東アジアの堆積盆と炭化水素資源

角井朝昭*

SUMII Tomoaki (1994) Sedimentary basins and hydrocarbon resources in east Asia. Bull. Geol. Surv. Japan, vol. (8/9), p. 497-508, 3figs., 2tables.

Abstract : There are various kinds of oil/gas fields in east Asia region. Systematic compilation of the published data is necessary to discuss these resources and the geologic development of this region. Numerous information is re-compiled to show the characteristics of the sedimentary basins and the oil/gas fields in the northwest Pacific/east Asia region. About 200 sedimentary basins are identified in this region, which is divided to 12 groups based on its geographic distribution.

要 旨

東アジア地域には非常に多様な石油・天然ガス鉱床が ある。地質学的にそれらの成因を広域に比較し議論する ためには既存資料を収集し,地質学的特性をもとにして 整理し直す必要がある。収集した地質資料を基に北西太 平洋域及び東アジア広域における堆積盆の分布と特性, 含油堆積盆の分布ついて整理した。本地域には約200の 堆積益が識別され,それらは主として地理的位置から12 のグループに区分される。それらについて概説した。

1. はじめに

東アジア地域には非常に多様な石油・天然ガス鉱床が ある。地質学的にそれらの成因を広域に比較し議論する ためには既存資料を収集し、地質学的特性をもとにして 整理し直す必要がある。

地質調査所国際協力室と燃料資源部では過去十余年に わたり,環太平洋マップ=プロジェクト(Circum-Pacific Map Project: CPMP)の一環として東アジア地域のエ ネルギー資源(石炭・石油・天然ガス・地熱資源)に関す る情報を収集してきた。これらは主題図「Energy-Resources Map of the Circum-Pacific Region, Northwest Quadrant:環太平洋地域-北西太平洋象限 エネルギー資源図・及び同説明書(Sumii *et al.*, 1992a, b)」として出版された。本図の最終調整作業は筆者が行 ったが、出版スケジュールの都合で、作業段階で収集し た資料を系統的に整理することはできなかった。

作業過程においてはできるだけ信頼度の高い資料を集 めることに努めたが、地域や国情により情報そのものの 信頼度や詳細さには大きな差異がある。例えば面積とし ては本地域大陸部の多くを占める旧ソビエト連邦やモン ゴル共和国については英語で書かれた(あるいは翻訳さ れた)資料が乏しく、また個々の既存情報についての信 頼性もやや低いと思われる。これらの地域からはこの数 年来、新しい情報が次々と(英語や日本語に)翻訳され 国外に公表されている。インドシナ地域もやはり情報の 乏しい地域であるが、ベトナムについての情報はこの数 年来急速に増加しつつあるが、詳細については不明な点 も多い。

また,地質調査所はCCOP(Committee for Co-ordination of Joint Prospecting for Mineral Resources in Asian Offshore Areas)によるプロジェクトである「東 アジア堆積盆解析プロジェクト」に参加した。同プロジ ェクトは1986年から1991年までに東アジア各国の大陸棚 域の地質的な情報の総合を行うとともに,アメリカ合衆 国とカナダで開発された石油・天然ガス資源量評価技術 及び周辺技術を参加国に移転し,各参加国が自国の石油 ・天然ガス資源量評価を行うことを目的としていた。参 加国はCCOP加盟国のうち,カンボジア・パプアニュー ギニア・シンガポールの3国を除いた8国,すなわち日 本・大韓民国・中国・ベトナム・フィリッピン・タイ・

* 燃料資源部

Keywords : East Asia, sedimentary basin, petroleum, oil/gas field

マレーシア・インドネシアであり,各国の地質調査所あ るいは国営石油会社に相当する機関が実作業を担当して いた.

このプロジェクトによる東アジア地域の堆積盆に関す る地質資料の総合結果は、堆積盆図(作業単位としての 堆積盆のインデックス図に坑井位置などをプロットした もの)、堆積物層厚図(基盤岩までの堆積物層厚を1km 毎のアイソパック線で示したもの)、主要堆積盆の標準 柱状図、主要堆積盆の断面図(各堆積盆/主要産油ガス 地域の地質構造を示す)、主要堆積盆の記載、古環境図

(新生代を3つの時代に分けて各時代ごとに作成する), 古岩相図(新生代を3つの時代に分けて各時代ごとに作 成する),古環境断面図(新生代を3つの時代に分けて各 時代ごとに作成する)などにまとめられ,それらのうち いくつかは既に出版され (CCOP/WGRA, 1990, 1991),他 についても引き続き印刷出版される予定である。

ベトナムや中国周辺の大陸棚に関する信頼度の高い情報は、従来あまりなかったため、東アジアの堆積盆の成 り立ちを統一的にとらえるうえで、このプロジェクトの 意義は大きいといえる.

