中国・四国地方の泥質岩中の炭素と硫黄

寺島 滋* 稲積章生** 石原舜三***

TERASHIMA, S., INAZUMI, A. and ISHIHARA, S. (1981) Carbon and sulfur contents of pelitic rocks from Chugoku and Shikoku in Japan. Bull. Geol. Surv. Japan, vol. 32(3), p. 167–181.

Abstract: About 180 samples of Paleozoic to Cenozoic shales and slates from Chugoku and Shikoku have been analyzed by infrared absorption spectrometry for total carbon, carbonate carbon and total sulfur, and by gravimetry for sulfate sulfur.

The range and average for total carbon contents are 0.03 to 4.35% and 0.98%, respectively. The contents of total carbon on the Mesozoic samples are higher than those of Paleozoic ones as listed in Table 4. There exist inverse correlations between total carbon and SiO₂ contents, especially within Mesozoic samples as shown in Fig. 1.

Average carbonate carbon contents are $0.59\%(CO_2)$, and the values vary greatly depending on the sedimentary environment. Generally, carbonate carbon is positively correlated with calcium oxide as given in Fig. 6. This may arise from preservation of calcium carbonate in sediments.

The range and average of total sulfur contents are 0.002% to 1.16%, and 0.19%, respectively. The Mesozoic samples are richer in total sulfur than the Paleozoic ones as listed in Table 4. It is generally known that sulfur contents of marine shales are higher than those of non-marine shales. In this study, similar tendency is observed from most areas. Some of the marine shales however are very low in sulfur.

The contents of sulfate sulfur range from 0.00 to 0.72% but they are mostly 0.00% as listed in Tables 1 to 3. There are clear differences in the sulfate sulfur contents of Mesozoic shales (avg. 0.10%) from Chugoku, Paleozoic pelitic rocks (0.01%) from Chugoku, and Paleozoic to Cenozoic shales and slates (0.00%) from Shikoku. Thus the sulfate sulfur is more abundant in the inner, continental side than the outer, oceanic side.

There are no samples that are high in both sulfate sulfur and carbonate carbon (Fig. 8), indicating an incompatibility of these compounds. This fact implies that carbonate carbon is produced by compensation of sulfate sulfur. Reduction of sulfate sulfur by organic matter during the sedimentation appears to be a main cause to produce sulfide sulfur in sedimentary rocks.

1. 緒 言

陸源性及び自生性の有機物は、河口底あるいは海底に 沈降し一部酸化分解されるが、この場合の酸素の供給源 の一つとして、微生物の作用による硫酸イオンの分解が 考えられている. PRESLEY and KAPLAN (1968) によれ ば、(1)式の反応によって重炭酸イオン、硫化水素イオン などが生成し、さらに重炭酸イオンの一部は(2)式により 炭酸カルシウムとして沈殿する.

 $2[CH_2O] + SO_4^{2-} \rightarrow 2HCO_3^{-} + HS^{-} + H^+$ (1) $Ca^{2+} + 2HCO_3^{-} \rightarrow Ca^{2+} + H_2CO_3 + CO_3^{2-} \rightarrow$ $CaCO_3 + H_2CO_3$

(2)

一方,硫化水素はかなりの部分が海水を通じて大気中 に放出されると考えられている(Koyama et al., 1965) が,一部は(3)式の反応により硫化鉄として堆積物中に固 定される(BERNER, 1970).

 $Fe^{2+} + H_2S + S^0 \rightarrow FeS_2 + 2H^+$ (3) このように堆積岩の生成過程において、炭素と硫黄は密 接に関係していることが明らかであり、堆積岩中の炭素 及び硫黄の含有量とその存在形態を知ることは、堆積環 境や続成作用、変成作用の研究において極めて重要と思 われる.

我国の堆積岩中の炭素については原村(1961 a, b, 1962, 1963), KATADA *et al.* (1964), 藤貫ほか(1974) に よる粘板岩についての研究及び藤貫ほか(1971) による

— 167 —

^{*}技術部

^{**}香川大学教育学部

^{***}鉱 床 部

炭酸塩岩についての研究が行われているが、中国・四 国地方の頁岩や粘板岩に関する炭酸塩炭素と非炭酸塩炭 素についての研究はみられず、また硫黄については狛 (1978)による北海道の第三紀堆積岩についての報告そ の他があるが、存在形態を含めた研究例は少ない.

