大町テフラ層下部層に挾まれるクリスタル・アッシュの フィッション・トラック年代

加藤碵一* 檀原 徹**

KATO, H. and DANHARA, T. (1987) Fission-track ages of Crystal Ash Layers intercalated in the lower member of the Omachi Tephra Formation, Nagano Prefecture, central Japan. Bull. Geol. Surv. Japan, vol. 38(5), p. 265-280.

Abstract: The \overline{O} machi Tephra Formation, which is one of the marker tephra layers of presumed middle Pleistocene age, is widely distributed not only in the northern Fossa Magna region but also in the Kanto- $K\overline{o}$ -Shin-etsu region, central Japan. In the lower member of this formation, three (or four) layers of so-called Crystal Ash are intercalated, which contain abundant bioitie grains that is, C_1 , C_2 and $C_3(C_4)$ in ascending order. This paper presents a summary of characteristics of Crystal Ash Layers and their fission track ages using grain by grain method. The ages of C_1 , C_2 and C_3 are 0.69 ± 0.09 Ma, 0.63 ± 0.09 Ma and 0.52 ± 0.07 Ma respectively.

1. はじめに

北部フォッサ・マグナには、中期更新世の示標テフラ が広く分布する.そのうちの一つである大町テフラ層下 部層には、黒雲母を多量に含み、その構成粒子がほとん ど結晶粒からなるため近年クリスタル・アッシュ1)と称 される鍵火山灰層が3ないし4枚挟まれる. このクリス タル・アッシュは、関東地方及び新潟地方にも追跡さ れ,中部-北関東における有効な広域テフラの一つとみ なされるようになった.しかし、その給源及び更に詳細 な年代については議論が分かれ、また、対比以前の問題 として記号命名法が確立されていなかったため、混乱と 無用の繁雑さを与えているのが現状である. 例えば下部 大町テフラ層に挟まれるクリスタル・アッシュ最下位層 に対して A₁P_m, B₁ 及び C₁ などの記号命名がつけられて いる.一方中部大町テフラ層には B スコリア, C スコ リア層が挟まれている(第1表).本文では、既存資料の 要約を行い、そうした混乱を軽減する一助とするととも に、模式地におけるクリスタル・アッシュ3層に含まれ るジルコンのフィッション・トラック年代の測定結果を 報告し、他地域のクリスタル・アッシュ相当層との対比 を検討する.

今回の年代測定は、科学技術庁の昭和60年度科学技術 振興調整費による重点基礎研究「日本の地質総括の研究」 の一部として行われたものである.

模式地における試料採取に関し御教示いただいた駒沢 大学百瀬貢氏及び,鉱物組成に関し資料を提供していた だいた地質調査所環境地質部水野清秀氏に厚く感謝する 次第である.

2. 大町テフラ層

命名 小林ほか(1969)

模式地 長野県大町市北東大町スキー場内の露頭(第 1図:東径137°52′10″,北緯36°33′39″)

分布 大町付近を中心に、姫川流域、松本盆地周辺、 犀川−千曲川流域とその周辺の高位小起伏面(大峰面) 上、上田−佐久、八ヶ岳山麓、秩父−飯能−八王子付近、 長野盆地−妙高山々麓−信濃川流域十日町地域にかけて 確認されており(第1表)、ほぼ東西性の長軸をもつ楕円 状に分布する. 仁科(1982)によれば、更に東方延長は鹿 島灘−太平洋上に達すると推定されている.

層序 模式地においては,最上部鮮新統の大峰累層 社部層(2.0±0.2 Ma~2.4±0.2 Ma,加藤・佐藤, 1983;山田ほか,1985)に不整合でのる.中谷(1972)に 従えば,本層中に挟まれる軽石・スコリア層のうち, BS_c層とDP_m層(第2図)の直下を境界として,下・中 ・上部テフラ層に区分される.

層厚 模式地で約12 m

層相 細-中粒,灰褐色-暗褐色火山灰層で第2図に 示されたような示標テフラ層を挟む.

対比 下部テフラ層は, 関東地方の多摩ローム層上部

- 265 -

^{*} 地質部 ** ㈱京都フィッション・トラック

クリスタル・アッシュは、結晶火山灰のことで普通名詞である が、ここでは、固有名詞として大町テフラ層下部層に含まれる火山 灰に対して用いている。

地質調査所月報(第38巻第5号)

 第1図 模式総括図(塩川団研, 1970;中谷, 1972;松本団研, 1972;町田, 1977, 1979;町田・新井, 1979及び本論文よ り編集)A1-3Pm(C1-C4):A浮石(クリスタル・アッシュ)
 BSc:Bスコリア(立山起源) CSc:Cスコリア(立山起源)
 DPm:D浮石(立山起源) PmI:御岳第1軽石(御岳起源)
 EPm:E浮石(立山起源) DKp:大山倉吉軽石(伯者大山起 源) HVs:土倉火山砂(白馬乗鞍起源)

に対比されることについては各研究者の意見は一致する が、中・上部層については検討の余地がある。中・上部 層については本論の主旨をはずれるので詳しく述べない が、槍ヶ岳北東麓において DPmの直上に Pm-I (7-9万 年前)が挟まれることが確認されている(飯島・塩川グル ープ、1967)、また、姫川流域-更埴地方にかけては、 下部テフラ層の最下位であるが、東北信州地域では、下 部テフラ層相当層下部にクサリ礫層が挟まれ、更にその 下位にローム層が存在するから、全体としては、古期ロ ーム層上部となる.

3. クリスタル・アッシュ

命名 松本盆地団研グループ(1972), C₁-C₃²⁾

模式地 長野県大町市大町スキー場内射撃場裏(第1 図)

分布大町テフラ層の分布にほぼ等しく,鍵層中最も 分布が広い.見掛け上の高位段丘や高位小起伏面上にの る.

層序中期更新世のローム層中又は砕屑堆積物層中に 風成又は水成で挟まれる.

層厚 松本盆地中央部付近に最大層厚部があり,東方 へ厚さを減少させる(仁科,1982のクリスタル・アッシ ュ等層厚線図及び本文中の第1表参照).

層相 既存の代表的研究成果を第1表に要約してお く. 模式地において採取した試料の定性的な鉱物組成を 次に示しておく(分析者:水野清秀).

