資 料

553.08:681.3

鉱物の結晶解析計算システム(Ⅱ)

金沢康夫* 月村勝宏* 堀内弘之**

KANAZAWA, Y., TSUKIMURA, K. and HORIUCHI, H. (1958) A crystallographic computation program system for minerals (II). Bull. Geol. Surv. Japan, vol. 36 (8), p. 463–478.

1. はじめに

鉱物の結晶解析計算システムと題するこのシリーズで はX線結晶構造解析で使用する計算プログラムの処理内 容についての紹介を行う.プログラムはとくに工業技術 院筑波研究センターの情報計算センター(RIPS)で使用 可能となったものを中心に解説する.前回は結晶構造解 析の概要とX線回折データの収集・整理について述べた (金沢・月村・堀内, 1981).今回は結晶構造因子の位相 角決定と構造の精密化について述べる.

2. 結晶構造因子の位相角決定と構造の精密化

結晶構造因子は結晶構造とそれによるX線反射強度デ ータを結ぶ役割をもつ. この関係を第1図に示す. 結晶 構造因子 $F(\mathbf{h})$ と結晶内電子密度分布 $\rho(\mathbf{r})$, すなわち結 晶構造は数学的にフーリエ変換の関係にあり, 互いに一 方から他方へと計算できるようになっている. これを式 で表わせば, $\rho(\mathbf{r}) \rightarrow F(\mathbf{h})$ は

$$F(\mathbf{h}) = \int_{\stackrel{.}{=} \stackrel{.}{\underline{\downarrow}} \stackrel{.}{\underline{\iota}} \stackrel{.}{\underline{\iota}} \stackrel{.}{\underline{h}} \stackrel{.}{\underline{\tau}} \rho(\mathbf{r}) \exp(2\pi i \, \mathbf{h} \cdot \mathbf{r}) d\tau \qquad (2.1)$$

F(\mathbf{h}) → $\rho(\mathbf{r})$ は

$$\rho(\mathbf{r}) = \frac{1}{V} \sum_{\mathbf{h}} F(\mathbf{h}) \exp\left(-2\pi i \,\mathbf{h} \cdot \mathbf{r}\right)$$
(2.2)

となる. ここで h は逆格子ベクトルあるいは反射の指数, r は実格子ベクトル, V は単位格子の体積, $d\tau$ は体積要素である.

最初に (2.1) 式を用いて,結晶構造から結晶構造因子 を計算する過程を示す. (2.1) 式は単位格子内の積分の 形であるがこのままの式では計算できない. そこで単位 格子中の原子ごとの電子密度分布についての和をとるこ とを考えて, (2.1) 式で $\mathbf{r}=\mathbf{x}+\mathbf{r}'$ (**x** は原子の中心位置 座標)という置きかえを行えば,

* 鉱床部 ** 東京大学理学部鉱物学教室

第1図 結晶構造,結晶構造因子およびX線反射強 度データの関係

$$F(\mathbf{h}) = \sum_{\substack{n=1\\ 単位格子}}^{N} \left\{ \int \rho(\mathbf{r}') \exp(2\pi i \, \mathbf{h} \cdot \mathbf{r}') d\tau \right\}_{n}$$

 $\times \exp\left(2\pi i\,\mathbf{h}\cdot\mathbf{x}_n\right) \tag{2.3}$

とN個の原子についての和の形に変形できる.ここで,

$$f_n(\mathbf{h}) = \left| \rho_n(\mathbf{r}) \exp\left(2\pi i \,\mathbf{h} \cdot \mathbf{r}\right) d\tau \right|$$
(2.4)

を原子種 n についての原子散乱因子と呼び、すでに多く の原子についての計算値が International tables for X-ray crystallography, vol. IV (1974) に与えられているので、 これを用いれば (2.3) 式が計算可能となる. さらに原子 の熱振動を考慮に入れると、(2.3) 式は

$$F(\mathbf{h}) = \sum_{n=1}^{N} f_n(\mathbf{h}) \exp\left(2\pi i \, \mathbf{h} \cdot \mathbf{x}_n\right) \cdot T_n \tag{2.5}$$

となる.ここで T_n が原子の熱振動に関係する係数である. \mathbf{x}_n , T_n を原子パラメータと呼ぶことにすれば結晶構造は原子パラメータで代表できるし, $F(\mathbf{h})$ は原子パラメータの関数として扱うことができる.

次にX線反射強度データから結晶構造モデルを求める 過程について述べる.結晶構造因子は一般に複素数量で あり、 $F(\mathbf{h}) = |F(\mathbf{h})| e^{i\alpha}$ (α は位相角)の形に書くことが

第2図 結晶構造解析の作業過程 今回は四角わくで囲んだ計算について述べる.

できる. 第1図に示したようにX線反射強度データI(h) からは |F(h)| が得られるだけで位相角αについての情 報を欠いている. したがってなんらかの方法で位相角を 決定しないことには結晶構造に到達することはできな い、この位相角決定が構造解析の主要部で、いくつかの 方法が考え出されている.これを第2図で説明する.も し構造の手がかりがない場合(第2図の(I)のケース) には直接法(統計法)あるいはパターソン関数による方 法などが試みられる.また,もし解析対象となっている 結晶に対してすでに類似構造が知られている場合(第2 図の(II)のケース)には、その類似構造の原子パラメー タを初期値としてフーリエ合成などで全原子を 探し出 し、そのあと最小2乗法により構造の精密化を行えばよ い. そして鉱物結晶は(Ⅱ)のケースに該当することがは なはだ多い. というのは、鉱物の場合、今やまったく知 られていない新構造というものはめったに出現しないか らである."新鉱物"として毎年多数発見される鉱物は,

はかの既知鉱物と1)同型である,2)超構造の関係にある, という場合が少なくない.1)の時にはすぐ最小2乗法に よる構造の精密化にとりかかればよい.2)の時には, 基本構造の上に立って種々の構造モデルを立てるやり方 や変型パターソン関数を使う方法などが知られている.

というわけで、今回は($\widehat{\Pi}$)のケースでよく知られてい る計算プログラム①結晶構造因子の計算、②フーリエ合 成(パターソン関数を含む)、③最小 2 乗法による構造の 精密化を紹介する. ①と②については FŌRTRAN プ ログラム RSSFR-5 (桜井、1967)、① と③については RFINE 2 (FINGER、1969 の改訂版) がそれぞれすでに RIPS で使用可能となっている.

