表層堆積物中のスズ存在量と堆積環境

寺島 滋* 井内美郎** 米谷 宏* 中尾征三** 三田直樹*

TERASHIMA, S., INOUCHI, Y., YONETANI, H., NAKAO, S. and MITA, N. (1986) Tin abundance of surface sediments and their relation to sedimentary environments. Bull. Geol. Surv. Japan, vol. 37(3), p. 117–137.

Abstract : Three hundred and sixteen samples of surface sediments were analyzed for tin by atomic absorption spectrometry using a hydride generation and heated quartz cell atomizer in order to examine their relationship to sedimentary environments. These samples were collected from the different environments, i.e., regions of eleven lakes and eight sea areas around the Japanese islands, in the Philippine Sea and Central Pacific.

The effect of recent environmental pollutions by tin in the lake surface sediments is not negligible. The polluted fifty three samples were excepted for the calculation of the average values. As for the marine sediments, there is no environmental pollution. The lake sediments of their main origin of granitic or/and sedimentary rocks containing a large amounts of tin (e.g., Lake Biwa, Mikata Five Lakes) are generally rich in tin, whereas the volcanics intermingled lake sediments (e.g., Lake Nojiri, Lake Suwa) have much lower values, reflecting their tin-depleted source materials. There is no essential difference in the tin content between the sediments of the fresh-water lakes and the brackish-water lakes.

Average content of tin in the lake sediments (2.5 ppm, n=70) is clearly higher than that of marine sediments (1.5 ppm, n=193). The sediments have a positive correlation in $\text{Sn}-\text{K}_2\text{O}$ diagram: and the lake sediments are plotted in the tin-rich area, but the marine sediments are seen in the tin-depleted field in most cases. This fact implies that the tin is distributed more abundantly in the terrigenous environments than the oceanic ones.

The coastal marine sediments from Obama Bay, Suruga Bay and South of Kii Strait have tin contents of 1.8-2.7 ppm, and the values are almost agreed to the tin abundance of the source areas. The volcanics intermingled marine sediments from the Shichito-Iojima Ridge and Off Northeast Japan to Around the Japan Trench are also much lower in tin. The contents of tin in the zeolitic sediments are clearly higher than those of biogenic siliceous or calcareous sediments in the Central Pacific. There are clear positive correlation between the tin and illite concentrations in the Philippine Sea sediments. The regional distribution pattern of tin and illite in the Pacific Ocean sediments agree well each other, suggesting the most part of tin in the marine sediments are contained in the illite whose uneven distribution may be provided by the different terrigenous source materials.

1. はじめに

スズは、青銅として古くから利用されてきた金属の一 つであるが、岩石や堆積物中の微量のスズが正確に定量 されるようになったのは、ONISHI and SANDELL (1957) による吸光光度法、HAMAGUCHI *et al.* (1964)による放射 化分析法が確立されてからであり、それ以前の発光分光 分析法によるデータには高めのものが多い.

日本の花崗岩類、火山岩類、堆積岩類等に含有される

微量のスズは原子吸光分析法によって定量され,スズの 広域的分布や鉱床との関係,岩質や主成分元素との相関 等の研究が行なわれており(石原・寺島,1977;寺島・ 石原,1981; TERASHIMA and ISHIHARA,1982),堆積岩類 中のスズ存在量は,その地域におけるより新しい時代の 火成活動やそれに伴うスズ鉱化作用の研究等において重 要なことがわかってきた.しかし,堆積岩類中のスズ存 在量に重要な影響を与えると思われる堆積岩の生成環境 とスズ存在量の関係については,データが少なく充分な 研究はなされていない.

* 技術部 ** 海洋地質部

本研究では、堆積環境の異なる湖沼堆積物として、野

地質調查所月報(第37卷第3号)

尻湖,諏訪湖,霞ケ浦,琵琶湖,三方湖,菅湖,水月 湖,久々子湖,日向湖,宍道湖,中海(第1図)の試料 を,海底堆積物として小浜湾,駿河湾,紀伊水道南方, 東北沖一日本海溝周辺,七島一硫黄島海嶺,フィリピン 海,太平洋中央部(第1-2図)から採泥した試料中のス ズ含有量を測定し,スズに対する近年の人為的影響や淡 水一汽水の堆積環境,堆積物の種類や後背地との関係を 検討した.

本研究を行なうに当り,一部の試料は島根大学徳岡隆 夫,国立科学博物館谷村好洋,地質調査所本座栄一,松 本英二の各氏から提供していただいた.厚く御礼申し上 げる.

2. 試料および分析方法

2.1 湖沼堆積物

湖沼堆積物としては,野尻湖,諏訪湖,霞ケ浦,琵琶 湖,三方五湖(三方湖,菅湖,水月湖,久々子湖,日向 湖),宍道湖,中海の試料を分析した.いずれも柱状採 泥器によって採取された柱状試料であり,これを一定間 隔に分割したものから123個の分析試料を選定した.こ れらの試料は,湖沼堆積物に関する地質学,地球化学, 湖沼汚染の研究等を目的として1961-1984年に採取され たものであり,採取方法や採取地点をはじめ各種の研究 結果は既に公表されているものが多く,諏訪湖,琵琶 湖,三方五湖,宍道湖,中海については米谷(1967),大 森(1968,1969,1971),野尻湖,霞ケ浦,琵琶湖に関し ては井内ほか(1983,1984,1985)を参照されたい.ここ では,スズ存在量と最も関係が深いと思われる後背地の 地質を中心に各湖沼の概要を述べる.

野尻湖:長野県の北端部にあり,面積約3.7 km²,最

- 118 ---

表層堆積物中のスズ存在量と堆積環境(寺島 滋・井内美郎・米谷 宏・中尾征三・三田直樹)

第2図 試料採取位置(2) Sampling locations of Recent sediments (2).

大水深 38.5 m の 食栄養型淡水湖である. 更新世前期に 堆積した豊野層の侵食面が沈水したものと言われてお り、大きな流入河川はない. 湖底堆積物中には多数の火 山灰層が認められており、堆積物の主要な供給源は,妙 高, 黒姫, 焼岳等の周辺火山の火山噴出物や火山岩類で あると考えられる.

諏訪湖:長野県の中央部にあり,面積14.1 km²,最大 水深 7.6 m で,断層盆地内に形成された富栄養型淡水湖 である.後背地には,八ケ岳,蓼科山,霧ケ峰等の第四 紀火山岩類とこれらに関係する岩屑や火山灰層が広く分 布し,露出面積は小さいが和田峠や茅野市付近には新第 三紀の石英閃緑岩一花崗岩類が,中央構造線に添っては 堆積岩類や変成岩類も存在する.

霞ヶ浦:茨城県の南部にあり,面積は約168 km²,最 大水深7.3 mの富栄養型淡水湖である.この湖は,約一 万年前に海域の一部として誕生し,その後海湾的な環境 にあったと考えられている.そして室町一江戸時代初期 になって潮来や佐原付近における自然の埋めたてが進 み,淡水化が進行したと言われている.霞ケ浦へ流入す る河川の流域には,付近の台地を構成する第四紀の成田 層や竜ケ崎層およびこれらの上位にある常総粘土層,ロ ーム層等が分布し,また桜川や恋瀬川の上流には筑波山 塊の花崗岩,斑れい岩が分布している.

琵琶湖:滋賀県にあり面積672.8 km²,最大水深103.8

mで,日本最大の貧栄養型淡水湖であったが,近年で は富栄養化しつつある.琵琶湖周辺の地質は,上位層か ら沖積層,段丘層,古琵琶湖層群,鮎川層群,綴喜層群 および基盤岩類から成っている.基盤岩類は,古生代一 中生代の泥岩,砂岩,チャート,石灰岩等の堆積岩類 と,中生代一新生代の花崗岩類が主なもので後背地の大 部分をしめる.

三方五湖:福井県三方町の北西部に位置する,三方湖 (面積 3.6 km²,最大水深 4 m), 菅湖(0.9 km², 13 m), 水月湖(4.3 km², 34 m), 日向湖(0.9 km², 38 m), 久々 子湖(1.4 km², 2.7 m)を三方五湖という。いずれも断層 盆地が沈水した小さな湖であり,これらは河川,隧道, 堀切,水道などによって相互に連結している.久々子湖 を除く四つの湖は、古くは淡水湖であったが、人工的な 隧道や堀切の完成によって日向湖は1630年, 菅湖および 水月湖は1665年以降汽水湖に変化したと言われている (大森, 1971). ここでは最上流にある三方湖は淡水湖, 他の湖は汽水湖として扱う.いずれも富栄養型の湖沼で あり, 三方五湖を囲む山地は主として堆積岩類と花崗岩 類である. 堆積岩類は, 西南部を中心に広く露出し, 古 生層の粘板岩,砂岩等である.花崗岩類は白亜紀後期-古第三紀初期のものとされ、東部の矢筈山、雲谷山に広 く分布し、また北西部の梅丈岳にも露出する. 三方付近 の岩塊および礫には花崗岩が多く、砂も主として花崗岩

を原岩とするものである.

宍道湖・中海:宍道湖(面積79.7 km²,最大水深6.0 m),中海(98 km²,17.1 m)は,島根県北東部の日本海沿 岸に横たわる富栄養型の汽水湖である.宍道湖の東方に 位置する中海は,大橋川により宍道湖と,また北東部で 境水道によって日本海と連結している.宍道湖・中海の 南北湖岸から西方にかけて海成層である布志名累層,火 山砕屑岩を含む大森累層などが分布するが,流入河川の 流域一帯には白亜紀に迸入した黒雲母花崗岩や花崗閃緑 岩が広く分布している.

