湖沼浚渫域の底質における元素の鉛直分布と化学的性質

寺島 滋* 井内美郎** 斎藤文紀** 宮田雄一郎*** 片山 肇** 寺島美南子*

Terashima, Shigeru, Inouchi, Yoshio, Saito, Yoshiki, Miyata, Yuichiro, Katayama, Hajime and Terashima, Minako (1991) Vertical variation and chemical characteristics of elements in bottom sediments from the dredged hollows of Lake Biwa and Lake Kasumigaura, Japan. *Bull. Geol. Surv. Japan*, vol. 42 (8), p. 387-407, 10 fig, 2 tab.

Abstract: In order to investigate the mechanism of sediment accumulation in the bottom of dredged hollows, twenty-two sediment cores from Lake Biwa and Lake Kasumigaura were analyzed for iron, manganese, copper, lead, zinc, cobalt, nickel, chromium, lithium, organic carbon, sulfur and phosphorous.

Nine to eleven black layers are found in the sediment cores, which are characterized with grayish mud as a whole, from the stations off Otsu, which are located in one of the dredged hollows of Lake Biwa. The black layers are considered to be formed under reduced conditions during the thermal stratification period in summer, so that sulfur contents of the black layers are clearly higher than those of surrounding grayish mud layers. The black layers can be used to estimate sedimentation rate in the dredged hollows.

The enrichment of manganese in the central part of Lake Biwa (Hokko) is mainly due to upward and lateral migrations of dissolved manganese from the deeper sediment layers. From the horizontal distributions of iron, copper, lead, and zinc, it is unlikely that these elements migrate between layers. The remarkable accumulation of zinc and to a lesser degree lead and copper in the sediment off Otsu, Lake Biwa, is considered to show recent environmental pollutions.

The sedimentation rate in the dredged hollows can be estimated about 40 mm/yr or more at some places, which is much higher than those of undredged areas (1-2 mm/yr). Therefore, the fine particles originated from industry and human living can be effectively trapped by artificial hollow, which will become a useful method to clean up recent bottom environmental pollutions in the lakes.

要旨

湖沼汚染底質の浄化手法としての「ヘドロトラップ」の有効性を検討するため,琵琶湖南湖及び霞ケ浦の浚渫域とその周辺から柱状試料を採取し,重金属及び有機炭素,硫黄,りん等を分析した。琵琶湖南湖の大津沖浚渫域の柱状試料では,夏季の水温成層期に形成されたと思われる,硫黄に富む黒色層が認められ,この層準は年間堆積サイクルの考察や堆積速度の見積りに利用できる。マンガンは,自然条件下でも底質から溶出して濃集するが,その他重金属の湖水中への溶出は無視できる程度と考えられた。浚渫域には,非浚渫域の20倍以上の速度で汚染底質が集積しており,「ヘドロトラップ」が浄化手法

として有効なことを示唆している.

1. はじめに

地質調査所では、これまでの湖沼における堆積学的研究成果をもとに、汚染底質の効果的な浄化手法の確立を目的とした新しいプロジェクトとして国立機関公害防止特別研究「湖沼汚染底質の浄化手法に関する研究」をスタートさせた。この研究課題では、井内(1988)によって提案された「ヘドロトラップ」、「水中ダム」、「水中堤防」等の有効性、実現性、経済性及び設置後の管理方法等に関する総合的な調査・研究が実施される予定である。

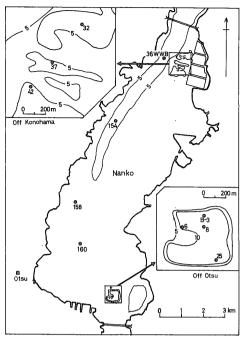
上記浄化手法のうち「ヘドロトラップ」は, 平均水深

Keywords; bottom sediment, element distribution, sedimentation rate, geochemistry, dredged hollow, Lake Biwa, Lake Kasumigaura

^{*}地殼化学部 **海洋地質部 ***環境地質部

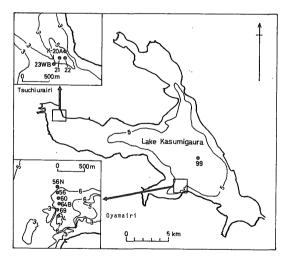
が10 m 程度以下の湖沼では汚染底質が風に起因する波浪や湖流によって容易に再移動し、湖内の凹地に集積しやすい特性を利用し、汚染物質が湖内全域へ拡散するのを抑制するものである。本研究では、「ヘドロトラップ」の有効性に関する基礎的データの取得を目的とし、琵琶湖南湖及び霞ケ浦の湖底にある浚渫によって作られた凹地とその周辺から採取した柱状試料中各元素の鉛直分布と化学的特性について検討した。その結果、これまで不明であった堆積物の年間堆積サイクルの考察に必要なデータが得られると共に、「ヘドロトラップ」の有効性についていくつかの新知見が得られたので報告する。

柱状試料の採取に当っては、当所地質情報センターの 安田 聡、斎藤英二、渡邉和明、宮崎純一及び地質標本 館の竹内三郎、吉川秀樹の各氏に御協力いただいた。厚 く御礼申し上げる。


2. 試料と分析方法

2.1 試料採取水域の概要

本研究では,琵琶湖南湖の大津沖と木浜沖(第1図) 及び霞ケ浦の土浦入と大山入(第2図)の浚渫域とその 周辺水域から試料を採取した。


琵琶湖の最南部に位置する南北 15 km, 東西最大巾 5 km, 面積 58 km² の部分が南湖であり, 南湖の最南端か らは湖水が瀬田川となって流出している。水深は、人工 的な凹所を除くと10m以下であり、最大水深は最北部の 北湖側にある。 琵琶湖全域の底質中重金属等の分布につ いては立川 (1977, 1979), 井内ほか (1986, 1989) に よって報告されている。これらによれば、各元素は主要 供給源や湖内における挙動を反映して種々の分布形態を 示す。南湖に比べて北湖の底質中で明らかに高濃度を示 す元素はマンガンであり、逆に南湖で濃度が高いのは亜 鉛と鉛である。 亜鉛と鉛は、人間活動に伴って環境中に 排出されて蓄積されやすい元素であり, 人口密集地の大 津市付近の底質で最高濃度を示すことから主として人為 的影響によると考えられている(立川、1977;井内ほか、 1986)。南湖底質の粒度組成については立川・河嵜 (1982) が詳細な研究を行っており、大津沖浚渫域の周辺 には泥質堆積物が, 木浜沖ではシルト質堆積物が卓越す る傾向がある.

霞ケ浦は、かつて海湾的な環境下にあったが、その後 自然の埋めたてが進むと共に、近年の干拓や河口堰の建 設により淡水化したものである。霞ケ浦の底質状況に関 しては、全体として湖岸部にはシルト質-砂質堆積物が、 湖心部には泥質堆積物が分布する。今回の調査水域はい ずれも土砂の採取跡であるため粗粒堆積物が堆積してい

第1図 琵琶湖南湖における底質試料の採取位置

Fig. 1 Sampling stations of bottom sediments in Nanko, Lake Biwa.

第2図 霞ケ浦における底質試料の採取位置

Fig. 2 Sampling stations of bottom sediments in Lake Kasumigaura.

た水域と言える。各種元素のうち亜鉛、鉛等の重金属は 土浦入、高浜入の泥質堆積物で高く、湖心-湖尻の方向 に低濃度となる。有機炭素は、重金属の分布とは若干異 なり、湖心部で7-9%の最高濃度を示し、周囲の湖岸部 に向かって低濃度となる(井内ほか、1984)。

2.2 試 料

柱状試料は,人力押し込み式の簡易軽量採泥器(井内ほか,1987;コア長 1 m,内径 6 cm)を使用し,琵琶湖では 1990 年 10 月 26 -29 日に,霞ケ浦では同年 9 月 27 日 -10 月 2 日に採取した。琵琶湖における試料の採取地点は第 1 図に示した。このうち B -36WWB, 154, 158, 160 は非浚渫域の試料であり,その他が浚渫域の試料である。また第 2 図の霞ケ浦では,K -23WB, 56N, 99 が非浚渫域で,その他が浚渫域からの試料である。

採取した試料は,厚さ 1-5 cm 毎に分割した後約 80° C で乾燥し,めのう粉砕機で 100 メッシュ以下に粉砕して分析試料とした.

2.3 分析方法

鉄、マンガン、銅、鉛、亜鉛、コバルト、ニッケル、クロム、リチウム:試料 0.2g を白金ざらに取り、過塩素酸 $3m\ell$ 、硝酸 $3m\ell$ 、ふっ化水素酸 $6m\ell$ を加え、加熱分解した後蒸発乾固した。塩酸 (1+1) $1m\ell$ と水約 $3m\ell$ を加え、加温溶解した後メスフラスコ $(10m\ell)$ に移し入れ、水で定容とし、空気-アセチレンフレームを用いる原子吸光法で定量した。

有機炭素,硫黄,りん:寺島ほか(1990)と同様に, 有機炭素と硫黄は燃焼-赤外吸収法,りんは吸光光度法で 定量した.

