誘導結合プラズマ発光分析法による岩石中の多元素同時定量

今井 登*

IMAI, N. (1986) Multielement determination of rocks by inductively coupled plasma emission spectrometry. Bull. Geol. Surv. Japan, vol. 37 (10), p. 515-523.

Abstract: A simple and rapid method for the determination of eighteen elements (Fe, Mn, Ca, Mg, Na, K, Al, Ti, P, Ba, Co, Cr, Cu, Ni, Pb, Sr, V, Zn) in silicate rocks by inductively coupled plasma-atomic emission spectrometry was studied.

The silicate samples were decomposed in teflon beakers with the mixed acids of HNO_8 , $HClO_4$, and HF. The decomposed samples were evaporated to dryness on a hot plate and dissolved by (1+1) HCl.

Operating conditions of ICP spectrometer were determined experimentally. For the analysis of minor elements the spectral interferences from coexisting major elements were measured and corrected using interference coeffecient for each element. GSJ geochemical reference rocks were analysed for the eighteen elements. Analytical results were in good agreement with recommended values and analytical precisions were within 3% (CV) in most cases.

1. 緒 言

誘導結合プラズマ (ICP) 発光分析法は高感度で干渉が 少なく,多数の元素を同時に定量できるというすぐれた 特性を持つ.特に定量できるダイナミックレンジが広い ため,主成分から微量成分まで存在度が大きく異なる多 数の元素を一度に分析する場合は特に利用価値が高い.

本研究では地球化学図作成のための作業のように多数 の試料を迅速に分析する場合の基礎的条件を検討するた め,試料の分解法及び測定における最適条件を求め,地 質調査所より発行されている8個の標準岩石の主成分か ら微量成分までの18元素の同時定量を行い,その精度, 信頼性,迅速性を確かめた.従来のICPによるケイ酸 塩岩石の分析の研究に比べて本研究で用いた装置は分解 能が大きく向上しており,従って干渉が非常に少なく正 確な分析値が得られた.また特に微量元素を分析する場 合の主成分からの干渉について詳細に検討を行い,バッ クグランド補正の位置を適切に選ぶことにより,多くの 場合干渉が除けることを示した.

2. 実 験

2.1 装置と測定条件

ICP 発光分析装置は逐次波長走査型のセイコー電子

工業社製 SPS-1200 を用いた.分光器は焦点距離 1 m のツェルニターナ型のモノクロメーターに刻線数 3600 本/mm の回折格子を使用した.測定条件を第1表に示 し,第2表に本実験で用いた分析波長を示した.測定条 件は後述するような種々の条件を考慮して決定し,分析 波長は SB(シグナル / バックグランド)比と分光干渉を 考慮して決定した.例えば Ca と Mg は感度が高すぎて 測定レンジに入らないため感度の低い分析線を用いた. また Na と K は分光器の測定可能範囲(190-500 nm)に 入るように分析線を決定した.他の元素は SB 比が最高 で干渉の小さい分析線を選んだ.

2.2 試 薬

和光純薬製原子吸光分析用金属標準液(1000ppm)を希 釈して用いた.リンの1000 ppmの標準溶液はリン酸二

第1表	測定条件
Operating	g conditions

Frequency	27. 12 MHz
Power	1.3 kW
Ar flow rate	
Coolant gas	16 <i>l</i> /min
Auxiliary gas	0.5 <i>l</i> /min
Carrier gas	0. 55 <i>l</i> /min
Observation height	10 mm

* 技術部

- 515 -

アンモニウム(関東化学製特級)0.462g を水に溶かして 100 ml として作成した. 塩酸,硝酸, 過塩素酸, フッ化 水素酸は試薬特級を用いた.

2.3 試料の分解法

岩石の分解法としては、各種の酸の組合せによる酸分 解法(原口ほか、1985)とアルカリ溶融法(FLOYD et al., 1980)およびテフロン密封容器による分解法がある(内田 ほか、1984).アルカリ溶融法は分解液中の高濃度の塩 類が、測定においてネブライザーの目づまりや溶液の粘 度の変化等の大きな影響を与えることが多く注意が必要 である.一方テフロン密封容器による分解法は迅速性に 欠け多数の試料処理には不便である.簡便で迅速な分析 法とするために、ここでは硝酸一過塩素酸-フッ化水素 酸を用いる酸分解法を検討した.

後述の測定値に対する酸濃度の影響を考慮し,試料の 分解手順は以下のように設定した.

試料 0.2g をテフロンビーカーにとり, 硝酸 4 ml, 過 塩素酸 3 ml, フッ化水素酸 5 ml を加える. 30 分以上静 置した後ホットプレート上(200°C 以下)で加熱分解し蒸 発乾固する. (1+1)塩酸 6 ml を加えて加温溶解しメス フラスコに移し入れ, 水で 100 ml に定容する.

結果と考察

3.1 ICP プラズマの安定性

プラズマの点灯後,目的元素の波長および強度が安定 するまでには一定の時間が必要である.ここでは Zn の 213.856 nm の分析線について点灯後波長と強度の経時 変化を測定し,第1図に示した.波長は一定方向にドリ フトし安定するまでに最低 30 分以上必要であった.強 度については大きな変動は見られなかった.

3.2 酸の影響

ICP では11/min 以下のキャリヤーガス流量で微細な 霧を作るため非常に細い毛細管と噴出間隙(0.3 mm)の ネブライザーを用いる.従って試料の吸い上げ量は溶液 の粘性によって大きな影響を受け、プラズマ中に導入さ れる元素の量が変化し発光強度も大きく変わることが知 られている (GREENFIELD et al., 1976; 高橋・村山, 1983). 溶液の粘性を変える要因の一つに酸の濃度差が考えられ る. 第2図に Cr の 267.716 nm の分析線について, 塩 酸,硝酸,過塩素酸,硫酸の4種類の酸の濃度を変えた 時の強度変化を示す. この図から明らかなように酸の濃 度が大きくなると強度は急激に下がり,6N付近では60-70%になる. 4種類の中では硫酸を用いた時の強度の低 下が一番大きく、硫酸を用いる場合や他の酸でも高濃度 で用いる場合は、標準と実際の試料で酸の濃度を正確に 合わせることが重要となる.本研究で設定した濃度は塩 酸 0.36N である.

