栃木県葛生地区炭酸塩岩石の地球化学的研究*

藤貫 正** 五十嵐俊雄*** 細越千恵子****

FUJINUKI, Tadashi, IGARASHI, Toshio and HOSOGOE, Chicko (1982) Geochemical study of the Permian carbonate rocks from the Kuzuu district, Tochigi Prefecture, central Japan. Bull. Geol. Surv. Japan, vol. 33 (4), p. 187–206.

Abstract: The Permian carbonate rocks from the Kuzuu district were studied geochemically, with emphases on following subjects.

1) Chemical analyses for major and minor constituents, and X-ray analyses for mineral composition, in all sample specimens (76 samples).

Determination of water soluble Ca²⁺, Mg²⁺, Na⁺, K⁺ and Cl⁻ in the selected specimens.
 Identification of constituent minerals for acid insoluble residues using X-ray powder method.

4) Determination of some minor elements in the dolomite single crystals separated from the carbonate specimen.

The Kuzuu carbonate formation is divided in surface exposures into three members, a Lower Limestone, a Middle Dolomite and an Upper Limestone. From the analytical and mineralogical data, it is calculated that the Upper Limestone and the Lower Limestone members contain dolomite ranging from 3 to 40 percent, and the Middle Dolomite member consists of 82 percent dolomite and 17 percent calcite on an average.

It is noted that the Kuzuu carbonate rocks are considerably high in Zn content, as compared with other Paleozoic carbonate rocks in Japan. The analytical data also showed that the Zn tends to concentrate in dolomite crystal rather than the whole carbonate specimen from which the dolomite was separated, suggesting the substitution of Zn^{2+} for Mg^{2+} in the dolomite crystal.

Positive correlation between Sr and organic carbon contents in the carbonate rocks is recognized clearly. From the evidence and the previously reported date concerning the behaviour of Sr in carbonate minerals, it is speculated that the Sr precipitated firstly with original carbonate sediments (e.g. aragonite, high Mg calcite), then it was adsorpted on clay minerals (e.g. montmorillonite) due to being expelled from carbonate minerals during diagenesis, and finally it was fixed with the organic carbon because Sr might be again expelled from clay minerals when illite was formed from montmorillonite by dehydration.

The data of water soluble matter have not led any conclusion regarding the nature of the fluid contributed to dolomitization.

The constituent minerals of acid insoluble residues were composed mainly of quartz at the Upper Limestone member, and of illite, chlorite, quartz, feldspar etc. at the Lower Limestone member. It is considered that the Lower Limestone member was deposited under the environments where abundant terrastrial materials have been supplied.

要 旨

栃木県葛生地区炭酸塩岩石について、主成分、微量成

分及び水溶性物質の定量,酸不溶解残渣の構成鉱物の同 定,分離ドロマイト単結晶中の微量成分の定量などを行 い,微量成分の存在状態,堆積環境,ドロマイト化作用 の過程の推定を試みた.

この地区の炭酸塩岩石は、下部石灰岩層、中部ドロマ イト層及び上部石灰岩層の3部層に分けられる.石灰岩 は上部・下部層ともドロマイトを3-40%含み、中部ド

^{*} 炭酸塩岩石の地球化学的研究(第4報)

^{**} 技術部

^{***} 鉱 床 部

^{****} 東海大学理学部

ロマイト層は平均でドロマイト82%, カルサイト17%の 混合物である.ドロマイトの中には Zn 含有量が多いこ とが注目される.これは単体分離を行ったドロマイト結 晶中のほうが全岩試料中の Zn 含有量よりも多いことか ら、多分ドロマイトの Mg を置換しているものと考え られる.また、微量成分の Sr は、有機炭素と正相関を 示すが、Sr の挙動としては、初生的炭酸塩鉱物として 共沈した後、続成作用の過程で炭酸塩から放出されて粘 土鉱物へ吸着され、更に経年変化により粘土鉱物の脱水 に伴って再び放出されて炭素質物質への吸着、という過 程を経ているものと推定される.

酸不溶解残渣の構成鉱物は,上部石灰岩層ではおもに 石英,下部石灰岩層ではイライト,緑泥石,石英,長石 などが多く,下部石灰岩層は陸源物質の供給の比較的多 い環境で堆積したものと思われる.

1. 緒 言

栃木県葛生地区は、わが国における石灰岩、ドロマイトの著名な産地として古くから知られており、特にドロマイトは昭和55年度518万トンを産出している. これは 全国生産量の約83%にも達し、本地区がわが国で最も大 規模な堆積性ドロマイト鉱床である.

著者らは、現在までに岐阜県赤坂地区二畳系石灰岩 (藤貫、1968)、鹿児島県喜界島地区第四系琉球石灰岩 (FuJINUKI, 1970)、静岡県相良地区新第三系石灰岩 (藤 貫ら、1975) について地球化学的研究を行ってきたが、 今回は葛生地区二畳系石灰岩、ドロマイトについて地球 化学的検討を行った結果について報告する.

この地区の石灰岩・ドロマイトに関しては,層位学的 研究(例えば,藤本,1961;羽鳥,1965),古生物学的研 究(例えば,林,1968・1971;小池ら,1970・1971), 岩石学的研究(例えば,江口ら,1965;久保,1968; SONNENFELD ら,1973)など数多く発表されており,ド ロマイトの成因についても2,3の説が述べられてい る.地球化学的研究も,近年活発に行われ始めてきた.

すなわち、 (1971) が P について詳細な 研究 を 行 い、ふっ素りん灰石の存在を確認し、これを初生的及び 二次的成因のものに分類し、産状や分布状態を明らかに するとともに、りん灰石の成因についても考察してい る.寺島ら (1974) は、アミノ酸を主とした有機物に関 する研究を行い、上部・下部石灰岩層に比べて中部ドロ マイト層中にアミノ酸含有量が少ないことを 明らかに し、これはドロマイト化作用のもたらした結果であろう と述べている.また、AKAIWA and AIZAWA (1979)は、 関東地方の炭酸塩岩石中の Fを定量し、葛生地区の場合 は上部石灰岩 7.4-230 ppm (平均29 ppm),中部ドロマ イト 240-730 ppm (平均 380 ppm),下部石灰岩 97-230 ppm (平均170 ppm)で、ドロマイト中に濃縮している 傾向を明らかにした.さらに、Fの存在状態としては、 石灰岩の場合はりん灰石、ドロマイトの場合はほたる石 が主であると述べている.

著者らは、まず上部・下部石灰岩層及び中部ドロマイ ト層の化学組成を明らかにし、あわせて微量成分含有量 とその分布、及び単体分離したドロマイト中の微量成分 含有量について調べ、酸不溶解残渣の構成鉱物の同定、 水溶性物質の定量などを行って、微量成分の存在状態、 堆積環境、ドロマイト化作用時の溶液の性質などについ て解明を試みた結果について報告する.

本報告の中で使用した炭酸塩岩石の岩石学的分類用語 は、五十嵐(1975/1976)によった。

本研究のための野外調査は,昭和47年度に行われ,技 術部寺島滋技官及び東海大学理学部秋元徹氏の協力を得 た.また,吉沢石灰工業㈱吉沢葛生鉱山及び日鉄鉱業㈱ 葛生鉱山から,資・試料を提供していただいた.ここに 感謝の意を表する.

2. 地質の概略及び試料

葛生地区の炭酸塩鉱床は、東京の北方約70 km, 足尾 山地の南東部に馬蹄形状に分布し(第1図参照),二畳紀 中期の鍋山層に属する.この地区の地質については、吉 田(1956,1975),渡辺ら(1957),藤本(1961),羽鳥(1965), 柳本(1973)などによって研究されている.これらによ ると、炭酸塩岩石からなる鍋山層の下盤は、塩基性火山 岩を主とする出流層で、上盤はチャートを主とするアド 山層が不整合に覆っている.アド山層は、林(1968)に よるコノドントの研究から、最近では三畳系とみなされ ている.鍋山層の炭酸塩岩石は、岩相から下部石灰岩、 中部ドロマイト及び下部石灰岩の3部層に分けられてい る.

下部石灰岩層は,層理のよく発達した暗灰色石灰岩で "ネズ"と呼ばれ,フズリナや海百合の化石を多く含ん でいる.ほぼ全域に連続的に分布するが,山菅付近で最 もよく発達しており,層厚は60-100mである.

中部ドロマイト層は,灰色塊状を呈し,中心部はドロ マイト80-90%,カルサイト10-20%の比較的均質なも のが多く,一部にフズリナや海百合の化石がドロマイト 化されているのが認められる(高橋,1958; SONNENFELD ら,1973).層厚は,標式地の羽鶴地区では約180mにも 達するが,平均は80-100mである.

上部石灰岩層は,灰-灰白色の塊状石灰岩で"ハク"と

— 188 —

呼ばれ、フズリナ、海百合、石灰藻、さんごなどの化石 を多く含んでいる. 宮本から会沢、唐沢、箕輪付近で最 もよく発達し、層厚も約100mに達するが、羽鶴以北で はアド山層との不整合関係により連続的な分布は見られ なくなる. なお、上部・下部石灰岩層とも一部にドロマ イト質石灰岩、石灰岩質ドロマイトを含んでいる.

この地区のドロマイトの成因について,有田(1950) は海水からの直接沈殿説を提唱し,江口ら(1965)は, 石灰岩が形成されつつある過程において,噴気性火山活 動によって Mg が供給されてドロマイトが形成された と推察している.SONNENFELD ら(1973)は、中部ドロ マイト層と上部・下部石灰岩層との境界は明瞭でなく, 堆積時の境界とは考えられず,ドロマイトは炭酸塩堆積 物が Mg²⁺を多量に含む溶液によって変質交代を受けて 形成されたと推論している.また,一部には岩石として 固結後,破砕作用,角礫化作用に関連してドロマイト化 した部分のあることを報告している.著者らも,時期は ともあれ炭酸塩堆積物が Mg²⁺を含む溶液によって変質 交代されてドロマイトを生成したものと考えている.

炭酸塩岩石試料は、会沢から大釜にいたるまでの地域 で露頭から64試料、会沢一箕輪間の吉沢石灰工業㈱坑道 内で12試料,計76試料を採取した.また,参考までに出 流層の輝緑凝灰岩を上築地において2試料,出流満願寺 裏で1試料,アド山層のチャートを日鉄鉱業㈱葛生鉱山 切羽において2試料を採取した.