3. 結晶構造因子の計算

結晶構造因子の計算は RSSFR-5 と RFINE 2 の両者 のプログラムで実行可能であるが,前節 (2.4) 式の熱振 動Tに対する表式が異なっている.まず, RSSFR-5 プ ログラムでは原子は調和振動していると仮定して,

$$T = \exp\left(-\mathbf{h}^{t}\mathbf{B}\mathbf{h}\right) \tag{3.1}$$

とおく、Bを異方性温度因子と呼び、3×3の対称マト リックスである.もし原子が等方的に振動しているので あれば

$$T = \exp\left(-B\sin^2\theta/\lambda^2\right) \tag{3.2}$$

と書き, B を等方性温度因子と呼んでいる. なお, θ は ブラッグ角,λはX線の波長でTが方向に依存しないこ とを表わしている. (3.1) 式を (2.4) 式に代入し、か つベクトルの成分表示で書き直すと結晶構造因子は

$$F(h_1, h_2, h_3) = \sum_{n=1}^{N} f_n(h_1, h_2, h_3)$$
$$\times \exp\left(2\pi i \sum_{j=1}^{3} h_j x_n^{j} - \sum_{k=1}^{3} h_j h_k b_n^{jk}\right)$$
(3.3)

となる.ここで $\mathbf{h} = (h_1, h_2, h_3), b^{jk}$ は異方性温度因子で ある. 通常の解析ではこの式で充分であるが、熱振動が 大きくなり調和振動の近似では精度が悪い場合には非調 和熱振動の項を追加する必要が生じてくる。このために RFINE 2 プログラムでは非調和項を含めた次式を採用 している.

$$F(h_{1}, h_{2}, h_{3}) = \sum_{n=1}^{N} f_{n}(h_{1}, h_{2}, h_{3}) \exp\left(2\pi i \sum_{j=1}^{3} h_{j} x_{n}^{j} - \sum_{j,k=1}^{3} h_{j} h_{k} b_{n}^{jk} - i \sum_{j,k,l=1}^{3} h_{j} h_{k} h_{l} c_{n}^{jkl} + \sum_{j,k,l,m=1}^{3} h_{j} h_{k} h_{l} h_{m} d_{n}^{jklm}\right)$$
(3.4)

ここで、 c^{jkl} 、 d^{jklm} を3次、4次のキュムラント成分と呼 んでいる. 原子 n が一般位置にある場合には x_n^j , b_n^{jk} , c_n^{jkl}, d_n^{jklm} はそれぞれ3,6,10,15個の独立成分をもつ.

以上の式に対称操作を考慮すれば最終的な計算式が得 られる.これを(3.3)式についてのみ示すと,

$$F(h_{1}, h_{2}, h_{3}) = \sum_{\substack{n=1\\ n \neq 3}}^{N} a_{n}f_{n} \sum_{\substack{s=1\\ s=1}}^{S} \frac{1}{n} \frac{1}{n$$

となる.ここで a_n は位置の多重度, h_{is} などは対称操作 で変換された値、tjs は並進成分である. (3.4)式も同様 に扱うことができる.

なお,原子散乱因子 f は異常分散効果を考慮すれば,

 $f=f_0+f'+if''$ (3.6)

という $f' \geq f''$ の補正項を加えた式になる. さらに RFINE 2 ではこれに席占有度というパラメータを掛け て,一つの原子位置を2種の異なる原子が占有している 構造を扱えるようにしてある.またFは実数項と虚数項 に分けて

$$F(\mathbf{h}) = A(\mathbf{h}) + iB(\mathbf{h})$$
 (3.6)
の形で最終的に整理される.

4. フーリエ合成

結晶構造因子 $F(\mathbf{h})$ が得られれば,電子密度分布 $\rho(\mathbf{r})$ は(2.2)式により求めることができる。構造解析では * についての任意セクションの p(r) 図を作ることをフー リエ合成と呼んでいる.

第2図において構造を仮定したあとで観測したX線強 度により適合するように原子パラメータを修正したり, 初期の仮定では省かれていた軽い原子を探し出したりす るにはフーリエ合成による方法が有効である.この時,

(2.2) 式の $F(\mathbf{h})$ に $|F_0(\mathbf{h})|e^{i\alpha_c}$ を代入して $\rho(\mathbf{r})$ を計算 すればよい. ここで $|F_0(\mathbf{h})|$ は実験値, α_c は仮定構造か ら計算した構造因子の位相角である. つまり 実験 値の |F_o| に位相角を構造モデルから借りてフーリエ合成を行 う方法である.

フーリエ合成は $\rho(\mathbf{r})$ を求める目的だけの使用に限ら ず、パターソン関数や差のフーリエ合成などの他の解析 手法としての使い方がある.いずれの場合でも (2.2) 式 の F(h) に相当する量のみが入れ変かるだけで計算式は 同じである. パータソン関数の時には $|F(\mathbf{h})|^2$, 差のフ ーリエ合成の時には $\{F_0(\mathbf{h}) - F_c(\mathbf{h})\}$ を用いる. 実際の 計算プログラムでは (2.2) 式を三角関数を使って展開し ていき、計算時間やメモリーを節約するテクニックが用 いられている.

ところで上記の式は三斜晶系 P1 を想定して導いた式 であり、対称性が高くなるともう一つ計算のステップが ふえてくる、というのは、逆空間内の限られた領域にあ る独立反射だけの合成では正しい結果が得られず、一度 三斜晶系にまで反射領域を拡張して、そこで(2.2)式を 用いる必要がある.対称操作による逆空間への構造因子 の拡張方法は次のとおりである.実格子空間に対称操作 x'=Rx+t があると、これに対応して逆格子空間では

 $F(\mathbf{h}) = F(\mathbf{Rh}) \exp(-2\pi i \mathbf{ht})$ (4.1)の関係がある.この関係式を用いればすべての空間群に 対して同じ formalism でプログラムが書ける.

以上の準備ができれば、 $\rho(\mathbf{r})$ を求めるのには単に作 図したい面のェを順次指定して、計算値を該当する座標 に記入すればよい. RSSFR-5 プログラムでは単位格子 を座標分割して、その分割交点の座標『に対しての電子 密度値を計算するようになっている。そして各結晶軸に 対するセクションの電子密度図を得ることができる.