2.2 海底堆積物

沿岸海域の堆積物としては、小浜湾、駿河湾,紀伊水 道南方の42試料を、外洋性大陸棚から深海底にかけての 堆積物としては東北沖一日本海溝周辺,七島一硫黄島海 嶺、フィリピン海、太平洋中央部の151試料を分析した. 紀伊水道南方、東北沖一日本海溝周辺の試料はいずれも 柱状試料であり、太平洋中央部の試料も一部を除き柱状 試料であるが、その他はいずれもグラブ採泥試料であ る. これらの海域や堆積物試料に関する研究結果は、小 浜湾については尾原ほか(1973)、駿河湾は松本・木下 (1978),紀伊水道南方は井内・木下(1976)、東北沖一日 本海溝周辺はHONZA E., ed. (1977),七島一硫黄島海嶺 は中尾ほか(1985)、フィリピン海は OINUMA and AOKI (1976)、太平洋中央部は NAKAO and MIZUNO (1982)に よって報告されている.

小浜湾:福井県西部にある面積約60km²の小さな湾で あり,最大水深(約35m)は日本海への出口にあたる.

堆積物は主としてシルト質粘土であり,一部に砂質粘 土,細粒砂も認められる.流入河川は南川,北川,佐分 利川が主なものであり,これらの流域には粘板岩,砂 岩,チャートを主体とする古生層の堆積岩類が分布して いる.

駿河湾:静岡県の南部,フォッサ・マグナの南端地域 に位置する開口性の湾であり,最大水深は2000 m を越 える.湾東部は,第三紀,第四紀の安山岩類を中心とす る火山岩類が分布する伊豆半島の西岸に接し,湾奥から 西部にかけて狩野川,富士川,安倍川,大井川が流入す る.これら河川の流域には,多種多様な火山岩類や堆積 岩類が分布する.松本・木下(1978)によれば,湾内の堆 積物は主として流入河川によって供給されており,粘土 質シルトを中心とする各種堆積物が存在する.また一部 の港湾内を除き重金属の人為汚染は起っていない.

紀伊水道南方:紀伊半島南端部から沖合に向って砂, シルト質砂,砂--シルト-粘土,粘土質シルト,シルト 質粘土が分布し,さらにその南部には部分的に粘土層や 粘土質シルトが認められる. 試料はシルト質粘土および 粘土質シルト堆積物から得られたものである. 堆積物の 供給源は特定されていないが, 陸からの距離が20-45 km であるため, 紀伊半島南部を中心とする西南日本外 帯の影響が大きいと思われる.

東北沖一日本海溝周辺:本海域には水深750 m の苫小 牧市の南方海域から日本海溝および干島・カムチャッカ 海溝南部が含まれる.大陸斜面と海溝周辺の堆積物では スズ量に若干の差が認められるため,水深5000 mまでの 海域を東北沖(採取地点番号:464,467,470,476,479), それ以深を日本海溝周辺(438,442,447,449,450,455, 471)として二つに分けることにした.本海域は,南方か らの日本海流,北方からの干島海流の影響を受ける位置 にあり,堆積物中には火山ガラスや軽石が認められるこ とから,南方の富士火山帯や東北から北海道一千島へか けての火山噴出物の影響を受けていると思われる.

七島一硫黄島海嶺:八丈島南方から西之島に至る水深 1116-4123 mの海域から得られた表層堆積物である.こ の海域は、東に現在活動している火山島列があり、これ らを起源とする火山堆積物が多い.それらは軽石、スコ リア、火山ガラス、鉱物粒又は鉱物片で柱状試料中では しばしば火山灰層を形成している.火山源以外の砂粒子 は少ないが、そのほとんどは生物源のものである.

フィリピン海:OINUMA and AOKI (1976)により粘土 鉱物に関する研究に供された表層堆積物17試料を用い た.粘土鉱物組成の平均値は,イライト43.9%,モンモ リロナイト25.6%,緑泥石20.1%,カオリナイト10.4% でイライトに富む特徴がある.試料は四国海盆の南方か らパラオにかけての水深4244-5960 m の海底から得られ たものである.

太平洋中央部:ウェーク島東方(17°N, 179°E)からタ ヒチ島西方(14°S, 157°W)にかけての水深4561-5926 m の海底から採取された表層堆積物15,柱状堆積物45の合 計 60試料を分析した.本海域のうち北部のウェーク島東 方や南部のタヒチ島西方では遠洋性粘土や沸石質堆積物 が多く, 10°N から10°S にかけての低緯度帯では生物源 の珪質堆積物や珪質一石灰質堆積物が卓越する.

2.3 分析方法

堆積物中のスズは,溶媒抽出分離一原子吸光法(寺島, 1975)によっても定量できるが,本研究では溶媒抽出を 必要としない連続水素化物生成一原子吸光法 (TERASHIMA, 1985)によって分析した.また,湖沼域に おけるスズの人為汚染を検討するため,しゅう酸処理に よるスズの定量も検討し,さらに堆積岩類においてスズ の分布と正相関を示す酸化カリウムの定量も行なった.

スズの定量方法:試料0.1-0.2gをテフロンビーカに 取り,過塩素酸3ml,硝酸3ml,ふっ化水素酸5mlを 加えて混合する.約220°Cの熱板で加熱し,蒸発乾固す

る. 塩酸(3 M) 1 ml を加えて加温し, 溶解する. しゅ う酸溶液(10%) 5 ml を加えてさらに 3-5 分間加温した 後冷却し, メスフラスコ(25 ml)に移し入れる. アルミ

Sample No.	Station No.	Location (cm)	Sn (ppm)	K ₂ O (%)	Sample No.	Station No.	Location (cm)	Sn (ppm)	K ₂ O (%)
Lake No	jiri			· · · · · · · · · · · · · · · · · · ·	38		113-118	1.6	1.12
1*	P-2	0-1	3.5	1.04	39		128-133	1.6	1.18
2*		5-6	1.1	0.78	40*	St-125	9-14	3.0	1.20
3*		10-11	0.8	0.76	41*		19-24	2.5	1.28
4*		20-21	0.6	1.02	42*		29-34	2.5	1.29
5*		30-31	0.9	0.76	43		39-44	1.6	1.31
6		40-41	0.7	0.63	44		49-54	1.5	1.32
7		55-60	0.6	0.52	45		59-64	1.9	1.56
8*	P-4	0-1	3.9	1.05	46		79-84	1.7	1.56
9*		5-6	2.8	1.13	47		109-114	1.6	1.60
10*		10-11	1.0	1.06	48		139-144	1.6	1.75
11*		20-21	0.7	0.95	Lake Biv	va			
12*		30-31	0.7	0.90	49*	St-4	0-5	4.6	2.80
13		40-41	0.6	0.82	50*		20-35	4.4	2.74
14		50-51	0.8	1.18	51		35-50	4.4	2.73
15		60-61	0.6	1.23	52		65-73	4.0	2.48
16		70-71	0.7	1.21	53*	BW-2	0-4	4.9	2.70
17		80-81	0.7	1.08	54*		4-9	4.6	2.83
18		89-90	0.7	1.80	55*		29-34	3.8	2.60
Lake Suv	wa				56		59-64	3.6	2.42
19*	St-2	0-15	2.9	0.88	57		104-109	3.0	2.44
20*		15-30	2.6	1.11	58		179-184	3.1	2.60
21		45-60	1.2	1.25	59		194-199	3.0	2.61
22		60-75	1.2	1.12	60		254-259	3.0	2.70
23		80-101	1.2	1.16	61		309-314	3.3	2.77
24*	St-3	0-15	5.6	1.00	62*	BW-4	0-5	4.2	2.74
25*		15-30	1.9	1.15	63*		5-10	3.9	2.86
26		60-80	1.3	1.07	64*		30-35	4.6	2.66
27*	St-8	13-25	4.2	1.03	65		60-65	3.4	2.66
28		60-72	0.9	0.97	66		135-140	2.9	2.50
29*	St-11	25-35	2.4	1.65	67		210-215	3.2	2.64
30		80-92	1.2	1.58	68		295-300	3.3	2.84
Lake Ka	sumigaura				Lake Mi	kata			
31*	St-10	8-13	4.2	0.90	69*	St-1	0-30	4.0	1.96
32*		13-18	4.1	0.89	70		40-50	3.7	1.95
33*		28-33	2.4	0.89	71		60-70	3.7	1.94
34		53-58	2.0	0.98	72		80-90	3.6	1.80
35		68-73	2.3	1.16	73		100-110	3.7	1.83
36		88-93	2.0	1.12	74		120-130	3.3	1.70
37		98-103	1.7	1.02	75	St-2	35-50	4.0	2.04

第1表 淡水堆積物中の Sn, K₂O の分析結果 Analytical results of tin and potassium oxide for fresh-water sediments.

*Data were excluded for average values.

地質調查所月報(第37卷第3号)

ニウム溶液(塩化アルミニウムを水に溶解したもの. Al≒20 mg/ml) 2.5 mlを加え,水で正しく25 mlに希釈 する.この試料溶液を連続水素化物生成装置に導入し, スズの水素化物を発生させる.発生した水素化物を加熱 石英管アトマイザーで原子化し,測定する.本法の検出 限界は約0.1 ppm であり,8時間で約40試料分析でき る.