3. 結果と考察

3.1 鉛直分布の特徴

柱状試料を分割したものから合計 306 試料を選定し、各元素を定量した結果を付表 A-1 に、この結果から各元素毎の鉛直分布図を作成して琵琶湖南湖の結果を第3、4図に、霞ケ浦の結果を第5、6図に示した。なお、これらの図において硫黄と亜鉛の含有量に関しては琵琶湖と霞ケ浦の試料とでかなりの差が認められるため濃度表示が異なっている。

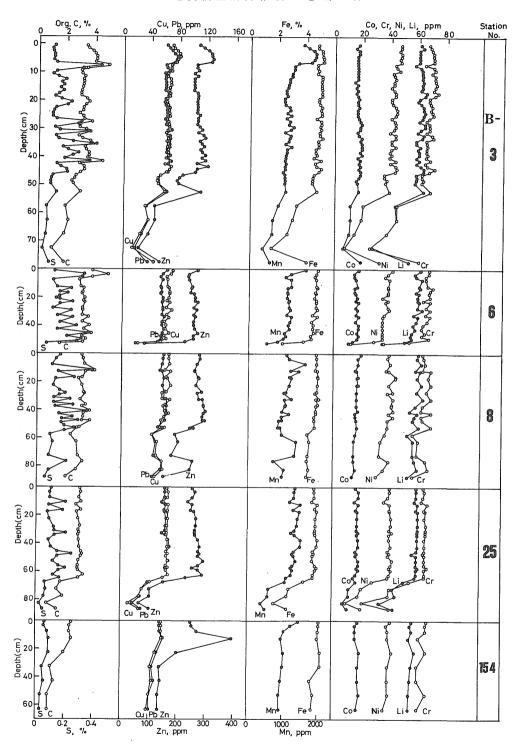
3.1.1 硫黄と有機炭素

陸源性及び湖内で生産された有機物は、湖水中あるいは底質中で一部酸化分解されるが、堆積環境が嫌気的である場合の酸素の供給源としては、微生物による硫酸イオンの分解が重要である。Presley and Kaplan (1968)、Berner (1970) によれば、(1)-(3)式の反応によって生成し

$$2(CH_2O) +SO_4^{2-} \rightarrow 2HCO_3^{-} + HS^{-} + H^{+}$$

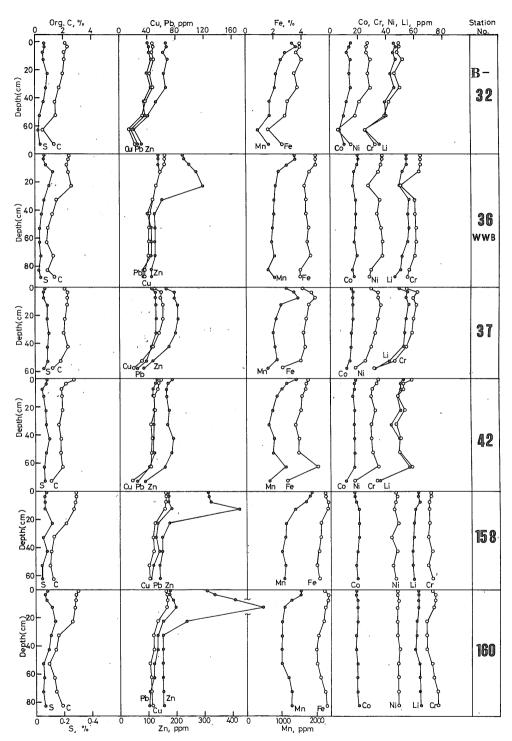
$$Ca^{2+} + 2HCO_3^{-} \rightarrow Ca^{2+} + H_2CO_3 + CO_3^{2-}$$
(1)

$$\rightarrow$$
 CaCO₃ + H₂CO₃ (2)


$$Fe^{2+} + H_2S + S^0 \rightarrow FeS_2 + 2H^+$$
 (3)

た硫化水素の一部が硫化鉄として堆積物中に固定され,硫黄含有量を増加させる。一方,酸化的な環境下では上記の反応が進行しにくいため硫化水素の発生は少なく,堆積物中の硫黄含有量は低値を示す。堆積環境が嫌気的になる要因としては,湖水が温度や密度差によって成層し,表層水中の溶存酸素が底層まで到達できなくなる場合と,堆積層中に多量の有機物が供給される場合がある。著者らは,いくつかの湖沼及び海域底質中の硫黄と有機炭素について研究したが,硫黄含有量が最も高いのは汽水域や内湾環境下の堆積物であり,これは主として淡水と海水の密度差による成層が原因と考えられた(Terashima et al., 1983)。

琵琶湖南湖の大津沖浚渫域で採取した柱状試料では, 厚さ 1m 以下の堆積層中に 9-11 枚の黒色層が認められ た。この水域で浚渫が実施されたのは、1970年代の終り 頃と言われており、この黒色層は夏季に形成される水温 成層で嫌気的条件となった時の堆積物と考えられる。も しそうだとすれば, 黒色層中の硫黄量は他の部分よりも 高値を示すことが期待できるので、柱状試料の分割幅を より狭くして分析した。全測定結果は他試料と比較して 第3図に示したが, 黒色層を含む B-3, 6, 8 については堆 積物との対応を明確にして第7図を作成した。第7図か らわかるように、硫黄含有量はほとんどの黒色層におい てその上下の層準よりも2-3倍高く、上記推論の通り黒 色層は嫌気的条件下の堆積物と判断される。琵琶湖南湖 の木浜沖で採取した柱状試料 (B-32, 37, 42) には明瞭 な黒色層は認められなかったが, 硫黄の鉛直分布に大き な変化はなく、その含有量もほとんどが0.1%以下で低い (第4図)。これは、大津沖での試料採取地点の水深が13 m以上であるのに対して木浜沖では7-8 mであり(付表 A-1), 木浜沖では水温成層の影響が凹地内にまで及んで いないと考えることもできる。


霞ケ浦の非浚渫域で採取した柱状試料(K-23WB,56N,99)中の硫黄含有量は、表層部では0.5%程度であるが、下層部では1-3%の高値を示している(第5,6図)。すでに述べたように、霞ケ浦はかつて海湾的な堆積環境下にあった時代があり、下層の高硫黄堆積物はその時代に堆積したものと考えられる。霞ケ浦の浚渫域堆積物には琵琶湖の大津沖浚渫域の試料に認められた黒色層は見られず、硫黄含有量の鉛直変化は小さい(第5,6図)。

有機炭素は、続成作用に伴って分解が進行するため一般に下層ほど低く、本研究でもほぼ同様の結果が得られた(第3-6図)。第3図についてさらに詳しく見ると、有機炭素の鉛直変化は硫黄のそれに類似している。硫黄含

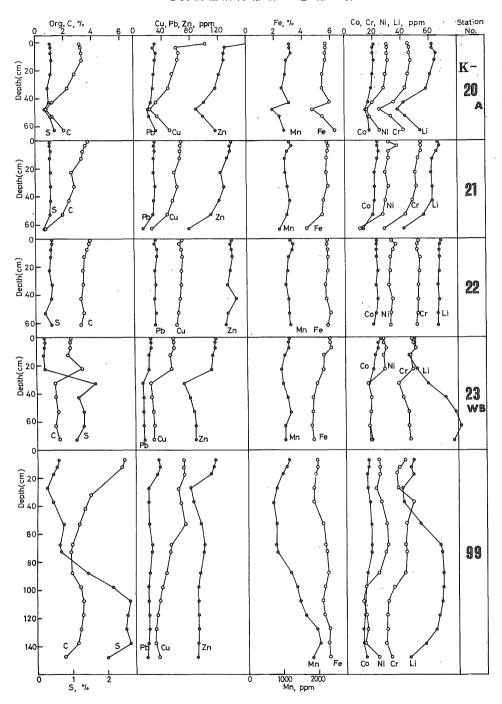

第3図 琵琶湖南湖の大津沖を中心とする柱状試料中 11 元素濃度の鉛直変化

Fig. 3 $\,$ Vertical variation of the concentration of eleven elements in core samples of Nanko (Off Otsu), Lake Biwa.


第4図 琵琶湖南湖の木浜沖を中心とする柱状試料中11元素濃度の鉛直変化

Fig. 4 Vertical variation of the concentration of eleven elements in core samples of Nanko (Off Konohama), Lake Biwa.

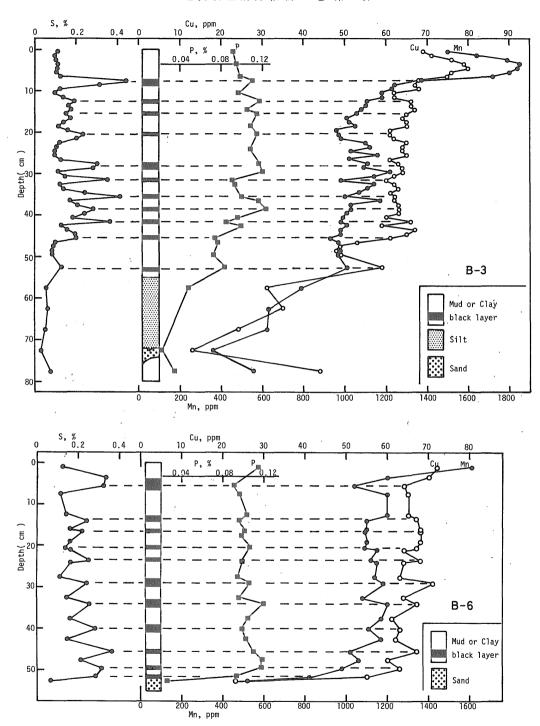

第5図 霞ケ浦の土浦入を中心とする柱状試料中11元素濃度の鉛直変化

Fig. 5 Vertical variation of the concentration of eleven elements in core samples of Lake Kasumigaura (Tsuchiurairi).