 $C_1: 粒径1/4-1/8 mm における全鉱物組成は、長石、$ 黒雲母>石英>角閃石であり、このほかごく少量の不透明鉱物、斜方輝石、単斜輝石及びジルコンを含む.また、粒径1/4 mm 以上における全鉱物組成は、黒雲母、石英、長石≫角閃石である.

 C_2 : 粒径1/4-1/8 mm における全鉱物組成は,長石> 黒雲母>石英>角閃石であり,このほかごく少量のジル コン,斜方輝石及び不透明鉱物を含む.また,粒径1/4 mm 以上における全鉱物組成は,黒雲母,石英,長石≫ 角閃石である.

C₃:粒径1/4-1/8 mm における全鉱物組成は,長石, 石英,黒雲母>角閃石であり,このほかごく少量の斜方 輝石とジルコンを含む.また,粒径1/4 mm 以上におけ る全鉱物組成は,黒雲母,石英≥長石≫角閃石である.

4. フィッション・トラック年代測定結果

測定試料は、模式地において C₁, C₂ 及び C₃ 層から採 取し(第 2 図), 各2.0 kg を処理し、自形性の良い大量の ジルコン結晶を抽出して測定に供した.年代測定方法は、 S2 π ES-I2 π ES・ED (SUZUKI, 1984), 熱中性子照射量は NBS-SRM 612 glass に Mica をディテクターとして密 着し、照射後46%HF を用い20°Cで30分間エッチングし ρ dを測定して求めた.ジルコン結晶のエッチング条件 は、KOH: NaOH=1:1 (mol) エッチャント, 225°C, 44 h 00 m で、 壊変定数は λ f=7.03×10⁻¹⁷ y⁻¹を用い

筆者らは、C₁-C₃(C₄)を用いるが、本文中の引用では、各々原著 者らの記号名を使用する. 念のため付け加えれば A₁P_m=B₁=C₁(以 下同様である).

		地層名	示標テフラ層名	特 徵(主	特 徵(主要調查地域)		年代	給源	備考
小 林 (国)	1967	大町型ロー (テフラ)	A 浮石層 BP(Biotite Pumice)	黄色, 黒雲母を含む粗粒浮石層, 延びる	スコリア散点,八王子,飯能丘陵に (大町付近)	34cm(大 町スキー場) 3m(松本 市城山)		立山より南の 火山	小林(1963)の対比 は誤り 多摩ローム層上部 に狭在
飯島・塩 川グルー プ	1967	古 P 期 - 上 ム 部 層	第3 黒雲母浮石層B ₃ 第2 黒雲母浮石層 B ₂ 第1 黒雲母浮石層 B ₁ (B ₁ 浮石層)	北信(長野付近)及び東信(上田佐久 飯能・八王子三田)に連続する. が, B ₂ B ₃ は他のロームと混在し, 又は薄層となる。B ₁ ~B ₃ 中のジル 傾向	、)から,関東西部(秩父・上鹿山・ 秩父以東では B₁は確実に連続する 特に B₃は信州でも浸食されて欠如 >コンの晶癖は信州~関東まで同一	>100 cm		(焼岳)~硫黄 岳付近	古期上部ローム層 は御殿峠礫層より 上位の多摩ローム 層に対比 同ローム層下位に クサリ礫
飯島·斎藤	1968	古期。	第三黒雲母浮石層 B3	-般に浸食されて欠如することが 不整合状	多いが,ここでは上位に大礫散点し	38 cm		硫黄岳付近	御殿峠礫層より上 位の多摩ローム層
		ー ム 層	第二黒雲母浮石層 B2	下限はカオリン化, 黄褐色浮石・ 褐色~茶褐色	赤色スコリヤ散在,黒雲母目立つ黒	80 cm			
			第一黒雲母浮石層 B ₁ (B ₁ 浮石層)	斑状黒褐色~茶褐色斑状,多量の を含む.	大黒褐色~茶褐色斑状,多量の黒雲母含み,ひる石状を呈するもの 含む. (更級郡大岡村高峯寺)				
塩川団研	1970	古口	黒雲母浮石層 B2	酸化角閃石が多い	黒雲母・石英・角閃石を多く含む		30万	硫黄岳方面	上部多摩ローム層
グルーブ		別	黒雲母浮石層 B2		粘土化の進んだ細粒浮石層 (八ヶ岳東麓)		45-50万		に対比
		하지	黒雲母浮石層 B ₁	時に粘性が強く,肉眼では和白砂 糖様,最も広範囲に分布,秩父・ 飯能から八王子にも分布			60万 (ジルコン F.T.)		
中 谷	1972	大下	A ₃ Pm	黄色~黄灰色,粘土化,粒径·発泡	包度不明,黒雲母・長石粗粒子多量	50 cm		立山火山第Ⅱ	上部多摩ローム層
		可部 テテ	A ₂ Pm	│に含む │ まれに、2~3 mm 大の赤褐色スコ	リア含む。単雪母を除く1/8~1/16	40 cm	期前期		に対比
		ララ	A ₁ Pm	mm 粒径の重鉱物個数比は grHo>	OP≫Hy, Zi, Au,	35 cm			
		『 管 / 管		Curie 温度は A ₁ , A ₂ Pm が390°C, A ₃ Pm が425°C(佐久では A ₁ ~A ₂ 400~425°C, A ₃ 400°C 分布南東限は小海町柳沢(16 cm 層), 南佐久では黃~淡黄褐色(大町 スキー場)		(大町スキ ー場射撃場 裏)			
松本盆地 団研グル ープ	1972	梨ノ木ローム層	$ \begin{array}{c c} \rho \\ \mu \\ \chi \\ \varphi \\ \nu \\ \Gamma \\ \tau \\ \tau \\ \gamma \\ \varphi \\ \tau \\ \tau$	黒雲母, 角閃石, 石英, 斜長石と 市梨ノ木) 黒雲母を主とする結晶粒密集(松本 美鈴湖付近では 3 枚(50~60 cm 厚) 100~120 cm 厚), Bi, Qt, Pl がそ Zi, Mg がそれぞれ1~3%, ガラス	100 5 120cm (max.)		北アルブスの 雲の平付近	松本盆地周辺で, 小坂田ローム層 (最下位に Pm-1 を狭む)より古い 火山灰層を一括し たもので梨ノ木礫 層に整合で重なる	