3.3 測光高さ位置

分析を行う時に ICP プラズマ中で最も分析に適当な 位置が各元素ごとに存在する (BOUMANS and BOER, 1972;不破・原口, 1980).その最適位置を知るために 各元素ごとの ICP プラズマの縦方向の強度分布と SB 比を測定し,第3図と第4図に示した.強度分布につい ては明瞭な最大値が 5-10 mm に存在するのが Fe, Pb,

第2図 酸の影響 Effect of the concentration of four acids on line intensity.

Observation heigt, mm

第3図 測光高さ位置による発光強度の変化 Spectral line intensities for Fe, Mg and Al as a function of observation height above coil.

P, Ni, Mn, Cr, Ca, Ti, V, Sr, Co, Zn である. これに対し て高さが上がるにつれてなだらかに強度が低下するのが Mg, Cu, Ba であり, 急激に低下するのが Al, Na, K で ある. しかしながら強度が最大の位置が必ずしも分析に 最適な位置とは限らない. それは強度の変化とともにバ ックグランドも変化するからで,実際はこの信号とバッ クグランドの比が最適な位置を考える上で重要となる

Observation heigt, mm

(平田, 1984). 第4図に示したのがSB比の縦方向の分 布で, 10-20 mmの広い範囲で最大を示すのがCa,V, Co,Fe,Cr,Mn,Mg,Na,Tiであり,5-10 mmの低い位 置で最大となるのがP,Pb,Zn,Niである. 一方最大値 を示さず右上りの曲線となるのがAl,Sr,Cu,Ba,Kで 高さが高いほどSB比がよくなる. これらの実験結果を 総合的に勘案し,共通的最適測光位置として10 mmを 実際の分析に採用した.

3.4 ガス流量の影響

ICP で用いられるアルゴンガスには3 種類あり,それ らはその流路によってプラズマを生成する冷却ガス,プ ラズマを浮き上がらせる補助ガス,及び試料を導入する キャリヤーガスである.ここではそれぞれのガスについ て信号の強度と SB 比におよぼす流量の影響を検討した. 第5 図に冷却ガスの流量を 151 から 181 まで変化させ た時の Fe の 259.940 nm の分析線の強度と SB 比を示 したが,これによって冷却ガスの流量はスペクトル線の 強度や SB 比にほとんど影響を与えないことがわかった. 次に第6 図に補助ガスの流量を変化させた場合を示すが, ここでも補助ガスの流量は強度とSB比に大きく影響しないことがわかる.しかしながら第7図に示したように キャリヤーガスの流量を変化させると信号強度とSB比 は大きく変化する.ここでキャリヤーガスの流量が大き くなると最大強度はフレーム上方にずれ,SB比は著し く向上することがわかるが,流量を増加させるとプラズ マが不安定になることもあり,本研究ではSB比とプラ ズマの安定性を考慮して冷却ガス 16*l*,補助ガス 0.5*l*, キャリヤーガス 0.55*l* とした.

3.5 高周波電力

第8図に高周波電力を変えた時の Fe の分析線の強度 とSB 比の分布を示す.ここで高周波電力の増大ととも

第5図 冷却ガス流量の変化と発光強度および SB 比の分布 Effect of flow rate of coolant gas on line intensity and SB ratio.

第8図 高周波電力の変化と発光強度および SB 比の分布 Effect of incident power on line intensity and SB ratio.

に強度は増大してゆくが、この時バックグランドの強度 も同時に増加するために SB 比は逆に低下する. 従って 検出限界のみを考えると高周波電力は低い方がよいこと になるがプラズマは不安定になるため、本研究ではこれ を 1.3 KW に設定した.

3.6 検出限界

第2表に示した分析線を用いた場合にバックグランド の標準偏差の3倍の強度を示す濃度として計算した検出 限界を第3表に示した.この表から明らかなようにICP で感度のよい元素は Mn, Ba, Sr であり, 0.1 ng/ml 程度 の検出限界を示す.逆に Na と K の検出限界は 1000 ng/ml 以上であるが,これは Na と K のピークがブロ ードで感度がもともと低い上に、最適分析線が Na 588.99 nm, K 766.5 nm と分光器の測定可能範囲にないことによっている.しかしながら通常の地質試料ではNaとKは主成分として高濃度で存在するため定量は十分に可能である.第4表には0.2gの試料を100 ml に希釈した場合の元の岩石中での検出限界を示した.この表からほとんどの元素の検出限界が1ppmかそれ以下であることがわかる.

3.7 分光干渉の補正

通常ケイ酸塩岩石は主成分として Fe, Al, Mg, Ca, Na, K, Ti を含有するため、微量成分の分析ではこれら の主成分による分光干渉が問題となる。その一例として 第9 図に Zn の 213.856 nm の分析線に対する Fe と Ti の干渉を示した。Ti のピークは Zn とほぼ完全に分離

地質調查所月報(第37卷第10号)

第2表 使用した波長 Wavelengths used for ICP analysis.

第4表	0.2gの試料を100mlに希釈
	した場合の検出限界
	D · · · · · · · · · · · · · · · · · · ·

Detection limits for 0.2 gsample diluted to 100 mlfinal volume.