本研究では中国・四国地方の頁岩及び粘板岩 180 試料 について新しく開発した燃焼-赤外吸収分析法により 全 炭素及び全硫黄を定量し,更にこれらのうち約半数につ いて炭酸塩炭素及び硫酸塩硫黄を定量した.そして,炭 素,硫黄の堆積過程における挙動について2,3の考察 を行った.

本研究を行うに当り,九州大学名誉教授松本達郎博士 には草稿を読んでいただくと共に地質に関する貴重な助 言をいただいた.また,地質調査所寺岡易司,高橋 清 両技官には本稿をまとめるに当り,種々有益な御教示を いただいた.厚く御礼申し上げる.

2. 試料及び分析方法

2.1 試料

本研究で用いた試料は, 稲積により主成分の化学組成 が公表されている中国地方の古生代頁岩及び粘板岩67個 (稲積, 1975 a),中国地方の中生代頁岩69個(稲積, 1975 b),四国地方の古生代-新生代頁岩及び粘板岩44個 (稲積, 1971)であり,同一粉末化試料である.地域, 地層,時代などの区分も全く同様である.試料の採取位 置は第1図に示した.さらに詳細な地名等については稲 積 (1971, 1975 a, b)を参照されたい.

上記試料を採取した地層群のうち、中国・四国地方の 古生層としたものは秩父(本州)地向斜の堆積物であ り、最近の微化石研究によれば、その上限の時代は中生 代中頃まで及ぶことがわかっている.しかし、本論文で は記載の便宜上この地層を従来通り古生層として述べる

第1図 分析試料採取位置 Index map showing the localities of the analyzed samples.

ことにする.一方,中国・四国(四万十帯を除く)地方 の中生層としたものは浅海成,一部非海成の地層群であ って,時代的には三畳紀から白亜紀にわたる.四万十帯 の地層群は白亜紀から第三紀中頃にかけての時代の地向 斜堆積物である.

試料を採取した地層群の堆積環境に関しては充分解明 されていない部分もあるが,以下本研究においては中国 地方の古生層及び四国地方の古生層-新生代層 はすべて 海成層として記述する.そして中国地方の中生層のうち 厚保層群 (Токихама, 1962),美祢層群の麻生層(片山, 1939;徳山,1958)及び中塚層 (Токихама, 1962),成 羽層群の地頭層(寺岡,1959),豊浦層群(松本・小野, 1947;佐藤,1967)を海成層とし,美祢層群の桃木層, 梶浦層,山野井層(徳山,1958;Токихама, 1962)を非 海成層とする.

2.2 分析方法

1) 全炭素及び全硫黄 試料0.1gをるつぼ(内容積約5 ml) にはかり取り,助燃剤として鉄粉約0.6gとタング ステン約1.3gを加えた後,高周波燃焼装置を用いて40-50秒間燃焼させる.生成する二酸化炭素,二酸化硫黄を 赤外線ガス分析計に導入してガス分析する.用いた装置 は国際電気製のアイアールマチック"C-S"VK-111 AS型であり,検量線用標準試料の調製方法その他は寺 島(1979)と同様である.

2) 炭酸塩炭素 試料0.1gをるつぼにはかり取り,濃塩 酸2 ml を加える.約130℃の熱板上で加熱して蒸発乾固 した後,約150℃の乾燥器中で20-30分間静置して塩酸を できるだけ除去する.以下上記と同様な操作によって非 炭酸塩炭素を定量し,全炭素の含有量からこれを差し引 いて炭酸塩炭素の量を求める.

 3)硫酸塩硫黄 試料 lg をビーカーに取り,塩酸(1+2)30 ml を加え約30分間静かに煮沸した後沪過し,沪 液中の硫酸を通常の塩化バリウム重量法で定量した.

