自動ガスクロマトグラフを用いた地下ガス観測による 伊豆大島火山活動のモニタリング

高橋 誠* 風早康平* 加藤 完* 安藤直行*

TAKAHASHI, M., KAZAHAYA, K., KATOH, K. and ANDO, N. (1987) Soil air monitoring by automatic gaschromatography at open cracks in Izu-Ōshima Volcano. Bull. Geol. Surv. Japan, vol. 38(11), p.695-703.

Abstract: Two soil air monitoring systems were set up to monitor the volcanic activity at open cracks newly formed in the southeastern part of Izu- \overline{O} -Shima during the eruption on November 21, 1986. One system is on a large crack at Okuyama(OK2), and the other is at Kakihara(KK1). Each system is essentially composed of three sets of automatic gaschromatograph, and monitors 8 constituents (H₂, CH₄, He, Ne, CO₂, Ar, O₂, and N₂) of soil air.

He, H_2 and CO_2 concentrations, which are considered to increase by the addition of the gas generated in magma or fresh cracks, were mainly monitored from December, 1986 to April, 1987. The gases such as He and H_2 , derived from the deeper underground or volcano itself, were not detected in this period. Relatively low concentrations of CO_2 in the crack were observed in February and March, 1987 in comparison with those in active faults, These results indicate that the volcanic activity in the southeastern part of Izu- \bar{O} -Shima was not so high during the monitoring period.

1. はじめに

1986年11月の伊豆大島噴火後に各種の観測機器が設 置され,伊豆大島火山の観測体制が整備された.地質調 査所はこの観測網の整備の一環として島内南東部の割れ 目において地下ガスの観測を行うことになった.

地下ガス成分の観測は対象成分の数により,2通りに 区分される.一方はガスの組成変化を観測する手法であ り、多成分の測定を行うため得られる情報は多いが,試 料を採取した後各成分を分別して定量するため,連続的 な試料採取は困難であり短時間の異常は検出できない可 能性が大きい.また他の手法は,特定の成分に注目し連 続観測をめざすものである.

地質調査所の観測システムにおいては、2種の手法を 組み合わせることにより総合的な監視をめざした.多成 分の測定には、工業技術院特別研究「地震予知に関する 地質学・地球化学的研究」で開発し、長野県松代におい て観測が続けられている自動ガスクロマトグラフを使用 して8成分を測定した.また連続測定には最近開発が進 んでいる水素ガス用半導体センサーを使用した.

地下ガス観測による異常検出には次のような経過を想

定した.まず連続観測を行っている高感度ガスセンサー により,水素ガス濃度の上昇を検知して予備的な警報を 発する.次にガスクロマトグラフによりガス組成の変化 を測定することにより,変化の原因を推定して正式な警 報とするかどうかを判定する.

このような目的で設置した自動ガスクロマトグラフ装 置による火山監視システム,およびそれによって得られ たデータについて報告する.なお,ガスセンサーによる 観測に関しては別稿(風早ほか,1987)で報告する.

2. 観測地点

地下ガス測定は、11月21日の側噴火の際に伊豆大島 の南東部に発生した割れ目群(遠藤ほか、1987)におい て、明瞭な割れ目が存在する地点を測定し、火口からの 距離の異なる2点(KK1,OK2)で、観測を行った(第 1図).

3. 測 定

3.1 観 測 孔

地下ガス採取用の観測孔は第2図に示すように,割れ 目を中心として約5m間隔で3ヶ所,270cmの深さの 孔を設置した.地下から供給されるガスのピーク位置は ガス成分によって異なる場合があり,また測定時期に

*企画室

- 695 -

よっても変動することがある(高橋ほか,1984). その ため複数の観測孔が必要であり,割れ目を中心としてそ の両側約5mに各1点の観測孔を設置し(S-1, S-2, S-3),その3点の観測孔により測定を行った.

3.2 装置構成

自動ガスクロマトグラフ装置は第3図に示すように構成されており、3台のガスクロマトグラフ(島津製作所、GC-8AIT)を使用して8成分を測定する.それぞれの測定条件を第1表に示す.地下ガス試料は、観測孔中のガスをポンプで吸引し、除湿してガスクロマトグラフに

導入される.