- 465 ---

5. 最小2 乗法による構造の精密化

最小2乗法は観測値の集合に対してもっともよく合う モデルまたはモデルのパラメーターを求める方法で,従 来からよく使用されている.構造解析の場合,観測値は X線回折強度データ,求めたいパラメータは前節で述べ た結晶構造因子の中に出てくる原子の座標値,温度因子 等の値である.最小2乗法を適用する条件としておよそ 正しい結晶構造のモデルが求められていなければならな い.そうでないと,パラメータが収れんしなかったり, 偽の構造にたどり着いたりすることになる.

さて,構造解析で最小にしたい量は

 $r1 = \sum_{\mathbf{h}} \omega_{\mathbf{h}}(|F_0(\mathbf{h})| - K|F_c(\mathbf{h})|)^2$ (5.1)

あるいは

 $r2 = \sum_{\mathbf{h}} \omega_{\mathbf{h}} (|F_0(\mathbf{h})|^2 - K|F_c(\mathbf{h})|^2)^2$ (5.2)

ここで、 $|F_0(\mathbf{h})|$ は回折強度データより得られた観測結 晶構造因子であり、 $F_c(\mathbf{h})$ は構造モデルのパラメータを 使って計算した構造因子、また $\omega_{\mathbf{h}}$ は \mathbf{h} に依存 する 重 み、 \mathbf{k} は尺度因子で本来は F_0 に掛けるべきであるが計算 上 F_c に掛けてある. $r1 \ge r2$ の違いは前者の観測値が 構造因子であるという立場、後者が回折強度データであ るという立場に基づいている.

r1の場合をとって最小2乗法について簡単に説明する. *今*, $F_c(x_1, x_2, ..., x_p, ...) = K|F_c(\mathbf{h})|$, $F_0 = |F_0(\mathbf{h})|$ とかくことにする. ここで $x_1, x_2, ..., x_p, ...$ は求めるべき パラメータである. そうすると観測方程式としては

 $F_c(x_1, x_2, ..., x_p, ...) = F_0$ (5.3) の形の式が反射数だけできる. F_c は x に対して線型で はないので、線型近似を何回も繰り返して逐次的に解を 求める. 近似値あるいは出発値を x'とし、変化量を ξ と すれば、 $x=x'+\xi$ となる. F_c を ξ で展開し、1次の項 のみをとれば

$$F_{c}(x_{1}, x_{2}, ..., x_{p}, ...) = F_{c}(x_{1}', x_{2}', ..., x_{p}', ...)$$
$$+ \frac{\partial F_{c}}{\partial \xi_{1}} + \frac{\partial F_{c}}{\partial \xi_{2}} + ... + \frac{\partial F_{c}}{\partial \xi_{2}} + ...$$
(5.4)

$$+\frac{\partial I_{c}}{\partial x_{1}}\xi_{1}+\frac{\partial I_{c}}{\partial x_{2}}\xi_{2}+\ldots+\frac{\partial I_{c}}{\partial x_{p}}\xi_{p}+\ldots$$
(5)

となる. (5.3) と (5.4) を使えば

$$\frac{\partial F_c}{\partial x_1} \xi_1 + \frac{\partial F_c}{\partial x_2} \xi_2 + \dots + \frac{\partial F_c}{\partial x_p} \xi_p + \dots$$
$$= F_0 - F_c(x_1', x_2', \dots, x_n', \dots)$$
(5.5)

という ϵ についての多数の連立一次方程式ができるので、これを通常の手続きで正規方程式を作り、解けばよい. 解 ϵ が得られれば $x'+\epsilon$ を次の初期値におきかえて、また最小2乗法を繰り返せばよい. これを普通、数サイクル続ける. (5.5)式に表われる一般項の偏微分係

数 $\partial F_c/\partial x_p$ は (3.6) 式を用いれば

$$\frac{\partial F_c}{\partial x_p} = \frac{\partial K |F_c(\mathbf{h})|}{\partial x_p} = \frac{K}{\{A(\mathbf{h})^2 + B(\mathbf{h})^2\}^{1/2}} \times \left\{ A(\mathbf{h}) \frac{\partial A(\mathbf{h})}{\partial x_p} + B(\mathbf{h}) \frac{\partial B(\mathbf{h})}{\partial x_p} \right\}$$
(5.6)

となるが,各パラメータに関する ∂*A*/∂x_p, ∂*B*/∂x_pの値は構 造因子の計算過程であらかじめ求めておくことができる.

RFINE 2 で精密化できるパラメータは 1)尺度因子, 2)席占有度, 3)座標値, 4)温度因子, 5) 3次キュムラン ト,6) 4次キュムラント,それに後述する7)消衰因子の7 種類である. もしこれらのパラメータの間に独立・従属 の関係があれば,RFINE 2 では入力データでこの関係を 与えることができるようにプログラムがくまれている.

さて,最小2乗法で得られたパラメータが妥当である かどうかを評価する指標として信頼性因子 (*R*-factor)と いうものがある.通常 R 因子としては

$$R = \frac{\sum ||F_0(\mathbf{h})| - K|F_c(\mathbf{h})||}{\Sigma|F_0(\mathbf{h})|}$$
(5.7)

を用いる.しかし,統計学的には(5.1)と(5.2)のr1 とr2 に対して次の重みつき R 因子を用いるほうが望ま しい,

$$R1 = \left\{ \frac{\sum_{\mathbf{h}} \omega_{\mathbf{h}}(|F_{0}(\mathbf{h})| - K|F_{c}(\mathbf{h})|)^{2}}{\sum_{\mathbf{h}} \omega_{\mathbf{h}}|F_{0}(\mathbf{h})|^{2}} \right\}^{1/2}$$
(5.8)
$$R2 = \left\{ \frac{\sum_{\mathbf{h}} \omega_{\mathbf{h}}(|F_{0}(\mathbf{h})|^{2} - K|F_{c}(\mathbf{h})^{2})^{2}}{\sum_{\mathbf{h}} \omega_{\mathbf{h}}|F_{0}(\mathbf{h})|^{4}} \right\}^{1/2}$$
(5.9)

そして,これらのR因子が30%以下になれば本質的に正しい構造であると考えられている.最近ではR因子が1-2%あるいはそれ以下の精密構造解析の例も報告されており,原子の結合電子雲の形についての議論もされるようになってきている.