3. 分析結果及び考察

全炭素,炭酸塩炭素,全硫黄,硫酸塩硫黄の分析結果 を第1表(中国地方古生層頁岩及び粘板岩),第2表(中 国地方中生層頁岩),第3表(四国地方の古生層-新生代 層頁岩及び粘板岩)に,それぞれの地域別平均値を第4 表に示した.また,全炭素,全硫黄については時代別平 均値を求め第5表に示した.

3.1 全炭素及び全硫黄

堆積岩中の炭素は、粗粒の堆積岩よりも細粒のものに 多く含まれることが知られている (KATADA et al., 1964). 頁岩のような細粒岩の粒度は、造岩鉱物のうち風化に対 して最も安定である石英,化学的にはシリカ含有量と相 関していることが考えられる.第2図はシリカ含有量に 対して全炭素含有量をプロットしたものであるが,古生 層では両者の相関性に乏しく,中生層では負の相関性が 認められる.このことは,中生層中の炭素が主に陸源で あり,泥質岩の成熟度の増加と共に減少することを示し ているものと思われる.事実,特に炭素に富む3試料 (第2図)は美祢炭田地域の炭質頁岩から得られてお り,明らかに植物起源であることを示している.

全硫黄含有量とシリカ含有量との関係は第3図に示した. 古生層,中生層の試料とも相関関係は認められないが,これは硫黄が主として堆積環境により増減するためと思われる.

全炭素,全硫黄の含有量について地層,地域などの区 分別特徴を明らかにする目的で第4-6 図を作成した. 第 4 図は中国地方の海成古生層試料のプロットであるが, 地域差が明瞭である. 鹿足層群では全炭素,全硫黄とも 高いのが特徴であり,一般に山口県下の古生層の試料が 広島一岡山県下の試料に比べて全炭素に富む 傾向を示 す. 寺内層は例外的に全炭素の含有量が高い. また,常 森層群の全炭素(0.65-1.03%),全硫黄(0.012-0.085 %)の含有量に大きな差が認められないのに対して,広 島一岡山地域の粘板岩では全炭素は0.2-0.99%,全硫黄 は0.003-0.536%に変化している. 宇治層の試料 は1個 のみであるが,全炭素,全硫黄とも低い.

中国地方中生層の頁岩のうち、全炭素の含有量が最も 高いのは美祢層群(美祢地域0.88-2.67%, 平均 値 1.66 %, 厚狭地域0.61-4.35%, 平均値1.87%) である.これ はこの地層が石炭層をはさむ事と対応している. またこ の地層は変動時の堆積物で、層相変化に富んでおり、主 成分の化学組成にも大きな変化が認められる (稲積, 1975 b) が、全炭素の含有量にも大きな差が認められる (第5図). 厚保・美祢両層群について海成層と非海成層 の全炭素含有量を比較すると,海成層1.09%(分析数12), 非海成層1.80%(分析数28)で明らかに非海成層で高い. 成羽層群地頭層の試料は全硫黄の含有量が平均 0.642% で最も高いのに対し、全炭素は0.28%で最も低い.豊浦層 群は安定した環境下の内湾性堆積物であり(佐藤,1967), その全炭素含有量は0.61-2.05%で比較的変化が少なく, これに対して全硫黄は 0.013-1.04% に変化し, 平均値 (0.414%, 分析数26) も高い.

四国地方の頁岩及び粘板岩では全炭素の平均含有量は 新生代(0.51%),古生代(0.62%),中生代(0.88%) の順に増加し,全硫黄は古生代(0.186%),中生代 (0.227%),新生代(0.320%)の順に増加している.四

- 169 -

地質調査所月報(第32巻第3号)

第1表 中国地方の古生層泥質岩の分析結果 Analytical results of the Paleozoic pelitic rocks in Chugoku (%).

