棚倉破砕帯の北方延長に関する新知見 一山形県米沢市南西部の先新第三紀マイロナイト―

山元孝広* 柳沢幸夫*

YAMAMOTO, T. and YANAGISAWA, Y. (1989) Field evidence for the northern extension of the Tanakura Shear Zone—pre-Neogene mylonites in the southwestern part of Yonezawa City, Northeast Japan. *Bull. Geol. Surv. Japan*, vol. 40(6), p. 323–329.

Abstract: A mylonite zone was discovered in the southwestern part of Yonezawa City, Yamagata Prefecture. It is sporadically exposed along a reverse fault trending northwest. The mylonites originated from Cretaceous to Paleogene tonalite and Jurassic sedimentary rocks. The foliation of the mylonites has a NNW–SSE trend and the microstructure shows sinistrallateral shear deformation. This mylonite zone is probably a northern extension of the Tanakura Shear Zone, which is the boundary between the Ashio and Abukuma Belts. The Tanakura Shear Zone is further traceable northwestward as far as the Nihonkoku-Miomote Mylonite Zone.

1. はじめに

東北日本の先新第三系中には,NNW-SSE 方向の左 横ずれ剪断で形成された幾筋かのマイロナイト帯が存在 する(例えば笹田,1988). 先新第三系の分布の広い阿武 隈山地では,マイロナイト帯(双葉破砕帯,畑川破砕帯, 棚倉破砕帯)の位置やその性格が明瞭であるが,東北日 本脊梁から日本海側にかけては,先新第三系の分布が断 片的なため,各マイロナイト帯の北方延長がどこを通る のか不明確な点が多い. 筆者らは5万分の1「玉庭」図 幅の地質調査において,山形県米沢市南西部の先新第三 系から,これまで全く記載されたことのないマイロナイ ト帯を見いだした(第1図). 本報ではこのマイロナイト の組織を記載し, 微小構造が示す剪断のセンスと周辺地 域のマイロナイト帯との位置関係から,その造構的位置 づけを考える.

本研究を進めるに当たり,標本館安部正治技官,野神 貴嗣技官には岩石薄片を製作していただいた.また,地 質部久保和也技官には原稿を読んで討論していただい た.以上の方々に深く感謝いたします.

2. 地質概略

今回見いだされたマイロナイト帯は、米沢市南西方の が確 局辺に分布する先新第三系の東縁に位置し、 NNW-SSE 方向の東落ち逆断層に沿って、断層の両側 に分かれて分布している(第2図1).ここでは東の分布 域を大荒沢地域,西の分布域を白夫沢地域と呼ぶ. 栂峰 周辺の先新第三系は,ジュラ紀の砂岩泥岩互層(ホルン フェルス化)とこれを貫く白亜紀-古第三紀の黒雲母ト ーナル岩で構成されている.当地域のジュラ系は,飯豊 山地や会津盆地南縁のジュラ系と共に足尾帯を構成する ものとみなされている(福島県教育委員会,1985).黒雲 母トーナル岩は,細粒で,長径2mm前後の斜長石の斑 状構造で特徴づけられる.白夫沢地域では,岩体の東縁 部が著しいマイロナイト化を受けており,今回見いださ れたマイロナイト帯の西半分を構成している.また,岩 体の内部にも,局所的に動的再結晶作用によるアスペク ト比の高い石英集合体の組織が認められる.

3. マイロナイト帯の構造

白夫沢地域ではマイロナイト帯は幅150mでNNW-SSE 方向に伸びた分布を示している.マイロナイト帯 の東半分は堆積岩起源のマイロナイト,西半分はトーナ ル岩起源のマイロナイトで構成されている.マイロナイ ト帯の東縁では断層で新第三系と接しており,西縁では 前述のように黒雲母トーナル岩に漸移している(第2図 2).トーナル岩起源のマイロナイトと堆積岩起源のマ イロナイトは貫入関係で接しており,共に平行な縞状構 造(fluxion banding)を持っている.黒雲母トーナル岩 はその西縁で明らかにジュラ紀の砂岩泥岩互層(ホルン フェルス化)に貫入しており,堆積岩起源のマイロナイ トの原岩も,おそらくジュラ紀の堆積岩であろう.