最後に消衰効果の補正について少し述べておく. 運動 学的理論により得られた反射強度と構造因子を Q_c, F_c として、これに消衰のための係数y(消衰因子)を掛け ると、実際に期待される反射強度 Q_c^* と構造因子 F_c^* は

$$\begin{array}{c} Q_c^* = y Q_c \\ F_c^* = y^{1/2} F_c \end{array}$$

$$(5.10)$$

となる. 消衰因子の導き方については省略するが, RFINE 2 プログラムでは Coppens and HAMILTON(1970) の表式を用いている. それによると

$$y = (1 - g\gamma F_c^2)^{-1/2}$$
(5.11)
$$\begin{cases} r = -2\left(\frac{1 + \cos^4 2\theta}{1 + \cos^2 2\theta}\right) \left(\frac{T}{\sin 2\theta}\right) \left(\frac{\lambda^3}{V^2}\right) \left(\frac{e^4}{m^2 c^4}\right) \\ g = \begin{cases} g \left(\frac{\varphi}{D'\mathbf{ZD}}\right)^{1/2} (\text{Type 1 } \mathcal{O} \mathbf{B} \mathbf{5} \text{性温度因}^2) \\ (\mathbf{N}'\mathbf{WN})^{-1/2} \lambda (\text{Type 2 } \mathcal{O} \mathbf{B} \mathbf{5} \text{t} \text{t} \mathbf{L} \mathbf{E} \mathbf{G} \mathbf{5}^2) \end{cases} \end{cases}$$

- 466 ---

鉱物の結晶解析計算システム(II)(金沢康夫・月村勝宏・堀内弘之)

ここで θ はブラック角、*T*は有効平均通過距離、 λ は波 長、*V*は単位格子体積、*e*, *m*, *c*は通常の意味どおりであ る. また、*g*は消衰因子で異方性には2つのタイプの両 極端がある. タイプ I はモザイク・ブロックの角度広が りが利く場合、タイプ I はモザイク粒子の大きさが利く 場合である. それぞれZとWが異方性消衰因子となる. DとNの意味はDが入射・反射の両線に直角な方向ベク トル、Nが入射線とDに直角なベクトルを示す.

COPPENS と HAMILTON の表示は ZACHARIASEN (1967) の近似に基づくものであるが,後に BECKER and COP-PENS (1974) によりこの方法は消衰効果の小さいところ (y>0.8) で成り立つことが指摘されている.

6. プログラム使用法

6.1 RSSFR-5:一般フーリエ合成(および構造因子) (原作 桜井敏雄, 1967)

6.1.1 内容

すべての空間群に対して等方性または非等方性温度因

6.1.2 入力データ

子を用いた構造因子およびフーリエ合成やパターソン合 成を行う.入力の反射データは独立な反射だけでよく, その順序も任意でさしつかえない.

フーリエ合成の結果はどれかの軸に対する切り口で表 わされるため、任意の軸に対する切り口を見たい場合軸 の選び方を変える必要がある.結晶の \mathbf{a} , \mathbf{b} , \mathbf{c} 軸を内部 座標軸 \mathbf{a}' , \mathbf{b}' , \mathbf{c}' (内部指数は h', k', l') のどれかに対応 させ、 \mathbf{a}' 軸に対する切り口を、 \mathbf{c}' 軸を横に、 \mathbf{b}' 軸を縦 にとって印刷する.

制限 $(|h'|_{\max}+1)(|k'|_{\max}+1)(|l'|_{\min}+1) \le 11,000$ |h'| \le 50, |k'| ≤ 50, |l'| ≤ 20

入力データの Range of calculation card の中で NMAX-NMIN<100

ただし NMAX は N1MAX, N2MAX,

N3MAX の中で最大, NMIN は N1MIN,

N2MIN, N3MIN の中で最小のものである.

N3MAX-N3MIN <26 N3D

(1) Title Card (18A4) 10 15 20 25 30 35 40 11<
(2) Input Control Card (I5)
IRDI = 0:反射データを簡易形式で読む. = 2:反射データを標準形式 [9] で読む. (3) Job Selection Card (515) ISTF IFRA IHIGH ICENT ISTF IFRA IHIGH ICENT
ISTF = 0:構造因子を計算しない. = 1:構造因子を計算する. IFRA = 0:フーリエ合成を計算しない. = 1:フーリエ合成を計算する. = 2:パターソン合成を計算する. = 3:D合成を計算する. ただし, IFRA≠0の時, [10]のIOP ≠0ならばその指示に従う.
 IHIGH = 0 or 1: [10] [11] [12] の指示に従ってフーリエ合成等を行う. = 2:標準方式で計算をする.このときは、[10] はF(0.0.0) のみを入れ、[11] [12] は ブランクでよい. ICENT = 0:対称心なし. = 1:対称心あり. NS [4] のSymmetryの数 対称心のある場合は等価位置の半分、ないときは等価位置の数と等しい
(4) Symmetry Operation Card (9F5.2, 3F9.6) R11 R12 R13 R21 R22 R23 R31 R32 R33
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- 467 -

地質調査所月報(第36巻第8号)

多重度。例えば、鏡面上なら×0.5、また 底心・体心格子なら×2.面心格子なら×4. AI

XYZ (1)~(3) 原子座標x, y, z 等方性温度因子 BISO

Card 3 (6F9.6)	ITPF=1の場合のみ必要	Ę
BETA (1) 10	15 20 25 BETA (2) BETA (3) BETA (3)	
		45

BETA(1)~(6) 非等方性温度因子, B11~B23

温度因子は次の式で定義される; exp {- (h² B11+k² B22+1² B33+2hkB12+2h1B13+2k1B23) } ITPF=0 の場合はCard 1 の次にCard 2 をNA枚置く、また、ITPF=1 の場合は各原子ごとにCard 2、Card 3 を重ねた組をNA組置く、この場合は非等方性温度因子としての計算が行われる. もしCard 3 がブランクで あれば、その原子だけはBIS0に与えられた等方性温度因子を持つものとして計算される.