Eleme	ent	Wavelength/nm
Fe	П	259.940
Mn	п	257.610
Ca	п	317.933
Mg	п	285. 213
Na	I	330. 237
K	I	404.706
A1	I	396, 152
Ti	п	334.941
Р	I	213.618
Ba	п	455. 403
Co	п	230.786
Cr	п	267.716
Cu	I	324.754
Ni	п	231.604
Pb	п	220. 353
Sr	п	407.771
v	п	292.402
Zn	I	213. 856
T . Out		- +1

I : Originated from the neutral atom.

II : Originated from the singly ionized state.

第3表	検出限界
Detectio	on limits.

· · · · · · · · · · · · · · · · · · ·	
Element	Detection limits/ng ml ⁻¹
Fe	0.41
Mn	0.10
Ca	1.15
Mg	0. 32
Na	1280
K	4270
Al	3. 53
Ti	0.47
Р	21.35
Ba	0.14
Co	2.82
Cr	0.52
Cu	1.13
Ni	2.69
Pb	2.43
Sr	0.03
V	0.44
Zn	0. 82

Element	Detection limits/ppm
Fe	0. 21
Mn	0.05
Ca	0. 58
Mg	0.16
Na	0.11*
K	0. 43*
A1	1.80
Ti	0.24
Р	10.7
Ba	0.07
Co	1.41
Cr	0.26
Cu	0. 57
Ni	1.35
Pb	1.22
Sr	0.02
V	0. 22
Zn	0.41

* Figures are expressed in %

第9図 Zn 213.856 nm に対する Fe と Ti の干渉 Interference of Fe and Ti in Zn 213.856 nm line.

されており干渉とはならないが、ここで重要なのは Zn の低波長側のバックグランドの位置を Ti のピークを避 けてとることであり、これを誤ると大きな誤差の原因と なる. 一方 Fe のピークは Zn の分析線と完全に重っ ており分離して観測することは不可能である. このよう

Flomont			Ma	jor eleme	nts		
istement	Fe	Al	Mg	Ca	Na	K	Ti
Mn	0.034	0.001	0.009	0.001	0	0	0.019
Р	0.007	0.015	0.027	0.039	0.027	0.021	0
Ba	0	0	0.001	0.019	0.007	0.004	0
Co	0. 033	0	0	0	0	0	0
Cr	0	0,003	0.005	0	0	0	0.096
Cu	0	0.012	0	0	0	0	0
Ni	0.060	0, 008	0.005	0.002	0	0	0.093
Pb	0	0	0.006	0.011	0.005	0.007	0
Sr	0	0	0.006	0.411	0.004	0	0.001
V	0.009	0	0.001	0	0.001	0,001	0, 282
Zn	0.071	0.005	0	0.007	0	0.001	0

第5表 主成分による干渉 Interference factors due to major elements.

な分光干渉の程度を見積り補正するために,各主成分が 測定しようとする微量元素の分析波長位置で与える分光 干渉量を干渉補正係数として求めた(OKAMOTO et al., 1982; TAO et al., 1983). 算出方法は 1000 ppm の主成 分の標準溶液を噴霧し,目的とする微量元素の分析波長 位置での強度を測定し,これを微量元素の検量線により 濃度に換算した(平田, 1984). 第5表にこうして求めた 干渉補正係数を示した.各係数は目的元素濃度に換算し た値を主成分濃度で割った値で示してある.第 10 図に に主成分濃度とそれによって生ずる干渉量との関係を示 した.両者は比例関係にあり,この直線の勾配が干渉補 正係数である.第 10 図で大きな干渉値を示すのは Fe と Ti であり,この両元素が高濃度で含まれる試料は注

意が必要である. ここで Sr に対する Ca の干渉は分光 干渉というよりは使用した Ca の標準液に含まれる分離 困難の不純物としての Sr によると考えられるため(佐 藤・坂田, 1985)補正計算には含めなかった.

3.8 標準岩石の分析

本法により地質調査所発行の8個の標準岩石を分析し その結果を第6表に示した.検量線は標準とブランクの 2点検量線を用いたが,第11図に Mn と Sr の検量線 の例を示したように, ICP では 1-5 桁の広い濃度範囲 で良好な直線関係が成り立つため,この方法が妥当であ

Calibration curves of Mn and Sr.

-521 -

Log intensity

地質調査所月報(第37巻第10号)

第6表 標準岩石の分析結果

Analitical results for standard reference rocks.