第1表 信越地域のクリスタル・アッシュ総括表

- 267 -

第1表 つづき

		地層名	7	示標テフラ層名			特	序 徵 ((主要調査	E地域)		層厚	年代	給源	備	考
小疇ほか	1974	大町テフラ層	APm		著しく 粗い長 物組成 16 mm	- く風化して灰褐色,粒径・発泡度不明,肉眼的に多量の黒雲母と 、長石粒子含む,一枚だけ,全鉱物中の重鉱物の割合は7.8%,鉱 目成は OP (Mg) 72.3%, Hy 0.9%, Zi 0.4%,その他26.4% (1/8~1, nm 大)で,この他 Bi を含む (北城盆地土倉付近)				10 5 30cm			先親ノ原 テフの いる。 親 切久 に 覆	面 に 下 部 す た の せ て ノ に の せ て 、 に の て 、 に の て 、 し の せ て 、 の し て し 、 の で て 、 の に の て て 、 の に の て て 、 の に の て て 、 、 に の て て 、 、 に の て て 、 、 、 に の て て 、 、 、 、 、 、 、 、 、 、 、 、 、		
、 林 (武)	1975	大町テフラ層	APm		黒雲母る	と石英の	の粗粒なり	斑晶をも~	つネバダ:	岩的な流緯	文岩質軽石			槍ヶ岳西方の 尾根に残存す る軽石流堆積 物に伴う		
公本盆地 H研グル	1977	梨下 ノ	クリ		浮石量	石英	黒雲母	角閃石	色調	キュリー 温 度	梨 / 木では C ₁ ま で水成.松本市城				C ₃ の上位 母密集帯	なに黒雲
プ		木	ヘタル	C_3	多	少	多	少	黄褐色	420°C	山ではC₃まで水					
		「部」	7 9	C_2	中	少	中	中	黄褐色	425°C	成, 徳高カントゥ ークラブでは3枚					
		眉	ジュ	C_1	少	多	中	少	褐色	450°C	とも風成梨ノ木礫 層の離水期は地域					
											で異なる (松本盆地)					
ケ岳団 グルー	1977	下部 広頼	$egin{array}{c} B_3 \ B_2 \ B_1 \end{array}$									各 15 cm	塩川団研 (1970) 引用			
原ほか	1978	広瀬 戸 ー ム	$B_3(C_3)$ $B_2(C_2)$ $B_1(C_1)$))	分布は, して広っ (rhyoliti	松本盆 たな地 c な)火	盆地の鳥) 域に分布 (山活動を	扇状地測 , 西南日 :示す降下	扇頂部と、 本内帯の 「火砕流地	ヘヶ岳東‡)基盤岩中 進積物.	と麓を結ぶ線を軸と に発生した酸性の		塩川団研 (1970)引用 ただしB ₂ =45分		ここでは ム相当(r 世)	中期ロー 中期更新
津・新井	1980	時砕 代岩 未層 火	樋海軺	经石層	粘土化が 石・鉄 (APm の それに教	^ぶ 著しい 広物・ それと 頁似 :	、流紋対 ジルコン 一致)、ジ 3枚	岩質で斜長 でを含む. ジルコンの	長石・黒瓢 (角閃石 の晶癖(短	雲母・石 うの屈折 互柱状・す	を・角閃石・斜方輝 ^{&} (1,686-1,693)が えぐり)も APm の (妙高山麓地域)	5 1 15cm				
津·新井	1981	谷丁	美日	MH—a	黄褐色で	いお主く	とが進み精	立径不明,	流紋岩的	質で斜長石	i・黒雲母,石英,	8cm	町田			
		口層	口層	MH—b) 用闪石,	宗穌叫	甲勹, 苏素	ム物・シノ	V 1 / 2 1	금신	(信辰川中佩政)	15cm	30万			
科	1982	梨ノ木ローム層他	クリスタル・アッシュ	$\begin{array}{c} C_4 \\ C_3(B_3) \\ C_2(B_2) \\ C_1(B_1) \end{array}$	黄色~す 物の結晶 石,磁鉛 4mm, 目立つ. ガラス 上水成.	「褐色, 「 「 「 「 「 る 高 ま オ	全体がさ っなる、 ジルコンパ 状に延び で3 mm 前 いる(三水	ざらざら し 長石,石身 が少量混 え る.石英 (後,北東 ().上田 ().	し, 一部 英, 黒雲 入, 黒雲 には丸みの 夏に離れる 方 市 東 方 岩 ド	赤色浮石を 母が大部分 母は,北 つあるもの ちほど小さ 青水では(<合む.大部分が鉱 →で角閃石,紫蘇輝 7ルブス山麓で3~ が多いが高温型も くなる.一部火山 C ₁ , C ₂ 風成, C ₃ 以	C ₂ , C ₃ > 1 m (穂高 カントリ ー) C ₃ 1.5m(青 木村+観 山)	50~ 60万 (推定)	焼岳西方 岩滝火砕流を 噴出させた火 山活動	カルデラ 発による!	形式の爆 噴出機構

っ	ð.
	\sim

		地層名	示標テフラ層名	特 徵(主要調査地域)	層厚	年代	給源	備	考
木村	1985	下口	APm—3	直下に紫灰色細粒火山灰層を伴う					
			APm—2	2つの降下単元に分けられ、下半部は、結晶質、上半部は軽石質					
		「」「「」「「」」「「」」「「」」「「」」「「」」「」」「」」「」」「」」「」	APm—1	最も結晶質で,中位に,灰色細粒火山灰層を挟む					
花岡・豊 野団研グ ループ	1985	バイオタイ ア	$\begin{array}{c} QB_4\\ QB_3\\ QB_2\\ QB_1 \end{array}$	三木ローム層(中期更新世下部,22~27m厚)上に不整合でのる暗褐 色風化火山灰(バイオタイトローム層)に挟まれる結晶火山灰で,黒雲 母,高温石英を含む.特にQB2中の黒雲母,QB4中の石英が顕著で ある. (長野盆地北部)					