本地区の地質図と試料採取地点を,第2図に示した. 第2図において区分している3部層の岩相上の特徴は, 次のとおりである.

下部石灰岩層 ドロマイト質 石灰岩 (MgO 2.0-10.5 %) とマグネシアン石 灰 岩 (MgO 1.0-2.0%)を主と し、石灰岩 (MgO 1.0%以下)と弱石灰岩質ドロマイト (MgO 17.2-19.5%)も少量含まれる. ドロマイト質石 灰岩は、暗灰色ないし暗褐色を呈し、一般に biodolmicrite 質であるが、場所 によっては biodisdolmicrite 質 である. ドロマイトは自形菱面体で、micrite 基質 中に 存在する. マグネシアン石灰岩は、灰褐色ないし淡灰色 を呈し、一般に biomicrite 質で多くの化石破片を含ん でいる.時に stylolitic structure を有し、黄褐色の鉄酸 化物の薄層が認められる.

中部ドロマイト層 石灰質ドロマイト (MgO 10.5-17.2%) 及びドロマイト質石灰岩を伴う弱石灰質ドロマ イトを主とする.一般に灰色ないし淡灰色を呈し,細晶 質-中晶質で,しばしばフズリナや海百合と思われる形 態を残して結晶化している部分が認められる.また,破 砕構造を有する部分もある.

上部石灰岩層 石灰岩を主とし、ドロマイト質石灰岩 及びマグネシアン石灰岩を伴う.石灰岩は灰白色を呈 し、biomicrite 質で、30-80%の化石(フズリナ、海百 合)を含有することが多い.また、一部に calcarenite 質 のものも認められる.

3. 実験方法

採取した炭酸塩岩石の全試料について、X線回折によ る鉱物の同定,主成分及び微量成分の化学分析を行っ た.一部の試料については,水溶性物質及び酸不溶解残 渣の構成鉱物を調べた.また,中部ドロマイト層及び上 部石灰岩層から各1試料を選び,ドロマイトの単結晶を 分離しX線回折及び微量成分の定量を行った.なお,輝 緑凝灰岩及びチャートは,化学分析のみを行った.

3.1 X線回折

理学電機ガイガーフレックスを使用し、粉末法により フルスケール10,000 cps でX線回折を行った。特にドロ マイト含有量の少ない試料は、フルスケール 4,000 cps でドロマイト{104} のピークの確認を行った。

3.2 化学分析

- 189 --

炭酸塩岩石試料の定量成分は、CaO, MgO, Fe₂O₃

第2図 岩相分布図と試料採取地点 Fig. 2 Geological map showing sampling points.

(total Fe を Fe₂O₃ として表示), Al₂O₃, SiO₂, P₂O₅, Mn, Sr, Ba, Zn, Cu, Na 及びKの13成分で,定量方法 は,地質調査所化学分析法2 (1978) 及び3 (1979) に よった. Ba は, 東芝 AFV-202 型蛍光X線分析装置 を 用い, Cr 管球,分光結晶 LiF で Ba La 線 を 測 定 し, Ti Ka 線の影響を除くためバックグランド2 点補 正法 で定量した.また,一部試料については,チオシアン酸 水銀による吸光光度法で Cl を定量した.

3.3 水溶性物質の定量

不純物の少ない試料を各部層からそれぞれ4試料,計 12試料を選んだ.各試料は2-5mmに粒度を揃え,1 試料から30.0gを衛星型ミルのめのう容器(容量200ml)

にはかり取り、めのう製ボール直径20 mmのもの4個と 15 mmのもの3個を入れ、これに純水10 ml を正確に加 えて密閉し、衛星型ミルで2時間微粉砕する.その後、 純水40 ml を正確に加えてスラリー状試料を十分混合 し、ビーカー (300 ml) に移し入れ、パラフィルムで密 閉して一夜間放置する.上澄み液を乾いたろ紙(5種 C)でろ過し、最初の数 ml を捨て、残りのろ液を試料 溶液とする.

試料溶液から0.5-10 ml を正確に分取して、チオシア ン酸水銀による吸光光度法で Cl⁻ を定量した.また,試 料溶液から10 ml を正確に分取し、硝酸 1 ml を加えて 砂浴上で穏やかに蒸発乾固した後,塩酸 (1+39) 10ml を正確に加えて溶解し、原子吸光分析法で Ca²⁺, Mg²⁺, Na⁺ 及び K⁺ を定量した.なお、微 粉 砕 した試料は, 粒度分析の結果すべて62 nm 以下であった.

3.4 酸不溶解残渣

炭酸塩岩石全試料のうち,不溶解残渣の比較的多い13 試料を選んだ.内訳は,下部石灰岩層から7試料,中部 ドロマイト層から3試料,上部石灰岩層から3試料であ る.処理方法は,藤貫ら(1975)に準じて約3 cm の小 塊状試料を酢酸(1+9)に浸漬する方法を用いた.

3.5 ドロマイト単結晶の分離

酸不溶解残渣の顕微鏡観察の結果,一部の残渣中にド ロマイトの菱面体結晶が明瞭に観察されたので,単体分 離を試みた.

酸不溶解残渣数gをビーカー(100 ml)に取り,純水 約30 ml を加え,50 kHz の超音波発振槽に2-3分間浸 漬して粘土鉱物を懸濁させ,水相を捨てる.この操作を 水相が懸濁しなくなるまで行い¹⁾,できるだけ水相を捨 てた後50-60℃で乾燥する.この処理によって酸不溶解 残渣はほとんどが石英,長石とドロマイトになる.次 に、マイクロマニュピレーターでドロマイトの単結晶を 分離,採取した.

4. 結果と考察

4.1 X 線回折

炭酸塩岩石全試料のX線粉末回折分析によると、ドロマイトが認められなかった試料はわずかに Kuzuu-1,-20,-27,-28,-30,-68及び-72で、上部石灰岩層5試料,下部石灰岩層2試料の計7試料に過ぎなかった.

4.2 化学分析

炭酸塩岩石全試料の化学分析の結果及び各層の平均値 を第1表に,層別各成分間の相関係数を第2表に示し た. これによると、中部ドロマイト層と上部・下部石灰 岩層との間で大きな差があることはもち論であるが、上 部石灰岩層と下部石灰岩層との間でも、有意差が認めら れるものも多い.

以下に、おもな成分について分布や存在状態を推察し ながら、その特徴を述べる.なお、参考までに輝緑凝灰 岩及びチャートの化学分析結果を、第3表に示した.

CaO 上部石灰岩層は、下部石灰岩層に比べて平均 値で約2%(CaCO₃として3.5%)高く,おもな不純物 の総量平均(SiO₂+Fe₂O₃+Al₂O₃+P₂O₅)も上部石灰岩 層0.48%,下部石灰岩層2.47%で,同じく2%の差が認 められる.

MgO 中部ドロマイト層の平均値は17.98%で,これを仮にすべてドロマイトと見積って計算すると82.25%に相当する。したがって,平均鉱物組成はドロマイト82.25%、カルサイト16.71%の混合物と推定される。わが国の堆積性ドロマイトのMgO含有率は、16-19%(ドロマイトとして73-87%)のものが多く,葛生地区の平均値は比較的高品位の部類に属する。

一般に、わが国の比較的大規模なドロマイト層に共存 する石灰岩の MgO 含有率の平均値は、峩朗(北海道) 1.65%、舟伏(岐阜県)2.60%、多賀(滋賀県)1.16% などのように1-3%であるが、ドロマイトを全く、若 しくはほとんど共存しない地区の石灰岩(例えば、秋 吉、青海、鳥形山など)の平均値は0.2-0.7%で、明ら かに差が認められる. 葛生地区の平均値は、上部石灰岩 層2.22%、下部石灰岩層3.14%で、やや高い部類に属す る. これは、両層とも石灰質ドロマイトやドロマイト質 石灰岩の薄層を挟むためで、個々の MgO 含有率は上部 石灰岩層で0.33-11.34%、下部石灰岩層で0.66-9.89% の範囲で大きく変動する.

Fe₂O₃ ここで用いている Fe₂O₃ は, total Fe を便 宜上すべて Fe₂O₃ に換算して表示しているものである. Fe₂O₃ は下部石灰岩層と中部ドロマイト層に多く含まれ ている.下部石灰岩層の場合には,下部石灰岩層の岩相 上の特徴でも述べたように,赤鉄鉱や褐鉄鉱などの鉄酸 化物或いはテラロツサが割れ目に沿って充填している場 合が多いこと,また,第2表の相関係数においてもFe₂O₃ は Al₂O₃(γ = +0.91)やSiO₂(γ = +0.68)と強い相関を 示すことから,大部分の Fe₂O₃ は二次的鉱物の沈積に よるものと推定される.分布的にみると,出流,羽鶴付 近のものはやや高く,大釜,会沢付近のものは低い傾向 が認められる.

中部ドロマイト層についても、下部石灰岩層と同様な ことが言える.しかし、本報では FeO の定量を行って

- 191 ---

あまり超音波発振槽に長く浸漬すると、ドロマイトの菱面体のエッジが丸味を帯びてしまい、分離操作での判別が難しくなる。

地質調査所月報(第33巻第4号)

.