	IC-1		TR_1	TB_9	IB-3
Element	This work	Ref.	This work Ref.	This work Ref.	This work Ref.
Al ₂ O ₃	14.02 ± 0.51	14.20	14.17±0.33 14.53	14.55 ± 0.58 14.67	17.23 ± 0.80 16.89
Fe ₂ O ₃ T	2.09 ± 0.05	2.14	8.87±0.09 8.97	15.02 ± 0.56 14.34	12.16 ± 0.16 11.88
MnO	0.065 ± 0.002	0,063	0.15 ± 0.004 0.16	0.21 ± 0.004 0.20	0.18 ± 0.004 0.16
MgO	0.74 ± 0.04	0.74	7.35 ± 0.20 7.73	4.59 ± 0.17 4.66	5.17 ± 0.14 5.20
CaO	2.16 ± 0.08	2.18	9.19 ± 0.07 9.29	9.69 ± 0.34 9.89	9.77±0.12 9.86
Na ₂ O	3.24 ± 0.09	3, 39	2.49 ± 0.09 2.79	1.93 ± 0.12 2.03	2.62 ± 0.09 2.82
K ₂ O	4.08 ± 0.29	3.95	1.25 ± 0.60 1.42	0.39 ± 0.14 0.43	0.83 ± 0.24 0.80
TiO ₂	0.24 ± 0.004	0.26	1.22 ± 0.02 1.34	1.08 ± 0.04 1.19	1.33 ± 0.04 1.45
P_2O_5	0.088 ± 0.003	0.097	0.26 ± 0.002 0.26	0.092 ± 0.002 0.10	0.30 ± 0.002 0.29
Ba	452 ± 17	462	$468 \pm 11 490$	$215 \pm 13 208$	212 ± 25
Co	2.2 ± 0.9	4	$32.2 \pm 1.1 \qquad 38.4$	$30.9 \pm 0.8 40$	$30.4 \pm 1.2 37$
Cr	54.9 ± 7.1	50	$383 \pm 14 405$	29.8 ± 1.0 28	62.0 ± 2.3
Cu	1	1.5	50.5 ± 2.0 56	$218 \pm 6 230$	$188 \pm 7 197$
Ni	2.5 ± 2.2	6	$123 \pm 2 139$	5.3 ± 0.7 14.6	$24.5 \pm 1.5 38.5$
Pb	20.8 ± 1.7	26.2	3.5 ± 5.5 7.1	3.5 ± 1.7 5.5	$3.0 \pm 1.9 5.8$
Sr	187 ± 6	184	$439 \pm 8 435$	$173 \pm 7 173$	$399 \pm 19 395$
v	23.8 ± 0.8	24	$210 \pm 2 211$	$589 \pm 17 540$	393 ± 21
Zn	41.4 ± 0.2	41	83.7 ± 0.8 84	$105 \pm 3 106$	$103 \pm 4 103$
Flomont	JA–1		JGb–1	JR–1	JR-2
Element	JA–1 This work	Ref.	JGb–1 This work Ref.	JR-1 This work Ref.	JR-2 This work Ref.
Element Al ₂ O ₃	JA-1 This work 15.24±0.52	Ref. 14.98	JGb-1 This work Ref. 17.89±0.46 17.66	JR-1 This work Ref. 12.76±0.32 12.89	JR-2 This work Ref. 12.62±0.33 12.83
Element Al ₂ O ₃ Fe ₂ O ₃ T	JA-1 This work 15.24±0.52 6.96±0.12	Ref. 14. 98 6. 95	JGb-1 This work Ref. 17.89±0.46 17.66 15.03±0.38 15.16	JR-1 This work Ref. 12.76±0.32 12.89 0.86±0.01 0.90	JR-2 This work Ref. 12.62±0.33 12.83 0.73±0.01 0.86
Element Al2O3 Fe2O3T MnO	$JA-1$ This work 15.24 ± 0.52 6.96 ± 0.12 0.15 ± 0.004	Ref. 14.98 6.95 0.15	JGb-1 This work Ref. 17.89±0.46 17.66 15.03±0.38 15.16 0.18±0.003 0.17	$\begin{array}{c c} JR-1 \\ \hline This work & Ref. \\ 12.76 \pm 0.32 & 12.89 \\ 0.86 \pm 0.01 & 0.90 \\ 0.099 \pm 0.002 & 0.10 \\ \end{array}$	JR-2 This work Ref. 12.62±0.33 12.83 0.73±0.01 0.86 0.11±0.003 0.11
Element Al ₂ O ₃ Fe ₂ O ₃ T MnO MgO	JA-1 This work 15. 24 \pm 0. 52 6. 96 \pm 0. 12 0. 15 \pm 0. 004 1. 51 \pm 0. 03	Ref. 14.98 6.95 0.15 1.61	$\begin{array}{c c} JGb-1 \\ \hline This work \\ Ref. \\ 17.89 \pm 0.46 \\ 15.03 \pm 0.38 \\ 15.16 \\ 0.18 \pm 0.003 \\ 0.17 \\ 7.96 \pm 0.17 \\ 7.83 \end{array}$	$\begin{array}{c c} JR-1 \\ \hline This work & Ref. \\ \hline 12.76 \pm 0.32 & 12.89 \\ 0.86 \pm 0.01 & 0.90 \\ 0.099 \pm 0.002 & 0.10 \\ 0.13 \pm 0.001 & 0.09 \\ \end{array}$	$\begin{array}{c c} JR-2 \\ \hline This work & Ref. \\ \hline 12.62 \pm 0.33 & 12.83 \\ 0.73 \pm 0.01 & 0.86 \\ 0.11 \pm 0.003 & 0.11 \\ 0.041 \pm 0.001 & 0.05 \\ \end{array}$
Element Al ₂ O ₃ Fe ₂ O ₃ T MnO MgO CaO	$\begin{array}{c} JA-1 \\ This work \\ 15.24\pm 0.52 \\ 6.96\pm 0.12 \\ 0.15\pm 0.004 \\ 1.51\pm 0.03 \\ 5.59\pm 0.15 \end{array}$	Ref. 14. 98 6. 95 0. 15 1. 61 5. 68	JGb-1 This work Ref. 17.89±0.46 17.66 15.03±0.38 15.16 0.18±0.003 0.17 7.96±0.17 7.83 11.76±0.36 11.98	$\begin{array}{c c} JR-1 \\ This work & Ref. \\ \hline 12.76 \pm 0.32 & 12.89 \\ 0.86 \pm 0.01 & 0.90 \\ 0.099 \pm 0.002 & 0.10 \\ 0.13 \pm 0.001 & 0.09 \\ 0.69 \pm 0.02 & 0.63 \\ \end{array}$	JR-2This workRef. 12.62 ± 0.33 12.83 0.73 ± 0.01 0.86 0.11 ± 0.003 0.11 0.041 ± 0.001 0.05 0.53 ± 0.02 0.45