(Bi:黒雲母 Qt:石英 Pl:長石 Ho:普通角閃石 grHo:緑色角閃石 Au:普通輝石 Hy:紫藤輝石 Zi:ジルコン OP(Mg):不透明鉱物(磁鉄鉱))

- 269 -

第2表 各試料ごとのフィッション・トラック年代値一覧表(年代値と誤差算出法は GREEN, 1981による)

		自発核分裂飛跡		誘導核分裂飛跡		熱中性子フルエンス		誤差 ^(*3)		- 結島数	相関係	生見 面待	ウラン ^{(*5}		
試 料 名	鉱物名	総数 <i>Σ</i> Ns (t)	密度 ρ_{s} = $\Sigma N_{s}/\Sigma S_{(t/cm^2)}$	総数 <i>Σ</i> Ni (t)	密度 ρ_i = $\Sigma Ns/\Sigma S_{(t/cm^2)}$	総数 <i>Σ</i> Nø (n)	$ ho d^{(st 1)}$ (n/cm ²)	熱中性子線量 Φ (n/cm ²)	- 平代道(442) T (Ma)	$\pm \varepsilon \cdot T$ (Ma)	±ε (%)	⁻ 祀 田 奴 (粒)	数 ^(*4) r	和自己的 S (cm ²)	濃度 U (ppm)
HK-01(No.3.17.24.33除去)	Zircon	66	$2.50 imes10^4$	2974	1.13×10^{6}	1247	$8.43 imes 10^4$	$5.25 imes 10^{14}$	0.69	0.09	12.8	31	0.591	2.64×10^{-3}	107
HK-01(全粒子)	Zircon	106	$3.32 imes10^4$	3858	1.21×10^{6}	1247	$8.43 imes10^4$	$5.25 imes10^4$	(参) 0.86	0.09	10.2	35	0.449	$3.19 imes 10^{-3}$	115
HK-02	Zircon	48	$2.28 imes 10^4$	2404	1.14×10^{6}	1250	$8.44 imes 10^4$	$5.26 imes 10^{14}$	0.63	0.09	14.8	35	0.614	$2.11 imes 10^{-3}$	108
HK-03	Zircon	62	$2.02 imes 10^4$	3795	$1.24 imes10^6$	1256	$8.49 imes10^4$	$5.29 imes 10^{14}$	0.52	0.07	13.1	35	0.287	$3.06 imes 10^{-3}$	117

*1 pd:標準ガラスの誘導核分裂トラック密度(n/cm²)

*2 年代値 T=5.96×10⁻⁸× ϕ × Σ Ns/ Σ Ni= ζ × ρ d× ρ s/ ρ i

*3 誤差 $\varepsilon = \{(1/\sqrt{\Sigma Ns})^2 + (1/\sqrt{\Sigma Ni})^2 + (1/\sqrt{\Sigma N\phi})^2\}^{1/2} \times 100(\%)$

*4 r:結晶ごとの自発・誘導トラック密度(ρs, ρi)の相関係数

*5 ウラン濃度 $U=5 \times 10^{10} \times \overline{\rho} i / \phi$ (ppm, 但し, ジルコン結晶中でエッチングされる最大飛跡長を12 μ m と仮定する)

熱中性子線量測定用標準ガラス:NBS SRM612

²³⁸Uの自発核分裂壊変定数: λf=7.03×10⁻¹⁷(1/yrs)

熱中性子の²³⁵Uに対する核分裂反応断面積: σ=577×10⁻²⁴(cm²))

²³⁵Uの²³⁸Uに対する同位体比:I=7.253×10⁻³(²³⁵U/²³⁸U)

B $(a: B=6.23 \times 10^{9} (\Phi th=B \times \rho d))$

 ζ (zeta 値): Calibration factor(弊社採用値) $\zeta = \phi \text{ th} \times \sigma f \times I/\rho d \times \lambda f = B \times \sigma f \times I/\lambda f = 371$

地質調査所月報(第38巻第5号)

第2図 年代測定試料採取位置図(国土地理院発行5万分の1地形図「大町」の一部)

第3表 自発核分裂片飛跡数(Ns)のヒストグラム (1):HK01 (C1) (2):HK02(C2) (3):HK03(C3)

...

(1)		
Tracks	Grains	Histogram = 1 (grains)
0	4	
1	7	the state of the s
2	8	ትትት ትርጉ እስከ አስት
3		********
4	3	
С С	2	<u> </u>
7		
8		
ğ		
10		
	No.	3 17 24 33 を除く
(2)		
Trooler	Gnoin-	
1racks	urains 11	$\pi_{1Stogram} = 1 (grains)$
1	8	tere a constante de la constante de
2	8	and a state of the
3	8	***
4	-	
5		
6		
7		
8		
9		
10		
(3)		
Tracks	Grains	Histogram # = 1 (grains)
0	10	state to the second sec
1	6	****
2	9	****
3	4	****
4	4	all when all we have a start of the start of
5	2	de de Trade
6		
7		
ŏ		
10		
10		

た. なお試料の熱中性子照射は, 武蔵工業大学原子力研 究所(TRIGAI型炉, 照射溝)にて行った. 以下に測定 結果(第2及び3表)を示すが, 試料名 HK-01, HK-02 及び HK-03 は, 各々, C₁, C₂ 及び C₃ を表わす.

HK-01(C₁) (GSJ R 37665)

本試料は淡桃色で自形性の良い大量のジルコン結晶を 含むが、自形性は良いものの濃い桃色の結晶も約5%程 度含まれる.全測定粒子36個(実際には状態不良の No. 6 は除く35個)の1粒子ごとの自発及び誘導の平均トラ ック数は \overline{Ns} =3.03, \overline{Ni} =110.2である. \overline{Ns} 値が小さいた め、各粒子ごとの自発及び誘導トラック数の相関性 (Ns-Ni,第5図(1))や自発及び誘導トラック数の相関性 (ps-pi,第6図(1))は悪く、粒子年代Tもばらつく(第 3図(1))のは当然であろう.ただし、第4図(1)に示され るpi 値は各粒子のウラン濃度に比例し、一般に均一試 料では対数正規分布をするといわれている.この点から みれば本試料のpi 値のまとまりは比較的良好で均一試 料の可能性が高いと言えよう.