本稿では、これらのプロジェクトの成果及び編纂過程 で整理された地質情報を基にして、特に東アジア地域の 堆積盆分布とその概観及び石油・天然ガス鉱床の概観に ついて整理したいと思う.

なお本稿をまとめるにあたり,大量の文献を参照した が,論文の性格上,すべてについて引用箇所を個別に文 中に示すのは困難である。参照した資料のうち主要なも のについては文献リストに含めることとした。

2. 東アジアの堆積盆分布

Fig.1a, bには,北西太平洋-東アジア地域に分布す る約200の主要堆積益(Fig.1a, b, Table1)が示されて いる.ただし,ここでいう堆積益とは著しい変形を被っ ていない堆積物の最大層厚が1000m以上あるものを意味 する.この図においてほとんど全ての堆積盆の境界は各 堆積盆の構造発達を規制する構造線,あるいは1000mの 等層厚線などによって定義されている.

油ガス田の多くはここで定義された堆積盆の中に含ま れる場合が多い。しかし稼行している炭田の場合は,続 成作用を受けた地層が造山帯や堆積区の縁辺などにおい て地表近くまで上昇したものが多いため,これらの堆積 盆の範囲外であることが多い。

なお、本稿での堆積盆名称などに関しては原則として Sumii *et al.* (1992b)に準拠した.

これらの堆積盆は、地質学的共通性によりいくつかの

グループに分類することができる.

2.1 堆積盆の分類

堆積益を分類する場合,方法としては時代別,成因別, 時代及び成因別(広域テクトニクスの中での位置づけ)な どにより分類可能であるし,有用鉱床の有無や鉱床タイ プ,鉱床の成立年代などによっても分類可能である。こ こでは堆積益の基底堆積物ごとに分類してみる(Fig. 2, Table 1).

Fig.2は時代別の分類であるが、テクトニクスとの関 連もこの分布図から議論できる.一般に島弧-縁海系や 造山帯周辺における堆積盆は後期中生代や新生代のもの が多く、安定大陸域にある堆積盆は前期中生代や古生代 からのものが多い.言い方を変えると堆積盆の寿命は変 動帯域において短く、安定大陸域においては長いと言え る.これはもちろん、これらの地域における造盆地運動 が異なった時間規模で推移するテクトニクスによってい るためである.

本地域に分布する約200の主要堆積盆は、それぞれの 地理的分布域,及び地質学的な特質によって、以下の様 に大別することができる。

1. 北米大陸-ユーラシア大陸の北側,北極海に位置 する堆積盆

2. ユーラシア大陸北東縁,アラスカ,アリューシャン弧に挾まれた地域に分布する堆積盆

3. アジア大陸の内陸部安定大陸塊上に位置する古生 代及び中生代から形成された堆積盆

4. バイカル湖周辺の新生代リフト堆積盆

5. アジア大陸の内陸部,大陸ブロックの縫合部や変 動帯に挾まれた堆積盆

6. アジア大陸東部の東縁附近に位置する堆積盆

7. 北西太平洋の海溝-島弧-縁海系に位置する堆積 盆

8. スンダ陸棚を含むアジア大陸東南の大陸縁辺部に 位置する堆積盆

 インドシナースンダ陸棚内部のレンチ・フォルト (インドーオーストラリア・プレートのユーラシア・プ レートへの衝突に起因する)によって規制される新生代 堆積益

10. ヒマラヤ造山帯-インド洋北東縁(スンダ弧)にそ って分布する堆積盆

11. ニューギニア島の西北部から南東部及びその周辺 に分布する中生代からの堆積盆

12. ニューギニア島北西部からソロモン弧周辺の堆積 盆

以上は主として地理的位置による区分であるが、それ

Fig. 1a Index map of sedimentary basins (shaded) in Northwest Pacific/east Asia region (numbers refer to Table 1). After Sumii et al., 1992 b.

Fig. 1b Close up view of the south west part of the Fig. 1a

- 500 -

ぞれのグループ内の堆積盆は地質学的共通性を有してい る.このことは堆積盆の構造発達そのものが、その地域 における広域構造運動史の影響、さらにはプレート間(あ るいは主要地塊間)の相互運動の影響を受けて発達して いることを意味する.