* 地質部

- 323 -

地質調査所月報(第40巻第6号)

第1図 飯豊山地-朝日山地周辺の先新第三紀基盤岩類の分布

Fig. 1 Distribution of the pre-Neogene basement rocks in the Iide Mountains, the Asahi Mountains, and their surrounding areas, northeast Japan.

大荒沢地域のマイロナイト帯は,露頭として確認できる限りで300mの幅を持ち,主に堆積岩起源のマイロナ イトで構成され,幅10cm-2mのトーナル岩起源のマ イロナイトを挟んでいる.カタクラサイト化している部 分が多く,全体に方解石脈が多い.大荒沢地域のマイロ ナイト帯は,新第三系に不整合に覆われているため,分 布が断片的でその東縁は不明である.しかし,新第三系 の基底礫岩中にマイロナイトの亜角礫がしばしば含まれ ることから考えると,大荒沢地域周辺の新第三系下には かなりの幅を持ったマイロナイト帯が伏在している可能 性が強い. トーナル岩起源のマイロナイトは、引き延ばされた再 結晶石英集合体と、黒雲母(すべて緑泥石化)の紡錘形ポ ーフィロクラスト(mica 'fish')の両端から伸びる黒雲母 の細粒集合体とがなす縞状構造が著しい(図版1-1).ポ ーフィロクラストの大部分は長径 2 mm 前後の斜長石 で、原岩に認められる形態を比較的よく保存している. 斜長石の変形構造としては展張割れが著しく、割れ目を 石英が充填している(図版1-2).

堆積岩起源のマイロナイトは,黒色-暗緑色の泥質岩 起源のものと灰色-淡緑色の砂質岩起源のものの細互層 からなる.片理や線構造の発達が良く,しばしば非対称

第2図 米沢市南西部の先新第三紀マイロナイト帯周辺の地質図(1)と白夫沢地域のルート 図(2).

Fig. 2 1) Geologic map of the southwestern part of Yonezawa City and 2) outcrop geologic map of the Shirafuzawa area.

なひきずり褶曲が発達している.構成鉱物は石英,緑泥 石,白雲母,斜長石で,泥質岩起源のものは緑泥石に, 砂質岩起源のものは石英,白雲母に富んでいる.泥質岩 起源のものは,葉片状緑泥石の強い形態定向配列を示 し,シアバンド(shear band foliation)が発達している (図版1-3).砂質岩起源のものは,引き延ばされた再結 晶石英集合体と白雲母のmica 'fish' からなる流動構造 (fluxion structure)が発達している(図版1-3).砂質岩 起源のものは泥質岩起源のものと比較すると変形に対し より脆性的で,両者の互層において砂質岩起源のものに のみ,微小断層によるカタクラサイト的な破断がしばし ば認められる(図版1-3).

4. 非対称微小構造と剪断のセンス

マイロナイト中にはしばしば非対称微小構造が観察される.これらの構造はその岩石が被った剪断のセンスを 決定するのに有効である(SIMPSON and SCHMID, 1983; LISTER and SNOKE, 1984;高木, 1986).当地域のマイロ ナイト帯から採取した7個の定方位試料はいずれも非対 称微小構造が顕著で,これを用いて容易に剪断のセンス を決定することができた.それらを列記すると,a, mica 'fish'の形態定向配列の斜交性(図版1-1),b, ポー フィロクラスト内の破断面のずれ(図版1-2), c, シアバ ンド(図版1-3),d,非対称プレッシャーシャドウ(図版 1-4),e,石英の形態定向配列の斜交性で,a,b,d,eは トーナル岩起源のマイロナイトに, a, c, d, e は堆積岩 起源のマイロナイトに認められる. 図版1に示したこれ らの微小構造は, いずれも一致して左ずれのセンスを示 している. 白夫沢地域では, マイロナイト化の程度の高 い東に向かうほど, 面構造の方位が反時計廻りに回転す る傾向が認められるが(第2図2), この点も微小構造の 左ずれと調和的である. マイロナイトの面構造は高傾斜 (50°以上)で, 線構造のプランジは水平に近いことから, 当地域のマイロナイト形成時の剪断運動は左横ずれであ ったと結論づけられる.