さて結晶1粒子ごとの年代一覧表(第5表)をみると, Ns や結晶面積Sの大きな粒子が目立つ.このうちNo. 17及びNo.33の2粒子は桃色で他粒子と明瞭な差があ り、粒子年代も他と比較して古い.そのためこれら2粒 子は外来性の異種年代粒子の可能性が高いとして除外し た.かつNs=8をもつNo.3, No.24粒子も、異種年代 粒子ではないが、偏りの強いデータをもつものとして除 外して ρ o検定(横山ほか、1984)を行うと、 χ^2 検定によ る有意水準が97.5-99%と極めて良好な結果が得られる(第

- 270 -

第3図 結晶1粒ごとのみかけ年代(T)のヒストグラム (1):HK01(C1), No.6(第6麦)を除く (2):HK01(C2), No.3, 6, 17, 24及び33(第 6麦)を除く (3):HK02(C2) (4):HK03(C3)

第4図 結晶1粒ごとの誘導トラック密度(pi)のヒストグラム (1)-(4)は第3図の説明と同じ

第5図 自発トラック数(Ns)と誘導トラック数(Ni)の相関 (1)-(4)は第3図の説明と同じ

地質調査所月報(第38巻第5号)

第6図 自発トラック密度(ps)と誘導トラック密度(pi)の相関 (1)-(4)は第3図の説明と同じ

3 表(1)及び第4表(1)). したがって,上述の4粒子と状態不良粒子を除いた残り31粒子の *Σ*Ns/*Σ*Ni 比から年代値 T=0.69±0.09 Maを算出し,報告値とする.

なお全測定粒子35個の *Σ*Ns/*Σ*Ni 比からは年代値 T= 0.86±0.09 Ma が得られ,参考までに付記する.

HK-02(C₂) (GSJ R 37666)

本試料は薄淡桃色で自形性の良い大量のジルコン結晶 を含み,自形性・色調・晶癖の均一性が高い試料であ る.

1 粒子ごとの自発及び誘導の平均トラック数は \overline{Ns} = 1.37, \overline{Ni} =68.7で,前試料と同様に Ns-Ni や ρs - ρi 相関 性及び粒子年代Tのまとまりは悪い(第3図(3),第5図 (3),第6図(3)). このため ρo 検定を行うと,有意水準 20-25%が得られる(第3表(2),第4表(2)). したがっ て,全測定粒子はほぼ同一起源に属するものと判断し, 35個の $\Sigma Ns/\Sigma Ni$ 比から年代値T=0.63±0.09 Ma を算 出した.

HK-03(C₃) (GSJ R 37667)

本試料はほぼ無色透明で自形の良い大量のジルコン結 晶を含み,自形性・色調・晶癖の均一性が高い試料であ る.

1 粒子ごとの自発及び誘導の平均トラック数は \overline{Ns} = 1.77, \overline{Ni} =108.4で, Ns-Ni や ρs - ρi の相関性や粒子年代 T のまとまりは悪い(第 3 図(4), 第 5 図(4), 第 6 図(4)). このため ρo 検定を行うと,有意水準10-20%が得られ る(第 3 表(3),第 4 表(3)).有意水準がやや低いきらいが あるが,肉眼的には粒子の均一性は非常に高いと判断さ れるところから,全測定可能粒子35個の $\Sigma Ns/\Sigma Ni$ 比か ら年代値 T=0.52±0.07 Ma を算出した.

5. 考察と問題点

従来報告されているクリスタル・アッシュのフィッシ ョン・トラック年代は、塩川団研グループ(1970)による ものが唯一である.その中で島誠の測定によるジルコン のフィッション・トラック年代が非公式・予備観察とし て $B_1(600,000yB.P.)$, $B_2(450,000-500,000yB.P.)$ 及び B_3 (300,000yB.P.)と報告されている.しかし、測定方法や 詳細なデータが未公表であり、今後議論の対象となり得 ない. 仁科(1982)は、これに対して $C_2(B_2) \ge C_3(B_3)$, 特に C_3 は層位学的に見て値が小さすぎるとし、いずれ にしても、クリスタル・アッシュの絶対年代は50-60万 年とみるのが妥当で、その降灰期は中期更新世の初めで あると考えた.

一方,町田(1977)は,具体的な根拠は示していないものの,恐らく南関東地域のテフラとの広域的対比から

B₁−B₃を約30万年前と推定している.第1表のように, 他の研究者は,両二者のいずれかを引用するにとどまっ ている.今回の結果,最下部のクリスタル・アッシュ (C₁)の年代値0.69±0.09 Maを採用するならば,中期更 新世最初期を示す有効な示標テフラということになる.

一方,近年,早津・新井(1980,1981)により、クリス タル・アッシュが妙高東麓に分布する桶海軽石層、及び 飯山地域や津南地域中津川右岸に分布する美穂軽石層に 対比されている.この対比が確実ならばクリスタル・ア ッシュは津南地域の最高位段丘面である谷上面上にのる 谷上ローム層中に挟まれることになる。新潟火山灰グル ープ(1981)は、十日町地域当間山北西斜面で、谷上ロー ムの下位に不整合で中期更新世と推定した鷹羽ローム層 (厚さ1.4m+)が分布することを報告している.また. 長野盆地北部において花岡・豊野団研(1985)は、飯縄火 山起源と考えられる中期更新世の三水ローム層(厚さ27 m)の上位に、不整合でクリスタル・アッシュがのるこ とを報告している. このような地形面及び層序的位置関 係からは、樋海・美穂軽石層及びそれに対比されるクリ スタル・アッシュが中期更新世最初期とは言いきれな い. また、早津・新井(1980)によれば、A,Pm 中の斜方 輝石の屈折率(r)=1.735~1.737,角閃石の屈折率(n₂)= 1.687~1.695に対して、 A_2P_m では、(r)=1.732~1.735、 $(n_2) = 1.688 \sim 1.694$ でジルコンはずんぐりした短柱状, A_3P_m では同じく, (r)=1.731~1.734, (n₂)=1.688~ 1.693である. これらを検討すると A₂P_m, A₃P_m の各屈折 率は近似するが、A₁P_mは特に斜方輝石の屈折率が他の 2者よりも若干高い. また、A_iP_mのジルコンの形状は 必ずしも短柱状のものが卓越するようには見えない. 更 に肉眼的な色調を比較すると明瞭な差違がある. すなわ ち、A₁P_mのジルコンは淡桃色であるのに対して、他の 二者のそれは無色透明又はそれに近く容易に識別でき る. これらのことから、従来クリスタル・アッシュとし て一括されてきた3枚のAP_m層は、含有鉱物の性質や 年代値からみて、最下部の A_iP_m と、 $A_2P_m \cdot A_3P_m$ のグ ループに二分される可能性がある.これが、給源の違い を示唆するか否か即断できないが、改めてその分布等を 検討する必要があろう.