2.2 堆積盆の特徴

各グループに属する堆積盆は成立時期/岩相の変化/ 構造発達史などに共通性を持っている。これは石油地質 学的には石油根源岩・貯留岩の有無/堆積盆熱史・続成 史に共通性があることを,ひいては油ガス田の有無・資 源量の大小とその鉱床学的な特徴などに共通性を持って いることを意味している。

1. 北米大陸-ユーラシア大陸の北側,北極海に位置 する堆積盆

この地域に分布する堆積盆は、アラスカとユーラシア 大陸北東縁に挾まれた新生代の堆積盆を除いて古生代-中生代から形成されたものである。厳しい気象条件のた め地質学的情報は乏しい。

2. ユーラシア大陸北東縁,アラスカ,アリューシャン弧に挾まれた地域

アラスカBistol湾およびロシア極東部Anadyrskii湾に は中生代の堆積盆があり、ベーリング海北部には主とし て古第三紀の堆積盆が分布し、アリューシャン弧に沿っ ては新第三紀の堆積盆が分布する.

3. アジア大陸の内陸部安定大陸塊上に位置する堆積 盆(Eerdosi;オルドス堆積盆地<074>・Shichuan;四 川堆積盆地<085>など)は、一般に非海成の堆積盆であ り、堆積盆の基底年代が、前期古生代あるいは先カンブ リア紀まで遡れ、数百km以上の直径を持った、円形あ るいは方形の形状をしている。また、一部の例外を除い てこれらの堆積盆には巨大な油ガス田が分布している。

4. バイカル湖周辺の新生代リフト堆積盆は,周辺の 堆積盆と著しく性格を異にする堆積盆であり,先カンブ リア紀の基盤岩に生じたリフトを数千m埋積した新生代 堆積物からなる.油ガス田の報告はない.

5. アジア大陸の内陸部,大陸ブロックの縫合部や変 動帯に挾まれた堆積盆は,一般にジュラ紀-白亜紀ある いは古第三紀から形成された非海成の堆積盆である.従 来は地質学的情報の乏しい地域であったが,近年は Tarim盆地などにおいて石油の探査開発が行われてい る.

6.アジア大陸東部の東縁附近に位置する堆積盆 (Songliao;松遼堆積盆地<065>,East China Sea堆 積盆地<081>など)は、一般に非海成から始まって、非 海成あるいは浅海成の環境化で堆積が進行した堆積盆で ある. 堆積盆の基底年代が中生代であり,成因的には太 平洋プレート(厳密に言うとイザナギ・プレートやクラ ・プレートも含む)の沈み込みに関連した,リフト・テ クトニクスに関連したものが多く,リフト方向に沿った 細長い形状をしている.また,これらの堆積盆には巨大 な油ガス田が分布している.

7. 北西太平洋の海溝-島弧-縁海系に位置する堆積 盆(例えばNiigata-Akita;新潟-秋田堆積盆<048>, Shimajiri;島尻堆積盆<061>, Visayan Sea堆積盆 <126>など)は,島弧海溝系における位置から,背弧堆 積盆,前弧堆積盆,島弧内堆積盆などに細分され得る. 一般にこれらの堆積盆は非海成から始まることもある が,海成であることが多い.垂直方向/水平方向の岩相 変化,堆積環境変化は大きい.また堆積盆の基底年代は 新生代以降であり,島弧方向に規制された一般に細長い 形状(数十km以下の幅で数百km以下の長さ)を有する. 油ガス田の分布は限定されており,規模も小さい.

8. スンダ陸棚を含むアジア大陸東南の大陸縁辺部に 位置する堆積盆

これらの堆積盆(例えばMekong堆積盆<112>や Kutei堆積盆<152>)は古第三紀に形成されたものであ り、大河川のデルタ層が厚く堆積している。また、これ らの堆積盆には巨大な油ガス田が分布している。

9. インドシナースンダ陸棚内部のレンチ・フォルト (インドーオーストラリア・プレートのユーラシア=プ レートへの衝突に起因する)によって規制される新生代 堆積盆.主としてインドシナ周辺の陸域から大陸棚域に かけて半島に挾まれた地域に分布する堆積盆で,非海成 から始まり,主要な堆積物のほとんどが非海成環境下で 堆積したものであることが多い.一般に細長い形状を有 する.油ガス田が多く分布する.

10. ヒマラヤ造山帯-インド洋北東縁(スンダ弧)にそって分布する堆積益. これの堆積盆もグループ7と同様 に海溝-島弧-縁海系に位置する堆積盆であり,個々の 堆積盆は,島弧海溝系における位置から,背弧堆積益, 前弧堆積益,島弧内堆積盆などに細分され得る. 一般に これらの堆積盆は非海成から始まることもあるが,海成 であることが多い. 垂直方向/水平方向の岩相変化,堆 積環境変化は大きい. グループ7と比べて個々の堆積盆 の地理的な広がりが大きく,特に背弧側には多くの油ガ ス田が分布する.