[]] Scattering Factor lables	s (8F9.3)	ble	Tal	or	act	F	ing	e r	t	a t	Sс	(7)
------------------------------	-----------	-----	-----	----	-----	---	-----	-----	---	-----	----	-----

SF (1)	10		25	30	35	40	45
		45	50	-55	60	65	70

原子散乱因子の値 SF(1) · · ·

- 1原子につき4枚組のカードが必要 1枚目のカードはsin $\theta / \lambda = 0.00 \sim 0.35$ (0.05の間隔) に対する値
- 2枚目から4枚目のカードはそれぞれ0.40~0.75, 0.80~1.15, 1.20~1.55の値

(6)のISF = iならi番目の組の原子散乱因子表が使用される。

鉱物の結晶解析計算システム(Ⅱ)(金沢康夫・月村勝宏・堀内弘之)

(8) S	cale Factor Card (F10.5,7A4) -5
SCALE	Fo の値にこのSCALE のかかったものが出力に得られる.
	住意の文字 eflection Data (315 4F8 2 F8 5 F8 2 2F4 1)
	-5 + -10 + -15 + -20 + -25 + -25 + -30 + -35 +35 + + -35 + + -25 + + -30 + + -35 +
	40
	FC RLV SIGF FMI SQ
IH(1)∼ F0	(3) h, k, l Fo
AC BC	Ac Bc
FC RLV	Fc $\sin \theta / \lambda$
FMI	
反射	一次に留ち データの最後はIH(1)=1000とする.
(10)	Fourier Control Card (415,15X,F10.5,F5.2) IHIGH = 2のとき,F000とSPC のみ有効
IOP	
	35 40 45 50
TOP	$= 0 \cdot \{3\}$ のIRPAの指示に従って計算を行う 0 辺外のときけIRPAの指定と無関係に以下の指
101	$f(\vec{u})$ = 1 : $F_0 \land d \vec{u}$
	= 2 : Fo ×Ac/Fc, Fo ×Bc/Fc合成 = 3 : D合成 1, (Fo—Ac)合成
	= 4 : D 合成 2 , Fo ×Ac/Fc—Ac, Fo ×Bc/Fc—Bc合成 = 5 : Patterson 合成, Fo ² 合成
	= 6 : Sharpened Patterson 合成,(Fo× exp(SEP(sin <i>θ / λ</i>) ²)) ² 合成 = 7 :任意の合成,この場合は,Dummy Subroutine MODFTの中味を適当に書いて用いる
	= 8 : Ac合成 = 9 : Ac, Bc合成
TADDI	$= 10: Fc ^2 ch \bar{k}$ = 11: Fcch \bar{k}
TODKI	= 1: a 軸に 刈 g る 切 り 口 (a 軸 → a 袖) = 2: b 軸に対する 切 り 口 (b 軸 → a '軸)
IODR2	$= 1 : a = \frac{1}{2} : b = \frac{1}$
10DR3	= 3 : c 軸を縦に印刷(c 軸→b' 軸) = 1 : a 軸を横に印刷(a 軸→c' 軸)
	=2: b 軸を横に印刷(b 軸→c'軸) =3: c 軸を横に印刷(c 軸→c'軸)
F000 SPC	F (000)の値. IHIGH =2のときは大体1AがSPC cmになるような分割数となる(ブランクなら5cm).
(11)	Fourier Scale Factor Card (F10.6,F10.3,F10.6)
	SCALE VD SFP
SCALE VD	尺度因子 k 単位格子体積
SFP	リエイ気の係数には,mk/VDがかかる.ここでmはmultiplicityで自動的に計算される. Sharpened Patterson の係数(IOP = 6 のときのみ有効)

地質調査所月報(第36巻第8号) (12) Print Control Card (215) INEG NSPACE NSPACE 印刷結果の行間隔 =0:すべての結果を印刷する. =1:合成結果負の部分にすべて0が入る. INEG (13) Range of Calculation Card (1015) -10--20 40 10 NIMIN N1MAX N1D N3D NMAXD N2D N2MIN N2MAX 40--50 N3MIN N2MAX

 1:・・・・

 IHIGH = 2 ならNMAXD は自動的に100 に指定され、N1MIN.N1MAX (a軸), N2MIN.N2MAX

 N3MIN.N3MAX (c軸) だけを指定すればよい.

 IHIGH = 0 または1 なら下のようになる.

 NMAXD 格子の分割数の最大値

 N10 a'軸に沿っての分割間隔,単位1 / NMAXD

 NIMIN a'軸の計算開始点、単位1 / NMAXD

 NIMAX : 軸の計算開始点、単位1 / NMAXD

 N1MAX : 軸の計算開始点、単位1 / NMAXD

 N1D : ・・
 以下同様に b'軸、c'軸について、示す.

 このカードは何枚でも重ねて用いることができる.

 (b軸), (14) End of Calculation Card (blank card) 10 15 15 -20----25--30 - 5 -blank 45 -55 -50 -60 -65 70 ブランク カード (15) End of Job Card (15) JOB -JOB

6.1.3 入力データの例

(左端の番号は6.1.2入力データの番号を表わす)

	*1	*2	*3	*4	*5*	6	-*7
[1]	KAMIOKITE	TEST DATA	HEXAGONA	L FO-SYNTH	IESIS	JI	JLY/1984
[2]	2						
[3]	0 3	0 0	12				
[4]	1.00 0.0	0.0 0.0 1	.00 0.0 0	0.0 0.0 1.	0.0 0.0	0.0	0.0
[4]	0.0 -1.00	0.0 1.00-1	.00 0.0 0	0.0 0.0 1.	0.0 0.0	0.0	0.0
[4]	-1.00 1.00	0.0 -1.00 C	.0 0.0 0	0.0 0.0 1.	.00 0.0	0.0	0.0
[4]	0.0 -1.00	0.0 -1.00 0	0.0 0.0 0	0.0 0.0 1.	.00 0.0	0.0	0.0
[4]	1.00 0.0	0.0 1.00-1	.00 0.0 0	0.0 0.0 1.	.00 0.0	0.0	0.0
[4]	-1.00 1.00	0.0 0.0 1	.00 0.0 0	0.0 0.0 1.	0.0 0.0	0.0	0.0
[4]	-1:00 0.0	0.0 0.0 -1	.00 0.0 0	0.0 0.0 1.	0.0 0.0	0.0	0.500000
[4]	0.0 1.00	0.0 -1.00 1	.00 0.0 0	0.0 0.0 1.	.00 0.0	0.0	0.500000
[4]	1.00-1.00	0.0 1.00 0	0.0 0.0 0	0.0 0.0 1.	.00 0.0	0.0	0.500000
	0.0 1.00			0.0 0.0 1.	00 0.0	0.0	0.500000
	-1.00 0.0				00 0.0	0.0	0.500000
[4]	1.00-1.00			0.0 0.0 1.	00 0.0	0.0	0.300000
[7] [0]	2 0	0 24.0	19.79	3 52 10	1 60 0 0	0.0	0.0 0.0
	3 0		5 67	1.60	5 91 0 0	0.0	0.0 0.0
i di	4 O	0 72 1	2	_3 17 7	1 16 0 0	0.0	0.0 0.0
[2]	4 0	0 72.1	2 -71.07	-3.17 7	1.10 0.0	0.0	0.0 0.0
				•			
				•			
				•			
				•			
				•			
[9]	2 0	21 45.3	33 -44.49	-13.59 4	46.52 0.0	0.0	0.0 0.0
iei	3 0	21 18.9	-18.76	-1.55	18.82 0.0	0.0	0.0 0.0
i e i	2 1	21 14.9	-12.66	7.77	14.86 0.0	0.0	0.0 0.0
[9]	0 0	22 28.8	34 -27.41	2,56	27.53 0.0	0.0	0.0 0.0
[9]	1 0	22 17.9	93 -16.78	-5.38	17.62 0.0	0.0	0.0 0.0
[9]	1000 C) 0 0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0
[10]	2 3	3 1 2		484.0	5.00		
[11]	10.000000	291.182	0.0				
[12]	1 0)					
[13]	100 2	2 0 100	4 0	100 4	0 100		
[14]	0						
1121	0						