第1表 葛生地区炭酸塩岩石の化学分析結果

Table 1 Analytical data of carbonate rocks from the Kuzuu district
--

						Uppe	er Lime	stone						
Sa	mple No.	CaO (%)	MgO (%)	Fe ₂ O ₃ (%)	$\stackrel{Al_2O_3}{(\%)}$	SiO ₂ (%)	P ₂ O ₅ (%)	Mn (ppm)	Sr (ppm)	Ba (ppm)	Zn (ppm)	Cu (ppm)	Na (ppm)	K (ppm)
Kuzu	u-20(24-12)	55.09	0.52	0.05	0.09	0.09	0.020	120	117	7	7	6	23	16
"	-21 (24-13)	52.33	2.73	0.11	0.09	0.18	0.021	67	84	11	9	4	38	23
"	-25(25-01)	53.86	0.67	0.25	0.14	0.83	0.047	39	141	0	17	4	25	235
"	-26(25-02)	54.00	0.65	0.12	0.15	1.38	0.037	46	232	12	12	4	10	215
"	-27(25-03)	55.24	0.41	0.07	0.05	0.10	0.015	248	298	20	4	1	39	33
"	-28(25-04)	55.39	0.38	0.05	0.04	0.03	0.014	44	219	7	4	1	15	10
"	-29(25-05)	55.24	0.74	0.05	0.09	0.05	0.016	9	212	12	10	1	29	10
"	-30(25-06)	55.68	0.37	0.04	0.09	0.11	0.008	19	212	13	8	1	13	32
"	-31 (25-07)	54.81	1.04	0.06	0.06	0.74	0.049	28	134	7	12	1	25	17
"	-32 (25-08)	55.10	1.03	0.04	0.04	0.02	0.020	8	209	9	18	0	10	17
"	-34(25-10)	44.30	4.76	0.16	.0.05	10.56	0.015	36	104	7	36	3	60	25
"	-42 (25-18)	42.57	11.34	0.15	0.06	0.05	0.037	32	137	9	62	3	43	15
"	-44(25-20)	54.38	1.24	0.04	0.10	0.00	0.028	24	100	4	16	2	29	15
"	-45(25-21)	44.80	9.37	0.12	0.04	0.22	0.029	111	137	13	11	3	60	10
"	-49(26-04)	55.10	1.01	0.08	0.06	0.11	0.039	14	160	6	8	2	32	20
"	-51 (2606)	53.88	1.35	0.07	0.07	0.67	0.438	43	182	9	13	4	59	71
"	-52 (26-07)	55.97	0.41	0.04	0.04	0.09	0.086	33	188	7	19	24	32	13
"	-54(26-09)	55.54	0.33	0.07	0.04	0.16	0.027	9	188	6	20	2	32	18
"	-55(26-10)	55.90	0.58	0.05	0.04	0.08	0.035	26	164	10	7	1	36	12
"	-61 (26-16)	53.66	1.97	0.01	0.06	0.12	0.024	13	182	3	17	0	39	13
"	71 (2708)	47.03	7.81	0.04	0.06	0.12	0.027	50	100	10	30	1	64	18
"	-72 (27-09)	54.74	0.46	0.02	0.08	0.25	0.056	99	164	30	6	0	24	50
"	-73 (27-10)	53.01	1.91	0.04	0.06	0.84	0.037	308	348	38	17	1	14	18

						Mide	ile Dol	omite						
Sa	ample No.	CaO (%)	MgO (%)	Fe ₂ O ₃ (%)	$\substack{Al_2O_3\\(\%)}$	SiO ₂ (%)	P ₂ O ₅ (%)	Mn (ppm)	Sr (ppm)	Ba (ppm)	Zn (ppm)	Cu (ppm)	Na (ppm)	K (ppm)
Kuzu	u- 4(23-04)	33.26	19.25	0.05	0.04	0.23	0.031	28	86	7	12	3	92	23
"	- 5(23-05)	35.88	16.37	0.36	0.24	1.21	1.440	72	132	11	51	17	215	680
"	- 8(23-08)	33.33	18.47	0.68	0.10	1.44	0.077	87	110	0	65	22	161	125
"	- 9(24-01)	32.90	18.94	0.67	0.02	0.96	0.037	94	104	5	30	19	117	36
"	-10(24-02)	33.33	18.21	0.66	0.29	1.00	0.150	50	116	0	92	10	171	53
"	-11(24-03)	33.70	18.57	0.32	0.07	0.07	0.032	25	132	2	13	9	55	14
"	-12(24-04)	33.11	18.99	0.13	0.06	0.03	0.040	76	96	6	80	7	90	14
"	-14(24-06)	33.19	18.68	0.42	0.10	0.70	0.051	35	107	3	18	12	69	33
"	-15(24-07)	33.84	18.15	0.46	0.10	0.58	0.044	39	136	0	12	15	80	74
"	16(2408)	39.45	13.03	0.64	0.23	1.34	0.062	78	104	0	45	10	92	265
"	-19(24-11)	33.48	17.47	0.70	0.22	1.79	0.080	220	120	0	23	8	111	233
"	-22 (24-14)	37.19	15.38	0.16	0.07	1.15	0.029	69	99	8	17	8	75	16
"	-33 (25-09)	34.72	17.09	0.35	0.11	1.45	0.050	111	114	14	30	4	73	124
"	-35(25-11)	35.58	17.45	0.14	0.08	0.23	0.038	27	120	7	48	2	44	17
"	-36(25-12)	34.86	17.91	0.29	0.06	0.03	0.026	41	117	3	37	4	95	13

— 192 —

Table 1 Continued

						Mid	dle Do	lomite						
Sa	mple No.	CaO (%)	MgO (%)	Fe ₂ O ₃ (%)	$\substack{Al_2O_3\\(\%)}$	SiO ₂ (%)	P ₂ O ₅ (%)	Mn (ppm)	Sr (ppm)	Ba (ppm)	Zn (ppm)	Cu (ppm)	Na (ppm)	K (ppm)
Kuzu	u–37 (25–13)	33.85	18.48	0.68	0.08	0.38	0.055	47	110	0	103	10	111	18
"	-41 (25-17)	33.93	18.74	0.20	0.04	0.15	0.069	117	114	7	58	4	53	10
"	-43 (25-19)	33.93	17.66	0.23	0.03	1.17	0.049	39	130	7	26	5	88	7
"	-48(26-03)	33.93	18.69	0.28	0.04	0.08	0.050	39	140	4	26	5	99	20
"	-50(26-05)	35.58	16.83	0.82	0.08	0.74	1.488	106	199	12	43	17	111	81
"	-53 (2608)	35.15	17.71	0.16	0.06	0.06	0.123	73	129	8	51	3	88	15
"	-56 (26-11)	36.23	16.78	0.18	0.04	0.09	0.055	24	148	36	32	1	51	12
"	-57 (26-12)	33.35	19.11	0.33	0.06	0.31	0.066	26	156	7	18	5	95	20
"	-58(26-13)	33.64	18.85	0.45	0.03	0.09	0.064	28	142	3	12	6	73	17
"	-60(26-15)	35.22	17.76	0.04	0.06	0.14	0.120	75	126	16	45	1	99	28
"	-62 (26-17)	34.14	18.52	0.07	0.05	0.20	0.047	28	129	6	35	1	116	31
"	-65(27-02)	33.57	18.26	0.35	0.20	1.08	0.091	338	133	0	25	3	126	80
"	-66(27-03)	33.93	18.68	0.03	0.10	0.09	0.053	43	120	6	40	0	99	29
"	-67 (27-04)	33.85	18.52	0.13	0.08	0.36	0.106	217	112	0	18	0	76	115
"	-69(27-06)	34.29	18.31	0.04	0.08	0.06	0.048	64	96	9	40	4	68	23
"	-70(27-07)	33.71	18.78	0.04	0.08	0.08	0.071	58	100	5	50	0	63	26
"	-74(27-11)	33.93	18.90	0.05	0.06	0.09	0.042	17	168	4	23	0	151	105
"	-76(27-14)	34.00	18.69	0.03	0.04	0.28	0.055	41	88	28	39	0	105	50

						Lo	wer Lii	mestone						
Sa	mple No.	CaO (%)	MgO (%)	Fe ₂ O ₃ (%)	$\begin{array}{c} Al_2O_3 \\ (\%) \end{array}$	SiO ₂ (%)	P ₂ O ₅ (%)	Mn (ppm)	Sr (ppm)	Ba (ppm)	Zn (ppm)	Cu (ppm)	Na (ppm)	K (ppm)
Kuzu	u- 1(23-01)	48.76	1.50	0.73	0.34	9.85	0.087	1460	252	0	27	8	65	235
"	- 2(23-02)	52.77	2.35	0.28	0.05	0.80	0.024	346	323	0	14	4	44	61
"	- 3(23-03)	46.29	5.34	1.00	0.39	3.73	0.082	252	226	0	28	6	82	318
"	- 6(23-06)	55.17	0.76	0.17	0.08	0.41	0.044	164	317	3	8	4	52	82
"	- 7(23-07)	50.95	3.09	0.31	0.08	1.23	0.029	58	265	0	20	3	82	218
"	-13(24-05)	43.74	9.89	0.18	0.07	0.37	0.032	19	145	0	43	6	97	73
"	-17(24-09)	53.49	0.86	0.47	0.14	1.57	0.045	2460	212	0	21	6	19	82
"	-18(24-10)	53.71	1.05	0.26	0.07	0.94	0.023	1740	249	37	10	4	13	29
"	-23(24-15)	52.91	1.78	0.35	0.11	0.79	0.040	416	154	0	28	3	15	174
"	-24(24-16)	51.82	1.57	0.71	0.39	2.21	0.052	1430	173	16	20	6	31	52
"	-38(25-14)	53.59	1.24	0.42	0.17	1.25	0.039	550	232	2	36	3	12	139
"	-39(25-15)	48.40	6.21	0.15	0.07	0.34	0.054	19	232	4	12	1	46	44
"	-40(25-16)	50.06	4.25	0.17	0.10	1.50	0.076	47	212	5	56	2	56	68
"	-46(26-01)	51.29	3.62	0.16	0.08	0.79	0.029	22	259	0	9	1	13	57
"	-47 (26-02)	52.87	1.24	0.11	0.08	2.64	0.029	16	216	5	9	1	13	57
"	-59(26-14)	52.51	1.45	0.28	0.08	2.54	0.061	37	317	6	33	1	84	271
"	-63 (26-18)	45.67	7.76	0.19	0.15	1.69	0.066	28	196	16	23	2	95	372
"	-64 (27-01)	52.29	2.28	0.43	0.20	1.20	0.060	1150	225	11	44	37	47	300
"	-68 (27-05)	53.88	0.66	0.27	0.13	1.17	0.042	1305	216	9	18	0	17	159
"	-75(27-12)	46.67	5.95	0.60	0.27	3.04	0.090	54	277	0	39	1	86	675

Table 1 Continued

	Averages of chemical composition of carbonate rocks														
	n	CaO (%)	MgO (%)	Fe ₂ O ₃ (%)	$\substack{Al_2O_3\\(\%)}$	SiO ₂ (%)	P ₂ O ₅ (%)	Mn (ppm)	Sr (ppm)	Ba (ppm)	Zn (ppm)	Cu (ppm)	Na (ppm)	K (ppm)	
Upper Limestone	23	52.94	2.22	0.08	0.07	0. 73	0.049	62	174	11	16	3	33	39	
Middle Dolomite	33	34.36	17.98	0.31	0.09	0.54	0.147	74	122	7	38	6	97	73	
Lower Limestone	20	50.84	3.14	0.36	0.16	1.90	0.051	579	235	6	26	5	50	176	
Upper & Lower Limestone	43	51.67	2.95	0.20	0.11	1.21	0.049	302	199	7	20	4	42	88	

いないため明確ではないが、一般にわが国の堆積性ドロ マイト中の Fe 含有量は石灰岩に比べて多く、ferroan dolomite (ankerite)を若干含む可能性もある. SIEVER and GLASS (1957) や KANESHIMA and FUJINUKI (1973) は、ferroan dolomite の熱分析を行い、790℃付近 (MgCO₃ の分解)と925℃付近 (CaCO₃ の分解)の吸熱 ピークのほかに、810℃付近に弱い吸熱ピークが認められ ると報告している. そこで、中部ドロマイト層33試料の 中からSiO₂ 含有率が低く、Fe₂O₃ 含有率の高い Kuzuu37 と -50について示差熱分析を行った結果を第3図に示 したが、810℃付近における明瞭な吸熱ピークは、両試 料とも認められなかった.