No.	Total carbon	Carbo- nate carbon	Total sulfur	Sulfate sulfur	SiO ₂ *
1	0.92	0.19	0.033	0.00	60.6
2	0.91	0.15	0.038	0.00	59.2
3	0.98	0.31	0.062	0.00	59.4
4	0.98	0.36	0.012	0.00	59.2
5	0.93	0.23	0.047	0.00	61.2
6	0.85	0.13	0.024	0.00	61.1
7	0.65	0.09	0.054	0.00	59.8
8	0.92	0.15	0.063	0.00	59.8
9	0.95	0.25	0.052	0.00	60.1
10	1.03	0.25	0.085	0.00	62.1
11	0.52	_	0.012	n.d.	64.8
12	0.58	0.14	0.290	0.00	63.2
13	0.76		0.108	n.d.	61.4
14	0.76	_	0.018	n.d.	63.9
15	1.40	0.58	0.240	0.00	63.7
16	0.87		0.200	n.d.	63.0
17	1.46	0.78	0.072	0.00	59.8
18	1.73	1.07	0.101	0.00	60.3
19	1.54	0.80	0.220	0.00	61.5
20	1.38	0.25	0.350	0.06	58.4
21	0.71	0.01	0.267	0.10	61.1
22	0.54	_	0.143	n.d.	59.9
23	0.82	0.02	0.251	0.06	63.3
24	0.74	_	0.160	n.d.	64.2
25	0.35	_	0.017	n.d.	62.3
26	0.74	0.02	0.042	0.01	62.0
27	0.81	0.02	0.270	0.07	65.6
28	0.38	_	0.020	n.d.	70.2
29	0.25	0.01	0.310	0.04	67.9
30	0.36		0.023	n.d.	64.6
31	0.61	0.02	0.536	0.07	6 5.7
32	0.58	0.04	0.500	0.01	70.4
33	0.48	_	0.273	n.d.	65.4
34	0.41		0.077	n.d.	65.2
35	0.62		0.146	0.00	68.0
36	0.99	0.22	0.102	0.00	66.4
37	0.62		0.170	n.d.	68.8
38	0.55		0.201	0.00	67.1
39	0.54	0.01	0.068	0.03	64.1
40	0.24		0.058	n.d.	60.4
41	0.47	_	0.030	n.d.	62.5
42	0.47	0.01	0.029	0.00	60.7
43	0.44		0.010	n.d.	61.0
44	0.57		0.023	n.d.	62.1
45	0.61	_	0.003	n.d.	61.3
46	0.22	_	0.007	n.d.	59.2
47	0.20	0.01	0.019	0.00	57.9
48	0.95	0.88	0,200	0.00	57.8
49	0.39	0.23	0.009	0.00	58.3

50	0.75	0.20	0.013	0.00	69.1
51	0.47	_	0.010	n.d.	58.1
52	0.36	0.01	0.162	0.00	61.0
53	0.46	_	0.114	n.d.	62.4
54	0.05	—	0.004	n.d.	60.3
55	0.56	—	0.054	0.00	60.4
56	0.59	0.03	0.039	0.00	60.9
57	0.53	_	0.027	n.d.	60.0
58	0.56		0.005	n.d.	61.2
59	0.33	0.00	0.067	0.00	59.3
60	0.58		0.018	n.d.	66.6
61	0.62		0.050	0.00	66.9
62	1.31	0.54	0.072	0.00	57.8
63	1.74	0.92	0.112	0.00	57.1
64	1.49	0.61	0.106	0.00	56.9
65	1.07	0.36	0.050	0.00	60.1
66	1.16	0.50	0.048	0.00	60.3
67	0.11	—	0.008	n.d.	60.6

*: 稲積(1975a)より引用. 一:未分析であるが希塩酸を作用させても発泡が認められないため 0.02%以下と考えられる.

0.02%以下と考えられる. n.d:未分析 1-10:常森層群,11-20:鹿足層群(11,12:嘉年層,13-20:日原 層),21-26:太田川地域,27-49:広島一岡山地域(黒色粘板岩),50 -61:広島一岡山地域(黒色千枚岩質粘板岩),62-66:寺内層,67: 宇治層

第2表 中国地方の中生層頁岩の分析結果 Analytical results of the Mesozoic shales in Chugoku (%).