6.1.4 コントロールカードの例 (RIPS 用)

-*---1-----*---4----*---3---*---4----4----// 1 JOB S /*JOEPARM L=50 // EXRC PGM=FF5,REGION=3000K //STEPLIB DD DSN=C0364.MINCS.LOAD(FF5),DISP=SHR //G0.FT05F001 DD DSN=<u>2</u>,DISP=SHR --*----6 -3--

- [1] [2] [3] [4] [5] [6] [7] [8] //GO.FT06F001 DD SYSOUT=A

下線部1:登録番号

- 2:入力データファイルのデータセット名 "
- 6.2 RFINE 2:結晶構造因子の計算と最小 2 乗法に よる結晶構造の精密化 (原作 FINGER, 1969, 改訂 1972)

6.2.1 内容

結晶構造因子の計算と完全マトリックス最小2乗法を 用いた結晶構造の精密化を行う. 各精密化の段階をモニ ターできるように原子間距離・角度と熱振動楕円体の計 算を行える.

パラメータにある制限をつけたい場合,例えばパラメ ータを固定させたり,他のパラメータの従属変数にした い時,ユーザーはなんら特別なサブルーチンを組みこま なくても処理できるようになっている.すなわちユーザ ーは入力データで特殊位置にある原子の温度因子と座標

6.2.2 入力データ

(1) Title Card (18A4)

値および席占有度,多重度に束縛条件をつけることがで きる.

制限	原子数	60以下
	元素の種類	20以下
	精密化するパラメータ	200以下

地質調査所月報(第36巻第8号)

MANOD	異常分散	1・庙田オス	NEW (4)≠0のとき有効
NSCAT	- 0・CA-0 はい 散乱因子の数(≦20) 原子数(非対称単位中 <60)	- 1 · 12/H 9 /0	NEW (4)≠0のとき有効 NEW (5)≠0のとき有効
NSF	スケール因子の数(≦10)		NEW (5)≠0のとき有効
NEWEXT	消衰因子パラメータ = () : パラメータを読まない	=1:新しいパラメータ	NEW (5)≠()のとき有効 'を読む
IWT	重み (w) のタイプ	$-1 \cdot \sigma (F \circ 2)$	NEW (8)≠()のとき有効
	= 0:0 (F0) = 2: $= 2: = = > b$	$=3:$ \pm \forall μ \pm \forall μ \pm \forall	HITで計算
TNN	(IWT = 0, 1のとき, w = 1 / σ ² , IWT 未使用	= 3028, w = 1/W	eight ² となる)
IREJ	リジェクション・パラメータ		NEW (8)≠()のとき有効
	= 1, 6: 観測最小値以下のFo は除く		
	= 2, 7:観測最小値以下のFo, または, = 3, 8: Fo - Fc > DFLMAXのFo は除	Fo — Fc >DELMAX@)Fo は除く
	= 4, 9:サブルーチンREJECTを使用する		
DELMAX	(IREJ=5~9 GNEW (8)=00ときでも有効 IREJで使用する Fo - Fc に対する値))	
JSCRF	 (i) スケール因子精密化スイッチ = 0・i 番目のスケール因子を精密化しない 	= 1 : 精密化する	NEW (7)≠()のとき有効
KEXTRF	(i) 消衰因子精密化スイッチ		NEW (7)≠0のとき有効
JXPAR	= 0: i 番目の消気因子を精密化しない 特別パラメータ	=1:稍密化する	NEW (7)≠()のとき有効
IFSCN	= 0:なし 古位決定パラメータ	=1:読む	NFW (7)±1のとき右効
TLOOM	- 0:決定しない	=1:小さな重みrのフ	「位に変える
JK	構造因子出刀のFo とFc に掛ける定数 (JK=0, または ブランクのとき, JK=10と	:なる) MSF =	=1,2,4のとき有効
(3) C	ell Cards (6F8.0 /6F8.0)		NEW (1)≠0のとき必要
Ą	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5	(5) 40
A (1)~(0	6) 格子定数:a, b, c (Å), α, β, γ ((°)	40 45 A (6)
	-5	30 35	40
DA	(1) DA (2) DA (3)	DA (4) DA	(5)
DA(1)~(6) 格子定数エラー:d(a, b, c)(Å),	$d(\alpha, \beta, \gamma)$ (*)	40 45 DA (6)
(4) S	ymmetry Card (3 (3A3,1X),I4)		NEW (3)≠()のとき必要
ITN'S IF	-5	TIRMAT J TER	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 2.3	
JTNS(1)	~(3) x'y'z'の並進部 の値は(ブランク.1/2.1/3.2/3.1/4.3/	4、1/6、5/6)のいる	げれかである.
IRMAT	$(1,1) \sim (1,3)$ x'y'z' O [] where $(1,1) \sim (1,3)$ x'y'z' O [] where $(1,1) \sim (1,3)$ x'y'z' $(1,1) \sim (1,3)$	」 項	
IRMAT IRMAT	、(∠, i , ~、(∠, 3 ,) x y z の回転部界 2 『の値は(ブランク, x, -x, y, -y, z,	·虫 - z)のいずれかである	3.
IEF	BND フラグ = 0 ・次のSummetry Card が続く	= 1 : これが最後のカー	-ドである
22	で用いる対称操作の表現法はInternational tab	les for X-ray crystall	ography(vol I)と
同じ	である、(x'y'z')=(x y z)の文	1杯操作を必す含むこと.	