第6図 霞ケ浦の大山入を中心とする柱状試料中11元素濃度の鉛直変化

Fig. 6 Vartical variation of the concentration of eleven elements in core samples of Lake Kasumigaura (Oyamairi).

第7図 琵琶湖南湖の柱状試料B-3, 6, 8 における S, P, Cu, Mn 濃度の鉛直変化と堆積層の関係

Fig. 7 Vertical variation of S, P, Cu and Mn concentrations in relation to sediment type of core samples from Nanko, Lake Biwa (Stn. B-3, 6 and 8).

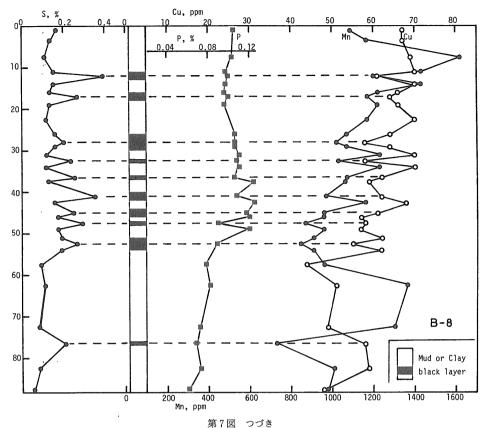


Fig. 7 continued

有量が高い黒色層において有機炭素が高値を示す原因としては、嫌気的環境のため分解が抑制されたこと及び湖水温の上昇で湖内における生物生産量が増加して多量の有機物が供給されたことが考えられる。

なお、堆積物が泥質・粘土質の場合に比べてシルト質 -砂質の場合は有機炭素をはじめほとんどの元素が低値を示す傾向があり、今回の試料で粗粒堆積物が分布するのは柱状試料 B-3 の 73 cm, 6 の 53 cm, 25 の 82 cm, 32 の 63 cm, 37 の 58 cm, 42 の 74 cm, K-20A の 47 cm, 21 の 62 cm 付近の層準である。

3.1.2 銅,鉛,亜鉛

琵琶湖南湖から採取した柱状試料における銅と鉛の含有量は、いずれの層準においてもほぼ同程度であり、その鉛直分布における増減も極めて類似している(第3,4図)。 亜鉛に関しても、浚渫域で採取した試料における鉛直分布のパターンは銅と鉛のそれと同様である。しかし、非浚渫域から採取した試料(B-36WWB, 154, 158, 160)では表層下10-25 cmの層準で最高濃度を示し、その上下では低濃度となっている。このように極大値を有する亜

鉛の鉛直分布は人為的影響が顕著な場合に形成されたと考えられ、諏訪湖の堆積物では一般的に認められる(寺島ほか、1990)が、野尻湖や琵琶湖北湖では認められない(寺島ほか、1989)。

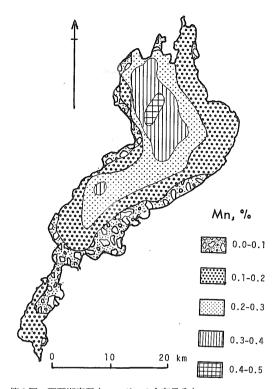
霞ケ浦の非浚渫域から得られた試料では、銅、鉛、亜鉛はいずれも下層部よりも表層部で高濃度を示す傾向がある。この原因の一部は人為的影響によるであろうが、硫黄含有量の変化からもわかるように堆積環境が海水又は汽水から淡水に変化すると共に湖の閉鎖性が進行したことによる影響も考慮する必要がある。

3.1.3 鉄, マンガン, コバルト, ニッケル, クロム, リチウム

第3-6図に示した柱状試料における鉄とマンガンの鉛直分布を比較すると、鉄よりもマンガンの濃度変化がやや大きい特徴がある。この傾向は他の湖沼堆積物においても認められる現象であり、原因は鉄がマンガンよりも化学的に不活性で続成作用に伴う移動や濃集が起こりにくいためと考えられる(寺島ほか、1990)。

コバルト、ニッケル、クロムに関しては、堆積物が粗

粒であることで低値を示す層準があるが、全体として大きな鉛直変化は存在しない(第3-6 図)。 諏訪湖底質中のニッケル及びクロム濃度は明らかに人為的影響を受けており、この場合は柱状試料の表層下 15-20 cm で最高濃度を示し、その上下の層準で低濃度となる鉛直分布を示している(寺島ほか、1990)。このことから考えて、本研究で分析した試料中のニッケルとクロム濃度に対する人為的影響は現れていないと考える。


霞ケ浦の非浚渫域試料では、リチウム濃度が下層部で 高値を示している。この層準は、硫黄の含有量から見て 内湾的環境下の堆積物であり、河川水よりもリチウムに 富む海水の影響を反映したものと思われる。

3.2 続成作用に伴う移動と濃集

「ヘドロトラップ」により汚染底質の湖内全域への拡散を抑制しても、トラップ内の底質から汚染物質が溶出すると浄化効果は不充分である。そこで、ここでは底質中からの元素の溶出・移動・濃集について検討する。

湖沼底質中のマンガンは, 堆積層が嫌気的になると間 隙水中に溶出し, さらに上方へ拡散して湖水中に入り, 湖水中の酸素によって酸化されて沈殿する(川嶋ほか、 1978;中島, 1982; Takamatsu et al., 1985)。この溶出 と沈殿を繰り返すことによって最大水深が30mを超え, しかもすりばち状の湖底面を有する琵琶湖や野尻湖では 最大水深付近の底質でマンガン濃度が最大となる。一例 として井内ほか(1986)による琵琶湖底質中マンガンの 水平分布を第8図に示した。鉄、銅、鉛、亜鉛について もこれらが水和酸化物として存在する場合はマンガンと 同様にその一部が溶出する可能性がある(中島、1982: 寺島ほか、1989)、しかしながら、琵琶湖や霞ケ浦の湖心 部で鉄、銅、鉛、亜鉛等が高濃度を示す傾向は認められ ない(井内ほか,1989) ことから、自然条件下における これら重金属の湖水中への溶出は無視できる程度と思わ れる.

富栄養化が進んだ諏訪湖(福原ほか,1981),霞ケ浦(細見・須藤,1984),湯ノ湖(細見ほか,1984),手賀沼(細見・須藤,1988)等においては,底質からのりんの溶出が認められており,この溶出量は底層水が嫌気状態となる夏季に多いことが知られている。大津沖で採取した柱状試料の黒色層が形成される条件ではりん等が溶出している可能性が強い。そこで,溶出しやすい元素としてのマンガン,りんと,今回分析した重金属のうちでは最も安定な硫化物沈殿を作ると考えられる銅を選び,硫黄の鉛直分布との関係を検討した結果を第7図に示した。この図からわかるように,マンガン含有量は若干の例外はあるものの硫黄濃度の高い層準で低値を示し,嫌

第8図 琵琶湖底質中マンガンの含有量分布 Fig. 8 Map showing distribution of manganese in Lake Biwa. From Inouchi *et al.* (1986).

気的条件下での溶出を強く示唆している。しかし、りんとマンガンの増減傾向は必ずしも一致しておらず、この結果からりんの溶出を評価するのは困難である。また、銅と硫黄含有量の間にも明らかな正相関は認められない。これは、硫黄は嫌気的条件下で(1)-(3)式の反応で増加するのに対して、銅の供給量は特に変化せず、場合によっては湖水の成層に伴って減少することが考えられる。

以上の結果から、マンガン以外の重金属やりん等の溶出挙動については今後の検討が必要である。しかし、細見ほか(1984)によれば、湯ノ湖底質からはマンガン、りん、窒素、鉄、カルシウム、マグネシウム等の溶出が認められており、「ヘドロトラップ」の設置に当っては溶出量が少ない構造を選定すると共に、適切な管理手法を確立する必要があろう。

3.3 堆積速度

「ヘドロトラップ」の有効性評価においては、トラップ 内外における堆積速度の見積りが重要である。まずトラップの外の堆積速度の目やすとして日本のいくつかの湖沼 における自然条件下の年間堆積速度を第1表に示した。

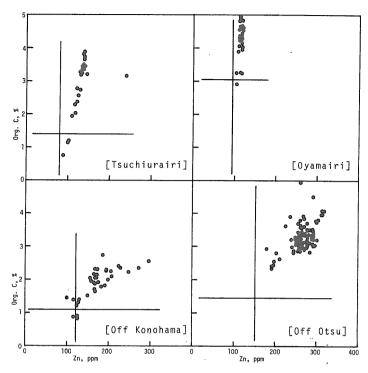
湖沼浚渫域の底質における元素の鉛直分布と化学的性質(寺島 ほか)

第1表 日本のいくつかの湖沼における堆積速度 Table 1 Sedimentation rates for some Japanese lakes.