No.	Total carbon	Carbo- nate carbon	Total sulfur	Sulfate sulfur	SiO ₂ *
1	0.75	_	0.002	n.d.	61.2
2	1.10	_	0.003	n.d.	61.3
3	1.48	0.11	0.034	0.00	59.5
4	1.31	0.03	0.171	0.09	61.9
5	0.35	_	0.003	n.d.	62.8
6	0.64		0.035	n.d.	58.1
7	0.58	0.01	0.920	0.31	58.7
8	0.78		0.094	n.d.	60.3
9	1.66	1.08	0.018	0.00	59.9
10	2.20	1.43	0.011	0.00	53.3
11	2.67	2.35	0.013	0.00	48.3
12	2.30	1.14	0.027	0.00	57.1
13	1.12	0.41	0.027	0.00	66.5
14	1.41		0.052	n.d.	67.3
15	1.55	0.29	0.021	0.00	56.4
16	1.44	0.44	0.022	0.00	57.7
17	1.27		0.023	n.d.	62.6
18	1.48	0.22	0.060	0.00	49.8
19	1.53	0.43	0.049	0.00	55.8
20	0.88		0.010	n.d.	58.2
21	1.29	—	0.045	n.d.	61.4
22	2.04	0.08	0.095	0.00	55.7
23	. 2.00	0.00	1.047	0.31	57.1
24	1.26		0.040	n.d.	59.0

中国・四国地方の泥質岩中の炭素と硫黄(寺島・稲積・石原)

25 26 27	1.26 1.33 1.49		0.020 0.016 0.016	n.d. n.d. n.d.	59.7 64.5 58.8	第3表	四国地方の頁 Analytical r Shikoku (%)	岩及び粘ね esults of ・	仮岩の分析 the shal	T結果 es and s	lates in
28 29 30	2.58 1.52 2.28	0.03	0.011 0.018 0.024	0.00 n.d. 0.00	58.2 60.3 56.8	No.	Total carbon	Carbo- nate carbon	Total sulfur	Sulfate sulfur	SiO ₂ *
		0.00	0.0041		0010	1	0.97	0.81	0.088	0.00	69.6
31	0.61		0.009	n.d.	65.3	2	0.50	-	0.101	n.d.	65.8
32	2.10	0.03	0.012	0.00	70.7	3	0.75	0.00	0.200	0.00	70.0
33	0.74		0.004	n.d.	59.2	4	0.44		0.138	n.d.	67.9
34	1.75	_	0.005	n.d.	59.9	5	0.31	0.29	0.021	0.01	45.6
35	3.98		0.009	n.d.	59.6	6	0.30		0.031	n.d.	69.8
36	1.14	_	0.020	n.d.	57.4	7	0.30	_	0.038	n.d.	62.8
37	0.96		0.038	n.d.	61.9	, 9	0.72	0.58	0.050	0.00	53.5
38	3.10	0.00	0.142	0.04	60.7	0	0.77	0.50	1 160	0.00	62.1
39	4.35		0.042	n.d.	60.0	10	0.00	0.00	0.006	0.02 n d	62.1
40	1.27	0.00	0.041	0.00	59.6	10	0.00	—	0.000	n.u.	02.0
41	0.27	0.00	0.661	0.00	70.3	11	1.48	0.81	0.245	0.00	59.6
4.9	0.40	0.00	0.001	0.00	64.2	12	0.50		0.254	n.d.	65.1
12	0.16	0.00	0.030	0.05 nd	64.4	13	1.09	0.59	0.230	0.00	57.9
44	2.05	0.05	1.040	0.79	61.0	14	0.57	_	0.023	n.d.	63.2
44	2.05	0.00	0.096	0.74	60.0	15	1.01	0.36	0.248	0.01	60.7
40	1.20	0.32	0.926	0.07	60.9	16	1.17	0.65	0.240	0.00	57.9
40	1.39	0.42	0.944	0.01	60.4	17	0.82	0.28	0.254	0.00	56.7
4/	0.98	0.01	0.896	0.51	60.0	18	1.08	0.36	0.372	0.00	58.0
48	0.98		0.708	n.d.	61.3	19	1.59	0.86	0.320	0.00	61.9
49	1.26	0.00	0.260	0.08	61.3	20	1.59	0.51	0.255	0.00	57.8
50	1.38	0.22	0.042	0.01	61.2	91	1 57	1.02	0.215	0.00	60.2
51	1.39		0.020	n.d.	61.2	21	1.57	1.05	0.515	0.00	61.0
52	1.43		0.023	n.d.	63.4	22	0.85		0.012	n.d.	50.10
53	1.50	0.00	0.021	0.00	63.4	23	0.88		0.009	n.a.	50.1
54	1.35		0.063	n.d.	65.4	24	0.99	0.00	0.010	0.00	56.2
55	1.10	0.00	0.245	0.11	63.2	25	0.04		0.011	n.a.	60.3
56	0.61		0.013	nd	63.5	27	0.03		0.003	n.d.	67.4
57	0.89		0.180	n d	64.7	28	0.03		0.005	n.d.	64.0
58	1 15	0.00	0.458	0.22	63.8	29	0.58		0.450	0.00	66.9
59	1.65		0.100	n d	66.8	30	1.03	0.33	0.273	0.00	69.8
60	1.05	0.81	0.020	0.00	68.7	31	0.90		0.636	n.d.	71.1
00	1.10	0.51	0.490	0.00	03.7	32	0.85	0.24	0.220	0.00	69.8
61	1.24		0.740	n.d.	62.3	33	0.65		0.590	0.00	69.6
62	1.22	0.04	0.964	0.53	62.3	34	0.69		0.351	n.d.	63.9
63	0.75		0.540	n.d.	63.5	35	1.02	0.03	0.232	0.00	67.6
64	1.24	0.00	0.621	0.30	63.1	36	0.43		0.364	n.d.	71.8
65	1.26	0.04	0.550	0.21	64.4	37	0.47	0.32	0.170	0.00	74.7
66	0.98		0.322	n.d.	64.8	38	0.45		0.020	n.d.	63.9
67	0.75	0.03	0.373	0.14	66.0	39	0.45		0,860	0.00	62.5
68	0.86	0.15	0.280	0.03	63.8	40	0.37	0.06	0 132	0.00	65.9
69	1.13	0.00	0.019	0.00	64.0	10	0.57	0.00	0.134	0.00	00.0
* • #07** / • ~	TEL LATO					41	0.44		0.342	n.d.	64.3
117 (19	ハコロノ より引け	н.				42	0.53	0.11	0.350	0.00	67.8