しゅう酸処理によるスズの定量方法:試料0.1gを石 英ビーカ(200 ml)に取り、しゅう酸(10%)5 ml と水5 mlを加える.時計ざらでふたをし、約180°Cの熱板上 で約10分間静かに沸とうさせる.冷却後不溶解残渣を濾 別し、濾液はメスフラスコ(25 ml)に受ける.塩酸(3 M)1 ml とアルミニウム溶液(Al≒20 mg/ml)2.5 mlを 加えた後、水で定容とし、上記と同様に測定する. 酸化カリウムの定量方法:試料0.1gを過塩素酸とふっ化水素酸で分解して蒸発乾固し,希塩酸に溶解する. 干渉抑制試薬としてストロンチウム溶液を加え,空気一 アセチレンフレームを用いる原子吸光法で測定した.

3. 分析結果

各種堆積物 316試料についてスズおよび酸化カリウム を定量した結果を淡水, 汽水, 海水堆積物に分けて第1 -3 表に示した. これらのうち第3表の太平洋中央部の 試料に関する K₂O のデータは, SUGISAKI and KINOSHITA (1982)によって報告されたものである.

3.1 人為的な影響

スズは,青銅として古くから利用されている金属の一 つであり,またブリキ,ハンダ,各種易融合金等に使用

Sample No.	Station No.	Location (cm)	Sn (ppm)	K ₂ O (%)		Sample No.	Station No.	Location (cm)	Sn (ppm)	K ₂ O (%)
Lake Sug	a				-	99		45-60	6.5	1.75
76*	St-1	20-30	3.2	2.18		100		60-70	7.6	1.90
77		40-48	1.9	1.50		Lake Shi	nji			
78		50-55	1.9	1.46		101*	St-B	Surface	2.7	1.80
79*	St-2	0-10	2.9	1.80		102		33-48	2.2	1.96
80*		22-30	2.9	1.89		103		66-76	2.2	2.01
81		45-55	1.6	1.73		104*	St-C	0-15	2.7	1.85
82		55-65	0.8	1.32		105		36-46	2.3	1.90
Lake Sui	getsu					106		61-67	2.3	1.84
83*	St-1	Surface	3.2	1.31		107*	840811-2	0-5	2.7	2.01
84		35-50	2.8	1.44		108*		5-10	3.0	2.02
85		50-65	2.2	1.48		109*		10-15	3.0	2.00
86		90-105	3.2	1.40		110*		20-25	2.9	2.08
Lake Ku	gushi					111		40-45	2.8	2.09
87*	St-1	30-40	5.3	2.38		112		60-65	2.6	2.12
88		70-85	4.0	1.84		113		80-85	2.6	2.18
89*	St-2	30-40	4.9	2.34		114		95-100	2.4	2.19
90		40-45	4.3	2.21		Lake Na	kaumi			
91		50-60	4.2	2.02		115*	St-D	0-15	4.3	1.78
92		60-70	3.8	1.87		116		6075	1.8	1.81
Lake Hi	ruga					117		80-100	1.8	1.78
93*	St-1	5-25	8.0	2.04		118*	St-E	015	2.6	1.82
94*		25-40	7.7	1.92		119*		15-30	2.0	1.86
95		55-62	6.5	1.75		120*		30-40	2.0	1.94
96*	St-2	0-15	7.8	1.97		121*	St-F	Surface	3.1	1.85
97*		15-30	7.0	1.88		122		40-65	2.1	1.85
98*		30-45	6.2	1.69		123		70-80	2.0	1.89

第2表 汽水堆積物中の Sn, K₂O の分析結果 Analytical results of tin and potassium oxide for brackish-water sediments.

*Data were excluded for average values.

第3表 海水堆積物中のSn, K2Oの分析結果 Analytical results of tin and potassium oxide for sea-water sedim

analytical results of tin	and potassium	oxide for	sea-water	sediments.
---------------------------	---------------	-----------	-----------	------------

Sample No.	Station No.	Latitude (N)	Longitude (E)	Deph (m)	Location (cm)	Sn (ppm)	K ₂ O (%)
Obama Bay							
124	I-1	_		7	Surface	2.3	2.46
125	I-2	_	_	9	do.	2.6	2.81
126	I-4	-	_	7	do.	3.0	2.96
127	IV-3		_	21	do.	2.0	2.12
128	IV-4		—	23	do.	2.2	2.21
129	IV-5		_	25	do.	2.5	2.40
130	IV-6	<u> </u>	_	26	do.	2.1	2.11
131	VI-2		_	12	do.	2.8	2.75
132	VI-3	—		16	do.	3.2	2.81
133	VI-5	—	_	14	do.	2.6	2.22
134	X-2		-	4	do.	4.0	3.20
135	X-3	—	—	4	do.	2.3	2.52
136	X-4	—		5	do.	3.0	2.72
137	X-5	—	_	4	do.	3.8	3.23
Suruga Bay							
138	39	34°38.2′	138°14.7′	20	Surface	1.2	2.48
139	40	31.8'	18.0'	70	do.	2.4	3.01
140	41	38.0'	21.1'	418	do.	2.2	3.03
141	42	38.5'	25.6'	356	do.	2.5	2.88
142	43	38.0'	30.0'	180	do.	1.1	2.13
143	44	38.0'	33.4'	2000	do.	2.6	2.29
144	45	37.8'	38.0'	1330	do.	2.0	2.52
145	46	38.4'	41.2'	595	do.	1.8	2.40
146	47	38.1'	45.7'	135	do.	0.6	0.97
147	106	56.1'	43.9'	367	do.	1.4	1.78
148	107	55.8'	40.3'	1125	do.	1.7	2.71
149	108	55.2'	36.1'	823	do.	2.0	2.46
150	109	55.9'	32.3'	400	do.	2.1	2.58
151	110	55.8'	27.7'	17	do.	1.8	2.67
South of Ki	ii Strait						
152	334	33°23.7′	134°58.1′	1355	20-32	1.9	2.63
153					244-253	1.8	2.65
154					423-432	2.1	2.70
155	327	33°14.0′	135°25.2′	1566	37-44	2.0	2.51
156					210-220	2.3	2.64
157					440-444	2.6	2.76
158					570-580	2.4	2.77
159	353	33°22.9′	135°24.8′	1645	5564	1.8	2.63
160					220-230	1.9	2.70
161					290-295	1.9	2.72
162	318	33°14.7′	135°53.0'	2070	17-25	2.2	2.50
163					97-107	2.5	2.70
164					196-205	2.3	2.72
165					288-298	2.2	2.80

Sample No.	Station No.	Latitude (N)	Longitude (E)	Deph (m)	Location (cm)	Sn (ppm)	K ₂ O (%)
Off Northea	st Japan						
166	464	42°10.0′	141°41.6′	750	28-33	0.7	1.52
167					78-82	1.1	1.86
168					127-132	0.7	1.69
169	467	40°53.7′	142°16.7′	1150	37-50	0.7	1.87
170					127-140	0.7	1.82
171					150-175	0.8	1.97
172					235-250	0.8	2.00
173					358-372	0.7	1.91
174	470	40°40.7′	142°47.0'	1650	6-17	1.0	1.74
175					110-120	0.7	1.65
176					190-200	0.7	1.80
177					310-320	0.7	1.87
178	479	39°11.2′	142°58.8'	1850	18-22	0.8	1.46
179					98-102	1.0	2.00
180					168-172	0.9	1.83
181					248-252	1.0	2.05
182	476	39°23.7′	143°53.3'	4770	48-52	0.9	1.52
183					98-102	0.9	1.55
184					188-192	1.1	1.87
185					298-302	0.6	1.38
186					448-452	0.7	1.46
187					548-552	0.6	1.48
Around the	Japan Trench						
188	450	41°37.3′	147°54.2′	5180	18-22	1.0	1.90
189					98-102	1.1	2.04
190					198-202	1.3	2.31
191					298-302	1.5	2.36
192					398-402	1.4	2.22
193					498-502	1.3	2.09
194	442	37°51.0′	145°35.4'	5400	0-15	1.2	1.95
195					80-95	1.3	2.44
196					172-185	1.0	2.04
197					320-335	1.2	2.07
198					360-370	1.2	2.20
199					450-462	1.2	2.20
200	455	41°31.1′	145°40.9′	7050	0-20	0.7	1.62
201					85-100	0.9	1.67
202					160-180	0.9	1.62
203					210-230	0.9	1.70
204					340-355	0.8	1.76
205					430-445	0.8	1.64
206	438	36°42.7′	143°13.0'	7300	30-15	1.0	2.23
207					96-116	1.2	2.26
208					180-195	1.2	2.28
209					300-315	1.3	2.27
210					460-475	0.7	1.87