地域的にみると、出流本沢上流付近のドロマイトは比較的 Fe_2O_3 含有量が多く、三峰、羽鶴付近は比較的少ない.

Al₂**O**₃ Al₂**O**₈ はすべて粘土鉱物に由来するものと 考えられる.上部石灰岩層と中部ドロマイト層中には比 較的少なく,下部石灰岩層に多い.これは,後述する酸

— 194 —

												the second s			
		К	Na	Cu	\mathbf{Zn}	Ba	Sr	Mn	P_2O_5	SiO_2	$\mathrm{Al}_{2}\mathrm{O}_{3}$	$\rm Fe_2O_3$	MgO	CaO	
	CaO	0.10	-0.66	0.08	-0.75	0.02	0.39	-0.03	0.07	-0.45	0.16	-0.45	-0.95		
	MgO	-0.20	0.63	-0.07	0.72	-0.02	-0.37	0.01	-0.07	0.15	-0.22	0.31		-0.92	
	Fe_2O_3	0.63	0.19	0.08	0.38	-0.32	-0.28	-0.09	-0.02	0.41	0.37		-0.07	-0.23	
	Al_2O_3	0.77	-0.34	-0.08	-0.15	-0.07	-0.13	-0.07	-0.01	-0.05		0.91	-0.05	-0.26	
one	SiO_2	0.07	0.33	0.00	0.33	-0.07	-0.20	-0.04	-0.04		0.66	0.68	-0.13	-0.24	one
lest	P_2O_5	0.15	0.34	0.17	-0.03	-0.03	0.02	-0.06		0.61	0.69	0.57	0.27	-0.50	ıest
Lin	Mn	-0.05	-0.06	-0.08	-0.19	0.77	0.58		-0.07	0.23	0.27	0.36	-0.53	0.39	Lin
ber	Sr	0.07	-0.47	-0.08	-0.28	0.60		-0.18	0.03	0.09	-0.09	-0.07	-0.33	0.33	/er
1df	Ba	-0.12	-0.20	-0.20	-0.17		-0.10	0.38	-0.19	0.15	-0.03	-0.12	-0.16	0.20	Гом
-	Zn	-0.07	0.38	0.09		-0.25	-0.27	-0.17	0.51	0.10	0.24	0.18	0.37	-0.41	-
	Cu	0.04	0.05		0.33	0.12	-0.10	0.31	0.13	0.05	0.22	0.23	-0.08	0.05	
	Na	-0.23		0.00	0.38	-0.27	0.16	-0.53	0.49	0.21	0.22	0.13	0.72	-0.77	
	K		0.55	0.13	0.38	-0.17	0.16	-0.22	0.67	0.33	0.46	0.42	0.30	-0.44	
		K	Na	Cu	Zn	Ba	Sr	Mn	P ₂ O ₅	SiO ₂	Al_2O_3	Fe ₂ O ₃	MgO	CaO	
	CaO	0.33	-0.09	0.00	0.01	0.27	0.08	-0.07	0.25	0.19	0.24	0.02	-0.93		
	MO														
	MgO	-0.45	-0.03	-0.19	-0.02	-0.13	-0.04	-0.09	-0.28	-0.50	-0.46	-0.26		-0.96	
	MgO Fe₂O₃	—0. 45 0. 26	-0.03 0.35	-0.19 0.80	-0.02 0.21	-0.13 -0.37	-0.04 0.24	-0.09 0.22	-0.28 0.32	-0.50 0.62	—0. 46 0. 45	-0.26	-0.03	-0.96 -0.17	e
	MgO Fe_2O_3 Al_2O_3	-0.45 0.26 0.63	-0.03 0.35 0.51	-0.19 0.80 0.29	-0.02 0.21 0.29	-0.13 -0.37 -0.31	-0.04 0.24 -0.04	-0.09 0.22 0.42	-0.28 0.32 0.30	-0.50 0.62 0.62	-0.46 0.45	-0.26 0.89	-0.03 -0.04	-0.96 -0.17 -0.14	stone
nite	MgO Fe ₂ O ₃ Al ₂ O ₃ SiO ₂	-0.45 0.26 0.63 0.52	-0.03 0.35 0.51 0.41	-0.19 0.80 0.29 0.56	-0.02 0.21 0.29 0.01	-0.13 -0.37 -0.31 -0.22	-0.04 0.24 -0.04 -0.08	-0.09 0.22 0.42 0.45	-0.28 0.32 0.30 0.22	-0.50 0.62 0.62	-0.46 0.45 0.47	-0.26 0.89 0.51	-0.03 -0.04 -0.01	-0.96 -0.17 -0.14 -0.27	mestone
olomite	$\begin{array}{c} \text{MgO}\\ \text{Fe}_2\text{O}_3\\ \text{Al}_2\text{O}_3\\ \text{SiO}_2\\ \text{P}_2\text{O}_5 \end{array}$	-0.45 0.26 0.63 0.52 0.63	-0.03 0.35 0.51 0.41 0.48	-0. 19 0. 80 0. 29 0. 56 0. 44	-0.02 0.21 0.29 -0.01 0.13	-0.13 -0.37 -0.31 -0.22 0.15	-0.04 0.24 -0.04 -0.08 0.49	-0.09 0.22 0.42 0.45 0.09	-0.28 0.32 0.30 0.22	-0.50 0.62 0.62 0.05	-0.46 0.45 0.47 0.11	-0.26 0.89 0.51 0.07	-0.03 -0.04 -0.01 -0.02	-0.96 -0.17 -0.14 -0.27 0.00	r Limestone
Dolomite	$\begin{array}{c} \text{MgO} \\ \text{Fe}_2\text{O}_3 \\ \text{Al}_2\text{O}_3 \\ \text{SiO}_2 \\ \text{P}_2\text{O}_5 \\ \text{Mn} \end{array}$	-0.45 0.26 0.63 0.52 0.63 0.22	$-0.03 \\ 0.35 \\ 0.51 \\ 0.41 \\ 0.48 \\ 0.13$	$ \begin{array}{r} -0.19 \\ 0.80 \\ 0.29 \\ 0.56 \\ 0.44 \\ 0.02 \\ \end{array} $	$-0.02 \\ 0.21 \\ 0.29 \\ -0.01 \\ 0.13 \\ -0.06$	$-0.13 \\ -0.37 \\ -0.31 \\ -0.22 \\ 0.15 \\ -0.24$	$-0.04 \\ 0.24 \\ -0.04 \\ -0.08 \\ 0.49 \\ -0.03$	-0.09 0.22 0.42 0.45 0.09	-0.28 0.32 0.30 0.22 -0.01	-0.50 0.62 0.62 0.05 0.27	-0.46 0.45 0.47 0.11 0.47	-0.26 0.89 0.51 0.07 0.58	-0.03 -0.04 -0.01 -0.02 -0.02	$-0.96 \\ -0.17 \\ -0.14 \\ -0.27 \\ 0.00 \\ 0.08$	wer Limestone
ldle Dolomite	$\begin{array}{c} \text{MgO} \\ \text{Fe}_2\text{O}_3 \\ \text{Al}_2\text{O}_3 \\ \text{SiO}_2 \\ \text{P}_2\text{O}_5 \\ \text{Mn} \\ \text{Sr} \end{array}$	$\begin{array}{c} -0.\ 45 \\ 0.\ 26 \\ 0.\ 63 \\ 0.\ 52 \\ 0.\ 63 \\ 0.\ 22 \\ 0.\ 07 \end{array}$	$\begin{array}{c} -0.03 \\ 0.35 \\ 0.51 \\ 0.41 \\ 0.48 \\ 0.13 \\ 0.16 \end{array}$	$\begin{array}{c} -0.19\\ 0.80\\ 0.29\\ 0.56\\ 0.44\\ 0.02\\ 0.11\end{array}$	$-0.02 \\ 0.21 \\ 0.29 \\ -0.01 \\ 0.13 \\ -0.06 \\ -0.22$	$\begin{array}{r} -0.13 \\ -0.37 \\ -0.31 \\ -0.22 \\ 0.15 \\ -0.24 \\ 0.08 \end{array}$	$-0.04 \\ 0.24 \\ -0.04 \\ -0.08 \\ 0.49 \\ -0.03$	-0.09 0.22 0.42 0.45 0.09	-0.28 0.32 0.30 0.22 -0.01 0.00	0.50 0.62 0.62 0.05 0.27 0.05	-0.46 0.45 0.47 0.11 0.47 0.14	-0.26 0.89 0.51 0.07 0.58 0.23	-0.03 -0.04 -0.01 -0.02 -0.02 -0.33	$\begin{array}{c} -0.96 \\ -0.17 \\ -0.14 \\ -0.27 \\ 0.00 \\ 0.08 \\ 0.29 \end{array}$	Lower Limestone
Middle Dolomite	MgO Fe_2O_3 Al_2O_3 SiO_2 P_2O_5 Mn Sr Ba	0. 45 0. 26 0. 63 0. 52 0. 63 0. 22 0. 07 0. 04	-0.03 0.35 0.51 0.41 0.48 0.13 0.16 -0.18	-0. 19 0. 80 0. 29 0. 56 0. 44 0. 02 0. 11 -0. 30	-0.02 0.21 0.29 -0.01 0.13 -0.06 -0.22 -0.05	-0.13 -0.37 -0.31 -0.22 0.15 -0.24 0.08	$\begin{array}{c} -0.04\\ 0.24\\ -0.04\\ -0.08\\ 0.49\\ -0.03\\ 0.15\end{array}$	-0.09 0.22 0.42 0.45 0.09 0.21 0.14	-0.28 0.32 0.30 0.22 -0.01 0.00 -0.04	0.50 0.62 0.62 0.05 0.27 0.05 0.16	-0.46 0.45 0.47 0.11 0.47 0.14 -0.14	-0.26 0.89 0.51 0.07 0.58 0.23 -0.25	$\begin{array}{r} -0.03 \\ -0.04 \\ -0.01 \\ -0.02 \\ -0.02 \\ -0.33 \\ -0.11 \end{array}$	$\begin{array}{c} -0.96 \\ -0.17 \\ -0.14 \\ -0.27 \\ 0.00 \\ 0.08 \\ 0.29 \\ 0.14 \end{array}$	r & Lower Limestone
Middle Dolomite	MgO Fe_2O_3 Al_2O_3 SiO_2 P_2O_5 Mn Sr Ba Zn	0. 45 0. 26 0. 63 0. 52 0. 63 0. 22 0. 07 0. 04 0. 05	$\begin{array}{c} -0.03\\ 0.35\\ 0.51\\ 0.41\\ 0.48\\ 0.13\\ 0.16\\ -0.18\\ 0.31\\ \end{array}$	$\begin{array}{c} -0.19\\ 0.80\\ 0.29\\ 0.56\\ 0.44\\ 0.02\\ 0.11\\ -0.30\\ 0.16\end{array}$	-0.02 0.21 0.29 -0.01 0.13 -0.06 -0.22 -0.05	$\begin{array}{r} -0.13 \\ -0.37 \\ -0.31 \\ -0.22 \\ 0.15 \\ -0.24 \\ 0.08 \\ -0.27 \end{array}$	$\begin{array}{c} -0.04\\ 0.24\\ -0.04\\ -0.08\\ 0.49\\ -0.03\\ 0.15\\ -0.14\end{array}$	-0.09 0.22 0.42 0.45 0.09 0.21 0.14 0.06	-0.28 0.32 0.30 0.22 -0.01 0.00 -0.04 0.04	$\begin{array}{c} -0.50\\ 0.62\\ 0.62\\ \end{array}$	$\begin{array}{c} -0.46\\ 0.45\\ \end{array}$	-0.26 0.89 0.51 0.07 0.58 0.23 -0.25 0.29	$\begin{array}{c} -0.\ 03\\ -0.\ 04\\ -0.\ 01\\ -0.\ 02\\ -0.\ 02\\ -0.\ 33\\ -0.\ 11\\ 0.\ 57\end{array}$	$\begin{array}{r} -0.96\\ -0.17\\ -0.14\\ -0.27\\ 0.00\\ 0.08\\ 0.29\\ 0.14\\ -0.62\end{array}$	pper & Lower Limestone
Middle Dolomite	MgO Fe_2O_3 Al_2O_3 SiO_2 P_2O_5 Mn Sr Ba Zn Cu	0. 45 0. 26 0. 63 0. 52 0. 63 0. 22 0. 07 0. 04 0. 05 0. 39	$\begin{array}{c} -0.03\\ 0.35\\ 0.51\\ 0.41\\ 0.48\\ 0.13\\ 0.16\\ -0.18\\ 0.31\\ 0.44\end{array}$	$\begin{array}{c} -0. \ 19 \\ 0. \ 80 \\ 0. \ 29 \\ 0. \ 56 \\ 0. \ 44 \\ 0. \ 02 \\ 0. \ 11 \\ -0. \ 30 \\ 0. \ 16 \end{array}$	$\begin{array}{c} -0.02\\ 0.21\\ 0.29\\ -0.01\\ 0.13\\ -0.06\\ -0.22\\ -0.05\\ 0.25\end{array}$	$\begin{array}{r} -0.13\\ -0.37\\ -0.31\\ -0.22\\ 0.15\\ -0.24\\ 0.08\\ -0.27\\ -0.06\end{array}$	$\begin{array}{c} -0.04\\ 0.24\\ -0.04\\ -0.08\\ 0.49\\ -0.03\\ \end{array}$	$\begin{array}{c} -0.09 \\ 0.22 \\ 0.42 \\ 0.45 \\ 0.09 \\ \end{array}$ $\begin{array}{c} 0.21 \\ 0.14 \\ 0.06 \\ 0.29 \end{array}$	$\begin{array}{c} -0.28\\ 0.32\\ 0.30\\ 0.22\\ \end{array}$ $\begin{array}{c} -0.01\\ 0.00\\ -0.04\\ 0.04\\ 0.13\\ \end{array}$	$\begin{array}{c} -0.50\\ 0.62\\ 0.62\\ \end{array}$	$\begin{array}{c} -0.\ 46\\ 0.\ 45 \end{array}$	-0.26 0.89 0.51 0.07 0.58 0.23 -0.25 0.29 0.29	$\begin{array}{r} -0.03 \\ -0.04 \\ -0.01 \\ -0.02 \\ -0.02 \\ -0.33 \\ -0.11 \\ 0.57 \\ -0.09 \end{array}$	$\begin{array}{c} -0.96\\ -0.17\\ -0.14\\ -0.27\\ 0.00\\ 0.08\\ 0.29\\ 0.14\\ -0.62\\ 0.06\end{array}$	Upper & Lower Limestone
Middle Dolomite	MgO Fe_2O_3 Al_2O_3 SiO_2 P_2O_5 Mn Sr Ba Zn Cu Na	$\begin{array}{c} -0.\ 45\\ 0.\ 26\\ 0.\ 63\\ 0.\ 52\\ 0.\ 63\\ 0.\ 22\\ 0.\ 07\\ -0.\ 04\\ 0.\ 05\\ 0.\ 39\\ 0.\ 63\\ \end{array}$	$\begin{array}{c} -0.03\\ 0.35\\ 0.51\\ 0.41\\ 0.48\\ 0.13\\ 0.16\\ -0.18\\ 0.31\\ 0.44\end{array}$	$\begin{array}{c} -0. \ 19 \\ 0. \ 80 \\ 0. \ 29 \\ 0. \ 56 \\ 0. \ 44 \\ 0. \ 02 \\ 0. \ 11 \\ -0. \ 30 \\ 0. \ 16 \\ 0. \ 05 \end{array}$	$\begin{array}{c} -0.02\\ 0.21\\ 0.29\\ -0.01\\ 0.13\\ -0.06\\ -0.22\\ -0.05\\ 0.25\\ 0.45\end{array}$	$\begin{array}{r} -0.13\\ -0.37\\ -0.31\\ -0.22\\ 0.15\\ -0.24\\ 0.08\\ -0.27\\ -0.06\\ -0.28\end{array}$	$\begin{array}{c} -0.04\\ 0.24\\ -0.08\\ 0.49\\ -0.03\\ 0.15\\ -0.14\\ 0.03\\ -0.04 \end{array}$	$\begin{array}{c} -0.09\\ 0.22\\ 0.42\\ 0.45\\ 0.09\\ \end{array}$	$\begin{array}{c} -0.28\\ 0.32\\ 0.30\\ 0.22\\ \end{array}$ $\begin{array}{c} -0.01\\ 0.00\\ -0.04\\ 0.04\\ 0.13\\ 0.22\\ \end{array}$	$\begin{array}{c} -0.50\\ 0.62\\ 0.62\\ \end{array}$	$\begin{array}{c} -0.\ 46\\ 0.\ 45\\ \end{array}$	0. 26 0. 89 0. 51 0. 07 0. 58 0. 23 0. 25 0. 29 0. 29 0. 21	$\begin{array}{c} -0.\ 03\\ -0.\ 04\\ -0.\ 01\\ -0.\ 02\\ -0.\ 02\\ -0.\ 33\\ -0.\ 11\\ 0.\ 57\\ -0.\ 09\\ 0.\ 67\end{array}$	$\begin{array}{c} -0.96\\ -0.17\\ -0.14\\ -0.27\\ 0.00\\ 0.08\\ 0.29\\ 0.14\\ -0.62\\ 0.06\\ -0.72\\ \end{array}$	Upper & Lower Limestone