5. 棚倉破砕帯の北方延長

当地域のマイロナイト帯は、棚倉破砕帯とされるマイ ロナイト帯の北限の福島県猪苗代湖東岸(北村ほか, 1965)から NNW 方向に25 km の位置に, また, 朝日山 地の日本国-三面マイロナイト帯の南限である朝日山地 南西山麓(庄司, 1983;朝日団体研究グループ, 1987)か ら SSE 方向に40 km の位置にある(第1図). これら3 つのマイロナイト帯は地図上でNNW-SSE の直線上に 乗り,かつ,その伸長方位は各マイロナイト帯の面構造 の方位と一致している. 棚倉破砕帯とされる先新第三紀 マイロナイト帯は、左横ずれ剪断で形成されたもので、 足尾帯の非変成ジュラ紀堆積岩・白亜紀花崗岩類・阿武 隈(御斉所-竹貫)変成岩を原岩とするマイロナイトで構 成されている(大槻, 1975; 越谷, 1986).また、日本国 -三面マイロナイト帯も左横ずれ剪断で形成されたもの で,足尾帯の非変成ジュラ紀堆積岩と白亜紀-古第三紀 花崗岩類及び火砕岩類を原岩とするマイロナイトで構成 されている(庄司, 1983;朝日団体研究グループ, 1987; CHIHARA, 1963). どちらのマイロナイト帯もその活動 時期は先新第三紀(白亜紀-古第三紀)で、剪断のセンス 及び構成物の特徴は当地域のマイロナイト帯と共通して おり、一連のマイロナイト帯と考えるのが妥当である. 棚倉破砕帯とされるマイロナイト帯は,変成岩と花崗岩 類を主体とする阿武隈帯と,非変成のジュラ系を主体と する足尾帯との間を境する剪断変形帯としての意味をも っている(礒見・河田, 1968;大槻, 1975). 朝日山地西 麓の非変成のジュラ系も、その分布は日本国-三面マイ ロナイト帯の西側に限定されており(第1図),この点も 両マイロナイト帯が一連の物であるとする考えと矛盾し ない.

大森ほか(1953)により提唱された「棚倉破砕帯」の当 初の定義では、マイロナイト帯の東西両縁を切る新第三 系堆積以後の断層運動が重視されている.さらに北村 (1963)は大森ほかの主張をもとに、新第三系を変形させ

る「棚倉破砕帯」が、猪苗代湖東岸地域からさらに北の 朝日山地東山麓を経て月山南西山麓に延長されると主張 している.しかし、今回明らかになったマイロナイト帯 の伸長方向は米沢市西方において明らかに新第三系を変 形させる逆断層群と斜交しており(第1図),大森ほか (1953)の「棚倉破砕帯」東縁・西縁断層に相当するもの は存在しない. また、朝日山地東山麓の先新第三系から はマイロナイト帯の存在は知られていず、さらに、朝日 山地の古期花崗岩類と阿武隈山地の花崗岩類は共通した 特徴を示すことが指摘されている(丸山ほか、1979).し たがって、マイロナイト帯としての棚倉破砕帯が月山南 西麓まで延長されるとは考えられない. 棚倉破砕帯が先 新第三紀に生じた NNW-SSE 方向の左横ずれマイロナ イト帯であるという性格を重視するならば、その北方延 長は、本報の調査地域を経て、島津(1964)の主張したよ うに日本国-三面マイロナイト帯に連続していると考え るのが妥当である.

文 献

- 朝日団体研究グループ(1987) 朝日山地南西部の地 質―その1.岩石記載と貫入関係―.地球 科学, vol. 41, p. 253-280.
- CHIHARA, K. (1963) Geology and petrology of granitic rocks and gneisses in the northern district of Niigata Prefecture. Part 2. Nihonkoku Gneisses. J. Fac. Sci., Univ. Niigata, Ser. 2, vol. 4, p. 179–209.
- 福島県教育委員会(1985) 会津盆地南縁山地の基盤 岩類調査報告.福島県立博物館調査報告, vol. 9, p. 1-43.
- 礒見 博・河田清雄(1968) フォッサ・マグナ両側 の基盤岩類の対比.地質学会75年大会総合 討論資料「フォッサマグナ」, p. 4-12.
- 北村 信(1963) グリーンタフ地域における第三紀 造構運動. 化石, no. 5, p. 123-137.
- ・鈴木敬治・小泉 格・小林良明・和久紀
 生・大山広喜・新妻信明・臼田雅朗・小原
 敏夫(1965) 福島県五万分の1地質図幅
 「猪苗代湖東方地域」、福島県.
- 越谷 信(1986) 棚倉破砕帯の変形と構造.地質雑, vol. 92, p. 15-29.
- LISTER, G. S. and SNOKE, A. W. (1984) S-C mylonites. J. Struct. Geol., vol. 6, p. 617– 638.