Element Al ₂ O ₃ Fe ₂ O ₃ T MnO MgO CaO Na ₂ O	$\begin{array}{c} JA-1 \\ This work \\ 15.24\pm 0.52 \\ 6.96\pm 0.12 \\ 0.15\pm 0.004 \\ 1.51\pm 0.03 \\ 5.59\pm 0.15 \\ 3.72\pm 0.08 \end{array}$	Ref. 14. 98 6. 95 0. 15 1. 61 5. 68 3. 86	JGb-1This workRef. 17.89 ± 0.46 17.66 15.03 ± 0.38 15.16 0.18 ± 0.003 0.17 7.96 ± 0.17 7.83 11.76 ± 0.36 11.98 1.09 ± 0.05 1.23	$\begin{array}{c c} JR-1 \\ \hline This work & Ref. \\ \hline 12.76 \pm 0.32 & 12.89 \\ 0.86 \pm 0.01 & 0.90 \\ 0.099 \pm 0.002 & 0.10 \\ 0.13 \pm 0.001 & 0.09 \\ 0.69 \pm 0.02 & 0.63 \\ 3.87 \pm 0.09 & 4.10 \\ \end{array}$	$\begin{array}{c c} JR-2 \\ This work & Ref. \\ \hline 12.62 \pm 0.33 & 12.83 \\ 0.73 \pm 0.01 & 0.86 \\ 0.11 \pm 0.003 & 0.11 \\ 0.041 \pm 0.001 & 0.05 \\ 0.53 \pm 0.02 & 0.45 \\ 3.88 \pm 0.09 & 4.03 \\ \end{array}$
Element Al ₂ O ₃ Fe ₂ O ₃ T MnO MgO CaO Na ₂ O K ₂ O	$\begin{array}{c} JA-1 \\ This work \\ 15.24\pm 0.52 \\ 6.96\pm 0.12 \\ 0.15\pm 0.004 \\ 1.51\pm 0.03 \\ 5.59\pm 0.15 \\ 3.72\pm 0.08 \\ 0.58\pm 0.13 \end{array}$	Ref. 14. 98 6. 95 0. 15 1. 61 5. 68 3. 86 0. 82	$\begin{array}{c c} JGb-1 \\ \hline This work \\ Ref. \\ \hline 17.89 \pm 0.46 \\ 15.03 \pm 0.38 \\ 15.16 \\ 0.18 \pm 0.003 \\ 0.17 \\ 7.96 \pm 0.17 \\ 7.96 \pm 0.17 \\ 7.83 \\ 11.76 \pm 0.36 \\ 11.98 \\ 1.09 \pm 0.05 \\ 1.23 \\ < 0.4 \\ 0.26 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} JR-2 \\ \hline This work & Ref. \\ \hline 12.62\pm0.33 & 12.83 \\ 0.73\pm0.01 & 0.86 \\ 0.11\pm0.003 & 0.11 \\ 0.041\pm0.001 & 0.05 \\ 0.53\pm0.02 & 0.45 \\ 3.88\pm0.09 & 4.03 \\ 4.22\pm0.62 & 4.48 \\ \end{array}$
Element Al_2O_3 Fe_2O_3T MnO MgO CaO Na_2O K_2O TiO_2	$\begin{array}{c} JA-1 \\ This work \\ 15.24\pm 0.52 \\ 6.96\pm 0.12 \\ 0.15\pm 0.004 \\ 1.51\pm 0.03 \\ 5.59\pm 0.15 \\ 3.72\pm 0.08 \\ 0.58\pm 0.13 \\ 0.79\pm 0.01 \end{array}$	Ref. 14. 98 6. 95 0. 15 1. 61 5. 68 3. 86 0. 82 0. 87	$\begin{array}{c c} JGb-1 \\ This work \\ Ref. \\ \hline 17.89 \pm 0.46 \\ 15.03 \pm 0.38 \\ 15.16 \\ 0.18 \pm 0.003 \\ 0.17 \\ 7.96 \pm 0.17 \\ 7.83 \\ 11.76 \pm 0.36 \\ 11.98 \\ 1.09 \pm 0.05 \\ 1.23 \\ < 0.4 \\ 0.26 \\ 1.53 \pm 0.03 \\ 1.62 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} JR-2 \\ This work & Ref. \\ \hline 12.62\pm0.33 & 12.83 \\ 0.73\pm0.01 & 0.86 \\ 0.11\pm0.003 & 0.11 \\ 0.041\pm0.001 & 0.05 \\ 0.53\pm0.02 & 0.45 \\ 3.88\pm0.09 & 4.03 \\ 4.22\pm0.62 & 4.48 \\ 0.058\pm0.01 & 0.09 \\ \end{array}$
Element Al_2O_3 Fe_2O_3T MnO MgO CaO Na_2O K_2O TiO_2 P_2O_5	$\begin{array}{c} JA-1 \\ This work \\ 15.24\pm 0.52 \\ 6.96\pm 0.12 \\ 0.15\pm 0.004 \\ 1.51\pm 0.03 \\ 5.59\pm 0.15 \\ 3.72\pm 0.08 \\ 0.58\pm 0.13 \\ 0.79\pm 0.01 \\ 0.16\pm 0.002 \end{array}$	Ref. 14. 98 6. 95 0. 15 1. 61 5. 68 3. 86 0. 82 0. 87 0. 16	JGb-1This workRef.17.89 \pm 0.4617.6615.03 \pm 0.3815.160.18 \pm 0.0030.177.96 \pm 0.177.8311.76 \pm 0.3611.981.09 \pm 0.051.23<0.4	$\begin{array}{c c} JR-1 \\ \hline This work & Ref. \\ \hline 12.76 \pm 0.32 & 12.89 \\ 0.86 \pm 0.01 & 0.90 \\ 0.099 \pm 0.002 & 0.10 \\ 0.13 \pm 0.001 & 0.09 \\ 0.69 \pm 0.02 & 0.63 \\ 3.87 \pm 0.09 & 4.10 \\ 4.42 \pm 0.82 & 4.44 \\ 0.10 \pm 0.001 & 0.10 \\ 0.012 \pm 0.004 & 0.02 \\ \end{array}$	$\begin{array}{c c} JR-2 \\ This work & Ref. \\ \hline 12.62\pm0.33 & 12.83 \\ 0.73\pm0.01 & 0.86 \\ 0.11\pm0.003 & 0.11 \\ 0.041\pm0.001 & 0.05 \\ 0.53\pm0.02 & 0.45 \\ 3.88\pm0.09 & 4.03 \\ 4.22\pm0.62 & 4.48 \\ 0.058\pm0.01 & 0.09 \\ 0.005\pm0.0003 & 0.01 \\ \end{array}$