Lake	Sedimentation rate (mm/yr)	Reference
Lake Biwa (Nanko)	0.8	Matsumoto (1975)
	2.4	Kamiyama et al. (1982)
Lake Biwa (Hokko)	1.1-1.9	Matsumoto (1975)
	1.2 - > 4	Kamiyama et al. (1982)
Lake Kasumigaura	0-4 (Avg. 1.5)	Inouchi et al. (1983)
Lake Hamana	1.6-4.8	Ikeya <i>et al.</i> (1987)
Lake Suigetsu	1.1	Matsuyama (1974)
	1.2	Kamiyama et al. (1982)
Lake Nojiri	0.2	Tsukada (1967)
Lake Suwa	3.9	Megumi (1978)
	15	Nishimura (1978)

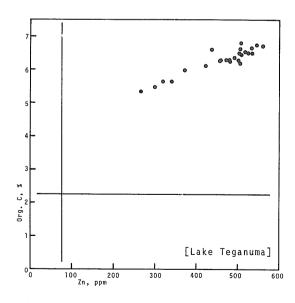
これら湖沼のうち堆積速度が最も遅いのは野尻湖 (0.2 mm/年)で,逆に速いのは諏訪湖 (3.9 あるいは 15 mm/年)であるが,これは主として集水域の大小に関係し,集水域が湖面積の 2 倍程度の野尻湖で遅く,約 40 倍の諏訪湖で速いことが考えられる。また,湖沼堆積物の堆積速度は一般に水深の大きい湖心部で早く,湖岸部では遅い傾向がある(井内ほか,1989)。第 1 表からわかるように,琵琶湖南湖 (0.8 及び 2.4 mm/年)と霞ケ浦 (1.5 mm/年)の堆積速度は琵琶湖北湖,浜名湖,水月湖等と同程度であると言える。

すでに述べたように、琵琶湖南湖の大津沖で浚渫が行われたのは1970年代の終りであり、又夏季の水温成層で形成されたと思われる黒色層があることからこれを基準として浚渫後の年数を求めると柱状試料B-3、6では11年、8では10年、25では9年となる。そしてこの浚渫域における浚渫後の堆積速度は47-85 mm/年程度となる。非浚渫域の堆積速度として大きい方の2.4 mm/年を採用しても、浚渫域ではこの20-40 倍の堆積速度を有している。


手賀沼上沼の浚渫域における堆積速度は約40 mm/年と見積られており、この場合も付近の非浚渫域に比べて約20倍の堆積速度を示している(井内、1990). 琵琶湖の木浜沖、霞ケ浦の土浦入、大山入の浚渫時期は不明であり、堆積速度の評価はできない。しかし、自然条件下では堆積速度が遅く、周辺には粗粒堆積物が多い湖岸部であるにもかかわらず30-80 cmの泥が堆積しており、「ヘドロトラップ」の有効性については期待を持たせる結果と言える。

3.4 「ヘドロトラップ」の基礎的検討

「ヘドロトラップ」の効率を高めるためには、設置場所や水深、形状、規模等について種々の基礎的データが必要であるが、ここでは本研究で検討した4ケ所の浚渫域に集積した底質の化学的特性から若干の考察を行う。


まず、各浚渫域内に集積した底質の化学的特性を明ら かにするため, それぞれにおける亜鉛と有機炭素含有量 の関係を第9図に示した。図中に示した直線はそれぞれ の浚渫域における亜鉛と有機炭素のバックグラウンド値 である。バックグラウンド値としては, 人為的な影響を さけるため各浚渫域の近くの非浚渫域で採取した柱状試 料 (B-160, 36WWB, K-23WB, 56N) の最表層部から 30-50 cm を除いた部分のデータを使用した。 第9図から わかるように、 霞ケ浦の土浦入と大山入を比較すると亜 鉛含有量に大きな差はないが、有機炭素は明らかに大山 入で高い。これは大山入浚渫域周辺の水深が5m前後で 土浦入に比べて深く, 有機炭素に富む堆積物が分布して いるためと思われる。琵琶湖南湖では、木浜沖よりも大 津沖の堆積物が亜鉛,有機炭素のいずれについても高濃 度である。これは人為的な供給源が主として南湖南部の 人口密集地にあること(立川,1977;井内ほか,1989) 及び大津沖での試料採取地点の水深が13m以上で周辺の 4-5 m に比べて 2.5 倍以上あることなどによると思われ る.

第10図は、手賀沼上沼の浚渫域(井内、1990)における亜鉛と有機炭素の関係を示したものである。この浚渫域は、手賀沼上沼の中央部南側の水深約1mの水域にあるもので、現在の最大水深は3m程度である。手賀沼

第9図 4ケ所の浚渫域底質における有機炭素濃度と亜鉛濃度の関係

Fig. 9 Organic carbon content vs zinc content for bottom sediments from four dredged hollows. Horizontal and vertical lines show background values for organic carbon and zinc, respectively.

第10図 手賀沼の浚渫域底質における有機炭素濃度と亜鉛濃度の関係

Fig. 10 Organic carbon content vs zinc content for bottom sediments from dredged hollow of Lake Teganuma. From Terashima *et al.* (unpublished).

底質中各種元素の分布は小林・楠田(1984)が報告しており、これによれば亜鉛、有機炭素の含有量は人為的な供給源に近い大堀川河口付近で最も高く、ついで浚渫域である。第10図からわかるように、手質沼浚渫域にはバックグラウンド値の数倍程度の亜鉛、3倍程度の有機炭素を含有する堆積物が分布している。また、この浚渫域では琵琶湖の大津沖で認められた嫌気的条件下の黒色層は認められていない。

以上の検討から、「ヘドロトラップ」の設置場所として は汚染物質の供給源にできるだけ近く、周辺に比べて水 深が大きく、流速の小さい場所が有利と思われる。また 設置する「ヘドロトラップ」そのものの水深も深い程効 率は良いであろうが、嫌気的条件下における汚染物質の 溶出や集積した底質の除去・処分方法を考慮した構造を 選定すべきと思われる。

4. まとめ

湖沼汚染底質の浄化手法としての「ヘドロトラップ」の有効性評価のために、琵琶湖南湖の大津沖と木浜沖及び霞ケ浦の土浦入と大山入の浚渫域とその周辺から採取した22本の柱状試料中の鉄、マンガン、銅、鉛、亜鉛、コバルト、ニッケル、クロム、リチウム、有機炭素、硫黄、りんを分析し、鉛直分布の特徴や続成作用、堆積速度との関係を検討し、以下の結果を得た。

- (1) 大津沖浚渫域の柱状試料では、堆積層中に 9-11 枚の黒色層が認められた。この黒色層では硫黄含有量が 他の層準よりも明らかに高く、夏季の水温成層によって 形成された嫌気的条件下の堆積物と判断された。この黒 色層は、堆積速度の見積りや、年間堆積サイクルの考察 に利用できると思われる。
- (2) 柱状試料に見られる元素の鉛直分布から人為的な影響を検討した結果,琵琶湖南湖での亜鉛に対する影響が最も顕著であり,銅,鉛についても若干の影響があったが,その他の重金属では無視できる程度であった.霞ケ浦では,人為的影響による重金属の増加は琵琶湖南湖に比べて小さいと考えられた.
- (3) 続成作用に伴う重金属の挙動に関しては、自然条件下でもマンガンは底質中から溶出して湖心部に濃集するが、鉄、銅、鉛、亜鉛等は間隙水中へ溶出しても、湖水中への拡散は無視できる程度と考えられた。しかし、「ヘドロトラップ」内が嫌気的になるとりん、窒素等栄養・塩類の溶出が予想されるので、トラップの構造選定や管理手法の確立の段階では十分な対策が必要と思われる。
- (4) 湖沼における天然の堆積速度は、集水域が広い場合に速く、狭いと遅い傾向がある、大津沖や手賀沼浚渫

域における堆積速度は、周辺の非浚渫域に比べて20倍以上であり、汚染底質の集積施設としての「ヘドロトラップ」が有効であることを示唆している。

(5) 人為的に供給された重金属やりんは、一般に供給源に近い底質中に多く含有されている。「ヘドロトラップ」の設置場所としては、汚染物質の供給源に近く、周辺よりも水深が大きく、流速の小さい水域が有利と判断された。

文 献

- Berner, R. A. (1970) Sedimentary pyrite formation. *Am. Jour. Sci.*, vol. 268, p. 1-23.
- 福原晴夫・田中哲治郎・中島光敏(1981) 底泥からの栄養塩の溶出 II. 諏訪湖集水域生態系研究報告, vol. 7, p. 1-20.
- 細見正明・岡田光正・矢木修身・山根敦子・須藤隆 一 (1984) 底泥からの窒素及びリンの溶出 調査. 国立公害研究所報告, vol. 56, p. 75-101.
- ・須藤隆一(1984) 霞ケ浦底泥からの窒素及びりんの溶出について。国立公害研究所報告,vol.51,p.191-217.
- ------・-----(1988) 手賀沼における栄養 塩収支. 国立公害研究所報告, vol. 117, p. 69-86.
- 池谷仙之・和田秀樹・大森真秀(1987) 浜名湖の ボーリング柱状試料について、静岡大学地 球科学研究報告, vol. 13, p. 67-111.
- 井内美郎・斎藤文紀・横田節哉(1983) 霞ケ浦湖 底泥の堆積速度一火山灰層を用いた堆積速 度算定法一,地質雑,vol.89,p.125-128.
 - ・横田節哉・小野寺公児・大嶋和雄・村上 文敏・木下泰正・斎藤文紀・青木市太郎・ 斎藤英二 (1984) 湖沼堆積物の調査技術 に関する研究、環境庁環境保全研究成果 集,p.60-1~60-26.
 - ・中尾征三・横田節哉・村上文敏・斎藤文 紀・寺島 滋・寺島美南子・竹内三郎・吉 川秀樹・志岐常正・太井子宏和・徳岡隆 夫・公文富士夫(1986) 湖沼汚染底質の 堆積機構解明に関する研究。環境庁環境保 全研究成果集,p.64-1~64-14.