鉱物の結晶解析計算システム(Ⅱ)(金沢康夫・月村勝宏・堀内弘之)

[5] Scattering Factor Cards (9F8.0,2A4) NEW (4) \neq 0のとき必要
A1 B1 A2 B2 A3 40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
A1,B1,,C 原子散乱因子の曲線を表す次式の係数 イ
f (x) = $\sum_{i=1}^{\infty} A_i * e_{xp} (B_i * x) + C, \qquad x = s i n \theta / \lambda$
係数はInternational tables for X-ray crystallography(vol IV), p.99–101, 148–151 にある.
(6) Scale Factor Card (9F8.0,2A4) NEW (5) \neq 0 のとき必要 SCALE(1) SCALE(2) 10
40 - 45 - 50 - 55 - 60 - 65 - 70 - 75 - 80 40 - 45 - 50 - 55 - 60 - 65 - 70 - 75 - 80 identification Scale (1) 50 - 75 - 80 identification
SUALE (1) $\sim \sqrt{2} - \nu \Box T$ (ΞH SUALE(1) $\cup \sigma$)
$[7] Extinction Cards (6)[2.6] NEW (5) \neq 0.5.7 Shewext \neq 0.028 25 R11 $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
R11 r * (等方性),または,r * 11 (異方性) R22 ~R23 r * 22~r * 23 (異方性)
〔8〕Atom Parameter Cards NEW (5)≠0のとき必要もしNEW (5)=1ならば、全原子(各原子につき2枚のカード:Card 1,Card 2)を読む. もしNEW (5)=2ならば、原子番号をFORMAT (12)で読み、2枚のカードを続ける。原子番号がブランクで読み込み終了となる。
構造因子をキュムラントで展開して 3 次, 4 次の項を使用するならば,Card 3 ~ 5 を加える. C a r d 1 (2A3.3F6.4)
TAG SITE OCCUP OCCA
TAG 原子名 SITE 位置の多重度(分率) OCCUP 位置の全占有度 OCCA OCCUP 中のA原子の占有度(AとBの2種類の原子が位置を占有している時に用いる).
Card 2 (212,9F8.5,12) 5 10 15 20 25 30 30 40 40 40 40 40 40 40 40 40 40 40 40 40
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
ISCAT (1) A原子の散乱因子番号 ISCAT (2) B原子の散乱因子番号(ブランクならA原子のみの占有) XYZ (1)~(3) 原子位置の座標、x y z
BETA(1)~(6) 温度因子B11, B22, B33, B12, B13, B23(等方性の場合, B11(=B)のみ) IEF ≠ 0:3次キュムラントを読む = 0:次の原子を読む

地質調査所月報(第36巻第8号)

- 474 --

鉱物の結晶解析計算システム(II)(金沢康夫・月村勝宏・堀内弘之)

(11) Parameter Selection Cards (80I1) NEW (7) $\neq 0$ のとき必要 5 10 15 25 30 35 40 45 45
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
IPARA (i) = 0: i 番目のパラメータを精密化しない = 1:精密化する
パラメータの順序は (a) 占有度:単一原子の占有ならばOCCUP を精密化,多重占有ならOCCA(A原子)を精密化する (b)~(d) x,y,z 座標 (e) 温度因子:等方性なら1個,異方性なら6個 (f) 3次(10個),4次(15個)のキュムラント係数(もし必要ならば入れる)
〔12〕 Parameter Constraint Cards (413,F8.0) NEW (7)≠0のとき必要
KDEGN KDEGN KDEGN KDEGN KDEGN KDEGN KDEGN CNSDGN 20 (1) (2) (3) (4) (1) (2) (3) (4) (1) (1) (2) (3) (4) (1) (1) (1) (1) (1) (1) (1) (2) (3) (4) (1)
KDEGN (1) 従属原子の番号 KDEGN (2) 従属パラメータの番号
= 1 : 占有度 = 2 ~ 4 : x ~ z = 5 : BまたはB11 = 6 ~10 : B22~B23 =11~20 : 3次キュムラント = $21~35 : 4 次キュムラント$
KDEGN (3) 独立原子の留ち もし、KDEGN (3)がブランクか0ならば、KDEGN (1)~(2)のパラメータはCNSDGNの値にセッ トされる、この方法は占有度に初期値を与えるのに用いるとよい。
KDEGN (4) 独立パラメータの番号 このパラメータは、サブルーチンRESET が働いているならば、パラメータ・リストの
従属パラメータに先行しなければならない. CNSDGN 従属変数を作るために,独立変数に掛ける定数 このカードはブランクカードで終了する.
 (13) Structure Factor Format Card NEW (8)≠0のとき必要 以下の3つのCaseから1つ選ぶこと、反射データはFile2から読み込まれる。 Case 1 (A4/(I3,18A4,F5.3)) 任意FORMAT
FT
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
4045
FT 'AAAA'と書く NR カード1枚当りの反射数 FRMT 反射データのFORMAT FRMIN FRMIN 以下のFoは除く
Case 2 (A4) RFINE2のオリジナルFORMAT
FT
FT 'BBBB'と書く 反射データの構成は
FORMAT:(313.3F9.5.313,4F7.4)73バイト 変数: IH(1), IH(2), IH(3), FOBS, SIGMA, EXBETA, I, IEF, MREJ, TTH, OMEG, CHI, PHI

(左端の番号は6.2.2入力データの番号を表わす)