Element Al ₂ O ₃ Fe_2O_3T MnO MgO CaO Na ₂ O K ₂ O TiO ₂ P_2O_5 Ba	$\begin{array}{c c} JA-1 \\ This work \\ \hline 15.24 \pm 0.52 \\ 6.96 \pm 0.12 \\ 0.15 \pm 0.004 \\ 1.51 \pm 0.03 \\ 5.59 \pm 0.15 \\ 3.72 \pm 0.08 \\ 0.58 \pm 0.13 \\ 0.79 \pm 0.01 \\ 0.16 \pm 0.002 \\ 282 \\ \pm 4 \end{array}$	Ref. 14. 98 6. 95 0. 15 1. 61 5. 68 3. 86 0. 82 0. 87 0. 16 307	JGb-1This workRef.17.89 \pm 0.4617.6615.03 \pm 0.3815.160.18 \pm 0.0030.177.96 \pm 0.177.8311.76 \pm 0.3611.981.09 \pm 0.051.23<0.4	$\begin{array}{c c} JR-1 \\ \hline This work & Ref. \\ \hline 12.76 \pm 0.32 & 12.89 \\ 0.86 \pm 0.01 & 0.90 \\ 0.099 \pm 0.002 & 0.10 \\ 0.13 \pm 0.001 & 0.09 \\ 0.69 \pm 0.02 & 0.63 \\ 3.87 \pm 0.09 & 4.10 \\ 4.42 \pm 0.82 & 4.44 \\ 0.10 \pm 0.001 & 0.10 \\ 0.012 \pm 0.004 & 0.02 \\ 45.6 \pm 1.0 & 40 \\ \end{array}$	$\begin{array}{c c} JR-2 \\ This work & Ref. \\ \hline 12.62 \pm 0.33 & 12.83 \\ 0.73 \pm 0.01 & 0.86 \\ 0.11 \pm 0.003 & 0.11 \\ 0.041 \pm 0.001 & 0.05 \\ 0.53 \pm 0.02 & 0.45 \\ 3.88 \pm 0.09 & 4.03 \\ 4.22 \pm 0.62 & 4.48 \\ 0.058 \pm 0.01 & 0.09 \\ 0.005 \pm 0.0003 & 0.01 \\ 27.7 \pm 0.4 & 27.3 \\ \end{array}$
Element Al_2O_3 Fe_2O_3T MnO MgO CaO Na_2O K_2O TiO_2 P_2O_5 Ba Co	$\begin{array}{c c} JA-1 \\ This work \\ \hline 15.24\pm 0.52 \\ 6.96\pm 0.12 \\ 0.15\pm 0.004 \\ 1.51\pm 0.03 \\ 5.59\pm 0.15 \\ 3.72\pm 0.08 \\ 0.58\pm 0.13 \\ 0.79\pm 0.01 \\ 0.16\pm 0.002 \\ 282 \pm 4 \\ 8.1 \pm 1.0 \end{array}$	Ref. 14. 98 6. 95 0. 15 1. 61 5. 68 3. 86 0. 82 0. 87 0. 16 307 12	$\begin{array}{c c} JGb-1 \\ \hline This work & Ref. \\ \hline 17.89 \pm 0.46 & 17.66 \\ 15.03 \pm 0.38 & 15.16 \\ 0.18 \pm 0.003 & 0.17 \\ 7.96 \pm 0.17 & 7.83 \\ 11.76 \pm 0.36 & 11.98 \\ 1.09 \pm 0.05 & 1.23 \\ <0.4 & 0.26 \\ 1.53 \pm 0.03 & 1.62 \\ 0.047 \pm 0.002 & 0.05 \\ 59.1 \pm 0.8 \\ 53.4 \pm 1.0 & 62 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Element Al_2O_3 Fe_2O_3T MnO MgO CaO Na_2O K_2O TiO_2 P_2O_5 Ba Co Cr	$\begin{array}{c} JA-1 \\ This work \\ 15.24\pm 0.52 \\ 6.96\pm 0.12 \\ 0.15\pm 0.004 \\ 1.51\pm 0.03 \\ 5.59\pm 0.15 \\ 3.72\pm 0.08 \\ 0.58\pm 0.13 \\ 0.79\pm 0.01 \\ 0.16\pm 0.002 \\ 282 \pm 4 \\ 8.1 \pm 1.0 \\ 8.3 \pm 3.1 \end{array}$	Ref. 14. 98 6. 95 0. 15 1. 61 5. 68 3. 86 0. 82 0. 87 0. 16 307 12 6	JGb-1This workRef.17.89 \pm 0.4617.6615.03 \pm 0.3815.160.18 \pm 0.0030.177.96 \pm 0.177.8311.76 \pm 0.3611.981.09 \pm 0.051.23<0.4	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Element Al_2O_3 Fe_2O_3T MnO MgO CaO Na_2O K_2O TiO_2 P_2O_5 Ba Co Cr Cu	$\begin{array}{c c} JA-1 \\ This work \\ \hline 15.24\pm 0.52 \\ 6.96\pm 0.12 \\ 0.15\pm 0.004 \\ 1.51\pm 0.03 \\ 5.59\pm 0.15 \\ 3.72\pm 0.08 \\ 0.58\pm 0.13 \\ 0.79\pm 0.01 \\ 0.16\pm 0.002 \\ 282 \pm 4 \\ 8.1 \pm 1.0 \\ 8.3 \pm 3.1 \\ 36.5 \pm 1.8 \\ \end{array}$	Ref. 14. 98 6. 95 0. 15 1. 61 5. 68 3. 86 0. 82 0. 87 0. 16 307 12 6 41. 7	JGb-1This workRef.17.89 \pm 0.4617.6615.03 \pm 0.3815.160.18 \pm 0.0030.177.96 \pm 0.177.8311.76 \pm 0.3611.981.09 \pm 0.051.23<0.4	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} JR-2 \\ This work & Ref. \\ \hline 12.62 \pm 0.33 & 12.83 \\ 0.73 \pm 0.01 & 0.86 \\ 0.11 \pm 0.003 & 0.11 \\ 0.041 \pm 0.001 & 0.05 \\ 0.53 \pm 0.02 & 0.45 \\ 3.88 \pm 0.09 & 4.03 \\ 4.22 \pm 0.62 & 4.48 \\ 0.058 \pm 0.01 & 0.09 \\ 0.005 \pm 0.0003 & 0.01 \\ 27.7 \pm 0.4 & 27.3 \\ <1 & 0.4 \\ 9.4 \pm 0.9 \\ 0.8 \pm 1.0 & 1.5 \\ \end{array}$