- 夫・公文富士夫・中野聡志・遠藤修一・前 田広人・熊谷道夫・近藤洋一(1987) 湖 沼汚染底質の堆積機構解明に関する研究。 環境庁環境保全研究成果集, p. 64-1~64-19.
- 井内美郎(1988)「ヘドロトラップ」・「水中ダム」・ 「水中堤防」。第 14 回産業公害研究総合推 進会議総会試料, p. 90-91.
- ・中尾征三・横田節哉・斎藤文紀・村上文 敏・宮田雄一郎・寺島 滋・寺島美南子・ 竹内三郎・吉川秀樹・安田 聡・斎藤英 二・渡辺和明・宮崎純一・星加 章・志岐 常正・徳岡隆夫・公文富士夫・中野聡志・ 遠藤修一・武蔵野実・吉川周作・久富邦 彦・前田広人・近藤洋一(1989) 湖沼汚 染底質の堆積機構解明に関する研究。環境 庁環境保全研究成果集,p.47-1~47-30.
- -----(1990) 手賀沼における「ヘドロトラップ」の有効性に関する予察調査結果。第 16 回産業公害研究総合推進会議総会資料,p. 102-103.
- Kamiyama, K., Okuda, S. and Koyama, M. (1982) Vertical distribution of ¹³⁷C_s and its accumulation rate in lake sediments. *Jap. J. Limnol.*, vol. 43, p. 35–38.
- 川嶋宗継・中川利宏・中嶋美栄子・塩田 晃・谷口 孝敏・板坂 修・高松武次郎・松下録治・ 小山睦夫・堀 太郎 (1978) 琵琶湖堆積 物における種々の元素の鉛直分布と化学的 性質一特に、マンガン、リン、ヒ素の分布 について一。滋賀大紀要、自然、vol. 28, p. 13-29.
- 小林節子・楠田 隆 (1984) 手賀沼の底質一汚染 泥の堆積と性状、千葉県水質保全研究所資 料, no. 39, 49 p.
- 松本英二 (1975) ²¹⁰Pb 法による琵琶湖湖底泥の堆 積速度. 地質雑, vol. 81, p. 301-305.
- Matsuyama, M. (1974) Vertical distributions of some chemical substance in surface sediments of a meromictic Lake Suigetsu. *Jour. Ocean. Soc. Japan*, vol. 30, p. 209–215.
- Megumi, K. (1978) A problem in ²¹⁰Pb geochronologies of sediments. *Nature*, vol. 274, p. 885–887.

- 中島 進 (1982) 琵琶湖柱状堆積物中の重金属元素 (マンガン,鉄,ヒ素,カドミウム,鉛,銅,亜鉛,コバルト,ニッケル)の形態分別,日本陸水学会誌,vol.43,p.67-80.
- Nishimura, M. (1987) Geochemical characteristics of the high reduction zone of stenols in Suwa sediments and the environmental factors controlling the conversion of stenols into stanols. *Geochim. Cosmochim. Acta*, vol. 42, p. 349–357.
- Presley, B. J. and Kaplan, I. R. (1968) Changes indissolved sulfate, calcium and carbonate from interestitial water of near-shore sediments. *Geochim. Cosmochim. Acta*, vol. 32, p. 1037–1048.
- Takamatsu, T., Kawashima, M., Matsushita, R. and Koyama, M. (1985) General distribution profiles of thirty-six elements in sediments and manganese concretions of Lake Biwa. *Jap. Jour. Limnol.*, vol. 46, p. 115–127.
- 立川正久(1977) 琵琶湖の堆積物の研究(X). 滋 賀大学教育学部紀要, no. 27, p. 26-43.
- (1979) 琵琶湖底泥中の重金属類について、関西自然保護機構会報,no.3,p.1-26.・河嵜智子(1982) 琵琶湖の堆積物の研究(XIV). 滋賀大学教育学部紀要,no.32,p.23-43.
- Terashima, S., Yonetani, H., Matsumoto, E. and Inouchi, Y. (1983) Sulfur and carbon contents in recent sediments and their relation to sedimentary environments *Bull. Geol. Surv. Japan*, vol. 34, p. 361–382.
- 寺島 滋・井内美郎・中尾征三・米谷 宏 (1989) 野尻湖底表層堆積物におけるマンガン, 銅,鉛,亜鉛の挙動。地調月報,vol.40, p.113-125.
 - ・ (1990) 諏訪湖底質中の重金属,有機炭素,硫黄, りん等 14 元素の地球化学的研究。地調月 報, vol. 41, p. 147-172.
- 塚田松雄(1967) 野尻湖における化石枝角類と生態的秩序。第四紀研究, vol.6, p.101-110.

(受付:1991年4月22日;受理:1991年5月14日)

付 録

付表A-1 湖沼底質の分析結果 Table A-1 Analytical results for lake sediments.

Sample No.	Station No.	Location (cm)	Fe (%)	Mn (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	Co (ppm)	Ni (ppm)	Cr (ppm)	Li (ppm)	Org. C (%)	S (%)	P (%)
1	B-3	0-1	4.80	1500	69	61	267	17	47	67	61	3.33	0.110	0.091
2	(14 m)*	1-2	4.80	1640	71	65	284	15	47	68	63	3.50	0.096	n. d.
3		2-3	5.02	1790	76	68	302	17	46	69	60	3.82	0.099	n. d.
4		3-4	5.09	1850	. 79	72	311	17	47	70	60	3.98	0.110	0.094
5		4-5	5.13	1840	80	76	312	16	47	70	60	4.08	0.106	n. d.
6 .		5-6	5.16	1800	76	75	317	16	46	70	60	4.08	0.102	n. d.
7		6-7	5.16	1720	75	73	312	16	47	70	60	3.99	0.123	0.098
8	_	7-8	4.73	1370	68	59	260	16	43	64	57	4.95	0.440	0.110
9		8-9	4.72	1240	67	60	258	16	44	70	61	3.38	0.310	n. d.
10		9-10	4.83	1230	68	65	266	16	46	71	62	2.98	0.120	n. d.
11		10-11	4.75	1180	62	59	251	16	41	69	62	3.04	0.096	0.096
12		11-12	5.04	1180	62	60	263	16	42	71	62	3.22	0.134	n. d.
13	•	12-13	5.04	1110	66	58	250	16	43	71	62	3.19	0.190	0.117
14		13-14	5.03	1100	66	59	251	14	42	71	63	3.14	0.161	n. d.
15		14-15	5.03	1080	67	59	249	16 .	42	72	62	3.13	0.174	0.105
16		15-16	5.01	1060	65	59	250	15	40	71	62	3.09	0.150	0.114
17		16-17	5.01	1010	64 ·	58	248	16	42	70	61	3.02	0.171	n. d.
18		17-18	5.02	1020	65	63	263	15	43	73	65	2.94	0.137	n. d.
19		18-19	5.02	1050	65	63	264	16	43	71	64	2.96	0.112	0.108
20		19-20	4.85	960	61	60	262	17	40	67	60	3.40	0.156	n. d.
21		20-21	4.86	970	61	58	260	16	40	67	59	3.58	0.230	0.114
22		21-22	4.92	980	62	59	261	16	41	68	61	3.31	0.200	n. d.
23		22-23	5.04	1100	65	63	262	17	43	69	63	3.13	0.118	n. d.
24		23-24	5.00	1120	64	63	261	16	44	68	63	3.10	0.104	0.108
25		24-25	5.02	1030	64	63	259.	16	44	69	64	2.85	0.095	n. d .
26		25-26	5.06	1160	65	63	270	16	43	70	63	3.12	0.096	n. d.
27		26-27	4.70	1020	61	60	263	17	40	67.	62	3.23	0.124	n. d.
28		27-28	5.00	1110	63	62	263	18	42	65	60	3.78	0.300	0.117
29		28-29	5.00	1090	64	60	260	19	43	67	64	2.91	0.280	n. d.
30		29-30	4.97	1220	64	65	270	18	43	67	64	2.90	0.111	0.120
31		30-31	5.00	1140	62	68	278	18	42	67	61	3.33	0.145	n. d.
32		31-32	4.91	980	60	61	264	16	39	65	59	3.56	0.350	0.091
33		32-33	4.93	1140	62	66	283	17	43	69	63	2.82	0.120	0.093
34		33-34	5.13	1110	63	66	290	19	43	70	62	3.08	0.137	n. d.
35		34-35	4.81	1070	61	63	270	18	40	65	58	3.62	0.240	n. d.
36		35-36	4.82	1000	62	63	277	19	40	65	58	3.70	0.410	0.100
37		36-37	4.82		62	65	286	19	43	66	61	3.23	0.168	0.116
38		37-38	4.64		63	62	272	19	40	65	59	3.33	0.204	n. d.
39		38-39	4.62		63	61	278	18	39	65	60	3.51	0.280	0.123
40		39-40	4.71		63	66	290	19	40	66	60	3.51	0.241	n. d.
41		40-41	4.50		60	63	278	16	39	65	58	3.47	0.181	0.096
42		41-42	5.00		66	67	291	18	43	68	60	4.51	0.360	0.084
43		42-43	4.57	1010	59	63	261	17	39	64	58	2.87	0.127	0.099