したがって, 樋海軽石層がクリスタル・アッシュに対 比される(早津・新井, 1980)としても, A₁P_mの可能性 は少ない.

小池ほか(1985)は、栃木県北東部喜連川丘陵に分布す る下野火山灰層最下部の喜連川ローム層に含まれる黄褐 色法師峠黒雲母火山灰層について、ジルコンによるフィ ッション・トラック年代を報告している.このジルコン

地質調査所月報(第38巻 第5号)

第4表 Poisson 検定 (1): HK01(C₁) (2): HK02(C₂) (3): HK03 (C₃) 第5表 HK01(C1)の結晶1粒ごとの年代一覧表

(1)		m = 2.129									
n	Kn	Kn/ΣKn	fm(n)	fm(n)×∑Kn							
0	4	0.129	0.119	3.7							
1	7	0.226	0.253	7.9							
2	8	0.258	0.270	8.4							
3	7	0.226	0.191	5.9							
4	3	0.097	0.102	3.2							
5	2	0.065	0.065	2.0							
6											
7											
8											
9											
10											
	No. 3 1	72433を	除く								

飛跡数n個の結晶出現頻度(理論値):fm(n)=(mⁿ/n!)×e^{-m} 平均飛跡数 : m= Σ Ns/ Σ Kn 全飛跡数 : Σ Ns= 66 1粒子当りの飛跡出現数 : n 平均値/分散 : m/σ_{a}^{c} = 1.074 n個の飛跡をもつ結晶数 : Kn 自由度 : $\nu = 4$ 全結晶数 : Σ Kn= 31 χ^{c} 値 : χ^{2} = 0.3346 χ^{2} 検定による有意水準 : 97.5%~99.0%

(2)		m	= 1.371	
n	Kn	Kn/ΣKn	fm(n)	fm(n)×∑Kn
0	11	0.314	0.254	8.9
1	8	0.229	0.348	12.2
2	8	0.229	0.239	8.4
3	8	0.229	0.160	5.6
4				
5				1
6				1
7				
8				
9				
10				

飛跡数n個の結晶出現頻度(理論値): fm(n)=(mⁿ/n!)×e⁻ⁿ 平均飛跡数 : m= Σ Ns/ Σ Kn 全飛跡数 : Σ Ns= 48 1粒子当りの飛跡出現数 : n 平均値/分散 : m/ σ_{*}^{2} = 1.010 n個の飛跡をもつ結晶数 : Kn 自由度 : ν = 2 全結晶数 : Σ Kn= 35 χ^{2} 値 : χ^{2} = 2.9965 χ^{2} 検定による有意水準 : 20.0%~25.0%

(3)		m	= 1.771	
n	Kn	Kn/ΣKn	fm(n)	fm(n)×∑Kn
0	10	0.286	0.170	6.0
1	6	0.171	0.301	10.5
2	9	0.257	0.267	9.3
3	4	0.114	0.158	5.5
4	4	0.114	0.070	2.4
5	2	0.057	0.034	1.2
6				
7				
8				
9	1			
10				

飛跡数n個の結晶出現頻	镀	(理論値	ī) : fm(n)=(m ⁿ ,	/n!)×e™	
平均飛跡数 : m=ΣNs.	/Σ	Kn	全飛跡数	:	ΣNs=	62
1粒子当りの飛跡出現数	ŧ :	n	平均值/分散	:	$m/\sigma_{m}^{2} = ($	0.733
n個の飛跡をもつ結晶数	k :	Kn	自由度	:	$\nu = 4$	
全結晶数 : ΣKn=	35		x²値	:	$\chi^2 = 6.6$	3599
χ ² 検定による有意水準	:	10.0%-	~20.0%			

Neutron dose Φ 5.25×10 ¹⁴ (cm ⁻²)									
No.	Ns	Ni	${{\rm S}\atop{\times 10^{-5}}\atop{\rm (cm^2)}}$	$\substack{ \rho_{\rm S} \\ \times 10^4 \\ (\rm cm^{-2}) }$	$ hoi \ imes 10^5 \ (\mathrm{cm}^{-2})$	T (Ma)			
1	3	178	13.63	2.20	13.06	0.53			
2	2	77	7.55	2.65	10.20	0.81			
3	8	457	23.33	3.43	19.59	0.55			
4	3	168	19.67	1.53	8.54	0.56			
5	2	104	9.67	2.07	10.75	0.60			
6	3	状態不良	7.00	4.29		_			
7	1	75	11.70	0.85	6.41	0.42			
8	5	94	3.89	12.85	24.16	1.66			
9	1	77	9.45	1.06	8.15	0.41			
10	2	52	6.52	3.07	7.98	1.20			
11	0	34	1.76	0.00	19.32	0.00			
12	3	151	14.22	2.11	10.62	0.62			
13	3	125	6.22	4.82	20.10	0.75			
14	2	50	6.52	3.07	7.67	1.25			
15	2	119	9.66	2.07	12.32	0.53			
16	1	106	5.04	1.98	21.03	0.30			
17	14	171	10.22	13.70	16.73	2.56			
18	3	193	20.68	1.45	9.33	0.49			
19	0	51	5.48	0.00	9.31	0.00			
20	4	82	8.15	4.91	10.06	1.53			
21	1	37	4.44	2.25	8.33	0.85			
22	5	116	6.52	7.67	17.79	1.35			
23	4	218	13.33	3.00	16.35	0.57			
24	8	175	14.34	5.58	12.20	1.43			
25	3	69	8.74	3.43	7.89	1.36			
26	1	27	4.00	2.50	6.75	1.16			
27	2	121	9.18	2.18	13.18	0.52			
28	2	70	8.22	2.43	8.52	0.89			
29	1	82	6.07	1.65	13.51	0.38			
30	1	56	4.73	2.11	11.84	0.56			
31	0	44	7.22	0.00	6.09	0.00			
32	3	113	4.99	6.01	22.65	0.83			
33	10	81	7.55	13.25	10.73	3.86			
34	4	85	7.66	5.22	11.10	1.47			
35	0	31	4.55	0.00	6.81	0.00			
36	2	169	14.52	1.38	11.64	0.37			