一; n.d.:第1表参照.

1-8:厚保層群(1,2:随光層,3-5:熊ノ倉層,6-8:江ノ河原層).

9-23:美龗地域の美禰層群(9-21:桃木層,22,23:麻生層).

24-40:厚狹地域の美禰層群(24-35:梶浦層, 36, 37:中塚層, 38-40:山野井層).

41-43:成羽層群地頭層.

44-69:豊浦層群

44-46:東長野層 Nsh.47-49:西中山層(47, 48:Nd'?,49:Na'). 50-69:歌野層 (50, 51:Up, 52-55:Ub, 56-58:Uh, 59-61: Ua, 62, 63:Ua?,64, 65:Ut₁,66, 67:Ut₂,68, 69:Ut₈). *: 稲積(1971)より引用. -; n.d.: 第1表参照.

0.01

0.38

0.47

0.42

1-9: 秩父屠群,10:山口層群,11: 歳法院層群,12,13:川内ケ谷 層群,14:七良谷層,15,16:高知統,17-21:有田純,22-24:宮古 統,25:葉山層,27-28:須崎層,29:有岡層,30-33:和泉層群,34 :田ノ口層,35:清水層,36-38:室戸層,39-44:奈半利川層,45: 龍ケ迫層.

0.600

0.293

0.131

0.00

n.d.