第2表 各成分間の相関係数 Table 2 Correlation coefficients among the components

地質調查所月報(第33卷第4号)

第3表 輝緑凝灰岩とチャートの化学分析結果 Table 3 Analytical data of schalstein and chert

Sampl	e	SiO ₂ %	$Al_2O_3\%$	T.Fe%	TiO2%	MnO%	CaO%	MgO%	$Na_2O\%$	K ₂ O%	Ig.loss%	Srppm	Znppm
Schalstei	in–1	17.08	4.18	3.22	1.61	0.54	31.35	7.84	0.21	0.33	33.54	400	93
"	-2	30.75	7.34	6.62	2.74	0.41	22.54	3.66	0.06	0.42	21.05	284	225
"	-3	78.04	11.00	1.11	0.57	0.04	0.22	0.59	0.51	2.45	1.39	212	30
Chert-1		94.78	2.22	0.65	0.16	0.03	0.12	0.48	0.04	0.52	1.08	26	26
<i>"</i> –2		96.62	1.08	0.30	0.08	0.01	0.07	0.56	0.04	0.23	0.69	50	10

不溶解残渣の構成鉱物の差を反映しているもので,下部 石灰岩層は緑泥石,イライト等の粘土鉱物を多く含んで いる.

SiO₂ 各部層の平均値は、上部石灰岩層0.73%、中 部ドロマイト層0.54%、下部石灰岩層1.90%であり、下 部石灰岩層と他の部層とは明らかに差が認められる.地 域的にみると、出流本沢付近はいずれの部層もやや多 く、三峰、羽鶴付近から会沢に至る地域は比較的少ない 傾向が認められる.