No.:結晶番号 Ns:自発トラック数 Ni:誘導トラック数 T:結晶1 粒ごとのみかけ年代 S:結晶面積 ps:自発トラック密度 pi:誘導トラ ック密度 大町テフラ層下部層に挾まれるクリスタル・アッシュのフィッション・トラック年代(加藤碵一・檀原 徹)

第6表 HK02	(C2)の結晶1粒	!ごとの年代一覧表
----------	-----------	-----------

第7表 HK03(C₃)の結晶1粒ごとの年代一覧表

Neutron dose Φ 5.26×10 ¹⁴ (cm ⁻²)								Neutron dose Φ 5.29×10 ¹⁴ (cm ⁻²)						
No.	Ns	Ni	$\begin{array}{c} \mathrm{S} \\ \times 10^{-5} \\ \mathrm{(cm^2)} \end{array}$	$ ho_{ m s} imes 10^4 \ (m cm^{-2})$	$ ho \mathrm{i} imes 10^5 \ (\mathrm{cm}^{-2})$	T (Ma)	No.	Ns	Ni	${\mathop{\times}\limits_{{\rm (cm^2)}}^{\rm S}}$	$ ho_{ m s} imes 10^4 m (cm^{-2})$	$ ho \mathrm{i} imes 10^5 \ (\mathrm{cm}^{-2})$	T (Ma)	
1	3	50	3.52	8.52	14.20	1.88	1	4	153	17.51	2.28	8.74	0.82	
2	0	22	2.19	0.00	10.05	0.00	2	3	116	6.07	4.94	19.11	0.82	
3	0	58	6.04	0.00	9.60	0.00	3	3	117	8.99	3.34	13.01	0.81	
4	1	39	4.22	2.37	9.24	0.80	4	0	76	7.89	0.00	9.63	0.00	
5	2	50	4.59	4.36	10.89	1.25	5	2	63	6.67	3.00	9.45	1.00	
6	0	34	5.44	0.00	6.25	0.00	6	0	89	7.11	0.00	12.52	0.00	
7	1	49	4.67	2.14	10.49	0.64	7	3	121	4.85	6.19	24.95	0.78	
8	3	76	7.22	4.16	10.53	1.24	8	0	55	5.04	0.00	10.91	0.00	
9	3	91	6.52	4.60	13.96	1.03	9	1	131	8.59	1.16	15.25	0.24	
10	0	36	3.09	0.00	11.65	0.00	10	5	218	23.26	2.15	9.37	0.72	
11	2	169	11.41	1.75	14.81	0.37	11	2	64	5.62	3.56	11.39	0.99	
12	1	61	5.48	1.82	11.13	0.51	12	0	27	5.33	0.00	5.07	0.00	
13	1	88	5.78	1.73	15.22	0.36	13	4	94	7.11	5.63	13.22	1.34	
14	3	146	11.85	2.53	12.32	0.64	14	4	190	12.51	3.20	15.19	0.66	
15	0	68	4.44	0.00	15.32	0.00	15	2	167	11.50	1.74	14.52	0.38	
16	2	82	6.22	3.22	13.18	0.76	16	3	163	13.18	2.28	12.37	0.58	
17	3	150	16.44	1.82	9.12	0.63	17	2	57	5.48	3.65	10.40	1,11	
18	2	73	6.07	3.29	12.03	0.86	18	1	状態不良	5.78	1.73	—	—	
19	3	89	6.00	5.00	14.83	1.06	19	2	92	9.22	2.02	9.27	0.69	
20	2	状態不良	7.33	2.73		_	20	0	48	4.29	0.00	11.19	0.00	
21	3	66	6.22	4.82	10.61	1.42	21	1	104	7.00	1.43	14.86	0.30	
22	2	96	8.89	2.25	10.80	0.65	22	0	59	3.78	0.00	15.61	0.00	
23	2	88	1.92	10.42	45.83	0.71	23	0	79	5.22	0.00	15.13	0.00	
24	2	106	8.59	2.33	12.34	0.59	24	2	108	7.55	2.65	14.30	0.58	
25	0	44	3.89	0.00	11.31	0.00	25	0	177	7.70	0.00	22.99	0.00	
26	2	33	5.44	3.68	6.07	1.90	26	1	146	11.11	0.90	13.14	0.22	
27	0	65	4.59	0.00	14.16	0.00	27	0	91	8.59	0.00	10.59	0.00	
28	0	43	5.18	0.00	8.30	0.00	28	4	186	19.01	2.10	9.78	0.68	
29	1	35	5.89	1.70	5.94	0.90	29	2	159	13.76	1.45	11.56	0.40	
30	1	39	9.48	1.05	4.11	0.80	30	1	92	6.96	1.44	13.22	0.34	
31	3	87	6.89	4.35	12.63	1.08	31	2	47	5.92	3.38	7.94	1.34	
32	1	49	3.25	3.08	15.08	0.64	32	1	97	9.04	1.11	10.73	0.33	
33	0	68	4.74	0.00	14.35	0.00	33	0	77	7.55	0.00	10.20	0.00	
34	1	38	2.40	4.17	15.83	0.82	34	2	84	5.51	3.63	15.25	0.75	
35	0	41	4.89	0.00	8.38	0.00	35	1	147	9.89	1.01	14.86	0.21	
36	0	75	7.33	0.00	10.23	0.00	36	5	101	6.99	7.15	14.45	1.56	

(凡例は、第5表と同じ)

(凡例は、第5表と同じ)

は、粗粒・長柱状でほぼ均一な晶癖をもち、形態上、同 一起源に属する可能性が高く 0.83 ± 0.07 Ma と年代が算 出された.なお、幾つかの測定結晶中に見掛け上自発核 分裂飛跡の短かいものがあり、若干若くなる可能性があ る.ちなみに $0 \le T \le 1.2$ Ma の年代値を示す粒子の Σ Ns/ Σ Ni 比からは0.69 Ma の年代値が算出される.こ れが $A_i P_m$ に対比できるかどうか更に検討が要される が、中期更新世最初期の黒雲母を多量に含むクリスタル ・アッシュ類似層が分布することは注目される.