付表A-1 つづき Table A-1 continued

						ble A		inued						
Sample No.	Station No.	Location (cm)	Fe (%)	Mn (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	Co (ppm)	Ni (ppm)	Cr (ppm)	Li (ppm)	Org. C (%)	S (%)	P (%)
44		43-44	4.70	980	67	66	300	18	43	66	61	3.19	0.153	n. d.
45		44-45	5.02	980	65	65	263	17	44	71	63	3.21	0.194	n. d.
46		45-46	4.86	930	61	63	255	18	43	67	63	2.92	0.200	0.074
47		46-47	4.50	970	53	53	210	18	35	62	58	2.62	0.098	0.076
48		47-48	4.41	980	49	51	198	17	35	62	58	2.54	0.088	n. d.
49		48-49	4.41	980	48	50	190	15	37	63	58	2.35	0.083	n. d.
50		49-50	4.37	970	49	50	196	16	36	62	57	2.44	0.083	0.072
51		50-55	4.72	1010	59	62	274	17	39	68	63	2.96	0.127	0.083
52		55-60	3.28	790	31	33	110	11	20	44	43	1.90	0.055	0.048
53		60-65	3.00	630	35	34	112	11	19	44	44	2.09	0.062	n. d.
54		65-70	2.62	620	24	26	88	10	14	37	37	1.79	0.050	n. d.
55		70-75	1.51	360	13	17	52	6	7	25	27	0.93	0.029	0.021
56		75-80	4.01	560	44	35	130	19	32	60	53	1.82	0.075	0.034
57	B-6	0-2	4.90	1610	72	64	268	18	42	68	62	3.93	0.122	0.114
58	(13.7 m)*	2-5	4.79	1200	70	58	237	15	39	68	58	5.02	0.330	n. d.
59		4-7	4.68	1040	64	55	236	15	37	66	59	3.91	0.321	0.091
60		5-10	4.79	1200	65	[€] 58	240	16	40	66	63	2.99	0.112	0.096
61		10-15	4.80	1200	65	55	250	17	39	67	61	3.09	0.142	0.103
62		13-14	4.89	1100	67	56	248	15	39	71	. 62	3.29	0.242	0.095
63		15-20	4.79	1100	68	55	256	16	39	68	61	3.16	0.160	0.098
64		16-17	4.75	1090	68	56	244	15	39	69	59	3.22	0.215	0.105
65		20-21	4.56	1090	67	58	262	17	35	69	60	3.36	0.135	0.106
66		20-25	4.80	1150	64	58	260	16	39	64	60	3.30	0.162	n. d.
67		23-24	4.81	1120	68	57	270	18	37	69	61	3.40	0.251	0.099
68		25-30	4.77	1140	63	58	256	16	39	66	60	3.22	0.110	0.094
69		28-30	4.89	1180	71	58	265	17	40	69	63	3.21	0.242	0.106
70		30-35	4.50	1080	64	57	255	16	36	66	57	3.18	0.143	0.095
71		. 33-35	4.86	1200	67	60	260	18	35	69	. 60	3.62	0.251	0.120
72		35-40	4.47	1170	61	57	255	16	35	67	59	3.19	0.160	0.104
73		39-41	4.56	1110	63	57	256	18	35	64	57	3.70	0.281	0.098
74		40-45	4.52	1170	62	61	258	18	35	63	58	3.28	0.146	0.102
75		45-46	4.58	1020	67	58	270	17	35	65	56	3.84	0.362	0.110
76		45-50	4.40	1060	60	56	253	18	35	63	55	3.20	0.211	0.118
77		49-50	4.42	980	63	57	255	17	35	68	56	3.44	0.310	0.117
78		50-55	2.42	520	23	20	80	11	12	35	35	1.61	0.064	0.025
79		51-52	3.90	820	55	52	225	14	29	54	51	3.62	0.282	0.093
80	B-8	0-2	4.81	1090	67	60	276	20	40	64	61	3.18	0.167	0.105
81	(13.9 m)*	2-5	4.86	1170	67	59	278	18	39	65	60	3.26	0.136	n. d.
82		5-10	4.86	1620	69	58	268	18	41	66	63	3.38	0.110	0.103
83		10-15	4.93	1430	70	58	262	17	40	70	62	3.47	0.152	0.097
84		11-13	4.80	1200	61	55	259	16	38	64	59	4.12	0.391	0.099
85		15-20	4.98	1220	66	61	276	17	45	68	60	2.95	0.134	0.096
86		16-18	4.98	1170	64	61	273	18	45	67	60	3.21	0.266	0.100
87		20-25	4.92	1170	70	58	264	17	40	70	63	3.20	0.116	n. d.
88		25-30	4.90	1070	64	63	286	18	43	67	60	3.33	0.160	0.106

湖沼浚渫域における元素の鉛直分布と化学的性質 (寺島 ほか)

付表A-1 つづき Table A-1 continued

Sample No.	Station No.	Location (cm)	Fe (%)	Mn (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	Co (ppm)	Ni (ppm)	Cr (ppm)	Li (ppm)	Org. C	S (%)	P (%)
89	140.	26-30	4.74	1020	58	58	270	17	39	62	58	3.39	0.201	0.106
90		30-35	5.02	1230	70	64	288	17	43	70	64	3.09	0.201	0.110
91		32-33	4.82	1030	58	61	274	17	43	63	60	3.14	0.238	0.108
92		35-40	4.82	1060	59	64	293	17	42	64	59	3.21	0.131	0.124
93		36-37	4.95	1070	62	63	291	17	42	63	59	3.48	0.256	0.105
94		40-42	4.80	970	62	63	298	18	43	63	55	3.74	0.354	0.108
95		40-45	4.79	1160	68	64	292	16	40	70	60	3.31	0.157	0.125
96		44-46	4.69	960	61	61	287	16	43	63	58	3.29	0.250	0.117
97		45-50	4.68	960	57	62	289	17	39	64	57	3.20	0.177	0.120
98		47-48	4.56	870	58	61	298	17	41	63	57	3.77	0.292	0.090
99		50-55	4.72	910	62	58	256	17	39	70	61	3.02	0.194	n. d.
100		51-54	4.83	850	55	53	244	18	40	66	58	2.86	0.266	0.088
101		55-60	4.20	960	44	44	191	16	37	57	53	2.40	0.094	0.078
102		60-65	4.33	1360	51	49	202	15	34	61	57	2.80	0.111	0.082
103		70-75	4.22	1300	49	46	178	15	33	60	57	2.92	0.085	0.072
104		76-77	4.20	730	58	59	253	15	40	66	58	3.24	0.209	0.068
105		80-85	4.31	1010	59	56	244	16	36	68	60	2.80	0.085	0.072
106		85-90	4.14	970	48	45	150	14	31	57	53	2.08	0.058	0.061
107	B-25 .	0-2	4.75	1350	66	63	256	17	41	65	60	3.11	0.107	n. d.
108	(13 m)*	2-5	4.75	1320	68	63	264	19	41	66	60	3.18	0.099	n. d.
109		5-10	4.75	1320	67	63	254	19	40	65	60	3.03	0.100	n. d.
110		10-11	4.61	1210	61	60	238	16	37	64	59	3.21	0.210	n. d.
111		10-15	5.00	1510	68	64	254	19	41	68	61	2.85	0.092	n. d.
112		15-20	4.90	1480	67	63	259	18	41	67	61	2.92	0.082	n. d.
113		16-17	4.78	1300	67	62	248	18	41	66	60	3.19	0.192	n. d.
114		20-25	4.83	1420	67	67	268	18	42	66	61	2.97	0.093	n. d.
115		25-30	4.84	1400	66	65	266	18	42	67	61	3.12	0.124	n. d.
116		30-35	4.83	1340	66	64	264	19	41	67	61	3.01	0.133	n. d.
117		32-33	4.82	1250	66	59	264	19	43	67	61	3.07	0.214	n. d.
118		35-40	5.00	1510	67	68	276	19	41	66	61	3.05	0.093	n. d.
119		40-45	4.94	1500	67	70	282	19	42	66	61	3.12	0.108	ņ. d.
120		45-50	4.66	1310	65	64	276	17	40	66	60	3.21	0.153	n. d.
121		47-48	4.70	1290	68	64	280	18	41	65	57	3.35	0.252	n. d.
122		50-55	4.60	1380	68	69	295	19.	43	66	60	3.03	0.123	n. d.
123		55-60	4.80	1280	65	64	276	18	42	66	60	3.02	0.164	n. d.
124		57-58	4.94	1240	67	64	256	18	41	68	61	2.97	0.209	n. d.
125	,	60-65	4.66	1240	68	67	292	17	41	66	60	3.40	0.124	n. d.
126		64-65	4.64	1100	60	57	232	15	40	66	59	3.03	0.170	n. d.
127		65-70	4.00	1070	42	39	152	17	29	55	51	1.76	0.067	n. d.
128		70-75	2.94	610	31	31	104	12	21	41	43	1.51	0.071	n. d.
129		75-80	2.81	580	27	28	104	12	19	40	45	1.93	0.058	n. d.
130		80-85	1.87	390	12	18	67	8	10	22	34	0.80	0.028	n. d.
131		85-88	2.81	500	27	30	102	11	21	41	44	1.50	0.053	n. d.
132	B-32	0-2	3.86	1320	47	40	165	15	27	49	46	2.16	0.063	n. d.
133	(8.3 m) *	2-5	3.87	1430	48	42	167	14	26	49	47	2.31	0.069	n. d.