 P_2O_5 平均値でみると、中部ドロマイト層が 0.147 %で最も高く、上部・下部石灰岩層はほぼ同じ約0.05% である。わが国の石灰岩の P_2O_5 平均値は0.030%で、こ れに比べて葛生地区の場合はいずれの部層も高い値を示 した。当地区の P_2O_5 については、久保(1971)の詳細 な研究があり、おもに初生的及び二次的生成物としての ふっ素りん灰石が存在することを確認している。また、 その賦存状態として、初生的なものは石灰岩、ドロマイ ト中に微細に散在するりん灰石や、中部ドロマイト層中 に挟まれている頁岩・石灰質ドロマイト互層中のりん灰 石葉層として、二次的なものはアド山層基底部に分布す る石灰角礫岩、石灰質砂岩中のりん灰石礫、裂か充塡物 中のりん灰石礫、断層粘土中のりん灰石粒などであると 述べている。

著者らの実験でも、 P_2O_5 含有量の多い試料からは炭酸りん灰石 (francolite) が確認されているが、地域性については特に認められなかった. 他成分との関連については、下部石灰岩層で Fe_2O_3 ($\gamma = +0.57$)、 Al_2O_3 ($\gamma = +0.69$)、 SiO_2 ($\gamma = +0.61$)、K ($\gamma = +0.67$)、Zn ($\gamma = +0.51$)、中部ドロマイト層でK ($\gamma = +0.63$) とそれぞれ正相関を示している. 下部石灰岩層は、粘土鉱物が比較的多く含まれていることから、 P_2O_5 は粘土鉱物と何んらかの関連をもっているものと考えられる.

Mm 上部石灰岩層及び中部ドロマイト層に比べ, 下部石灰岩層に著しく多く含まれていることが注目され る.わが国の炭酸塩岩石中の Mn 含有量はおよそ100 ppm 以下であり(藤貫, 1973),上部石灰岩層及び中部 ドロマイト層ではほぼ近似した値を示したものの,下部 石灰岩層では平均580 ppm で,約6倍の値を示した.そ して,多くの地区(例えば喜界島・相良・相馬・赤坂な ど)で Mn は Fe_2O_3 , Al_2O_3 , SiO_2 と正相関を示すが, 葛生地区においてはいずれの部層でも認められない. 阿 部ら(1966, 1970)は、本邦各地区の石灰 岩中の Mn^{2+} の EPR スペクトルを測定し、一部はクトナホライト Ca (Mn, Mg) (CO₃)2 構造の形で存在する可能性を述べ ている. 葛生地区炭酸塩岩石中の Mn についても、カル サイト中の Mg を置換しているもの、ドロマイト中の Mg を置換しているもの、Mn の炭酸塩として任意に混 在しているもの、の 3 通りの存在状態が考えられる.

下部石灰岩層においても、すべての試料に多く含まれ ているのではなく、20試料中9試料が100 ppm 以下(19 -58 ppm),11試料が100 ppm 以上(164-2460 ppm) で あり、地域的には出流本沢、比沙門沢付近のものに比較 的高含有量のものが多い.中部ドロマイト層において は、下部石灰岩層に近接した地点の試料が比較的 Mn含 有量は多く、100-300 ppm のものも認められる.

Sr 下部石灰岩層>上部石灰岩層>中部ドロマイ ト層の順に多く含まれている。しかし、上部・下部石灰 岩層の平均値は、本邦古生代礁性石灰岩と考えられてい る秋吉、阿哲、青海地区石灰岩の平均値に近い値であ る。

Sr と Mg との関係を図示すると、第4図のよう に 中 部ドロマイト層は上部・下部石灰岩層とは明確に区分さ れる.また、上部石灰岩層と下部石灰岩層とでは、幾分 オーバーラップはするもの の、MgO 含有率 2-12%の 間(ドロマイト質石灰岩に 相 当)ではおおよそ Sr 140 ppm, MgO 含有率 2%未満(石灰岩及びマグネシアン 石灰岩に相当)では Sr 200 ppm を中心としてグループ 化される.一般に炭酸塩岩石は、ドロマイト化が進行す ると Sr 含有量が減少することは、すでに幾つかの地区 で確認されているが、本地区ではあまり顕著ではない.

Sr /t, 着保持されていたのではなく, 存っ から、 ġ, 含有量との関係をプロットしてみると第5図のようにな 事実 分される原因は, Ĝ (1973) によって確認されている. 質を多く含む)は白色石灰岩に比べて ものと推察される. と乾火られる. 極めて明瞭な正相関を示すことがわかる. 寺島ら(1974) (岩泉, 第4図のように上部石灰岩層と下部石灰岩層が区 葛生地区の炭酸塩岩石中の アラゴナイトに多く含まれているが、 赤坂, しかし, Sr は初めから炭素質物 質 に吸 主として炭素質物質含有量の差にある の報告による有機炭素分析 値 と Sr すなわち, 長岩など)が藤貫(1973),武蔵野 幾つかの過程を経ている 初生的炭酸塩堆積物中の Sr は炭素質物質に依 葛生地区 たおいて Sr を多 この事実 続成作用 \sim 名な

区内での比較やしてそると、 岩層は炭素質物質に乏しく,石化作用後の破砕作用で生 層の大きな違いといえば, を示す以外に各部層とも Al₂O₃ や SiO₂ と正相関を示さ 告されているが, 要フトンる. じたと思われる割れ目に沿ったとこ 色炭素質物質が細かく分散しているのに対し、 質の含有量の差である. はないようである. Sr は、粘土鉱物によって吸着保持されている例 も 報 上部石灰岩層において Mn と正相関 (γ = +0.58) この地区の場合は粘土鉱物に関連して存在すること 本邦中・古生代石灰岩においては, 第2表の各成分間の相関係 数を でこそ 下部石灰岩層中には, すでに述べたように炭素質物 黑色石灰岩 上部石灰岩層と下部石灰岩 ろに炭素質物質が分 (黒色炭素質物 多量の黒 上部石灰 4

栃木県葛生地区炭酸塩岩石の地球化学的研究(藤貫 正・五十嵐俊雄・細越千恵子)

- 197 -

Fig. 5 Relation between Sr and org. C.

の過程でアラゴナイトがカルサイトに転移す るととも に、大部分の Sr は炭酸塩から放出されることになる. 続成作用が開放系で行われる場合は Sr は逸失し, 有機 物質も大部分が酸化・分解されてしまうが、閉鎖系の場 合には、アラゴナイトからカルサイトへ転移する時期に はまだ黒色炭素質物質は生成されていないので、粘土鉱 物、特に陽イオン交換容量の大きいモンモリロナイトな どに吸着保持されているものと考えられる(モンモリロ ナイトが検出される石灰岩は、一般に Sr 含有量が多い ことは、相良、岩泉、佐川地区などで確認されている). さらに、経年変化により粘土鉱物は脱水作用を受け、モ ンモリロナイトはイライトなどに変化するが(モンモリ ロナイト-イライト混合層鉱物が幾つかの地区で確認 さ れている),この際 Sr はモンモリロナイトから再び放出 される. この時期には有機物質も変質を受けて黒色炭素 質物質化が進み、非晶質元素態炭素の多い物質が生成さ れ,これに Sr が吸着されているものと考えられる.

ドロマイト中には Sr 含有量が少ない. これは他の地 区でも同様で, ドロマイトを含む試料と含まない試料 (X線回折による判定) とでは, 平均 Sr 含有量 が 赤 坂 地区で291 ppm と505 ppm, 日高地区で173 ppm と 334 ppm, 峩朗地区で154 ppm と1100 ppm で, いずれもド ロマイトを含む試料は少ない.この理由については明確 でないが、ドロマイト化作用の結果によるものと思われ る.

Ba Baは、上部石灰岩層23試料中22試料から、中 部ドロマイト層33試料中25試料から、下部石灰岩層20試 料中11試料からそれぞれ検出され,平均含有量はそれぞ れ11 ppm, 7 ppm 及び6 ppm である。Ba は分析 方法 の問題もあって炭酸塩岩石のデータは少ないが、喜界島 地区(新生代第四紀) 18 ppm (試料数48),相良地区(同 第三紀) 81 ppm (試料数40),相馬地区 (中生代ジュラ 紀) 79 ppm (試料数39), 峩朗地区 (三畳紀と推定) 26 ppm(試料数44)に比べて、葛生地区では各部層とも少 ない. また, Ba は Sr と異なって地球化学的には Fe, Mn と挙動が近似しているといわれている。今回の結果 からは,他成分との関連も上部石灰岩層において Mn $(\gamma = +0.77)$, Sr $(\gamma = +0.60)$ との間に正相関が認め られるのみであり、有機炭素量との関連もなかった. ド ロマイトの場合にも、含有量が極端に減少する傾向は認 められなかった.

Zn 当地区炭酸塩岩石中の微量成分の特徴として, Zn 含有量の比較的多いことが挙げられる. 西南日本外 帯の古生代石灰岩中の Zn 平均含有量は, 青海地区 9.0

	Table 4 Analytical	data of org	anic element	ts comparing to so	ome morga	nic minor	elements	
Sample N	٩o.	Org. C* (ppm)	Org. N* (ppm)	Total Amino Acid* (µmol/kg)	Sr (ppm)	Ba (ppm)	Zn (ppm)	Cu (ppm)
Kuzuu–29	Upper Limestone	50	9	31.45	212	12	10	1
<i>"</i> –44	"	30	4	14.10	100	4	16	2
<i>"</i> –55	"	50	9	22.97	164	10	7	1
<i>"</i> -61	"	170	11	18.97	182	3	17	0
<i>"</i> –72	"	90	13	9.16	163	30	6	0
<i>"</i> –73	"	3730	202	22.78	348	38	17	1
<i>"</i> -57	Middle Dolomite	90	10	17.40	156	7	18	5
<i>"</i> –58	"	20	2	1.15	142	3	12	6
<i>"</i> - 2	Lower Limestone	380	30	40.03	323	0	14	4
<i>" -</i> <u>3</u> 9	"	290	48	15.50	232	4	12	1
<i>"</i> -59	"	910	106	21.28	317	6	33	1
<i>"</i> -64	"	260	36	16.34	225	11	44	37

第4表 有機元素の分析結果と無機微量元素の比較

*After TERASHIMA et al. (1974)

ppm (試料数86), 阿哲地区 9.4 ppm (試料数 63), 帝釈 地区4.1 ppm (試料数 56) であり, さらに Honjo and TABUCHI (1970) によると、南部北上地 区 5.6 ppm (試 料数72), 赤坂地区5.7 ppm (試料数66), 秋吉地区6.8 ppm (試料数151) と報告されている. 葛生地区の 場合 は、上部石灰岩層16 ppm,中部ドロマイト層38 ppm,下 部石灰岩層26 ppm で、 50 ppm 以上検出された試料 が 上部・下部石灰岩層で各1試料,中部ドロマイト層で8 試料であった.