11. ニューギニア島の西北部から南東部及びその周辺 に分布する中生代からの堆積盆は、オーストラリア大陸 の北方縁に位置する堆積盆である.これらの堆積盆には 重要な油ガス田が分布する.

地質調査所月報(第45巻第8/9号)

Table 1 List of sedimentary basins in Northwest Pacific/east Asia region (numbers refer to Fig. 1). Re-compiled from Sumii *et al.*, 1992b.

Geographic group 1; The sedimentary basins around Arctic Sea, northern area of North American and Asian continents, 2; The basins along Aleutian Islands arc, 3; The Paleozoic and Mesozoic basins over the cratons of Asian continent, 4; The cenozoic rift basin of Baikal, 5; The basins along the suture zone between the cratonic blocks inside Asian continent, 6; The basins along the eastern margin of the east

No.	Basin name G	eologic age G	eographical	No.	Basin name C	ieologic age Geog	raphical
	o	f the bottom	group		c	f the bottom g	roup
	s	ediment				ediment	
1	North Chukchi Basin	Upper Mesozoic	1	51	Ishikari Basin	Upper Mesozoic-Paleoger	ne 7
2	Colville Basin	Upper Paleozoic	1	52	Tokachi Basin	Neogene	7
3	Hope Basin	Paleogene	1	53	Joban–Sanriku Basin	Upper Mesozoic-Paleoger	ne 7
4	Norton Sound Basin	Paleogene	1	54	Kanto Basin	Neogene	7
5	St. Lawrence Basin	Neogene	1	55	Tokai–Kumano Basin	Neogene	7
6	Bristol Basin	Upper Mesozoic	1	56	Tosa Basin	Neogene	7
7	St. George Basin	Paleogene	1	57	Miyazaki Basin	Neogene	7
8	Sanak Basin	Neogene	2	58	Fukue Basin	Neogene	7
9	Anadyr Basin	Upper Mesozoic	- 1	59	Danio Basin	Neogene	7
10	Navarin Basin	Paleonene		60	Okinawa Trough Basin	Neogene	7
	Aleutian Basin	Neogene	2	61	Shimaiiri Basin	Neogene	7
12	Komandrasky Basin	Neogene	2	62	Gobi Basin	Lloner Mesozoic	, 5
12	Rowers Basin	Neogene	2	62	Hailar Basin	Upper Mesozoic	5
1 13	Aloution Tronch Posin	Neogene	2	64	Erlion Basin	Upper Mesozoic	5
14	Aleutian mench basin	Heogene	2	65	Sonalioo Booin	Upper Mesozoic	5
10	Laplev Dasili	Upper Mesozoic	1	66	Sonijena Desin	Upper Mesozoic	7
10	East Siberia Basin	Opper Wesozoic	1	00	Sanjiang Dasin	Upper Mesozoic	/ 5
	Mochigmen Basin	Paleogene		67	oluquan-minie basin	Upper Mesozoic	5
18	Penzhina Basin	Upper Mesozoic	1	68	Chaidamu Basin	Upper Mesozoic	5
19	West Kamchatka Basin	Upper Mesozoic-Pai	eogene /	69	Mingne Basin	Opper Mesozoic	5