付表A-1 つづき Table A-1 continued

Table A-1 continued														
Sample No.	Station No.	Location (cm)	Fe (%)	Mn (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	Co (ppm)	Ni (ppm)	Cr (ppm)	Li (ppm)	Org. C (%)	S (%)	
134	•	5-10	3.62	1120	46	42	156	12	26	48	45	2.04	0.055	
135		10-15	4.01	1000	49	45	171	15	29	52	47	2.06	0.062	
136		20-25	3.49	860	44	39	158	14	27	46	43	1.96	0.090	
137		30-35	3.71	830	48	47	167	15	29	50	46	1.71	0.079	
138		40-45	3.00	670	37	36	130	12	21	42	39	1.40	0.062	
139		50-55	2.82	690	33	37	100	10	18	39	40	1.46	0.033	
140		60-65	1.60	330	14	17	51	7	6	25	25	0.54	0.023	
141		70-76	2.62	660	22	26	80	10	15	32	35	1.34	0.037	
142	B36WWB	0-2	4.96	1380	64	55	224	19	37	64	54	2.41	0.065	
143	(7.3 m) *	2-5	4.95	1410	64	55	228	20	37	64	54	2.36	0.061	
144		5-10	4.95	1160	64	55	248	19	36	64	54	2.24	0.076	
145	•	10-15	4.50	920	58	58	272	17	34	63	51	2.36	0.125	
146		20-25	4.19	850	52	52	295	16	27	50	49	2.54	0.098	
147		30-35	4.30	800	47	47	150	18	35	60	56	1.51	0.062	
148	÷ ,	40-45	4.27	800	43	40	124	18	33 🕟	60	55	1.22	0.046	
149		50-55	4.46	770	42	45	126	18	36	61	56	0.92	0.033	
150	7	60-65	4.34	740	42	45	126	17	37	61	55	0.82	0.033	
151		70-75	4.58	820	41	45	127	19	37	60	51 ·	1.30	0.042	
152		80-85	3.88	630	36	34	114	16	29	56	50	0.88	0.029	
153		85-90	3.88	820	36	34	114	17	28	55.	46	1.40	0.042	
154	B-37	0-2	4.00	1140	50	46	166	15	29	54	49	2.05	0.067	
155	(7.2 m)*	2-5	4.62	1350	59	51	195	16	34	62	- 55	2.31	0.058	
156		5-10	4.90	1470	58	51	195	16	34	59	54	2.27	0.060	
157		10-15	4.44	1000	61	52	206	16	36	61.	56	2.25	0.087	
158		20-25	4.31	860	61	52	207	16	34	59	54	2.09	0.084	
159		30-35	4.09	780	56	52	199	15	32	58	53	2.00	0.100	
160		40-45	4.23	830	47	46	174	15	29	54	52	2.31	0.087	
161		50-55	3.88	880	31	38	119	14	25	46	42	1.81	0.084	
162		55-60	2.60	620	20	25	85	12	18	31	32	1.20	0.059	
163	B-42	0-2	4.41	1430	59	53	186	18	34	58	52	2.73	0.080	
164	(7.4 m)*	2-5	4.30	1150	55	51	172	17	33	52	50	2.15	0.074	
165		5-10	4.23	1020	54	47	166	17	30	52	50	1.86	0.046	
166		10-15	3.98	880	49	48	167	16	29	48	48	1.85	0.059	
167		20-25	3.88	760	50	48	175	17	32	53.	50	1.92	0.074	
168		30-35	3.50	650	44	48	168	17	29	47	43	1.64	0.076	
169		40-45	3.75	790	46	48	192	17	29	50	49	1.82	0.100	
170		50-55	3.75	770	45	49	183	17	30	49	49	1.79	0.075	
171		60-65	5:08	1130	44	42	159	17	34	58	56	1.93	0.063	
172		70-75	2.90	660	18	25	89	11	17	33	35	1.11	0.066	
173	B-154-1	0-2	5.10	1460	59	57	250	19	42	68	57	2.56	0.066	
174	(5.3 m)*	2-5	5.11	1240	59	57	255	17	39	67	56	2.45	0.062	
175		5-10	5.06	1060	59	57	272	17	40 -	67	57	2.43	0.086	
176		10-15	4.98	980	59	62	397	17	40	62	55	2.56	0.096	
177		20-25	5.21	1030	50	52	201	20	43	67	59	2.02	0.094	
178		30-35	5.20	1020	43	45	141	19	40	61	57	1.04	0.049	

湖沼浚渫域における元素の鉛直分布と化学的性質(寺島 ほか)

付表A-1 つづき Table A-1 continued

					Tal	ole A-1	cont	inued						
Sample No.	Station No.	Location (cm)	Fe (%)	Mn (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	Co (ppm)	Ni (ppm)	Cr (ppm)	Li (ppm)	Org. C (%)	S (%)	
179		40-45	4.48	960	45	48	143	19	40	61	56	1.27	0.059	
180		50-55	4.71	920	41	41	136	20	40	67	55	0.83	0.036	
181		60-66	4.62	920	38	41	134	18	37	61	55	0.85	0.033	
182	B-158-1	0-2	5.58	1860	65	68	312	17	46	. 71	62	2.87	0.073	
183	(4.7 m)*	2-5	5.61.	1810	65	69	316	17	47	71	62	2.90	0.066	
184		5-10	5.80	1700	65	69.	322	18	46	70	63	2.82	0.066	
185		10-15	5.78	1390	64	73	425	20.	45	70	60	2.69	0.066	
186		20-25	5.28	1130	50	53	176	20	48	70	59	2.16	0.116	
187		30-35	5.30	1110	47	51	150	20	43	69	59	1.30	0.052	
188		40-45	5.16	1020	48.	56	150	19	47	72	58	1.12	0.080	
189		50-55	5.00	1110	41.	47	140	18	44	69	58	1.02	0.043	
190		60-64	5.18	1090	42	42	141	19	46	72	59	1.24	0.044	
191	M-160-1	0-2	5.50	1550	65	70	307	18	47	72	62	3.00	0.083	
192	$(4.8 \mathrm{m})^*$	2-5	5.79	1540	66	71	336	18	4.7	74	62	2.85	0.065	
193		5-10	5.77	1280	67	75	408	19	48	74	62	2.85	0.077	
194		10-15	5.60	1080	66.	79	507	19	47	73	62	2.80	0.115	
195		20-25	5.48	1010	53	61	236	19	47	68	61	2.62	0.139	
196		30-35	5.13	1000	47	53	151	18	47	68	61	1.61	0.105	
197		40-45	4.97	1000	48 .	53	150	18	49	68	60 .		0.092	
198		50-55	5.01	1000	42	48	150	19	48 ,	72	63	0.94	0.050	
199		60-65	5.28	1190	44	48	151	19	48	73	63	1.30	0.058	
200		70-75	5.60	1280	44	42	153	19	48	76	63	1.45	0.049	
201		80-85	5.73	1280	46	41	154	20	48	76	64	1.90	0.066	
202	K-20A	0-2	5.66	1230	102	30	238	21	30	45	62	3.14	0.042	
. 203	(5.3 m) *	2-5	5.66	1240	60	27	129	20	30	46	62	3.20	0.043	
204		5-10	5.66	1290	63	31	128	20	30	46	65	3.27	0.44	
205		10-15	5.65	1150	62	30	128	21	31	47	64	3.29		•
206		20-25	5.44	1120	54	28	121	20	29	45	61	2.78	0.43	
207		30-35	5.43	1020	49	27	116	19	28	43	58	2.30	0.35	
208		40-45	5.98	1230	32	24	101	17	20	35	42	1.21	0.40	
209		45-50	4.75		23	20	89	15	16	25	38	0.77	0.27	
210		50-55	5.43	960	33	21	98	17	17	33	43	1.17	0.42	
211		60-65	6.26		51	31	116	18	25	42	54	2.03	0.55	
212	K-21	0-2	5.75		67	29	138	23	31	54	66	3.73	0.41	
213	(4.8 m)*	2-5	5.79		66	28	136	23	37	54	67	3.50	0.41	
214		5-10		1150		29	136	24	31	54	65	3.36	0.43	
215		10-15	5.70	1100	65	28	132	23	31	52	62	3.24	0.41	
216		20-25	5.72	1100	57	28	123	21	29	50	61	2.56	0.43	
217		30-35	5.81	1170	61	30	128	21	31	51	62	2.74	0.44	
218		40-45	5.48		55	28	121	21	29	48	62	2.38	0.44	
219		50-55	5.34	1150	47	27	109	20	27	43	56	1.94	0.42	
220	TZ 00	60-65	4.28	940	25	13	78	13	11	28	. 42	0.69	0.23	
221	K-22	0-2	5.72	1230	68 64	30	138	22	33	52	68	3.88	0.46	
222	(5.5 m)*		5.68	1320	64	28	136	22	36	51	67	3.82	0.46	
223		5-10	5.77	1300	67	32	138	22	34	51	67	3.64	0.43	