第3表 つづき

Sample No.	Station No.	Latitude (N)	Longitude (E)	Deph (m)	Location (cm)	Sn (ppm)	K ₂ O (%)
211	471	40°07.0′	144°21.9′	7330	40-60	0.9	1.86
212					139-152	0.9	1.88
213					180-194	0.9	1.74
214					300-315	1.0	1.90
215					380-395	0.9	1.93
216					470-485	1.2	2.03
217	447	38°25.8′	144°05.6′	7400	18-22	1.5	1.96
218					98-102	1.4	2.04
219					198-202	1.3	1.95
220					298-302	1.1	2.00
221					398-402	1.1	1.91
222	449	43°09.4′	148°36.9′	8805	48-52	1.1	1.78
223					98-102	1.0	1.69
224					198-202	1.0	1.83
225					298-302	1.0	1.86
226					398-402	0.9	1.63
227					498-502	1.0	1.64
Shichito-Ioj	ima Ridge						
228	RC293	32°47.9′	139°34.7'	1116	Surface	1.4	0.90
229	RC317	32°06.4′	139°51.7′	1403	do.	1.0	0.92
230	RC307	31°48.1′	139°07.2′	2154	do.	1.8	1.77
231	RC322	31°15.0′	139°53.4′	2105	do.	1.3	1.44
232	RC341	30°46.0′	139°41.7′	2224	do.	1.2	1.34
233	RC358	30°13.9′	139°58.8'	2540	do.	0.7	0.88
234	RC362	29°26.9'	140°27.9′	2784	do.	1.0	0.83
235	P445	28°52.0′	139°47.8′	3303	do.	1.0	1.28
236	RC376	27°59.6′	140°39.7′	3367	do.	0.7	0.82
237	V21-84	27°57′	141°22′	4116	do.	1.1	0.86
238	V21-83	27°54′	140°03′	3702	do.	1.1	0.90
239	P443	27°30.0'	141°18.2'	4123	do.	0.8	0.88
Philippine S	Sea						
240	V21-81	29°02′	136°30′	4352	Surface	2.9	2.82
241	V20-138	28°52′	135°33'	4244	do.	3.6	3.25
242	V21-82	27°58′	138°13′	4565	do.	3.3	2.98
243	V21-138	26°02′	139°29′	4418	do.	1.8	3.10
244	V21-111	24°30′	128°31′	5616	do.	3.7	3.20
245	V21-112	23°55′	127°58′	5960	do.	3.3	3.08
246	V21-97	23°41′	136°05′	4868	do.	3.3	3.19
247	V21-100	23°35′	131°26′	5233	do.	3.6	3.17
248	V21-99	23°32′	132°14'	5148	do.	3.2	3.01
249	V21-96	23°27′	139°02′	5475	do.	2.6	3.08
250	V21-134	20°43′	126°23′	5298	do.	2.2	2.55
251	V21-119	15°32′	136°24′	4184	do.	2.8	2.46
252	V21-122	15°07′	133°20′	4767	do.	2.9	2.55
253	V21-124	14°08′	130°04′	5764	do.	1.9	2.51
254	V19-111	11°44′	137°17′	5152	do.	2.4	2.28
255	V19-115	11°20′	131°03′	5821	do.	1.6	2.20

第3表 つづき

— 125 —

				第3表 つづ	き			
268 V20-146 0.6°55' 135°31' 4702 do. 1.4 2.03 Central Pacific* 10°10.1' 179°19.8'W 5292 Surface 2.3 3.33 258 1646 13°2.2' 178°45.5'W 5037 do. 2.2 3.49 259 1646 13°17.0' 177°8.0'W 5027 5.0'I 1.8 4.25 260 261 1642 11°06.4' 173°30.7'W 5441 20-30 1.9 2.80 263 264 1641 9°46.6' 174°31.0'W 5829 Surface 1.8 2.49 266 272 3.5 1.5 1.76 2.50 1.8 2.60 266 1639 7°40.3' 172°56.8'W 5926 Surface 1.5 1.76 266 1639 7°40.3' 172°56.8'W 5926 Surface 1.6 1.98 270 272 1600 4°41.4' 172°15.8'W 5926 Surface 1.0 <th>Sample No.</th> <th>Station No.</th> <th>Latitude (N)</th> <th>Longitude (E)</th> <th>Deph (m)</th> <th>Location (cm)</th> <th>Sn (ppm)</th> <th>K₂O (%)</th>	Sample No.	Station No.	Latitude (N)	Longitude (E)	Deph (m)	Location (cm)	Sn (ppm)	K ₂ O (%)
Central Pacific* U U Surface L3 L3 <thl3< th=""> L3 L3</thl3<>	256	V20-146	05°55′	135°31′	4702	do.	1.4	2.03
257 1647 16°10.1' 179°8.8'W 5292 Surface 2.3 3.49 258 1644 15°22.5' 178°45.5'W 5537 do. 2.2 3.49 259 1644 15°22.5' 178°45.5'W 5027 5-15 1.8 4.55 260	Central Pac	ific*						
258 1646 13*2.2.' 178*63.5'W 5337 do. 2.2 3.49 259 164 13*17.0' 177*08.4'W 5027 5-15 1.8 4.25 260 300-310 1.8 2.30 300-310 1.9 2.80 261 1642 11*06.4' 173*30.7'W 5441 20-30 1.9 2.83 263 725-735 2.1 3.58 3.56 3.58	257	1647	16°10.1′	179°19.8' W	5292	Surface	2.3	3.23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	258	1646	15°22.5′	178°45.5′ W	5537	do.	2.2	3.49
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	259	1644	13°17.0′	177°08.4' W	5027	5-15	1.8	4.25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	260					300-310	1.8	2.90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	261	1642	11°06.4′	175°30.7' W	5441	20-30	1.9	2.80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	262					415-425	1.7	2.42
264 1641 9°46.8' 174°31.0'W 5829 Surface 1.8 2.49 265 1640 8°57.9' 173°53.9'W 5915 5-20 1.8 2.60 266 345.355 1.4 4.203 267 725-735 1.5 1.76 268 1639 7°40.3' 172°56.8'W 5926 Surface 1.5 2.14 269 1658 6°48.7' 172°15.5'W 5791 10-20 1.5 1.98 270 125-135 1.9 1.69 1.5 1.98 1.92 1.58 271 225-235 1.2 1.58 1.99 697-707 0.9 1.08 275 1600 4°41.4' 173°11.9'W 5584 Surface 1.0 1.92 276 1636 4°43.4' 170°42.9'W 5574 S-20 1.1 1.87 279 714-724 1.0 1.83 1.63 1.64 1.70 1.93 278 1603 3°16.4' 169°0.1'W 5355 50-60 0.6	263					725-735	2.1	3.58
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	264	1641	9°46.8′	174°31.0' W	5829	Surface	1.8	2.49
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	265	1640	8°57.9′	173°53.9' W	5915	5-20	1.8	2.60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	266					345-355	1.4	2.03
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	267					725-735	1.5	1.76
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	268	1639	7°40.3′	172°56.8' W	5926	Surface	1.5	2.14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	269	1638	6°48.7′	172°15.5' W	5791	10-20	1.5	1.98
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	270					125-135	1.9	1.69
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	271					225-235	1.2	1.58
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	272					424-434	0.7	0.94
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	273					522-532	0.8	1.09
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	274					697-707	0.9	1.08
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	275	1600	4°41.4′	173°11.9' W	5584	Surface	1.0	1.92
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	276	1636	4°43.4′	170°42.9' W	5747	5-20	1.1	1.87
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	277					225-235	1.1	1.90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	278					416-426	1.1	1.70
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	279					714-724	1.0	1.83
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	280	1602	2°33.3′	171°37.7′ W	5389	Surface	0.9	1.68
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	281	1635	3°16.4′	169°40.1' W	5351	do.	0.7	1.57
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	282	1635A	3°16.3′	169°40.3' W	5350	50-60	0.6	1.09
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	283	1634	2°32.1′	169°06.1' W	5087	30-40	1.0	1.81
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	284					240-250	1.0	2.03
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	285					540-550	0.5	0.84
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	286					740-750	0.3	0.46
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	287	1603	1°17.2'	170°42.3' W	5479	0-15	1.3	1.72
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	288					237-247	0.6	1.41
290 1604 0°24.2' 170°02.5' W 5457 Surface 0.9 1.69 291 1632 0°26.2' 167°33.8' W 5255 20-30 0.9 1.53 292 312-322 1.2 2.00 293 722-732 0.8 1.70 294 1605 0°57.9' S 169°01.7' W 5455 6-16 0.9 1.65 295 722-732 0.8 1.70 1.96 1.65 1.65 296 741-752 0.8 1.75 1.1 1.96 296 741-752 0.8 1.75 297 1631 0°58.6' S 166°20.9' W 5342 Surface 0.9 1.58 298 1630 1°30.5' S 165°52.5' W 5537 15-34 1.1 1.99 299 231-241 1.2 1.67 300 523-533 1.3 1.85 301 793-733 1.3 1.85 1.85 1.85 1.85 1.3 1.85	289					637-647	0.5	1.20
291 1632 0°26.2' 167°33.8' W 5255 20-30 0.9 1.53 292 312-322 1.2 2.00 293 722-732 0.8 1.70 294 1605 0°57.9' S 169°01.7' W 5455 6-16 0.9 1.65 295 362-372 1.1 1.96 296 741-752 0.8 1.75 297 1631 0°58.6' S 166°20.9' W 5342 Surface 0.9 1.58 298 1630 1°30.5' S 165°52.5' W 5537 15-34 1.1 1.99 299 231-241 1.2 1.67 300 523-533 1.3 1.85 301 793-733 1.3 1.85 1.3 1.85	290	1604	0°24.2′	170°02.5′ W	5457	Surface	0.9	1.69
292 312-322 1.2 2.00 293 722-732 0.8 1.70 294 1605 0°57.9' S 169°01.7' W 5455 6-16 0.9 1.65 295 362-372 1.1 1.96 362-372 1.1 1.96 296 741-752 0.8 1.75 362-372 1.1 1.96 296 741-752 0.8 1.75 362-372 1.1 1.96 297 1631 0°58.6' S 166°20.9' W 5342 Surface 0.9 1.58 298 1630 1°30.5' S 165°52.5' W 5537 15-34 1.1 1.99 299 231-241 1.2 1.67 300 523-533 1.3 1.85 301 793-733 1.3 1.85 1.85 1.85 1.85 1.3 1.85	291	1632	0°26.2'	/ 167°33 8' W	5255	20-30	0.9	1.53
293 722-732 0.8 1.70 294 1605 0°57.9'S 169°01.7'W 5455 6-16 0.9 1.65 295 362-372 1.1 1.96 296 741-752 0.8 1.75 297 1631 0°58.6'S 166°20.9'W 5342 Surface 0.9 1.58 298 1630 1°30.5'S 165°52.5'W 5537 15-34 1.1 1.99 299 231-241 1.2 1.67 300 523-533 1.3 1.85 301 773-773 1.3 1.85	292	1001	0 1012		0100	312-322	1.2	2.00
294 1605 0°57.9' S 169°01.7' W 5455 6-16 0.9 1.65 295 362-372 1.1 1.96 296 741-752 0.8 1.75 297 1631 0°58.6' S 166°20.9' W 5342 Surface 0.9 1.58 298 1630 1°30.5' S 165°52.5' W 5537 15-34 1.1 1.99 299 231-241 1.2 1.67 300 523-533 1.3 1.85 301 734-733 1.3 1.85	293					722-732	0.8	1.70
295 362-372 1.1 1.96 296 741-752 0.8 1.75 297 1631 0°58.6' S 166°20.9' W 5342 Surface 0.9 1.58 298 1630 1°30.5' S 165°52.5' W 5537 15-34 1.1 1.99 299 231-241 1.2 1.67 300 523-533 1.3 1.85 301 732-733 1.3 1.85	294	1605	0°57 9' S	169°01 7' W	5455	6-16	0.9	1.65
296 741-752 0.8 1.75 297 1631 0°58.6' S 166°20.9' W 5342 Surface 0.9 1.58 298 1630 1°30.5' S 165°52.5' W 5537 15-34 1.1 1.99 299 231-241 1.2 1.67 300 523-533 1.3 1.85 301 793-733 1.3 1.85	295	-000			- 100	362-372	1.1	1.96
297 1631 0°58.6' S 166°20.9' W 5342 Surface 0.9 1.58 298 1630 1°30.5' S 165°52.5' W 5537 15–34 1.1 1.99 299 231–241 1.2 1.67 300 523–533 1.3 1.85 301 723–733 1.3 1.85	296					741-759	0.8	1.75
298 1630 1°30.5' S 165°52.5' W 5537 15-34 1.1 1.99 299 231-241 1.2 1.67 300 523-533 1.3 1.85 301 793-733 1.3 1.85	200	1631	0°58 6' S	166°20 9' W	5349	Surface	0.0	1.58
299 231-241 1.2 1.67 300 523-533 1.3 1.85 301 793-733 1.3 1.85	208	1630	1°30.5' S	165°52 5'W	5537	15-34	1 1	1 99
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200	1000	1 30.3 5	105 54.5 **	3331	931_941	1.1	1.55
301 792_733 1.3 1.65	300					592-532	1 2	1 85
	300					792-722	1.5	1 85