20	Central Kamchatka Basin	Upper Mesozoic	7	70	North Libet Basin	Upper Mesozoic	5
21	East Kamchatka Basin	Paleogene	7	71	Heime Basin	Upper Mesozoic	5
22	Kuril-Kamchatka Trench Ba	asin Paleogene	7	72	Chagpu Basin	Upper Mesozoic	5
23	North Okhotsk Basin	Paleogene	7	73	Himalaya Basin	Paleogene	10
24	South Okhotsk Basin	Neogene	7	74	Eerdosi (Ordos) Basin	Lower Mesozoic	3
25	North Sakhalin Basin	Paleogene	7	75	Fenhe Basin	Upper Mesozoic	6
26	Tarasky Basin	Paleogene	7	76	Huabei Basin	Paleogene	6
27	Yenisey–Khatanga Basin	Lower Paleozoic	3	77	Bohai Basin	Paleogene	6
28	Anabar-Lena Basin	Lower Paleozoic	3	78	Korea Bay Basin	Paleogene	6
29	Tunguska Basin	Lower Paleozoic	3	79	Yellow Sea Basin	Upper Mesozoic	6
30	Olenek Basin	Lower Paleozoic	3	80	Shanghai Basin	Upper Mesozoic	6
31	Verkhoyansk Basin	Lower Paleozoic	3	81	East China Sea Basin	Paleogene	7
32	Indigirka–Zyranka Basin	Jurasic	3	82	Nanxiang Basin	Lower Mesozoic	3
33	Vilyuy Basin	Lower Paleozoic	3	83	Jianghan Basin	Lower Mesozoic	3
34	Kansk Basin	Lower Paleozoic	3	84	Yuanma Basin	Upper Mesozoic	5
35	Angara-Lena Basin	Lower Paleozoic	3	85	Shichuan Basin	Lower Mesozoic	3
36	Irkutsk Basin	Lower Paleozoic	3	86	Chuxiong Basin	Upper Mesozoic	5
37	Lake Baikal Basin	Cenozoic	4	87	Lamping-Simao Basin	Upper Mesozoic	5
38	Aginskiy Basin	Upper Mesozoic	5	88	Baise Basin	Upper Mesozoic	5
39	Zeya Bureya Basin	Lower Mesozoic	5	89	Shiwandashan Basin	Upper Mesozoic	6
40	Uda Basin	Upper Mesozoic	5	90	West Taiwan Basin	Paleogene	7
41	Upper Bureya Basin	Upper Mesozoic	5	91	Beibu Gulf Basin	Upper Mesozoic-Paleoger	ne 6
42	Etorufu Basin	Paleogene	7	92	Tonkin Basin	Paleogene	8or9
43	Japan Sea Basin	Paleogene	7	93	Pearl River Mouth Basin	Paleogene	8
44	Tsushima Basin	Neogene	7	94	South China Sea Basin	Paleogene	7
45	Yamato Basin	Neogene	7	95	Ganges Basin	Paleogene	10
46	San'in-Hokuriku Basin	Neogene	7	96	Assam Basin	Paleogene	10
47	Toyama Basin	Neogene	7	97	Bengal Basin	Paleogene	10
48	Niigata-Akita Basin	Neogene	7	98	North Myanmar (Burma) B	asin Paleogene	10
49	Oshima Basin	Neogene	7	99	South Myanmar (Burma) B	asin Paleogene	10
50	Teshio Basin	Upper Mesozoic-Pal	eogene 7	100	Irrawaddy Delta Basin	Paleogene	10