Element Al ₂ O ₃ Fe ₂ O ₃ T MnO MgO CaO Na ₂ O K ₂ O TiO ₂ P ₂ O ₅ Ba Co Cr Cu Ni	$\begin{array}{c c} JA-1 \\ This work \\ \hline 15.24\pm 0.52 \\ 6.96\pm 0.12 \\ 0.15\pm 0.004 \\ 1.51\pm 0.03 \\ 5.59\pm 0.15 \\ 3.72\pm 0.08 \\ 0.58\pm 0.13 \\ 0.79\pm 0.01 \\ 0.16\pm 0.002 \\ 282 \pm 4 \\ 8.1 \pm 1.0 \\ 8.3 \pm 3.1 \\ 36.5 \pm 1.8 \\ 2.0 \pm 1.7 \end{array}$	Ref. 14. 98 6. 95 0. 15 1. 61 5. 68 3. 86 0. 82 0. 87 0. 16 307 12 6 41. 7 1. 9	JGb-1This workRef.17. 89 ± 0.46 17. 6615. 03 ± 0.38 15. 160. 18 ± 0.003 0. 177. 96 ± 0.17 7. 8311. 76 ± 0.36 11. 981. 09 ± 0.05 1. 23 < 0.4 0. 261. 53 ± 0.03 1. 620. 047 ± 0.002 0. 0559. 1 ± 0.8 53. 4 ± 1.0 60. 2 ± 2.0 79. 7 $\pm 1. 7$ 85. 314. 8 ± 0.8	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} JR-2 \\ This work & Ref. \\ \hline 12.62\pm0.33 & 12.83 \\ 0.73\pm0.01 & 0.86 \\ 0.11\pm0.003 & 0.11 \\ 0.041\pm0.001 & 0.05 \\ 0.53\pm0.02 & 0.45 \\ 3.88\pm0.09 & 4.03 \\ 4.22\pm0.62 & 4.48 \\ 0.058\pm0.01 & 0.09 \\ 0.005\pm0.0003 & 0.01 \\ 27.7\pm0.4 & 27.3 \\ <1 & 0.4 \\ 9.4\pm0.9 \\ 0.8\pm1.0 & 1.5 \\ 1.3\pm1.1 & 0.8 \\ \end{array}$
Element Al ₂ O ₃ Fe ₂ O ₃ T MnO MgO CaO Na ₂ O K ₂ O TiO ₂ P ₂ O ₅ Ba Co Cr Cu Ni Pb	$\begin{array}{c c} JA-1 \\ This work \\ \hline 15.24\pm 0.52 \\ 6.96\pm 0.12 \\ 0.15\pm 0.004 \\ 1.51\pm 0.03 \\ 5.59\pm 0.15 \\ 3.72\pm 0.08 \\ 0.58\pm 0.13 \\ 0.79\pm 0.01 \\ 0.16\pm 0.002 \\ 282 \pm 4 \\ 8.1 \pm 1.0 \\ 8.3 \pm 3.1 \\ 36.5 \pm 1.8 \\ 2.0 \pm 1.7 \\ 3.4 \pm 2.4 \\ \end{array}$	Ref. 14. 98 6. 95 0. 15 1. 61 5. 68 3. 86 0. 82 0. 87 0. 16 307 12 6 41. 7 1. 9 5. 8	JGb-1This workRef.17.89 \pm 0.4617.6615.03 \pm 0.3815.160.18 \pm 0.0030.177.96 \pm 0.177.8311.76 \pm 0.3611.981.09 \pm 0.051.23<0.4	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Element Al ₂ O ₃ Fe ₂ O ₈ T MnO CaO Na ₂ O K ₂ O TiO ₂ P ₂ O ₅ Ba Co Cr Cu Ni Pb Sr	$\begin{array}{c} JA-1 \\ This work \\ \hline 15.24\pm 0.52 \\ 6.96\pm 0.12 \\ 0.15\pm 0.004 \\ 1.51\pm 0.03 \\ 5.59\pm 0.15 \\ 3.72\pm 0.08 \\ 0.58\pm 0.13 \\ 0.79\pm 0.01 \\ 0.16\pm 0.002 \\ 282 \pm 4 \\ 8.1 \pm 1.0 \\ 8.3 \pm 3.1 \\ 36.5 \pm 1.8 \\ 2.0 \pm 1.7 \\ 3.4 \pm 2.4 \\ 257 \pm 5 \end{array}$	Ref. 14. 98 6. 95 0. 15 1. 61 5. 68 3. 86 0. 82 0. 87 0. 16 307 12 6 41. 7 1. 9 5. 8 266	JGb-1This workRef.17. 89 ± 0.46 17. 6615. 03 ± 0.38 15. 16 0.18 ± 0.003 0.17 $7. 96 \pm 0.17$ 7. 83 $11. 76 \pm 0.36$ 11. 98 $1. 09 \pm 0.05$ 1. 23 < 0.4 0. 26 $1. 53 \pm 0.03$ 1. 62 0.047 ± 0.002 0.05 59.1 ± 0.8 53. 4 ± 1.0 53.4 ± 1.0 62 60.2 ± 2.0 79. 7 ± 1.7 7.97 ± 1.7 85. 3 14.8 ± 0.8 25. 7 1.7 ± 2.4 1.9 323 ± 5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Element Al ₂ O ₃ Fe ₂ O ₃ T MnO MgO CaO Na ₂ O K ₂ O TiO ₂ P ₂ O ₅ Ba Co Cr Cu Ni Pb Sr V	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ref. 14. 98 6. 95 0. 15 1. 61 5. 68 3. 86 0. 82 0. 87 0. 16 307 12 6 41. 7 1. 9 5. 8 266 103	JGb-1This workRef.This workRef.17. 89 ± 0.46 17. 6615. 03 ± 0.38 15. 16 0.18 ± 0.003 0. 17 $7. 96 \pm 0.17$ 7. 83 $11. 76 \pm 0.36$ 11. 98 $1. 09 \pm 0.05$ 1. 23 < 0.4 0. 26 $1. 53 \pm 0.03$ 1. 62 0.047 ± 0.002 0. 05 59.1 ± 0.8 53. 4 ± 1.0 62 60. 2 ± 2.0 79.7 ± 1.7 85. 3 14.8 ± 0.8 25. 7 1.7 ± 2.4 1. 9 323 ± 5 653 ± 15	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Figures are expressed in % from $\rm Al_2O_8$ to $\rm P_2O_5$ and in ppm from Ba to Zn.

