10       | 29     | 65         | 101   | 2.0    | 47     | 47  | 1.90   | 321     |
| 225      | 4.11  | 1184   | 28     | 67     | 169    | 10       | 20     | 49         | 98    | 2.1    | 41     | 41  | 2.90   | 221     |
| 226      | 2.49  | 689    | 14     | 25     | 66     | 6        | 12     | 27         | 53    | 10     | 28     | 28  | 1 67   | 611     |
| 220      | 2.40  | 600    | 14     | 25     | 00     | 0        | 12     | 21         | 55    | 1.9    | 20     | 20  | 1.07   | 011     |
| 221      | 5.00  | 023    | 32     | 44     | 95     | 9        | 48     | 95         | 95    | 1.9    | 47     | 47  | 1.71   | 1134    |
| 228      | 2.85  | 613    | 33     | 36     | 86     | 8        | 35     | 75         | 86    | 1.9    | 52     | 52  | 1.76   | 867     |
| 220      | 3 60  | 1/38   | 31     | 50     | 111    | 5        | 26     | 74         | 00    | 1.0    | 20     | 20  | 1 01   | 1140    |
| 000      | 1.00  | 1000   | 20     |        | 111    |          | 30     | /4         | 90    | 1.0    | 39     | 39  | 1.81   | 1142    |
| 230      | 4.09  | 1335   | 28     | 28     | 92     | 14       | 136    | 220        | 106   | 1.4    | 34     | 34  | 2.33   | 1240    |
| 231      | 4.05  | 1298   | 31     | 27     | 86     | 13       | 136    | 233        | 105   | 1.6    | 36     | 36  | 1.84   | 1110    |
| 222      | 411   | 1314   | 36     | 71     | 156    | 0        | 20     | 70         | 04    | 1 0    | 46     | 15  | 1 772  | 007     |
| 232      | 4.11  | 1314   | 50     | /1     | 130    | ð        | 30     | /0         | 90    | 1.9    | 45     | 40  | 1.73   | 837     |
| 233      | 3.59  | 1255   | 30     | 44     | 97     | 7        | 57     | 114        | 85    | 2.0    | 39     | 39  | 1.87   | 862     |
| 234      | 3 44  | 1282   | 23     | 36     | 80     | 8        | 77     | 154        | 85    | 1 9    | 29     | 29  | 1 70   | 561     |
| 025      | 2.00  | 614    | 20     | 25     | 00     | 3        | ~~     | 134        | 85    | 1.0    | 30     | 30  | 1.79   | 501     |
| 230      | 2.80  | 544    | 29     | 33     | 85     | 7        | 27     | 58         | 78    | 1.7    | 47     | 47  | 2.31   | 526     |
| 236      | 2.68  | 591    | 34     | 37     | 94     | 8        | 32     | 64         | 83    | 1.7    | 51     | 51  | 1.35   | 953     |
| 228      | 2 84  | 504    | 27     | 25     | 92     | 10       | 26     | 50         | 76    | 1.0    | 4.5    | 4.5 | 2.40   | 201     |
| 230      | 2.04  | 394    | 21     | 33     | 05     | 10       | 20     | 28         | /0    | 1.0    | 45     | 40  | 3.48   | 891     |
| 239      | 3.77  | 1208   | 33     | 39     | 96     | 7        | 65     | 115        | 100   | 1.7    | 47     | 47  | 1.47   | 1475    |
| 240      | 3 16  | 711    | 10     | 27     | 77     | 10       | 22     | 62         | 72    | 1 4    | 27     | 27  | 2 12   | 275     |
| 0.41     | 2 10  | 1001   | 22     | 21     | 12     | 10       | ~~     | 05         | 15    | 1.0    | 51     | 51  | 5.45   | 333     |
| 241      | 3.12  | 1021   | 33     | 38     | 91     | 8        | 47     | 94         | 98    | 1.7    | 49     | 49  | 1.50   | 1206    |
| 242      | 3.26  | 2564   | 26     | 30     | 82     | 5        | 31     | 71         | 83    | 15     | 44     | 44  | 1 35   | 976     |
| 242      | 2 40  | 1160   | 20     | 42     | 00     | ~        | 40     | ~~~~       |       | 1.5    |        | 41  | 1.00   | 270     |
| 243      | 5.48  | 1102   | 29     | 43     | 92     | 0        | 40     | 90         | 98    | 1.5    | 41     | 41  | 1.30   | 983     |
| 244      | 3.75  | 1743   | 24     | 41     | 92     | 4        | 31     | 72         | 97    | 1.5    | 39     | 39  | 1.52   | 1036    |
| 245      | 3 52  | 1543   | 28     | 12     | 80     | 4        | 56     | 107        | 07    | 1 4    | A1     | A1  | 1 24   | 000     |
| 245      | 3.55  | 1000   | 20     | +5     | 35     | 5        | 50     | 107        | 31    | 1.0    | 41     | 41  | 1.33   | 992     |
| 246      | 3.70  | 1321   | 27     | 46     | 97     | 5        | 34     | 73         | 87    | 1.6    | 36     | 36  | 1.84   | 925     |
| 247      | 3.45  | 987    | 27     | 55     | 111    | 7        | 48     | 91         | 96    | 17     | 20     | 39  | 1 74   | 848     |
| 249      | 112   | 1072   | 21     | 27     |        | 17       | 110    | 100        | 103   |        |        |     | 2.74   | 040     |
| 240      | 4.13  | 10/3   | 51     | 21     | 91     | 17       | 119    | 190        | 103   | 1.5    | 34     | 54  | 5.79   | 614     |
| 249      | 3.82  | 1493   | 12     | 19     | 69     | 9        | 7      | 18         | 92    | 1.5    | 22     | 22  | 3.36   | 835     |
| 250      | 3.54  | 2150   | 25     | 28     | 76     | ۲        | 55     | 110        | 87    | 1 4    | 27     | 27  | 1 61   | 1/40    |
| 0.51     | 2.04  | 1071   | 25     | 20     | /0     | 2        |        | 117        | 0/    | 1.4    | 51     | 51  | 1.01   | 1402    |
| 251      | 3.67  | 1674   | 26     | 31     | 83     | 8        | 87     | 145        | 96    | 1.4    | 33     | 33  | 1.83   | 1624    |
| 252      | 4.56  | 1048   | 30     | 29     | 97     | 17       | 168    | 274        | 117   | 1.7    | 38     | 38  | 2.66   | 1795    |
| 242      | A 1 C | 2000   | 20     | 21     | 00     | 14       | 120    | 217        | 110   | 1./    | 50     | 20  | 1.00   | 1/75    |
| 233      | 4.10  | 2090   | ∠8     | 51     | 98     | 14       | 132    | 214        | 113   | 1.6    | 55     | 55  | 1.93   | 1886    |

付表 つづき (Continued)