東アジアの堆積盆と炭化水素資源(角井朝昭)

Asian continent, 7; The basins along in and along the island arc systems of northwest Pacific Ocean, 8; The Cenozoic basins around the continental margin of southeast Asian continent, including Sunda Shelf, 9;The basins inside Sunda Shelf-Indochina region caused by cenozoic wrench faults related to the collision of Australia-India Plate to Eurasia Plate, 10;The sedimentary basins along Himalaya orogenic zone to Sunda Arc, 11;The basins distributed from the northwestern side to the southeastern side of New Guinea, 12; The basins around the northeast New Guinea to Solomon Islands Arc.

No.	Basin name	Geologic age	Geographical	No.	Basin name	Geologic age	Geographical
		of the bottom	group			of the bottom	group
		sediment				sediment	
101	Gulf of Martaban Basin	Paleogene	10	151	Tarakan Basin	Paleogene	8
102	Andaman Basin	Paleogene	10	152	Kutei Basin	Paleogene	8
103	Nicobar Basin	Paleogene	10	153	Minasa Basin	Paleogene	7
104	Andaman Sea Basin	Paleogene	10	154	Belitung Basin	Paleogene	10
105	Nicobar Trench Basin	Paleogene	10	155	Pembuang Basin	Paleogene	8
106	Nicobar Fan Basin	Paleogene	10	156	Barito Basin	Paleogene	8
107	Fang Basin	Paleogene	9	157	Asem-Asem Basin	Paleogene	8
108	Chao-Phraya Basin	Paleogene	9	158	Gorontalo Basin	Paleogene	7
109	Khorat Basin	Upper Mesozoic	3	159	Larian Basin	Paleogene	7
110	Bangkok Basin	Paleogene	9	160	Makasar Basin	Paleogene	7
111	Thai Basin	Paleogene	9	161	Spermonde Basin	Paleogene	7
112	Mekong Basin	Paleogene	8	162	Bone Basin	Paleogene	7
113	Saigon Basin	Paleogene	8	163	Banggai Basin	Paleogene	7
114	Spratly Basin	Paleogene	7	164	Manhui Basin	Paleogene	7
115	Cagavan Basin	Paleogene	7	165	Buton Basin	Paleogene	7
116	llocos Basin	Paleogene	7	166	Sula Basin	Paleogene	7
117	West LuzonBasin	Paleogene	7	167	South Sula Basin	Paleogene	7
118	Zambales Basin	Paleogene	7	168	Buru Basin	Paleogene	7
119	Southern Luzon Basin	Paleogene	7	169	North Obi Basin	Paleogene	7
120	Mindoro Basin	Paleogene	7	170	South Obi Basin	Paleogene	7
121	Iloilo Basin	Paleogene	7	171	North Halmahera Basin	Paleogene	7
122	Reed Bank Basin	Paleogene	7	172	Fast Halmahera Basin	Palengene	7
123	West Palawan Rasin	Paleogene	7	173	South Halmahera Basin	Paleogene	. 7
124	Ralahao Rasin	Paleogene	7	174	Salawati Basin	Linner Mesozoic	11
124	Sulu Bacin	Paleogene	7	175	Biotuni Basin	Lipper Mesozoic	11
125	Visovon Son Basin	Paleogene	7	176	Missel Basin	Lipper Mesozoic	11
120	Cotoboto Bosin	Paleogene	7	177	Sorom Basin	Palaogana	7
12/	Aguaga Davag Basin	Paleogene	7	170	South Soram Basin	Palaogene	7
120	Agusan-Davao Dasin	Paleogene	,	170	West Weber Posin	Poloogene	10
129	Desire Dasin	Paleogene	9	1/9	West Weber Dasin	Paleogene	10
130	Penyu Basin	Paleogene	9	100	Tanimh an Daoin	Paleogene	10
131	Sokang Basin	Paleogene	9	181	Tanimbar Basin	Paleogene	10
132	Sarawak Basin	Paleogene	8	182	Palungaru Basin	Upper Mesozoic	11
133	Brune-Saban Basin	Paleogene	8	183	waropen Basin	Upper Mesozoic	11
134	North Sumatra Basin	Paleogene	10	184	Blak Basin	Upper Mesozoic	11
135	Sibolga Basin	Paleogene	10	185	Waipoga Basin	Upper Mesozoic	11
136	Central Sumatra Basin	Paleogene	10	186	Akimegah Basin	Upper Mesozoic	11
137	South Sumatra Basin	Paleogene	10	187	Sahul Basin	Upper Mesozoic	11
138	Bengkulu Basin	Paleogene	10	188	Wewak Basin	Paleogene	12
139	Sunda Basin	Paleogene	10	189	Sepik Basin	Paleogene	12
140	Northwest Java Basin	Paleogene	10	190	Ramu Basin	Paleogene	12
141	South Java Basin	Paleogene	10	191	Madan Basin	Paleogene	12
142	Pati Basin	Paleogene	10	192	Morehead Basin	Upper Mesozoic	11
143	Northeast Java Basin	Paleogene	10	193	Papuan Basin	Upper Mesozoic	11
144	Lombom Bali Basin	Paleogene	10	194	Cape Vogel Basin	Upper Mesozoic	11
145	Flores Basin	Paleogene	10	195	New Ireland Basin	Paleogene	12
146	Sawu Basin	Paleogene	10	196	Bougainville Basin	Paleogene	12
147	Tukangbesi Basin	Paleogene	10	197	Solomon Basin	Paleogene	12
148	Timor Basin	Paleogene	10				
149	Ketungau Basin	Paleogene	9				
150	Melawi Basin	Paleogene	9				

-503 -

Fig. 2 Geological age of the sedimentary basin initiation in Northwest Pacific/east Asia region (numbers refer to Table 1).

Fig. 3 Index map of the petroliferous basins (shaded) in Northwest Pacific/east Asia region (numbers refer to Table 2). Re-compiled from Sumii et al., 1992b.