ることがわかる.第6表の分析値は独立の5個の試料を 並列して分解し測定した時の結果である.分析精度はほ とんどの元素で3%以下であった.しかしながら感度の 低い K と Pb の分析値はばらつきが大きく,また他の 元素でも検出限界に近い濃度の場合の精度は悪くなった. このような場合には,0.2gを100 ml に希釈する本研究 の一連の測定とは別に1gを100 ml または50 ml に希 釈して ICP を測定すれば正確な値が求まると考えられ る.また K については原子吸光法を併用して求めるこ とが考えられる.しかしながら第6表に示したように分 析結果は全体として参照値(安藤,1984)とよく一致した 値が得られた.分析所要時間は試料の秤量,分解に要す る時間も含めて30 試料で7時間であった.

4. まとめ

誘導結合プラズマ発光法によりケイ酸塩岩石中の18 元素の同時定量法を確立した.測定に影響する条件とし て酸濃度,測光高さ位置,ガス流量,高周波電力を検討 し最適値を求めた.分解法は迅速性と簡便性を考慮して, 硝酸一過塩素酸-フッ化水素酸による酸分解法を用いた. また微量元素を分析する場合の主成分からの干渉はバッ クグランド補正の位置を適切に選ぶことにより多くの場 合除けることを示した.

文 献

- 安藤 厚(1984) 岩石標準試料の作成. ぶんせき, p. 597-602.
- BOUMANS, P. W. J. M. and de BOER, F. J. (1972)
 Studies of flame and plasma torch emission for simultaneous multi-element analysis-I Preliminary investigations. Spectrochim. Acta, vol. 27B, p 391-414.
- FLOYD, M. A., FASSEL, V. A. and D'SILVA, A. P. (1980) Computer-controlled scanning monochromator for the determination of 50 elements in geochemical and environmental samples by inductively coupled plasma atomic emission spectrometry. *Anal. Chem.*, vol. 52, p 2168-2173.

- 不破敬一郎・原口紘炁編(1980) ICP 発光分析. 化学 の領域増刊, no 127, (南江堂), p. 18.
- GREENFIELD, S., MCGEACHIN, H. MCD. and SMITH, P. B. (1976) Nebulization effects with acid solutions in I. C. P. spectrometry. Anal. Chim. Acta, vol. 84, p 67-78.
- 原口紘炁・黒沢雅夫・岩田泰夫(1985) 誘導結合プラ ズマ発光分析法による石炭及び石炭フライア ッシュの多元素同時定量.分化, vol.34, p.252-257.
- 平田静子(1984) 誘導結合プラズマ発光分析法による 標準岩石及び標準たい積物試料中の多元素同 時定量.分化,vol.33,p T64-68.
- OKAMOTO, K., NISHIKAWA, M. and MCLEOD, C. W. (1982) Analysis of pond sediment by inductively coupled plasma atomic spectrometry. Research Report from the National Institute for Environmental Studies, Japan, vol. 38, p 47-67.
- 佐藤一男・坂田昌弘(1985) 誘導結合プラズマ発光分 析法による石炭灰中の多元素同時定量.分化, vol. 34, p 271-275.
- 高橋 務・村山精一編(1983) 液体中の発光分光分析 ICP を中心として、(学会出版センター), p. 68.
- TAO, H., IWATA, Y., HASEGAWA, T, NOJIRI, Y., HARAGUCHI, H. and FUWA, K. (1983)
 Simultaneous multielement determination of major, minor, and trace elements in soil and rock samples by inductively coupled plasma emission spectrometry. Bull. Chem. Soc. Jpn., vol. 56, p 1074-1079.
- 内田哲男・飯田忠三・山崎一雄・金岡繁人・大森良久 ・舛田哲也(1984) マルチチャンネル誘導結 合プラズマ発光分析法による微量ケイ酸塩の 主成分元素の簡易定量.分化, vol. 33, p. 242-247.

(受付:1986年5月30日;受理:1986年7月22日)