丸山孝彦・小島秀康・金谷 弘(1979) 朝日山地南

西域と栗子地域の花崗岩類の Rb-Sr 含有 量一棚倉構造線の北方延長(1). 地質学論集, vol. 17, p. 121-134.

- 大森昌衛・堀越和衛・鈴木康司・藤田至則(1953) 阿武隈山地西南縁の棚倉破砕帯について― 阿武隈山地西南縁の新生界の地史学的研究 (その3)―.地質雑, vol. 59, p. 217-223.
- 大槻憲四郎(1975) 棚倉破砕帯の地質構造.東北大 地質古生物研邦報, vol. 76, p. 1-71.
- 笹田政克(1988) 鬼首-湯沢マイロナイト帯.地球科学, vol. 42, p. 346-353.
- 庄司勝信(1983) 朝日山地·末沢川溶結凝灰岩の変 形特性. 地質雑, vol. 89, p. 197-208.

- 島津光夫(1964) 東北日本の白亜紀花崗岩 I, Ⅱ. 地球科学, no. 71, p. 18-27; no. 72, p. 24-29.
- SIMPSON, C. and SCHMID, S. M. (1983) An evaluation of criteria to deduce the sense of movement in sheared rocks. *Geol. Soc. Am. Bull.*, vol. 94, p. 1281–1288.
- 高木秀雄(1986) Shear zone の形成. 唐戸俊一朗 ・鳥海光弘編, 個体と地球のレオロジー. 東海大学出版会, p. 254-266.
- (受付:1989年4月17日;受理:1989年5月30日)

図版1 マイロナイトの顕微鏡写真.下方ポーラ.

 左ずれを示す非対称な黒雲母紡錘形ポーフィロクラスト(mica 'fish': B). 基 質は引き延ばされた再結晶石英集合体(Q)と黒雲母の細粒集合体とがなす縞状構 造(fluxion banding)が著しい.スケールは1mm.(トーナル岩起源のマイロナ イト,白夫沢地域)

2. 左ずれによる展張割れが認められる斜長石ポーフィロクラスト(P).割れ目 は石英(Q)により充填されている.スケールは1mm.(トーナル岩起源のマイロ ナイト,白夫沢地域)

3. 泥質岩起源のマイロナイト(上半分の暗灰色部)と砂質起源のマイロナイト (下半分の再結晶石英に富む部分). 泥質岩起源のものは左ずれを示すシアバンド (C面)が発達し,砂質岩起源のものには正断層型の微小断層が認められる.スケ ールは1mm.(大荒沢地域)

4. 左ずれを示す非対称プレッシャーシャドゥを伴う斜長石ポーフィロクラスト (P). スケールは0.5 mm.(推積岩起源のマイロナイト,白夫沢地域)

Plate 1 Photomicrographs of mylonites in the southwestern part of Yonezawa City, plane-polarized.

1. Mica 'fish' (B) in a fluxion banded matrix composed of quartz ribbons (Q) and biotite aggregates, indicating sinistral shear (mylonitized tonalite from the Shirafuzawa area). The scale bar is 1 mm.

2. Displaced broken plagioclase porphyroclast (P), whose extension crack is refilled by recrystallized quartz (Q), indicating sinistral shear (mylonitized tonalite from the Shirafuzawa area). The scale bar is 1 mm.

3. Shear band foliation (C) developed in a fluxion banded matrix (S). The bands display normal fault geometry, indicating sinistral shear (mylonitized sedimentary rock from the Oarasawa area). The scale bar is 1 mm.

4. Plagioclase porphyroclast (P) with asymmetric tails of aggregates consisting of quartz and chlorite, indicating sinistral shear (mylonitized sedimentary rock from the Shirafuzawa area). The scale bar is 0.5 mm.

地調月報, 第40巻 第6号