Zn と他成分との関連をみると、 上部石灰岩層におい て Mg (γ=+0.72) と正相関を示す以外は顕著な 関連 は認められず、第4表に示すように org. C, org. N と も、また寺島(1974)によるアミノ酸との関連も特にな い、羽鶴付近におけるボーリングコア試料の微量成分の 定量を行ったところ, Zn はドロマイト層の特定の部分 に著しく濃縮している事実が観察された. さらに他のコ ア試料によってこの特定層準における Zn の濃集が確認 されるとすれば、化石(特に藻類、すなわち生物源)に 由来する可能性も考えられる、また、後述する単体分離 ドロマイト結晶中に Zn が濃縮していることから考える と、ドロマイト化作用との関連、すなわちドロマイト化 作用に寄与した溶液の性質を反映している可能性も考え られる. 今後, Zn の存在状態を明らかにすることも含 めて、検討を行う必要がある.

Na, K 両元素とも、酸不溶解残渣の構成鉱物であ る長石や粘土鉱物に由来するものと考えられる. Na の 場合には、水溶性物質中にもかなり含まれていることか ら、カルサイトやドロマイトの結晶中に液体包有物とし て存在する可能性もある. 特に、中部ドロマイト層に多 く含まれていることは、 他の地区のドロマイトにも Na 含有量が多いことと考え合わせて、ドロマイト化作用時 の溶液の性質を反映しているのではないかと思われる.

FRITZ and KATZ (1972) は、北部カナダの Pine Point 鉛-亜鉛鉱床におけるドロマイト 結 晶 中 の Na の 存 在 状態について、(i) ドロマイト化作用 時の 溶液 (brine) からの NaCl inclusion として, (#)同溶液からドロマイ ト結晶中にイオン交換や結合しているもの、回初生的炭 酸塩からもたらされたもので、粘土鉱物と結合している もの,の3つを挙げている. 葛生地区の場合, Na は上 部及び下部石灰岩層で Mg (γ=+0.63及び+0.67) と、中部ドロマイト層及び下部石 灰 岩 層 でΚ (γ=+ 0.55及び+0.63) と正相関を示す. Mg との相関から, Na はドロマイト化作用時の溶液に 由来するとも考えら れるが、中部ドロマイト層において正相関が認められな いことは、この説の採用を困難にしている、さらに、全 試料について Cl 含有量が求められていないので、NaCl inclusion として存在する可能性についても,結論は下 せない。Na と K の相関については、酸不溶解残渣の構 成鉱物の一つである長石に由来するものと考えられる.

一方, Kは下部石灰岩層に著しく多く含まれている. これは、下部石灰岩層の酸不溶解残渣にイライト、長石 が多く検出されることに関連しているものと思われる.

4.3 水溶性物質

水溶性物質の定量結果を,第5表に示した.抽出比 (1g当りの抽出量/全含有量) でみると, Ca と Mg は 各部層とも明らかな差は認められないが、 Na は上部石

地質調查所月報(第33巻第4号)

Sample No.	Ar	nounts (p	pm) of e	xtracti	on		Extraction	n ratio					
	Ca	Mg	Na	К	Cl	Ca	Mg	Na	К	\mathbf{Cl}			
Kuzuu–28	16.7	2.3	5.8	5.3	2.0	0.4×10^{-4}	1.1×10-3	0.39	0.53	0.07			
<i>"</i> –29	36.7	5.2	12.0	3.7	6.2	0.9×10-4	1.2×10 ⁻³	0.41	0.37	0.22			
<i>″</i> −32	32.7	4.3	4.3	3.3	3.5	0.8×10^{-4}	0.7 × 10 ⁻³	0.43	0.19	0.08			
<i>"</i> –44	37.0	6.0	13.0	3.2	8.5	1.0×10-4	0.8×10 ⁻³	0.45	0.21	0.16			
<i>»</i> –36	17.3	126.0	16.0	5.7	24.0	0.7×10-4	1.2×10^{-3}	0.17	0.44	0.35			
<i>"</i> –66	5.3	137.3	28.7	6.0	49.7	0.2×10^{-4}	$1.2 imes 10^{-3}$	0.29	0.21	0.86			
<i>"</i> –69	2.0	87.0	13.7	5.0	10.5	0.1×10 ⁻⁴	0.8×10^{-3}	0.20	0.22	0.13			
<i>"</i> 70	6.3	68.0	15.0	5.7	8.3	0.3×10^{-4}	0.6×10-3	0.24	0.22	0.13			
<i>"</i> - 6	39.7	7.2	10.8	7.7	8.2	1.0×10-4	1.6×10-3	0.21	0.09	0.19			
<i>"</i> –13	8.7	55.0	17.3	6.3	18.0	0.3×10^{-4}	0.9×10^{-3}	0.18	0.09	0.26			
<i>"</i> –18	34.3	6.7	7.0	5.7	5.5	0.9×10^{-4}	1.0×10 ⁻³	0.54	0.20	0.09			
<i>"</i> –23	35.0	20.7	8.7	9.2	12.7	0.9×10-4	1.9×10-3	0.58	0.05	0.42			

第5表 水溶性物質の化学成分

Table 5 Chemical components for water soluble matter

灰岩層>下部石灰岩層>中部ドロマイト層、Cl は 中 部 ドロマイト層>下部石灰岩層>上部石灰岩層と,全く逆 な傾向を示している.Kは上部石灰岩層>中部ドロマイ ト層>下部石灰岩層の順で,これは,不溶解残渣の構成 鉱物からみても下部石灰岩層にイライトが多く,不溶性 の形で固定されているためと考えられる.

Mg/Ca モル比でみると、上部及び下部石灰岩層と中 部ドロマイト層では12-360倍の差がある.北野(1956) は、石灰岩とドロマイトの懸濁液に CO2 を吹き込んで 溶出試験を行い、Mg がカルサイト中で固溶体として存 在するときは Mg はほとんど完全に溶出するが、ドロ マイトの場合は溶出しないと報告している.

ドロマイトの溶解度積 (Ks) は、25℃において

Ks=[Ca²⁺][Mg²⁺][CO₃²⁻]= $10^{-16.96} \sim 10^{-19.34}$

である. Kuzuu-36, -66, -69及び-70について, Ca とMg の溶解量から CO_2^{2-} 量を求め(粉砕過程で CO_2 として わずかではあるが逸失するという報告もある),見かけの 溶解度積(Ks')を計算してみると,それぞれ10^{-11.04}, 10^{-11.49}, 10^{-12.53}, 10^{-11.30}となる. この値は, 葛生地区 のドロマイトがドロマイト85%,カルサイト15%の混合 物と仮定しても,なお理論値とはかけ離れた大きな値を 示している. この理由は,試料を衛星型ミルで湿式粉砕 した際のメカノケミカル効果によるものと思われる. す なわち,荒井・安江(1969)によるとドロマイトは長時 間の摩砕によって無定形化され,X線回折を行うとドロ マイト{211}のピークは低角度側に移動し,最終的には 0.6°(20)シフトして消滅してしまう. また,熱分解を行 うと,通常のドロマイトでは MgCO₃のシャープな分解 ピークが 750°C 付近に認められるが、摩砕を続けたもの は次第に低温度側に移動して、 $550^{\circ}-620^{\circ}$ Cにブロードな 吸熱ピークを示すようになる、と報告されている. 今回 の水溶性物質の抽出実験でも、摩砕によるドロマイトの 無定形化の進行により Mgの溶出量は増大し、ドロマイ トの複塩構造は破壊されて最終的には CaCO₃とMgCO₃ のような単塩に近い状態になる もの と考えられる. MgCO₃ の Ks は $10^{-4.59}$ で、長時間摩砕を続けるとドロ マイト中の Mg 量の28.1%が溶出されるといわれてい る.

結局,今回の実験方法による水溶性物質の定量結果か らは、ドロマイト化作用をもたらした溶液の性質はつか み得なかった.しかし、Naの抽出比をみると、上部・ 下部石灰岩層よりも中部ドロマイト層のほうがやや小さ いが,全岩試料の含有量をみると逆にドロマイトのほう が多いことから、Kの水溶性物質がその存在形態によっ て支配されるように、Naの場合も石灰岩中では抽出さ れ易い形、ドロマイト中では抽出され難い形で存在する 可能性も考えられる.今後は、ドロマイトの単結晶のみ の水溶性物質を調べることにより、目的にかなった結果 が期待されよう.

4.4 酸不溶解残渣

酸不溶解残渣の構成鉱物をX線回折粉末法で同定した 結果を,第6図に示した.

下部石灰岩層はイライト,緑泥石,石英,長石が多 く,中部ドロマイト層はイライトとモンモリロナイトが 検出されるが,一般に非炭酸塩物質は少ない.ただ,り ん灰石は先にも述べたように局部的に濃集している場合

栃木県葛生地区炭酸塩岩石の地球化学的研究	(藤貫	正・五十嵐俊雄・	細越千恵子)
----------------------	-----	----------	--------

	1	Spee	cimen	Minerals							
				qz	fel	chl	н	mont	ap	ру	
iestone		Kuzuı	u-73	++++	?	+++	+	++	?		
per Lin		п	-34	++++	?		+	±			
		н	-51	++	+				++		
olomite			-50	+++	+	±	++	+++		+	
liddle D		. II	- 5	++	+		++++	±			
Σ		"	-37	++++		+	?	+++	+		
		n	-59	+++++		+	+	+++		++	
e			-64	++++		+++	++	++		?	
sto			-24	+++		++++	+				
Ë.	臣臣	. 11	-75	+++++	±		+++	+		+	
7		. "	-17	++++	+	+++++	+++				
Lowe		. 11	- 3	+++	+	++++	+++				
		. 11	- 1	++		+++++	+++				
				qz;q	uartz f	el : felspar	ch1 : cl	hlorite i	ll:illite		
				mont	· montmori	llonite	an · anati	te nv·	nvrite		

第6図 酸不溶解残渣の構成鉱物の同定

Fig. 6 Identification of constituent minerals for insoluble residue.

が認められる.上部石灰岩層は石英を除いて他の鉱物は 少ない.また,モンモリロナイトの検出された試料は, Sr と Zn 含有量が多い傾向があるが,試料数が少ない ので詳細なことは論じ得ない.

下部石灰岩層中の酸不溶解残渣の電子顕微鏡写真の一 部を、Plate I-1及び Plate I-2に示した. Plate I-1 は Kuzuu-75 のセリサイトで、中央にモアレ模様が鮮明 に観察される. Plate I-2 は Kuzuu-59 のモンモ リ ロ ナイトの写真である.