地質調查所月報(第37卷第3号)

00000

Sample No.	Station No.	Latitude (N)	Longitude (E)	Deph (m)	Location (cm)	Sn (ppm)	K ₂ O (%)
302	1629	2°53.0′ S	164°57.3' W	5261	Surface	1.0	1.75
303	1607	3°02.1' S	167°29.9' W	5698	15-30	1.5	1.90
304					226-236	1.7	1.77
305					716-726	1.5	2.80
306	1628	3°30.5′ S	164°09.0' W	4947	10-25	0.5	1.14
307					152-162	1.2	1.86
308					343-353	1.1	2.35
309	1627	5°27.3' S	163°64.0' W	4995	Surface	0.7	1.58
310	1623	9°26.1' S	160°14.8' W	4561	do.	0.3	0.66
311	1622	·10°16.4' S	159°35.6' W	5235	5-20	1.5	3.26
312					178-188	1.5	3.46
313					575-585	1.5	3.56
314	1616	12°20.1' S	160°30.9' W	5690	Surface	1.1	2.20
315	1619	13°34.0' S	157°06.0' W	5131	do.	1.6	2.04
316	1618	14°29.6' S	158°53.0' W	5453	do.	1.4	1.98

第3表 つづき

* K₂O data were taken from SUGISAKI and KINOSHITA (1982).

第4図 海底堆積物柱状試料における Sn の鉛直分布 Vertical distribution of tin contents in the marine sedment cores.

- 127 -

されているため近年の経済活動の活性化に伴って人為的 な影響が生じているであろうことは容易に予測できる. そこで,第1-3表に示した全分析値の中から湖沼域お よび海域の代表的柱状試料についてスズ含有量の鉛直分 布を調べ,結果を第3,4図に示した.第3図からわか るように,湖沼域の試料ではほとんどの場合に表層堆積 物でスズ含有量が高くなる傾向を示す.最も典型的なの は野尻湖の試料であり,最表層部では3.9 ppm を示す が,下部に向って減少し,約20 cmより下層では5分 の1程度の0.8 ppm 以下となる.これに対して海域の試 料に関しては極端なスズ含有量の増減は認められていな い(第4図).

第4表 しゅう酸処理による Sn の分析結果 Analytical results of tin by oxalic acid digestion.

Sample No.	Station No.	Location (cm)	Oxalic acid soluble Sn (ppm) [A]	Total Sn (ppm) [B]	[B]-[A] Sn (ppm)
Lake	Nojiri				
8	P-4	0-1	2.2	3.9	1.7
9		5-6	1.2	2.8	1.6
10		10-11	0.3	1.0	0.7
11		20-21	0.2	0.7	0.5
12		30-31	0.2	0.7	0.5
14		50-51	0.2	0.8	0.6
16		70-71	0.2	0.7	0.5
18		89-90	0.1	0.7	0.6
Lake	Kasumi	gaura			
31	St-10	8-13	3.1	4.2	1.1
32		13-18	3.1	4.1	1.0
33		28-33	1.2	2.4	1.2
34		53-58	1.0	2.0	1.0
35		68-73	1.1	2.3	1.2
36		88-93	0.8	2.0	1.2
37		98-103	0.7	1.7	1.0
38		113-118	0.6	1.6	1.0
39		128-133	0.6	1.6	1.0
Lake	Biwa				
53	BW-2	0-4	2.6	4.9	2.3
54		4-9	1.8	4.6	2.8
55		29-34	1.1	3.8	2.7
56		59-64	0.9	3.6	2.7
57		104-109	0.7	3.0	2.3
58		179-184	0.7	3.1	2.4
59		194-199	0.7	3.0	2.3
60		254-259	0.8	3.0	2.2
61		309-314	0.9	3.3	2.4

Data of total Sn were taken from Table 1.

人為的影響によって増加したスズは,岩石や鉱物を供 給源とするスズに比べて溶出しやすいことが考えられ る.そこでスズと反応して安定な錯イオンを作ることが 知られているしゅう酸による溶出法を検討した.野尻湖 の柱状試料についての予備実験から,しゅう酸5%の溶 液で処理すると人為的影響が大きいと思われる表層堆積 物からは多量のスズが溶出し,下層の堆積物からはわず かしか溶出しないことがわかった.そこで,2.3の処理 方法を定めて野尻湖,霞ケ浦,琵琶湖の柱状試料を分析 し,結果を第4表に示した.いずれの湖沼においても表 層堆積物から多量のスズが溶出している.

上記の結果から、湖沼域のほとんどの柱状試料におい て表層付近でスズが増加する現象は主として人為的な影響であると考えられる.スズ存在量に関して,他の要因 を検討するためには人為的影響は除外すべきであり、以 下特にことわらないかぎり表層からの平均深度が40 cm までの範囲で得られた湖沼准積物53試料(第1-2表参 照)はすべて除外することにした.海域の柱状試料に関 しては、表層付近でスズ量が増加する顕著な傾向はない ため、全データを解析の対象とした.

3.2 湖沼におけるスズ存在量の特徴

各湖沼におけるスズ存在量の特徴を明らかにするた め、スズおよび酸化カリウム含有量の平均値と範囲を求 め第5表に示した.淡水湖におけるスズの平均値は2.2 ppm (n=44)であり、野尻湖(平均0.7 ppm)で最も低 く、諏訪湖(1.2 ppm), 霞ケ浦(1.8 ppm)も低い方であ り、琵琶湖(3.4 ppm), 三方湖(3.7 ppm)の両者が高い. 汽水湖の平均値は3.0 ppm (n=26)で淡水湖の平均より もやや高く、中でも日向湖(6.9 ppm)において異常に高 い値が得られた.この湖の試料数は少ないが、二本の柱 状試料のいずれにおいても高いので(第2表)、この湖の 特徴と考えられる.その他の湖では久々子湖(4.1 ppm) でやや高く、中海(1.9 ppm), 菅湖(1.6 ppm)では低い.