No.	Basin	Туре	Reservoir age	Reservoir lithology	No.	Basin	Туре	Reservoir age	Reservoir lithology	
		G:gas field					G:gas	G:gas field		
		O:01 field O/G:01 and gas field					0:011 0/G:0	lield hil and das field		
9	Anadyr	G	Paleogene-Miocene	Sandstone	99	South Myanmar (Burma)	0	Oligocene-Miocene	Sandstone	
25	North Sakhalin	O/G	Miocene-Pliocene	Sandstone	100	Irrawaddy Delta	O/G	Miocene	Sandstone	
33	Vilyuy	O/G	Triassic-Jurassic	Sandstone	107	Fang	0	Miocene-Pliocene	Sandstone	
		O/G	Proterozoic-Cambrian	Sandstone-Carbonate	108	Chao-Phraya	0	Oligocene-Miocene	Sandstone	
35	Angara-Lena	O/G	Proterozoic-Cambrian	Sandstone-Carbonate	110	Bangkok	G	Oligocene-Miocene	Sandstone	
36	irkutsk	G	Proterozoic-Cambrian	Sandstone-Carbonate	111	Thai	O/G	Pliocene	Sandstone	
48	Niigata-Akita	O/G	Miocene-Pliocene	Sandstone	112	Mekong	0	Cenozoi	Sandstone	
		G	Miocene	Volcanics	123	West Palawan	0	Oligocene-Miocene	Carbonate	
50	Teshio	O/G	Miocene	Sandstone			0	Miocene	Sandstone	
51	Ishikari	O/G	Miocene	Sandstone	129	Malay	G	Oligocene-Miocene	Sandstone	
53	Joban-Sanriku	G	Miocene	Sandstone			0	Miocene	Sandstone	
65	Songliao	0	Cretaceous	Sandstone	132	Sarawak	G	Miocene	Carbonate	
67	Jiuquan-Minle	0	Cretaceous, Silurian	Sandstone			0	Miocene	Sandstone	
		0	Miocene	Sandstone	133	Brunei-Sabah	O/G	Miocene-Pliocene	Sandstone	
74	Eerdosi (Ordos)	0	Triassic-Cretaceous	Sandstone-Carbonate	134	North Sumatra	G	Miocene	Carbonate	
		0	Triassic-Jurassic	Sandstone			0	Miocene-Pliocene	Sandstone	
76	Huabei	0	Proterozoic-Ordovician	Carbonate(basement)	136	Central Sumatra	O/G	Miocene-Pliocene	Sandstone	
		0	Cenozoic	Sandstone-Carbonate	137	South Sumatra	0	Oligocene-Miocene	Sandstone	
		0	Paleogene	Sandstone			0	Miocene	Carbonate	
77	Bohai	0	Paleogene	Sandstone	139	Sunda	O/G	Oligocene-Miocene	Sandstone-Carbonate	
		0	Miocene	Sandstone			0	Miocene	Sandstone-Carbonate	
81	East China Sea	G	Oligocene-Miocene	Sandstone	140	Northwest Java	O/G	Miocene	Sandstone-Carbonate	
83	Jianghan	0	Paleogene	Sandstone			O/G	Oligocene	Volcanics-Carbonate	
85	Shichuan	O/G	Jurassic	Sandstone	151	Tarakan	0	Miocene	Sandstone	
		G	Permian-Triassic	Carbonate			0	Pliocene	Sandstone	
88	Baise	0	Eocene	Sandstone	152	Kutei	O/G	Miocene-Pliocene	Sandstone	
90	West Taiwan	G	Miocene-Pliocene	Sandstone	156	Barito	0	Eocene	Sandstone	
91	Beibu Gulf	0	Miocene	Sandstone	174	Salawati	0	Miocene	Carbonate	
92	Tonkin	G	Miocene	Sandstone	175	Bintuni	0	Miocene	Carbonate	
93	Pearl River Mouth	0	Oligocene-Miocene	Sandstone-Carbonate	177	Seram	0	Pliocene-Pliocene	Sandstone-Carbonate	
96	Assam	O/G	Oligocene-Miocene	Sandstone	186	Akimegah	G	Jurassic-Cretaceous	Sandstone	
97	Bengal	G	Oligocene	Sandstone	193	Papuan	G	Jurassic-Cretaceous	Sandstone	
		G	Miocene-Pliocene	Sandstone			G	Miocene	Carbonate	
		O/G	Pliocene	Sandstone						

地質調査所月

撥

(第 45 巻

第 8/9

守)

Table 2 List of the petroliferous basins in Northwest Pacific/east Asia region (numbers refer to Fig. 3). Re-compiled from Sumii et al., 1992 b.

12. ニューギニア島北西部からソロモン弧周辺の堆積 盆は、インドーオーストラリア・プレートと太平洋プ レートの境界部に位置する新生代堆積盆である。油ガス 田は発見されていない。

3. 東アジアの含油堆積盆

石油天然ガスを含む堆積盆は地理的に偏在している (Fig.3).これらの堆積盆における主要貯留層の堆積 時代・岩相はTable2のようになる.この表からは炭化 水素鉱床が成立するための地質学的条件(貯留層の岩相 ・時代)の組み合わせは、多様であることがよく分かる.

また, Fig.3からは含油堆積盆が偏在していることが 分かる.特に規模の大きな油ガス田の分布は,上で述べ た堆積盆グループのうち,グループ3(アジア大陸の内 陸部安定大陸塊上の古生代及び初期中生代堆積盆),グ ループ6(アジア大陸東部東縁の後期中生代及び古第三 紀堆積盆),グループ8(アジア大陸東南の大陸縁辺部の 新生代堆積盆),グループ10(インド洋北東縁(スンダ 弧)の新生代堆積盆)のうちの背弧堆積盆,グループ11 (ニューギニア島西北部から南東部の中生代堆積盆)に 限定される.