なお、日本地質学会第93年学術大会(1986)の討論会 「100万年前より新しい試料の地質年代測定」で模式地に おいて採取されたクリスタル・アッシュ (C_1) が年代測 定のブラインドテストに用いられた.当テストにおける 筆者の一人、檀原の測定結果は、 0.82 ± 0.12 Ma であ り、短縮トラックの存在等から、若干若返ることを考慮 すると今回の測定結果を強く支持するので、筆者らは、 最下位のクリスタル・アッシュ (A_1P_m, B_1, C_1) の年代 は、中期更新世最初期であることを主張する次第であ る.

 $A_2P_m(C_2)$ 及び $A_3P_m(C_3)$ は0.5-0.6 Ma を示し, 仁科 (1982)の見解を支持するが, 樋海軽石層や美穂軽石層に 対比されるか否かは, なお検討を要する. C_4 について は, いまだその実態が明らかではなく年代については今 後の問題である.

文 献

- 郷原保真・熊井久雄・酒井潤一(1978) 第四紀の不 整合について一八ヶ岳火山山麓を例として 一.不整合討論会予稿集(星野通平編,東 海大学海洋研究所), p. 141-155.
- GREEN, P. F. (1981) A new look at statistics in fission-track dating., Nucl. Tracks, vol. 5, nos. 1/2., p. 77–86.
- 花岡邦明・豊野層団体研究グループ(1985) 長野盆 地北部における中部更新統,日本第四紀学 会講演要旨集, no. 15, p. 104-105.
- 早津賢二·新井房夫(1980) 妙高火山群テフラ地域 の第四紀テフラ層―示標テフラ層の記載お よび火山活動との関係―.地質雑, vol. 86, p. 243-263.
- -----・(1981) 信濃川中流域における
 テフラ層と段丘形成年代.地質雑, vol.
 87, p. 791-805.
- 飯島南海夫・塩川グループ(1967) 東北信州におけ るローム層の問題点、第四紀, no. 11, p.

39-49.

- 飯島南海夫·斎藤 豊(1968) 更埴地方のローム 層.更級埴科地方誌第1巻自然編,p. 106-113.
- 加藤碵一・佐藤岱生(1983) 信濃池田地域の地質. 地域地質研究報告(5万分の1図幅),地質 調査所,93 p.
- 木村純一(1985) 中部地方における上部更新統一と くに火山灰層序について.日本第四紀学会 講演要旨集, no. 15, p. 5-8.
- 小林国夫(1967) 信州ロームと第四紀編年の現状. 第四紀, no. 11, p. 3-14.
- ・清水英樹・北沢和夫(1969) 信州ローム
 と第四紀後期編年.日本の第四系,地団研
 専報, no. 15, p. 224-236.
- 小林武彦(1975) 大町テフラ層と立山火山構成物と の関係. 日本第四紀学会講演要旨集, no. 4, p. 3.
- 小疇 尚・杉原重夫・清水文健・宇都宮陽二朗・岩 田修二・田沢修一(1974) 白馬岳の地形学 的研究. 駿台史学, vol. 35, p. 1-86.
- 小池一之・岩崎孝明・檀原 徹・百瀬 貢(1985) 下野火山灰下部層のフィッション・トラッ ク年代とその地史的意義. 駒沢地理, 第21 号, p. 39-56.
- 町田 洋(1977) 示標テフラ層の層序・編年.日本 第四紀学会編,日本の第四紀研究,東大出 版会,p.373.
- (1979) 松本砂防のあゆみ―信濃川上流直
 轄砂防百年史― 第1編 信濃川上流と姫
 川の自然と歴史.建設省北陸地方建設局松
 本砂防工事事務所, p. 1-77.
- ・新井房夫(1979) 大山倉吉軽石層一分布
 の広域性と第四紀編年上の意義.地学雑,
 vol. 88, p. 313-330.
- 松本盆地団体研究グループ(1972) 松本盆地の第四 紀地質の概観一松本盆地の形成過程に関す る研究(1). 地質学論集, no. 7, p. 297-304.
- (1977) 松本盆地の第四紀地質一松本盆地の形成過程に関する研究(3). 地質学論集,
 no. 14, p. 93-102.
- 中谷 進(1972) 大町テフラ層とテフラクロノロジ -. 第四紀研究, vol. 11, p. 305-317.
- 新潟火山灰グループ(1981) 新潟県下のローム層に ついて その1一信濃川ローム層について

大町テフラ層下部層に挾まれるクリスタル・アッシュのフィッション・トラック年代(加藤碵一・檀原 徹)

一. 地球科学, vol. 35, p. 294-311.

- 仁科良夫(1982) クリスタル・アッシュの分布と起 源をもとめて. 信濃教育第1140号, p. 1-9.
- 塩川団研グループ(1970) 八ヶ岳東麓のローム層, 第24回地団研総会討論会資料集, p. 51-56
- SUZUKI, M. (1984) Discussion on terminology, anisotropy, and interprocedural cross-checks fission track ages of zircon. Bull. Geol. Soc. Japan, vol. 90, p. 551-563.

山田直利·加藤磌一·小野晃司·岩田 修(1985) (受付:1986年11月12日;受理:1987年3月13日)

北アルプス周辺地域の鮮新世―更新世珪長 質火山岩類の K-Ar 年代. 地調月報, vol. 36, p. 539-549.

- 八ヶ岳団体研究グループ(1977) 八ヶ岳火山東麓の 中部洪積統. 地質学論集, no. 14, p. 103-125.
- 横山卓雄・檀原 徹・中川要之助(1984) 大阪府南 部地域の第四系・第三系中の火山灰層のフ ィッション・トラック年代. 地質雑, vol. 90, p. 781-798.