----*---1----*---2----*----3-----4----*---5----*---6----*---7-KAMIDKITE I. & A. TEMP. ANDMALAS DISP. F-CURVE FOR IONS 07/06/1984 100000 11111111 0.5 3.5101 3 7 102 0 1 00 5.7812 5.7812 10.060 90.0 90.0 120.0 0.0005 0.0005 0.001 +X ---*----6----*----7----*----8 $\begin{array}{c} (1) \\ (2) \\ (3) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (5) \\ (5) \\ (5) \end{array}$ +X -Y +Y +Y -Y -X -X +X -Y +Y +Ý →X -Ý +X +Ŷ -X' +Y -Y 1/2 +Y -X 1/2 +X 1/2 +X 1/2 +Y -X 1/2 +Y -X 1/2 -Y 1/2 -X +Y +X -Y +Ŷ -^ +Y -X 1/2 +Z +X -Y -Y 1/2 +Z 1 11.0424 4.65380 7.37400 0.30530 4.13460 12.0546 0.43990 31.2809 1.00970 FE 0.301 0.845 21.0907 0.01454 18.1505 1.02635 11.6028 9.16234 1.52507 24.9880 -14.369 MD -1.825 0.688 *----8 3.7379 16.0647 2.7571 6.5161 1.7192 42.3139 1.5303 0.3226 0.2545 D 0.008 0.006 FE1 28.16667 1.0 1 0.33333 0.66667 0.9503
 FE1
 20.13333
 0.60000

 FE2
 28.16667
 1.0

 1
 0.33333
 0.66667
 0.5120

 MD
 6C
 0.5
 1.0

 2
 0.1460
 0.2920
 0.255

 D1
 2A.16667
 1.0
 0.0
 0.3926

 1
 0.0
 0.0
 0.3926
 0.1422
 0.50 0.0 0.0 0.0 0.0 0.0 0.46 0.0 0.0 0.0 0.0 0.0 0.23 0.0 0.0 0.0 0.0 0.0 01 02 03 03 03 3 0.42 0.0 0.0 0.0 0.Ò 0.0 0.54 0.0 0.0 0.0 0.0 0.0 0.56 0.0 0.0 0.0 0.0 0.0 0.50 0.0 0.0 0.0 0.0 0.0 00011000110100100011000110101010101 (11)(12)3 33 - 2 2.0 -1------*----5----*----6-----*----7----*----8 --2 (12) (12) (12) (12) (13) 2.0 33 22 6 7 6 7

(14) 1 KAMIOKITE SCALE, XYZ, B CYCLE 2 (1)100000 000000000 (Ž) (14) 1 RAMIDKITE S0 100000 00000000 SCALE, XYZ, B CYCLE 3 (1)(2) (14)KAMIDKAITE SCALE,XYZ,B(11-23) CYCLE 1 100000 00000110 (1)(2) (10) 0222 (11) (12) (12) (12) (12) 2.0 2.0 2.0 222 3 2225 6 7 6 7 (12) 1 6 1 1.0 (12)2625 1.0 -*---2 ---*----1 $\begin{array}{c}
 3 & 6 \\
 3 & 10 \\
 4 & 6 \\
 5 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 6 & 6 \\
 7 & 6 \\
 7 & 6 \\
 7 & 6 \\
 7 & 6 \\
 7 & 6 \\
 6 & 6 \\
 7 & 6 \\
 7 & 6 \\
 7 & 6 \\
 7 & 6 \\
 7 & 6 \\
 7 & 6 \\
 7 & 6 \\
 7 & 6 \\
 7 & 6 \\
 7 & 6 \\
 7 & 6 \\
 7 & 6 \\
 7 & 6 \\
 7 & 6 \\
 7 & 6 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\
 7 & 7 \\$ 5 1.01.01.03345 າຈົມເມື່ອມີຈາມນາມ 1.0 6 1.0 1.0 6771 1.0 1.0 0.5 0.5 1 2 4 8 245 8 0.5 0.5 Š. 5 8 Õ RAMIOKITE SCALE, XYZ, B(11-23) CYCLE 2 (1)100000 00000000 (2)(14) (14)(1)(2)RAMIOKITE SCALE, XYZ, B(11-23) CYCLE 3 100000 00000000 (14) 1 ~~*~~~5~~~***~~~**6**~~~*****~~~**?~~~~*~~~~8 -1----*----2----KAMIOKITE SCALE, XYZ, B(11-23) CYCLE 4 (1)110000 000000000000

 $(\tilde{2})$ $\tilde{1}$ (14) 0

6.2.4 コントロールカードの例 (RIPS 用)

____*___1____*___2___*___3____*___4____*___5____*___6 // 1 JOB S [1] EXEC PGM=RFINE, REGION=3000K [2] 11 //STEPLIB DD DSN=G0364.MINCS.LOAD(RFINE),DISP=SHR [3] //GO.FT05F001 DD DSN=_2_,DISP=SHR [4] [5] /* [6] //GO.FT06F001 DD SYSOUT=A //GO.FT02F001 DD UNIT=USER,DSN= 3_,DISP=OLD [7] //GO.FT03F001 DD UNIT=USER,DSN=4,DISP=OLD [8] //GO.FT04F001 DD UNIT=USER,DSN= 5,DISP=OLD //GO.FT08F001 DD UNIT=USER,DSN= 6,DISP=OLD [9] [10] [11] 11 下線部 1:登録番号 である. 2:入力データファイルのデータセット名 " 文 献 3:反射強度データファイルのデータセット " BECKER, P. J. and COPPENS, P. (1974) Extinction 名 with the limit of validity of the Dawin 4:フーリエ合成計算用データセット名 " transfer equations. I. General formalisms 5:原子間距離・角度計算用データセット名 11 6:結晶構造図計算図データセット名 for primary and secondary extinction and " their application to spherical crystals. Acta 2,3は入力ファイル用, 4, 5,6は出力ファイル用

Cryst., vol. A30, p. 129-147.

- COPPENS, P. and HAMILTON, W. C. (1970) Anisotropic extinction corrections in the Zachariasen approximation. *Acta Cryst.*, vol. A26, p. 71–83.
- FINGER, L. W. (1969) Determination of cation distribution by least-squares refinement of single crystal X-ray data. Carnegie Inst. Wash. Year Book, vol. 67, p. 216-217.
- IBERS, J. A. and HAMILTON, W. E. ed. (1974) International tables for X-ray crystallography, Birmingham: Kynoch press, vol. IV, 366 p.

- 金沢康夫・月村勝宏・堀内弘之(1981) 鉱物の結晶 解析計算システム(I). 地調月報, vol. 32, p. 551-561.
- 桜井敏雄(1967) RSSFR-5 一般フーリエ合成. 結晶解析ユニバーサルプログラムシステム (Ⅰ), p. 45-52.
- ZACHARIASEN, W. H. (1967) A general theory of X-ray diffraction in crystals. Acta Cryst., vol. 23, p. 558–564.

(受付:1984年12月10日;受理:1985年3月29日)