得られたクロマトグラムはインテグレータ(積分装置) によって数値化され、同定されたガス成分名とともに、 NTT の専用電話回線を利用したテレメータシステムに よって地質調査所に伝送される.受信されたデータはリ アルタイムに解析され、解析結果とともにデータの一部 は気象庁に転送される(中塚ほか,1987)

3.3 測定サイクル

1サイクルの測定は,地下ガス3試料(3ヶ所)のほ かに,システムのキャリブレーションのため空気と標準

第1図 地下ガス観測地点位置図 OK2:奥山第2 KK1:垣原第1 Fig.1 Location map of observation sites. OK2:Okuyama-2 KK1:Kakihara-1

- 第3図 自動ガスクロマトグラフによる地下ガス測定システムの構成 G.C.1,2,3: 鳥津製 GC-8A型ガスクロマトグラフ イン テグレータ: 鳥津製クロマトパック C-R3A モデム: セイコーエプソン製 SR-120AT
- Fig.3 Schematic diagram of soil air monitoring system.Gas chromatograph (Shimadzu Corp., GC-8A).Integrator (Shimadzu Corp., Chromatopac C-R3A).Modem (Seiko Epson Corp., SR-120AT)

地質調查所月報(第38巻第11号)

第1表 分析条件 Table 1 Operating condition

G. C. 1						
キャリアーガス	O_2	$2.2 \text{ kg/cm}^2 (40 \text{ m}\ell/\text{min})$				
分析カラム	MS-5A	4 m				
検出器	TCD	60 mA				
温度	60°C(検出器)					
	50°C(カラム)					
測定成分	Ar, N ₂					
G. C. 2						
キャリアーガス	Ar	$3.5 \text{ kg/cm}^2 (40 \text{ m}\ell/\text{min})$				
分析カラム	MS-5A	8 m				
検出器	TCD	60 mA				
温度	70°C(検出器)					
	60°C(カラ	۶L)				
測定成分	H ₂ , He, Ne, O ₂ , N ₂					
G. C. 3						
キャリアーガス	Ar	2.75 kg/cm ² (40 mℓ/min)				
分析カラム	P.Q 2m + A.C 2m					
検出器	TCD	60 mA				
温度	70℃(検出器)					
	60°C(カミ	ラム)				
測定成分	CH ₄ , CO ₂					

第2表 測定結果(KK1,1987.3.5-3.12) Table 2 Chemical composition of the soil air at the

site	KK1-	-S-2	during	5	to	12	of	March,	1987

	KK 1 (S-2)	大	気	(大気の平均組成)**
H ₂	n. d.	n. d.		ppm 0.5
CH_4	n. d.	n. d.		1.6
He	4.6 ± 0.4	4.8	± 0.4	5.24
Ne	18.1 ± 1.7	(18.2)	*	18.2
CO.	0.32 ± 0.04	n d		0.033 %
Ar	0.32 ± 0.04 0.930 ± 0.003	n. u. 0. 94	0 ± 0.005	0.033
O ₂	20.78 ± 0.19	(20.95)*	20.95
N ₂	77.59 ± 0.18	77.73	±0.39	78.08

*:標準ガスとして使用,その多の成分は混合標準ガスを使用 **:科学便覧より抜粋

これらからわかるようにこの地域では地下ガスの組成は 安定しており、二酸化炭素(CO₂)濃度がわずかに大き いほかは、ほとんど大気と同じ組成である、表には、 「KK1における1週間の測定の平均値とともに、誤差と してその標準偏差を示した,測定システム全体としての 精度は相対誤差として、微量成分(He,Ne,CO₂)は10% 程度, 主成分(N₂,O₂,Ar)は1%程度であると考えら れる.

ガスの測定を含む.1試料あたり測定時間は約30分か かるため、1サイクルの測定(5試料)には最小限2.5 時間必要となり、1日に最高9サイクルの測定が可能で ある.しかし、常時観測を連続させるとカラムの劣化が 早くなり、保守点検を頻繁に行う必要が生じるため、測 定回数を半減し1日4サイクルの測定とした.また地下 ガス試料測定の間隔の偏りが大きくならないように考慮 し, 第4図に示すように, 各地下ガス試料の測定間隔は 2時間となるように設定した.

4. 観測結果および考察

第2表および第5, 6, 7, 8図に観測結果を示す。

二酸化炭素(CO₂)濃度は土壌空気としては小さな値 である.現在までに他の場所で行ってきた断層周辺にお ける土壌空気中の観測例では、CO2 濃度は1%程度を示 すことが多く、断層直上では十数%になる場合もある. CO2 濃度観測値が小さい原因としては、観測孔掘削時の スライムの観察から、深度3mまでの大島の表層はス コリア層からなり、大気との通気性が非常に大きいため と考えられる.また CO2 濃度は多くの場合年周変動を 示し、3-4月は濃度が最低になる季節であり(高橋ほか、 1984), 1987年2月から3月の観測期間がCO2 濃度の年 周変動の最低期に一致している点も原因として考えられ

第4図 地下ガス測定サイクル 図に示す測定スケジュールを1日に4回繰り返す

Fig.4 Observation cycle for soil air monitoring. Monitoring system repeats this measurement schedule 4 times in a day.