SONNENFELD ら(1973)は、石灰岩は上部・下部の2 つのメンバーから成り、両者の境界を中心として孔隙率 が大きく、かつ透過性の良い部分がドロマイト化された と仮説を述べているが、今回の酸不溶解残渣の構成をみ ても、下部石灰岩層は石英、長石、粘土鉱物も多く、上 部石灰岩層とは明瞭に異なる.これは、下部石灰岩層は 陸源物質の供給が比較的多かったことを示唆するもの で、石灰岩を2つのメンバーに分類する説に有力な証拠 を提供するものである.また、第4表の有機炭素量の差 も、上部石灰岩層と下部石灰岩層とは堆積環境の若干異 なる堆積物と考える上で、一つの要因となるであろう.

4.5 分離したドロマイト単結晶中の微量成分

マイクロマニュピレーターで単体分離したドロマイト 結晶中の微量成分の定量結果を,第6表に示した.分離 操作に莫大な時間を費したにもかかわらず試料量が多く 得られなかったため,定量できなかった成分もあるが, 全岩試料と比較して Na 及び Zn の濃縮, Sr の減少が 認められる. Fe 及び Mn は,濃縮している場合と減少 している場合がある. Zn は,多分ドロマイト中の Mg を交換しているものと思われる.赤岩ら(1975)による と,単体分離した Kuzuu-37 のドロマイト中のF含有 量は420 ppm で,全岩試料の250 ppm に比べて1.7倍濃 縮している事実が明らかになった.

ドロマイト単結晶の顕微鏡写真 (Plate Ⅱ-l, 2) をみ ると、透明感のある菱形結晶のものと、不透明な菱形結 晶の2種類が観察された.これら2つの形態をさらに分 離して定量すれば、微量成分含有量に差が認められるの

地質調查所月報(第33巻第4号)

第6表 単体分離ドロマイト中の微量元素(ppm)

Table 6 Minor elements (ppm) in separated dolomite crystals

Sample No.		Fe	Mn	Sr	Zn	Cu	Na	K.
Kuzuu–34	Whole specimen	1154	36	104	36	3	60	25
	Separated Dolomite	1469	53	55	>150		302	
<i>" –</i> 37	Whole specimen	4780	47	110	103	10	111	18
	Separated Dolomite	591	27	76	184	2	365	74

ではないかとも推察されるが、実行には困難を伴う.

5. まとめ

1)採取した76試料の化学分析の結果,上部石灰岩層, 中部ドロマイト層,下部石灰岩層の平均化学組成が明ら かになった.この地区の石灰岩は上部及び下部層ともド ロマイトを混在する場合が多く, MgO 含有量のやや多 い石灰岩である.中部ドロマイト層は平均してドロマイ ト82%,カルサイト17%,非炭酸塩1%の混合物であ る.

2) 微量成分の定量結果から、下部石灰岩層で Mn, Sr 及びKが、中部ドロマイト層では Zn, Na 及び P_2O_5 が 多い. このうち、 Zn は特定の層準に濃縮している可能 性もあり、今後詳細な検討が必要である. P_2O_5 は り ん 灰石として含まれている.

3) Sr は org. C 含有量と正相関を示す. これは黒色炭 素質物質に吸着されているためと考えられる. Sr の挙 動としては,初生的炭酸塩鉱物として共沈した後,続成 作用の過程で炭酸塩から放出されて粘土鉱物 へ吸 着 さ れ,さらに経年変化により粘土鉱物の脱水に伴って再び 放出されて炭素質物質への吸着,という過程を経ている ものと推定される.

4)酸不溶解残渣の構成鉱物は、上部石灰岩層と下部石 灰岩層とは明らかに異なり、下部石灰岩層は陸源物質の 供給の比較的多い環境における堆積物と考えられる。

5)ドロマイト単結晶を分離して微量成分の定量を行った結果, Na 及び Zn が全岩試料に比べて著しく濃縮している事実が明らかになった. Zn はドロマイトの Mg を交換しているものと思われる.

文 献

- 阿部修治・藤貫 正・藤原鎮男(1970) 赤坂石灰岩 中のマンガンの存在状態の決定.日化, vol. 87, p. 367-369.
- ・藤原鎮男(1970) 本邦古生代および中生 代石灰岩中のマンガンの不均一分布.日化,

vol. 91, p. 152-155.

- 赤岩英夫・相沢省三(1975) 炭酸塩岩石のフッ素含 量.昭和 50年度地球化学討論会演旨,p. 45
- AKAIWA, H. and AIZAWA, S. (1979) Fluorine contents of Permian carbonate rocks in central Japan. *Chem. Geol.*, vol. 27, p. 157– 169.
- 荒井康夫・安江 任(1969) 摩砕によるドロマイト のメカノケミカル変化.工化, vol. 72, p. 1980-1985.
- 有田忠雄(1950) 栃木県安蘇郡羽鶴山の苦灰岩(第 2報).地質雑, vol. 50, p. 445-453.
- 地質調査所(1978) 地球科学的試料の化学分析法2, 石灰石・ドロマイトの完全分析法.地質調 査所化学分析法, No. 51, p. 304-320.
- (1979) 地球科学的試料の化学分析法3,
 原子吸光分析法による石灰石の分析方法.
 地質調査所化学分析法, No. 52, p. 705.
- 江口元起・庄司力偉・久保重明(1965) 栃木県葛生 町周辺の石灰岩および苦灰岩に関する研究. 東北鉱山, vol. 12, p. 33-41.
- FRITZ, P. and KATZ, A. (1972) The sodium distribution of dolomite crystal. *Chem. Geol.*, vol. 10, p. 237–244.
- 藤本治義(1961) 5万分の1地質図幅「栃木」及び 同説明書. 地質調査所, 62 p.
- 藤貫 正(1968) 石灰岩の地球化学的研究(I)赤坂 石灰岩鉱床における微量成分について.地 調月報, vol. 19, p. 603-624.
- FUJINUKI, T. (1970) On the minor elements in Ryukyu limestone from Kikai-jima Island, Kagoshima Prefecture, Japan. Bull. Geol. Surv. Japan, vol. 21, p. 327–340.
- 藤貫 正(1973) 炭酸塩岩石中の微量成分. 鉱山地 質, vol. 23, p. 295-306.

<u>- 202</u> -

- 藤貫 正・岡野武雄・五十嵐俊雄(1975) 静岡県相 良石灰岩の地球化学的研究.地調月報, vol. 26, p. 243-254.
- 羽鳥晴文(1965) 足尾山地南東部の層位学的研究. 地質雑, vol. 71, p. 247-256.
- 林 信悟(1968) 栃木県葛生町のあど山層から産出 したコノドントについて.地球科学, vol. 22, p. 63-77.
- ――――(1971) 鍋山層から産したコノドントにつ いて. 地球科学, vol. 25, p. 251-257.
- HONJO, S. and TABUCHI, Y. (1970) Distribution of some minor elements in carbonate rocks.
 1.A list of analytical value of Mg, Sr, Fe, Mn, Zn, Cu, Cr, Ni and V. Pacific Geology, vol. 2, p. 41–79.
- 五十嵐俊雄(1975/1976) 炭酸塩岩石(石灰岩とド ドロマイト)の分類と用語.石灰石, no. 152, p. 60-68, no. 153, p. 121-131, no. 154, p. 172-180, no. 155, p. 234-246, no. 156, p. 299-308, no. 157, p. 365-376, no. 159, p. 495-505.
- KANESHIMA, K. and FUJINUKI, T. (1973) Differential thermal analyses of the Pleistocene dolomite in southern Okinawa, the Ryukyu Islands. *Geochem. Jour.*, vol. 7, p. 11–21.
- 北野 康(1956) 石灰石中に含まれる微量マグネシ ウムの存在状態(その1~3).日化, vol. 77, p. 211-220.
- 小池敏夫・渡辺耕造・猪郷久治(1970) 日本産三畳 紀コノドントによる新知見. 地質雑, vol. 76, p. 267-269.
 - ・木下 勤・猪 郷 久 治・滝 沢 茂(1971)
 栃木県葛生付近の栃木層群産のコノドント と衝上断層の 発 見.地 質 雑, vol. 77, p.

221-222.

- 久保重明(1968) 栃木県葛生町周辺における苦灰岩の組織に関する研究.東北鉱山, vol. 15,
 p. 1-6.
- (1971) 栃木県葛生町周辺の石灰岩および
 苦灰岩中の燐の賦存状態. 鉱山地質, vol.
 21. p. 434-451.
- 武蔵野実(1973) 長岩層石灰岩の岩相と化学組成. 地質雑, vol. 79, p. 481-492.
- SIEVER, R. and GLASS, H. D. (1957) Mineralogy of some Pennsylvanian carbonate rocks of Illinois. Jour. Sed. Petrol., vol. 27, p. 56-63.
- SONNENFELD, P., IGARASHI, T. and FUJINUKI, T. (1973) Dolomitization phenomena of the Kuzuu district, Tochigi Prefecture, central Japan. Bull. Geol. Surv. Japan, vol. 24, p. 123–127.
- 高橋 博(1958) 栃木県羽鶴産化石を交代した苦灰 岩. 岩鉱, vol. 42, p. 203-206.
- 寺島美南子・藤貫 正・秋元 徹(1974) 栃木県葛 生地区の炭酸塩岩石中の有機物について、 地調月報, vol. 25, p. 263-271.
- 渡辺武男・向山 広・兼平慶一郎・浜田隆士編 (1957) 足尾山地地質図,同説明書. 栃木 県,40 p.
- 柳本 裕(1973) 栃木県葛生地区の中・古生層の層 序と地質構造の再検討. 地質雑, vol. 79, p. 441-445.
- 吉田三郎(1956) 栃木県安蘇郡葛生町付近の地質(1). 北海道地質要報, no. 32, p. 1-10.
- (1957) 栃木県安蘇郡葛生町付近の地質(2).
 北海道地質要報, no. 34, p. 1-5.

(受付:1981年11月16日;受理:1982年1月6日)

....

*

 5 **5** 1 7 7

1. Sericite in acid insoluble residue (Kuzuu-75) \times 20,000

2. Montmollironite in acid insoluble residue (Kuzuu-59) \times 20,000

1. Dolomite single crystals in acid insoluble residue

2. Dolomite single crystals separated from acid insoluble residue