付表A-1 つづき Table A-1 continued

					Tal	ole A-1	cont	tinued						
Sample No.	Station No.	Location (cm)	Fe (%)	Mn (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	Co (ppm)	Ni (ppm)	Cr (ppm)	Li (ppm)	Org. C (%)	S (%)	
224		10-15	5.77	1190	68	32	139	22	32	53	67	3.44	0.43	
225		20-25	5.75	1170	67	29	136	23	32	53	67	3.35	0.39	
226		30-35	5.61	1110	67	30	132	22	31	52	66	3.36	0.46	
227		40-45	5.64	1200	65	29	145	23	34	52	67	3.23	0.44	
228		50-55	5.98	1220	63	31	133	22	33	52	66	3.44	0.27	
229		60-62	5.73	1250	60	29	130	20	32	51	66	3.20	0.45	
230	K-23WB	0-2	5.87	1200	54	22	115	25	27	47	49	2.44	0.22	
231	(3.37 m)*	2-5	5.90	1180	55	23	114	23	27	48	49	2.38	0.24	
232		5-10	6.00	1180	55	23	114	23	29	50	50	2.40	0.23	
233		10-15	5.45	1080	50	20	101	21	27	46	45	2.21	0.21	
234		20-25	5.45	980	52	20	99	20	28	48	51	3.25	0.24	
235		30-35	5.00	1020	22	11	70	17	16	38	59	1.31	1.66	
236		40-45	4.70	1150	23	12	78	18	18	41	71	1.33	1.18	
237		50-55	4.69	1240	26	12	84	17	18	45	78	1.52	1.33	
238		60-65	4.60	1080	27 c	12	86	17	17	45	82	1.31	1.33	•
239		70-75	4.71	1080	26	13	86	18	18	46	77	1.63	1.11	
240	K-56	0-2	5.36	1540	62	26	111	17	29	46	48	4.85	0.31	
241	(6.4 m)*	2-5	5.45	1470	62	26	113	18	27	48	49	4.58	0.29	
242		5-10	5.35	1330	57	24	109	18	27	46	47	4.54	0.30	
243		10-15	5.24	1300	57	23	110	18	26	46	47	4.65	0.28	
244		20-25	5.50	1240	56	23	109	19	29	47	45	4.38	0.49	
245		30-35	5.52	1430	57	23	110	18	27	46	47	4.22	0.51	
246		40-45	5.58	1470	53	23	106	19	26	47	47	3.91	0.51	
247		50-55	5.70	1560	55	23	108	20	28	48	47	4.06	0.63	
248		60-65	5.53	1680	55	23	107	20	29	45	48	4.29	0.71	
249		70-75	5.92	1580	49	21	102	20	27	48	43	3.27	0.80	
250	K-56N	0-2	5.46	1080	62	27	113	19	28	47	45	5.18	0.47	
251	(5.3 m) *	2-5	5.46	1150	61	25	115	19	. 29	50	45	4.94	0.43	
252		5-10	5.46	1570	62	28	116	20	29	48	49	5.26	0.39	
253		10-15	4.48	1160	62	28	115	21	28	49	47	5.20	0.45	
254		20-25	5.53	1090	61	28	116	20	29	50	45	4.88	0.47	
255		30-35	5.47	920	64	29	118	19	29	49	46	5.10	0.59	
256		40-45	5.15	720	55	14	85	19	25	45	40	5.00	0.27	
257		50-55	5.48	770	52	14	86	20	28	55	35	2.92	0.15	
258		60-65	5.80	810	66	18	99	21	32	56	47	3.03	0.51	
259		70-75	5.61	760	49	20	97	21	31	52	57	2.76	0.47	
260		80-85	6.42	1510	41	19	94	20	25	44	63	3.12	2.60	
261	TZ C0	85-90	6.16	1700	39	20	96	18	23	43	66	3.40	2.84	
262	K-60	0-2	5.52	1600	56	27	111	15	29	41	49	4.94	0.31	
263	(5.9 m)*	2-5 = 10	5.52	1600	58	27 [.]	112	14	28	41	49	4.88	0.31	
264		5-10	5.64	1510	60	27	118	15 16	29	43	49	4.53	0.30	•
265 266		10-15	5.81	1380	60	28	116	16	29	43	49	4.34	0.30	
266 267		20-25	5.90	1270	61	29 -	117	16	29	43		4.03	0.46	
	IZ _CAD	30-33	5.50	1320	42	23	103	15	24	42	42	2.93	0.20	
268	K-64B	0-2	5.51	1570	58	29	116	15	29	43	49	4.68	0.31	

湖沼浚渫域における元素の鉛直分布と化学的性質(寺島 ほか)

付表A-1 つづき Table A-1 continued

						ole A		inuea					
Sample No.	Station No.	Location (cm)	Fe (%)	Mn (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	Co (ppm)	Ni (ppm)	Cr (ppm)	Li (ppm)	Org. C (%)	S (%)
269	(6.6 m)*	2-5	5.60	1590	55	28	115	15	28	43	48	4.61	0.30
270		5-10	5.67	1380	55	28	116	15	29	43	48	4.33	0.29
271		10-15	5.50	1700	59	28	116	14	29	42	48	4.84	0.31
. 272		20-25	5.80	1210	54	27	116	14	29	42	47	3.95	0.29
273		25-31	5.86	1210	50	27	115	15	29	42	44	3.25	0.25
274	K-69	0-2	5.64	1410	59	28	116	14	30	43	51	4.58	0.32
275	$(6.5 \mathrm{m}) *$	2-5	5.63	1420	58	30	117	14	30	42	51	4.62	0.33
276		5-10	5.68	1370	58	30	116	15	30	42	52	4.54	0.32
277		10-15	5.81	1320	57	29	116	15	34	42	53	4.15	0.29
278		20-25	5.60	1230	58	29	115	14	30	42	50	4.24	0.36
279		30-35	5.63	1300	60	29	115	16	30	42	50	4.34	0.26
280		40-45	5.55	1190	62	30	115	16	30	42	50	4.38	0.35
. 281		50-55	5.79	1060	62	30	115	16	31	42	52	4.10	0.51
282		55-60	5.77	990	58	28	112	17	31	40	53	3.28	0.40
283	K-74	0-2	5.26	1460	57	27	112	14	28	40	49	4.65	0.35
284	$(7.3 \mathrm{m}) *$	2-5	5.48	1440	56	27	114	15	29	41	50	4.64	0.34
285		5-10	5.56	1350	58	28	115	16	30	42	51	4.28	0.29
286		10-15	5.55	1260	57	28	115	16	30	41	51	4.04	0.31
287		20-25	5.61	1270	58	29	116	16	30	42	51	4.24	0.31
288		30-35	5.50	1270	58	29	115	16	29	42	49	4.44	0.31
289		40-45	5.78	1280	59	30	116	16	31	42	49	4.40	0.30
290		50-55	5.59	1230	58	29	116	16	30	43	48	4.26	0.36
291		55-61	5.67	1110	60	29	117	16	31	42	51	4.02	0.47
292	K-99	4.5-9.5	4.96	1180	68	32	113	16	23	42	48	6.09	0.60
293	$(5.8 \mathrm{m}) *$	9.5-14.5	4.96	1110	68	34	111	16	24	38	46	5.90	0.54
294		14.5-19.5	4.80	1000	69	30	107	15	24	36	48	n. d.	0.45
295		24.5-29.5	4.71	820	60	18	78	15	21	37	40	n. d.	0.27
296		34.5-39.5	4.70	720	64	18	82	17	25	48	41	n. d.	0.44
297		50-55	5.34	820	71	19	93	18	29	43	53	2.90	0.76
298		65-70	5.47	800	50	23	98	18	30	42	67	2.41	0.63
299		70-75	5.60	830	49	23	97	18	28	43	68	2.34	0.68
300		85-90	5.73	1220	44	20	92	15	23	42	69	2.45	1.45
301		95-100	5.47	1400	38	18	89	14	14	34	69	3.02	2.16
302		105-110	5.30	1490	34	18	89	13	12	30	68	3.15	2.64
303		115-120	5.42	1650	31	19	89	13	14	29	66	3.20	2.57
304		125-130	5.80	1960	29	19	89	12	15	29	64	2.99	2.53
305		135-140	5.72	2050	28	18	88	12	13	28	56	2.72	2.64
306		145-150	5.80	1830	33	16	87	14	23	32	45	1.85	2.00

^{*}Water depth. n. d., not determined.