第5図 垣原第1 (KK1)における地下ガス濃度の経時変化(1987.3.5-3.12) Fig.5 Variation of soil air contents at KK1 during 5 to 12 of March, 1987.

る.

地下深部起源のガスの検出のためヘリウムの観測も 行った.図にはヘリウム(He),ネオン(Ne),及びヘ リウム/ネオン比(He/Ne)が示してある.He は約5 ppm, Ne は約18ppm,He/Ne は 0.3 程度であり,各々大気の値 である5.2ppm,18.2ppm,0.29 に近い値である.本シス テムにおいてはこれらのガス成分について10%程度の 測定誤差が考えられることから、これらのガスは大気起 源であるとみなすことができる.

ー般に地下ガス中に存在する Ne の起源は大気であ り, He は大気起源のものに地下深部起源のものが付加 される可能性がある.したがって両者の濃度比を計算す ることにより,気圧変化による試料の採取量の変動等の 測定誤差が少なくなり,地下深部起源の He の出現をい

地質調査所月報(第38巻 第11号)

ち早く検出することができる.

このほかに注目している成分としては水素(H₂)が ある. H₂ は He,CO₂ とともに火山ガスに特徴的に含ま れている成分であり、マグマからの通路が形成された場 合には分子量が小さいために He に続いて放出されると 考えられている.またさらに H₂ は岩石が破壊された時 にも発生するため割れ目の活動の監視にも有効と考えら れる.しかし H₂ 濃度は非常に小さく,本手法では観測 ができなかった.

大気の主成分である窒素 (N_2) , 酸素 (O_2) , アルゴ ン (A_r) についても, 明瞭な変化は見られなかった. またメタン (CH_4) も観測期間中は検出されなかった.

5. まとめ

第7図 垣原第1 (KK1) における地下ガス濃度の経時変化 (1987.2月-3月) Fig.7 Variation of soil air contents at KK1 during February to March, 1987.

現在までの観測の結果,自動ガスクロマトグラフ装置 を設置した南東部の2ヶ所の割れ目においては,マグマ 起源のガス成分は観測されなかった.またS-1からS-3 の相違も見られない.これらのことから南東部割れ目の 状態は,次のように推定される.現在は,マグマから割 れ目へのガスの供給はないか,あるとしても非常に少な い.また割れ目が生じる時に発生すると予想される H₂ ガスについても検出されていない.火山活動の指標とな るようなガス成分は、土壌の通気性が非常によいため、 割れ目の生成時に供給されたとしても現在はすでに拡散 してしまい、その濃度は測定限界以下になっている.

したがって,次に火山活動が活発になり,その活動を 示す成分(He,H₂等)が増加するまでは本手法では成果 が期待できないであろう.そのため2式の自動ガスクロ

第8図 奥山第2 (OK2)における地下ガス濃度の経時変化(1987.2月-3月) 2月16日の CO2の変化は観測孔の深さを130 から270cm に変更したため

Fig.8 Variation of soil air contents at OK2 during February to March, 1987. The change in CO2 conc. at February 16 was caused from modification of depth of observation hole.

マトグラフは,カラムなどの消耗を防ぐため87年4月 で一時観測を中断し,別稿で報告するガスセンサーによ る監視に集中することにした.

謝辞 1986年12月以来,観測地点の選定,機器設置工事等の際には,東京都,同大島支庁,大島町,大島 警察署等の関係機関に協力していただいた.また,中塚 正,牧野雅彦および村田泰章の各氏には多大な労力をか けてデータ処理および監視用の各種グラフ化処理をして いただいた.以上の方々をはじめ,現地調査および設置 にあたり協力していただいた多くの方々に深く感謝いた します.

---- 702 ----

文 献

- 遠藤秀典・釜井俊孝・角井朝昭(1987) 伊豆大島 における伸縮観測.地調月報,vol.38,p. 659-675.
- 風早康平・加藤 完・高橋 誠・安藤直行・大隅多 加志・平林順一・日下部実(1987) ガス センサーによる伊豆大島割れ目土壌ガス中 の水素ガスモニタリング.地調月報, vol.38,p.677-688.
- 高橋 誠・吉川清志・加藤 完・池田喜代治 (1984) 地下ガス観測上の問題点につい て、東京大学理学部地殻化学実験施設彙報, no.3,p.27-35.
- 中塚 正・村田泰章・加藤 完・池田喜代治 (1987) 大島火山噴火対策テレメータ受 信システムソフトウェアの構成と機能.地 質調査所研究資料集, No.35,72p.

(受付:1987年9月24日;受理:1987年11月9日)