スズと酸化カリウム含有量の関係は第5図に示した. 野尻湖の試料の多くはSn/K₂Oの量比が1/10000の線 (以下Sn/K₂O線と略記)よりもスズに乏しい位置にプ ロットされ,他の湖沼堆積物のほとんどは,この線上か あるいはこの線よりもスズに富む位置にプロットされ る.

汽水性堆積物は淡水堆積物に比べて多量の硫黄を含有 している(TERASHIMA et al. 1983). スズの硫化物は沈殿 しやすく安定であるため汽水湖で多くなる可能性が考え られる.そこで堆積環境が海水一汽水から淡水に変化し た霞ケ浦の柱状試料についてスズと硫黄含有量の関係を 調べ結果を第6図に示した.堆積環境が汽水から淡水に

第5表	Sn, K ₂ O 含有量の平均値と含有量範囲	
-----	------------------------------------	--

Means and ranges of tin and potassium oxide contents and tin/potassium oxide ratio in Recent sediments.

A		Sn (ppm)	\mathbf{K}_2	O (%)	Sn	
Area	n	Mean	Range	Mean	Range	$\frac{10}{K_2O} \times 10^{-10}$	
Fresh-water							
Lake Nojiri	8	0.7	0.6-0.8	1.06	0.52-1.80	0.64	
Lake Suwa	6	1.2	0.9-1.3	1.19	0.97-1.58	0.98	
Lake Kasumigaura	12	1.8	1.5-2.3	1.31	0.98-1.75	1.34	
Lake Biwa	12	3.4	2.9-4.4	2.62	2.42-2.84	1.28	
Lake Mikata	6	3.7	3.3-4.0	1.88	1.70-2.04	1.95	
Average	(44)	2.2		1.68		1.30	
Brackish-water							
Lake Suga	4	1.6	0.8-1.9	1.50	1.32-1.73	1.03	
Lake Suigetsu	3	2.7	2.2-3.2	1.44	1.40-1.48	1.90	
Lake Kugushi	4	4.1	3.8-4.3	1.99	1.84-2.21	2.05	
Lake Hiruga	3	6.9	6.5-7.6	1.80	1.75-1.90	3.82	
Lake Shinji	8	2.4	2.2-2.8	2.04	1.84-2.19	1.19	
Lake Nakaumi	4	1.9	1.8-2.1	1.83	1.78-1.89	1.05	
Average	(26)	3.0		1.82		1.66	
Lake sediments	(70)	2.5		1.73		1.44	
Sea-water							
Obama Bay	14	2.7	2.0-4.0	2.61	2.11-3.23	1.05	
Suruga Bay	14	1.8	0.6-2.5	2.42	0.97-3.03	0.75	
South of Kii Strait	14	2.1	1.8-2.6	2.67	2.50-2.80	0.80	
Off Northeast Japan	22	0.8	0.6-1.1	1.74	1.38-2.05	0.47	
Around the Japan Trench	40	1.1	0.7-1.5	1.96	1.62-2.44	0.56	
Shichito-Iojima Ridge	12	1.1	0.7-1.8	1.07	0.82-1.77	1.02	
Philippine Sea	17	2.7	1.4-3.7	2.79	2.03-3.25	0.98	
Central Pacific	60	1.2	0.3-2.3	1.98	0.46-4.25	0.61	
Average	(193)	1.5		2.09		0.71	
All the samples	(263)	1.8		1.99		0.88	

変わりはじめたのは浅間 A 火山灰層(1783年噴出)の位 置よりかなり前(15-16世紀)と考えられ(井内ら,1984), このことは硫黄含有量の大幅な減少とも一致する.しか し,硫黄が減少してもスズの減少は認められない.一 方,堆積環境が淡水から汽水に変化した水月湖や日向湖 の堆積物について検討したが必ずしも汽水性の堆積物で スズが多い結果は得られず,またスズと硫黄の含有量の 間には全体として正又は負の相関は認められなかった. 従って,スズに関しては,淡水と汽水の堆積環境による 相違は存在しないものと思われる.

このほか湖沼の標高や水深,湖水の pH,酸素飽和度 との関係についても検討したが有意差は見られなかっ た.従って湖沼堆積物中のスズ量は,4 で述べるように 主として後背地の地質の影響を受けていると思われる.

3.3 海域におけるスズ存在量の特徴

各海域別のスズ含有量の平均値および含有量範囲は第 5 表に示してある. この表からわかるように、全体の平 均値は 1.5 ppm(n=193)であり、湖沼全体の平均値(2.5 ppm, n=70)より明らかに低い. 海域堆積物のうちでは 小浜湾(平均 2.7 ppm),フィリピン海(2.7 ppm)の試料が スズに富み、紀伊水道南方(2.1 ppm),駿河湾(1.8 ppm) は中間的であり、太平洋中央部(1.2 ppm),七島一硫黄 島海嶺(1.1 ppm),日本海溝周辺(1.1 ppm),東北沖(0.8 ppm)では乏しい.

海域堆積物についてのスズ一酸化カリウム関係図は第 7,8 図に示した.これらの図からわかるように、スズと 酸化カリウム含有量は正の相関を示す.また海域堆積物 では湖沼の場合とは逆に、多くの試料が Sn/K₂O 線よ

地質調査所月報(第37巻第3号)

第5図 湖沼堆積物における Sn-K₂O の関係 Relationship between tin and potassium oxide contents in the lake sediments.

りもスズに乏しい位置にプロットされる.中でも東北沖 一日本海溝周辺(第7図)や太平洋中央部(第8図)の堆積 物においてこの傾向が顕著である.そして小浜湾,七島 一硫黄島海嶺,フィリピン海では上記の傾向は弱く, Sn/K₂O線の近くにプロットされている.

4. 後背地の岩石中のスズ量との関係

4.1 後背地の岩石中のスズ含有量

HAMAGUCHI *et al.* (1964)は,火成岩中のスズ含有量の 平均値として超苦鉄質岩 0.35 ppm,苦鉄質岩 0.9 ppm, 中性岩 1.5 ppm, 珪長質岩3.6 ppm を算出したが, この 値は ONISHI and SANDELL (1957)の結果と良く一致する ものであった.日本の花崗岩類約 1000個の分析結果か ら,スズ含有量には一般の地質学的な地帯区分にほぼ調 和する広域的な変化があり,一般に海洋性地殻はスズに 乏しく,大陸性地殻がスズに富む傾向が指摘された(石 原・寺島, 1977).

本研究で扱う堆積物の後背地の地質に関連する各種岩 石中のスズ量を第6表に示した.これらのデータは,花 崗岩類については石原・寺島(1977),火山岩類は寺島・

第6図 霞ケ浦の柱状堆積物に見られる Sn と S の 鉛直分布 Vertical distribution of tin and sulfur contents in the sediment core from Lake Kasumigaura.

石原(1981), 堆積岩類は TERASHIMA and ISHIHARA (1982)の結果に若干の未発表データを加えたものであ る. 花崗岩類に関しては,北上帯,阿武隈帯,山陰帯の 平均値は 2 ppm 以下で低く,山陽帯,西南日本帯はい ずれも 4 ppm 程度で高い.小地域毎の平均値では,和 田峠付近の花崗岩類が 1.1 ppm で最も低く,筑波山地, 島根東部は中間的であり,近畿地方の大谷鉱山岩体や茨 木岩体では 5 ppm 以上の高い値を示す.

火山岩類の分析数は少ないが,香川県下の瀬戸内火山 岩類の値(平均2.6 ppm)を除きいずれも1 ppm 以下で低 い.日本の火山岩類(SiO₂ 43-80%,玄武岩,安山岩, 流紋岩等)151試料についての平均値は1.4 ppm であり, この値は HAMAGUCHI et al. (1964)による世界の苦鉄質岩 の平均値0.9 ppm より高く,中性岩の平均値1.5 ppm に 近い.堆積岩類についても本研究で利用できるデータは 少ないが,北上地域,辰野一塩尻地域,近畿地方,西南 日本外帯の平均値は2.2-2.5 ppm の範囲にある.この値 は,火山岩類で最もスズに富む瀬戸内の試料と同程度で あり,花崗岩類との比較では中間的な値と言える.

4.2 湖沼堆積物における後背地の影響

野尻湖堆積物中のスズ量は最も低い値を示すが、これ

第6表 後背地の岩石中のSn含有量 Tin contents of some granitic, volcanic and sedimentary rocks in the source areas of studied sediments.

<u> </u>		Sn (ppm)
Samples	n	Mean	Range
Granitic rocks			
Kitakami Belt	94	1.2	0.4-2.8
Abukuma Belt	48	1.6	0.4-3.8
Wadatoge, Nagano	6	1.1	0.5-1.4
Tsukuba, Ibaraki	9	2.6	0.8-4.2
Sanyo Belt	107	4.2	
(Ohotani, Kyoto	4	8.0	5.2-13.0)
(Ibaragi, Ohosaka	7	5.5	1.2-14.0)
Sanin Belt	111	1.8	
(Eastern Shimane	27	2.1	0.4-8.4)
Southwest Outer Belt	169	4.0	1.2-20.5
Volcanic rocks			
Takadate, Miyagi	12	0.3	0.2-0.6
South of Yamagata	3	0.8	0.4-1.2
Yatsugatake, Nagano	12	0.6	0.4-0.8
Hachijo-jima, Tokyo	10	0.8	0.3-1.3
Izu-Hakone	8	0.7	0.4-1.0
Mt. Fuji, Shizuoka	3	1.0	0.8-1.2
Daisen-Eastern Shimane	7	0.5	0.3-0.9
Setouchi, Kagawa	14	2.6	1.2-6.0
Sedimentary rocks			
Kitakami region	22	2.4	0.7-5.7
Tatsuno-Shiojiri region	15	2.2	0.5-3.7
Chiba Pref.	2	1.4	1.1-1.6
Kinki district	9	2.4	1.8-3.7
Southwest outer Zone	25	2.5	0.5-4.3

Data were taken from Ishihara and Terashima (1977), and Terashima and Ishihara (1981, 1982).