4. 今後の課題

Table 2 からは堆積盆そのものの寿命と同様に,油ガ ス田も変動帯においては新しい地質地代のものが多く, 安定大陸域においては古い地質時代のものが多いことが 分かる.石油天然ガス鉱床の成立が堆積盆の構造発達の 一反映形態であることを考えると,この傾向は当然と言 えば当然である.しかし,この当然の傾向も地質時代を 通じた炭化水素の(あるいは炭素の)地球規模での循環を 考えるときには重要な制限要因となるはずである.

地質学的斉一論に立てば,過去においても現在と同様 の地質条件が整えば炭化水素鉱床が成立したはずであ る.現在我々が採掘している安定大陸上の鉱床が形成さ れつつあった前後にも,当時の変動帯地域には,今日我 々が変動帯地域において見ることのできるような炭化水 素鉱床が存在したと考えられるが,それらの鉱床は後の 造構運動によって失われてしまったといえる.これらの 鉱床群に一次的に(あくまでも地質学的時間スケールで) 蓄えられる炭化水素量は,あまり大きくないかも知れな いが,安定大陸上の鉱床が成立し,破壊消滅する一億年 程度のあいだ,これら変動帯では複数回のサイクルを経 るはずである.したがって,炭素の地球規模での循環を 考えるときにも,現在我々が探知できる炭化水素鉱床を 全て同列に扱うのではなく,その鉱床タイプあるいは成 立する地質形態に応じて,区分することが必要となる.

また,大規模な地塊の衝突や分離といった地質学的変 動が,比較的短期間に起こった場合には,炭化水素鉱床 の形成あるいは破壊-消滅が短期間に生じるはずであ る.そうであれば地球規模での炭素量の増減にも影響を 与えたはずである.残された地質学的証左から古地理-古堆積盆系の復元ができれば,地質時代を遡って,その ような議論が可能かも知れない.

今後は各堆積盆の時代対比をさらに詳細に行うととも に、アジア大陸および東アジアの島弧系の形成史の中で の堆積盆の生成-消滅プロセスの位置づけを明確にする 必要がある。

引用文献

- CCOP/WGRA (1990) Play modeling exercise 1989-1990, CCOP/TP 23, Committee for Co-ordination of Joint Prospecting for Mineral Resources in Asian Offshore Areas.
- (1991) Total sedimentary isopach maps offshore east Asia, CCOP *Technical Bulletin*, no.23, Committee for Coordination of Joint Prospecting for Mineral Resources in Asian Offshore Areas.
- Sumii, T., Wakita, K., Matsubayashi, O., Fujii, K., Natori, H., Kato, M., Inoue, E. and Sogabe, M., (1992a) Energy-resources map of the Circum-Pacific region, Northwest Quadrant, 1:10,000,000. Map CP-40, U.S. Geological Survey.

-, ____, ____, ____, Moritani, T. and Gryc, G. (1992b) Explanatory notes for the Energy-resources map of the Circum-Pacific region, Northwest Quadrant. U.S. Geological Survey.

主要参考文献

- Drummond, K.J. (1986) Energy-resources map of the circum-Pacific region, northeast quadrant: Houston, Tex., Circum-Pacific Council for Energy and Mineral Resources, 72p., scale 1:10,000,000.
- Eremenko, N.A., Krasny, L.I. and Fedinsky, V.V. (1978) Petroleum coal map of Pacific

mobile belt and ocean : Soviet Science Academy, U.S.S.R. Ministry of Oil Industry, U.S.S.R. Ministry of Geology and U.S.S.R. Ministry of Education, scale 1:10,000,000.

- Institute of Geology, Chinese Academy of Geological Science, Wuhan College of Geology (1985) Atlas of the palaeogeography of China : Beijing, Cartographic Publishing House, 294p.
- Institute of Geomechanics, Chinese Academy of Geological Science (1984) Tectonic systems map of the People's Republic of China and adjacent sea area: Beijing, Cartographic Publishing House, scale 1: 2,500,000.
- Li, C. (1982) *Tectonic map of Asia* : Research Institute of Geology, Chinese Academy of Geological Science, scale 1:8,000,000.

- St. John, B. (1984) Sedimentary provinces of the world-hydrocarbon productive and nonproductive : American Association of Petroleum Geologists, scale 1:31,368,000.
- Technical Committee of Association of Southeast Asian Nations Council on Petroleum (1981) Tertiary sedimentary basins of the Gulf of Thailand and South China Sea, stratigraphy, structure and hydrocarbon occurrences : Association of Southeast Asian Nations Council on Petroleum (ASCOPE), 72p.
- United Nations Economic and Social Commission for Asia and the Pacific (1985) *Oil* and natural gas map of Asia (3d ed.) : scale 1 : 5,000,000.

(受付:1993年11月10日;受理:1994年3月7日)