は堆積物の起源が主として火山噴出物であるためと考え られる. この湖の堆積物中の平均 K₂O 含有量は 1.06%(第 1 表)であるが,柴田ほか(1968)による黒姫,妙高の火 山岩類の K₂O 含有量は 0.90-1.21%(平均1.05%, n=5) であり,この一致も野尻湖の堆積物が火山性起源である ことを示唆する. 諏訪湖堆積物のスズ量(1.2 ppm)は, 八ケ岳の安山岩類の値(0.6 ppm)より高く,和田峠付近 の花崗岩類の値に近い.しかし花崗岩類の露出は広くな いので,中央構造線近くの堆積岩や変成岩類の影響も受 けていると考えられる. 霞ケ浦の後背地の堆積岩と類似 の千葉県下の試料では1.1 ppm と1.6 ppm の値が得られ ており(第6表),これに筑波山地の花崗岩の値(2.6 ppm, n=4)を考慮すると霞ケ浦堆積物中のスズ量(1.8 ppm)

地質調査所月報(第37巻第3号)

第7図 海底堆積物における Sn-K2O の関係(1) Relationship between tin and potassium oxide contents in the marine sediments (1).

と良い対応を示す.

琵琶湖や三方五湖の堆積物は、全体としてスズに富 む.これらの湖は、花崗岩類中のスズ量が最も高い山陽 帯に位置しており、後背地は花崗岩類と堆積岩類が中心 で、スズに乏しい火山岩類が極めて少ないためと考えら れる.湖沼では最もスズに富む日向湖の堆積物の後背地 としては、大谷鉱山付近の花崗岩類と同程度にスズを含 む岩石が必要であるが、これについては後背地以外の要 因も含めて今後の研究を必要とする. 宍道湖, 中海の堆 積物の供給源は主として花崗岩類であり, これら岩石中 のスズ量の平均は 2.1 ppm(n=27)である. この値は, 二つの湖の堆積物中のスズ量の平均値 2.3 ppm(n=12) にほぼ等しい.

4.3 海域堆積物における後背地の影響

小浜湾は閉鎖性の小さな内湾ではあるが,流入する河 川水は湾の南岸から東岸に漂い,湾内の大半は外海水の

第8図 海底堆積物における Sn-K2Oの関係(2) Relationship between tin and potassium oxide contents in the marine sediments (2).

影響下にある(尾原ほか, 1973). 湾内のスズ分布を見る と,南川,北川から搬入された粒子が堆積しやすい東岸 で高い値(3.0, 3.8, 4.0 ppm)が得られ,外海水の影響が 強い中心部では低い(2.0, 2.1, 2.2, 2.5 ppm). 駿河湾に おいては,流入河川から供給された粒子が堆積しやすい 西側の海域では平均1.99 ppm(n=9)でやや高く,現在 は無堆積域とされる(松本・木下, 1978)東側では1.50 ppm(n=5)で低い. 紀伊水道南方海域の堆積物中のスズ 量(2.1 ppm)は, 西南日本外帯の堆積岩類のスズ量より も若干低い程度である.

東北沖一日本海溝周辺の堆積物は全体としてスズに乏 しいが、これはこの海域の堆積物が火山源堆積物の影響 を受けていること、北上帯や阿武隈帯では花崗岩類中の スズも低い値を示すことに関係すると思われる. 七島一 硫黄島海嶺の堆積物は、最も典型的な火山源堆積物であ り、低いスズ含有量を示す. HAMAGUCHI *et al.* (1964)も 小笠原諸島の西方からマリアナ諸島付近にかけての海域 の火山泥中のスズを定量し, 0.8-1.8 ppm(平均 1.4 ppm, n=4)の値を得ている.

5. 堆積物の性質とスズ存在量

尾原ほか(1973),松本・木下(1978)の研究結果をもと に、堆積物の種類とスズ含有量の関係を検討した.小浜 湾の細粒砂一砂質粘土では平均2.2 ppm(n=5),シルト 質粘土では 3.1 ppm(n=8)であり、駿河湾の場合は細粒 砂1.0 ppm(n=3),粘土質シルトーシルト質粘土 2.0 ppm(n=10)でいずれも細粒の粘土質堆積物に多量のス ズが含有されることがわかった.

太平洋中央部から得られた堆積物は,NAKAO and MIZUNO (1982)によって研究されており,またこの試料 中の炭酸塩炭素は TERASHIMA et al. (1982)によって分析 されている.これらの結果とスズ存在量の関係を検討し たところ,本海域試料全体のスズ量の平均値 1.2 ppm に 対して,0.3%以上の炭酸塩炭素を含有する石灰質堆積 物の平均値は0.7 ppm(0.3-1.0 ppm, n=8)でかなり低 く,逆に沸石質堆積物では平均 1.8 ppm(1.5-2.3 ppm, n=8)で明らかに高い結果が得られた(第8 図参照).石 灰質堆積物は,生物生産性の高い赤道付近(2°32'N-7°07'S)から得られ,沸石質堆積物は赤道から離れた北

第9図 フィリピン海堆積物におけるスズ含有量と 粘土鉱物中のイライト含有率の関係 Relationship between tin contents and illite percentage in the clay minerals of the sediments from the Philippine Sea.

部海域(13°17'N以北)や南部海域(10°16'S以南)に分布 する. 西太平洋のニューギニア島北方海域のグロビゲリ ナ軟泥中のスズ含量は平均1.5ppm(n=3)と報告されて おり(HAMAGUCHI *et al.*, 1964),太平洋中央部の石灰質 堆積物の値よりも若干高いようである.

フィリピン海の堆積物については、粘土鉱物組成の研 究がなされている(OINUMA and AOKI, 1976). 粘土鉱物 組成とスズ存在量の関係を検討した結果、スズ含有量は イライト量と良好な正の相関を示すことがわかった(第 9図).一方,海底堆積物における各粘土鉱物の分布に 関しては GRIFFIN et al. (1968)の研究があり、太平洋にお けるイライトの分布の特徴は第10図の通りである。すな わち, イライトの分布は牛物牛産の高い赤道付近では少 なく、その南北で多くなる傾向があり、特に北太平洋の 20°-40°Nの海域で多い、この海域のイライトは、主と してヨーロッパやアジアの乾燥地帯からジェット気流で 運搬されたものが堆積したと考えられており、また多量 のイライトの分布範囲が北西太平洋の30°N付近まで広 がっているのは、中国大陸の河川から供給されたものと 解釈されている.北太平洋の沿岸海域ではイライトの分 布は少ないが、この海域ではイライトよりもモンモリロ ナイト等の粘土鉱物が卓越するためであり、モンモリロ ナイトの供給源としては日本、カムチャッカ、アリュー シャン列島などの火山灰土壌の影響が大きいと考えられ ている(GRIFFIN et al., 1968).

第7表 太平洋中央部およびフィリピン海における 海域別の Sn, K₂O 含有量 Average contents of tin and potassium oxide based on their localities for some selected marine sediments.

Area	n	Sn (ppm)	K ₂ O (%)
Cebtral Pacific			
Mid-Pacific Mountains (16°N-13°N)	4	2.0	3.47
Central Pacific Basin (11°N-6°N)	14	1.5	2.01
Central Pacific Basin (4°N-1°S)	22	0.9	1.61
Central pacific Basin to Manihiki			
Northeastern Basin (1°S-9°S)	14	1.1	1.77
Penrhyn Basin (10°S-14°S)	6	1.4	2.75
Philippine Sea			
Northern Part (29°N-23°N)	10	3.1	3.09
Southern Part (20°N-5°N)	7	2.2	2.37
Off Northeast Japan to Around the Japan Trench			
Continental slope	22	0.8	1.74
Trench bottom	28	1.0	1.88
Oceanic floor	12	1.2	2.15

— 134 —

太平洋におけるイライトの分布とスズ存在量の関係を 検討するため、太平洋中央部の堆積物を北部から南部へ 5つの海域に区分し、フィリピン海の試料については北 部と南部に、東北沖一日本海溝周辺についても大陸斜 面,海溝底,大洋底の三つに分けてスズ含有量を算出 し、第7表に示した.この表からわかるように、太平洋 中央部においてはイライトの量比が最も小さい赤道付近 の堆積物中のスズ量は平均1ppm 程度で低く、その両 側で高い傾向を示す.フィリピン海におけるイライトの 分布は、北部に比べて南部で低い(第10図)が、スズ量も 23°Nより北部の海域では平均3.1 ppm(n=10), 20°N より南部では 2.2 ppm(n=7)である. 第10図によれば, 東北沖一日本海溝周辺のイライトの分布は、陸側海域で 少なく,陸から離れるに従って多くなる傾向を示す.ス ズ含有量も陸側の東北沖では平均0.8 ppm(n=22),中 間の日本海溝一千島・カムチャッカ海溝の海溝底では 1.0 ppm(n=28), 最も陸から遠い太平洋プレート上の 堆積物試料では1.2 ppm(n=12)となり、この海域にお

いてもイライトの分布と良い一致を示す.

以上から遠洋性堆積物中のスズ量は,粘土鉱物中のイ ライト含有率と正の相関を示すことは明らかであり、こ の理由としては海水中のスズ(0.8 µg/l, HAMAGUCHI et al., 1964)がイライトに吸着されると考えることもでき る、しかし、本研究結果でスズ量の高いフィリピン海北 部の堆積物でも最高 3.7 ppm であり, また HAMAGUCHI et al. (1964)による西太平洋の赤粘土中のスズ含有量(平 均4.9 ppm, n=10)や日本海の赤粘土(平均4.1 ppm, n=3)の値を含めても湖沼域の堆積物や日本の花崗岩類 のスズ量に比べて特に高い値ではない。また、イライト の主要供給源は大陸地域とされているが、中国、マレー シア、タイ等の花崗岩類中のスズ量は日本では最もスズ に富む山陽帯の平均(4.2 ppm)よりもさらに高いことが 知られている(ISHIHARA and TERASHIMA, 1978; ISHIHARA et al., 1980). 従ってイライト中のスズは, 主として堆積 物と共に陸から供給された可能性が強く、スズ存在量の 多少は堆積物の供給源と密接に関係していると思われ

地質調査所月報(第37巻第3号)

る.

6. まとめ

堆積環境の異なる湖沼および海底堆積物 316試料中の 微量スズを水素化物生成一原子吸光法で定量し,堆積環 境や堆積物の供給源,性質との関係を研究し,次の結果 を得た.

1) 湖沼堆積物においては,近年の人為的影響が大き く,最高5倍程度の高い値を示す場合があり,地球化学 的バックグラウンドを求める場合は表層付近から得られ た堆積物は除外して解析を行なう必要があった. 海底堆 積物における人為汚染は小さく,無視してさしつかえな かった.

 2) 淡水堆積物のスズ含有量(平均2.2 ppm, n=44)に 比べて汽水堆積物でやや高い値(平均3.0 ppm, n=26)が 得られた.しかし,堆積環境が淡水から汽水に,あるい は海水一汽水から淡水に変ってもスズ量に明らかな変化 は認められなかった.

3) 湖沼におけるスズ存在量の多少は,後背地の岩石 や堆積物中のスズ含有量の影響と考えられた.スズに乏 しい火山岩類や火山灰層を後背地に持つ野尻湖や諏訪湖 の堆積物は低いスズ含有量を示し,堆積物の供給源がス ズに富む花崗岩類や堆積岩類の琵琶湖や三方五湖では全 体として高い値を示した.

4) 海底堆積物中のスズ量も堆積物の供給源と密接な 関係を有しており、小浜湾、駿河湾、紀伊水道南方等沿 岸海域の堆積物は流入河川の流域や付近の陸域の岩石中 のスズ量を反映している.火山起源の堆積物が多い七島 一硫黄島海嶺や東北沖一日本海溝周辺の堆積物はスズに 乏しかった.

5) 太平洋の遠洋性堆積物では,海洋生物起源の珪質 堆積物や石灰質堆積物は一般にスズに乏しく,沸石質堆 積物や遠洋性粘土がスズに富む.粘土鉱物中のイライト の含有率とスズ含有量は良好な正の相関を示し,太平洋 海域におけるイライトの分布とスズ存在量の広域的変化 は調和的であった.イライトに伴うスズは,堆積物と共 に陸域から供給されたと考えられた.

対 文 献

- GRIFFIN, J. J., WINDOM, H. and GOLDBERG, E. D. (1968) The distribution of clay minerals in the wold ocean. *Deep-Sea Research*, vol. 15, p. 443-459.
- HAMAGUCHI, H., KURODA, R., ONUMA, N., KAWABU-CHI, K., MITSUBAYASHI, T. and HOSOHARA,

K.(1964) The geochemistry of tin. Geochim. Cosmochim. Acta, vol. 28, p. 1039-1053.

- HONZA, E., ed. (1977) Geological investigation of Japan and Southern Kurile Trench and slope areas GH 76-2 cruise April-June 1976. Geol. Surv. Japan Cruise Rept., no. 7, 127 p.
- 井内美郎・木下泰正(1977) 紀伊水道南方表層堆積 図. 海洋地質図シリーズ no. 6, 地質調査 所.
- ・斉藤文紀・横田節哉(1983) 霞ケ浦湖底
 泥の堆積速度一火山灰層を用いた堆積速度
 算定法一.地質学雑誌, vol. 89, p. 125-128.
 - ・横田節哉・斉藤文紀・木下泰正・村上文 敏・小野寺公児・大嶋和雄・青木市太郎・ 橋本知昌・斉藤英二・渡辺和明・宮崎純一 ・羽坂俊一(1984) 湖沼堆積物の調査技術 に関する研究.環境庁環境保全研究成果集, p. 67-1~67-23.
 - ・ ・ ・ ・ ・ ・ ・ 村上文敏・中尾征三
 ・ 竹内三郎・吉川秀樹・寺島 滋・寺島美
 南子(1985) 湖沼汚染底質の堆積機構解明
 に関する研究.環境庁環境保全研究成果集,
 p. 74-1~74-20.
- 石原舜三・寺島 滋(1977) 日本の花崗岩類の Sn 含有量と白亜紀花崗岩活動におけるその意 義. 地質学雑誌, vol. 83, p. 657-664.
- ISHIHARA, S. and TERASHIMA, S. (1978) Tin contents of granitic rocks in Japan and its environs, In STEMPROK, M. et al., Eds. "Metallization Associated with Acid Magmatism", vol. 3, p. 227-234.
- —, SAWATA, H., SHIBATA, K., TERASHIMA,
 S., ARRYKUL, S. and SATO, K. (1980)
 Granites and Sn-W deposits of peninsular
 Thailand. *Mining Geol. Special Issue*, no. 8, p. 223-241.
- 松本英二·木下泰正(1978) 駿河湾における海底堆 積物.昭和52年度公害特別研究報告集,工 業技術院, p. 56-35~56-76.
- NAKAO, S. and MIZUNO, A. (1982) Regional sedimentologic data: the Central Pacific Wake-Tahiti Transect, GH80-1 cruise. Geol. Surv. Japan Cruise Rept., no. 18, p. 95-123.
- 中尾征三ほか13名(1985) 海底熱水活動に伴う重

金属資源の評価手法に関する研究.昭和59 年度研究報告書,地質調査所,99p.

- 尾原信彦・渡辺和衛・坂本 亨・相原輝雄・宇野沢 昭・鎌田清吉・細野武男・広島俊男・貴志 晴雄・寺島美南子(1973) 小浜湾の海況と 堆積に関する研究.地調月報, vol. 24, p. 597-647.
- OINUMA, K. and AOKI, S. (1976) Analytical data on clay mineral compositions of the surface sediments samples from the seas around the Japanese islands, *Jour. Toyo Univ., General Educ.* (Nat. Sci.), no. 19, p. 7–21.
- 大森江い(1968) 琵琶湖底質の化学組成について. 地調月報, vol. 19, p. 103-114.
- ────(1969) 宍道湖・中海底質の化学組成について、地調月報, vol. 20, p. 463-479.
 - ——(1971) 三方五湖底質の化学組成につい て. 地調月報, vol. 22, p. 71-84.
- ONISHI, H. and SANDELL, E. B. (1957) Meteoritic and terrestrial abundance of tin. Geochim. Cosmochim. Acta, vol. 12, p. 262-270.
- 柴田秀賢編(1968)"日本岩石誌Ⅲ 火山岩".朝倉 書店, p. 274.
- SUGISAKI, R. and KINOSHITA, T. (1982) Major element chemistry of the sediments on the Central Pacific transect, Wake to Tahiti, GH80-1 cruise. Geol. Surv. Japan Cruise Rept., no. 18,

p. 293-321.

- 寺島 滋(1975) アルゴン一水素フレーム原子吸光 法によるケイ酸塩中の微量スズの定量.分 析化学, vol. 24, p. 319-321.
- 一一・石原舜三(1981) 第四紀火山岩類におけるスズ分布(演旨).地調月報, vol. 32, p.
 525-526.
- TERASHIMA, S. and ISHIHARA, S. (1982) Tin abundance of some geosynclinal shales from Japan. Jour. Japan. Assoc. Min. Pet. Econ. Geol., vol. 77, p. 1–6.
- , NAKAO, S. and MITA, N. (1982) Sulfur and carbon contents of deep-sea sediments from the Central Pacific, GH80-1 cruise. Bull. Geol. Surv. Japan, vol. 33, p. 369-379.
- ———, YONETANI, H., MATSUMOTO, E. and INO-UCHI, Y. (1983) Sulfur and Carbon contents in Recent sediments and their relation to sedimentary environments. *Bull. Geol. Surv. Japan*, vol. 34, p. 361–382.
- ———(1985) Determination of tin in geological materials by atomic absorption spectrometry.
 Bull. Geol. Surv. Japan, vol. 36, p. 375-383.
- 米谷 宏(1967) 湖水および底質中のガス成分.地 調月報, vol. 18, p. 731-757.

(受付:1985年9月19日;受理:1985年12月6日)