0.00

65.3

61.9

68.7

- 171 --

43

44

45

地質調査所月報(第32巻第3号)

第4表 地域別平均值

Averages (%) of the shales and slates based on their localities.

			n	Total carbon	Carbonate carbon	Total sulfur	Sulfate sulfur	SiO2
Chugoku	Tsunemori	Group	10	0.91	0.21	0.047	0.00	60.3
(Paleozoic)	Kanoashi (Group	10	1.10	0.60(6)	0.161	0.01(6)	62.0
	Ota river a	irea	6	0.65	0.02(3)	0.147	0.06(3)	62.1
	Hiroshima-	-Okayama area (1)	23	0.51	0.15(10)	0.134	0.02(12)	63.9
	Hiroshima-	-Okayama area (2)	12	0.49	0.06(4)	0.047	0.00(6)	62.2
	Terauchi H	formation	5	1.35	0.59	0.078	0.00	58.4
	Uji Forma	tion	1	0.11		0.008		60.6
	Chugoku (Paleozoic)	67	0.72	0.27(38)	0.105	0.011(42)	62.2
Chugoku	Atsu Grou	p	8	0.87	0.05(3)	0.158	0.13(3)	60.5
(Mesozoic)	Mine Grou	ıp (Mine area)	15	1.66	0.72(11)	0.101	0.03(11)	57.8
	Mine Grou	ıp (Asa area)	17	1.87	0.01(5)	0.028	0.01(5)	60.7
	Nariwa Gr	oup	3	0.28	0.00(2)	0.642	0.03(2)	66.3
	Toyora Gr	oup	26	1.19	0.10(16)	0.414	0.18(16)	63.0
	Chugoku (Mesozoic)	69	1.38	0.26(37)	0.231	0.101(37)	61.2
Shikoku	Paleozoic	Chichibu belt	9	0.62	0.46(5)	0.206	0.01(5)	63.0
		Yamaguchi Group	1	0.66		0.006		62.6
	Mesozoic	Chichibu belt	14	1.09	0.55(10)	0.199	0.00(10)	59.7
		Izumi Group	4	0.86	0.29(2)	0.430	0.00(3)	70.1
		Shimanto belt	4	0.17	—	0.117	0.00(1)	66.2
	Cenozoic	Shimanto belt	12	0.51	0.11(5)	0.320	0.00(7)	66.5
	Shikoku		44	0.72	0.40(22)	0.240	0.002(24)	63.8

(1) Slates, (2) Phyllitic Slates

第5表 時代別平均值

Averages of shales and slates depending on their age.

				n	Total carbon (%)	Total sulfur (%)
Chugoku	Paleozoic			67	0.72	0.105
	Mesozoic	Triassic	Atsu and Mine Gs., Marine	12	1.09	0.205
			Atsu and Mine Gs., Non-marine	28	1.80	0.028
			Up. part of Nariwa G.	3	0.28	0.642
		Jurassic	Toyora G.	26	1.19	0.414
Shikoku	Paleozoic			10	0.62	0.186
	Mesozoic	Triassic	Zohoin and Kochigatani Gs.	3	1.02	0.243
		Jurassic	Naradani F.	1	0.57	0.023
		Cretaceous	Kochian—Aritan	7	1.26	0.286
			Miyakoan	3	0.91	0.010
			Hetonaian, Izumi G.	4	0.86	0.430
			Shimanto belt	4	0.17	0.117
	Cenozoic	Paleogene	Shimanto belt	12	0.51	0.320

万十帯の白亜紀赤色頁岩 (No. 25, 27, 28) では全炭素 (0.04, 0.03, 0.03%), 全硫黄 (0.011, 0.003, 0.005 %) の含有量が極めて少ないが, これは著しい酸化環境 で堆積したためと思われる. また, 宮古統 (No.22-24)

の全炭素(0.91%),全硫黄(0.010%)の平均含有量は, 高知・有田両統(全炭素1.26%,全硫黄0.286%,分析数 7)に比べて低い.ヘトナイ統和泉層群の全硫黄含有量 は平均0.430%(分析数4)で四国地方では最も高い.

3.2 硫黄含有量と堆積環境

KEITH and DEGENS (1959) によれば、海成頁岩と陸成 頁岩では硫黄含有量に明瞭な差が認められ、前者で0.92 ±0.68% (分析数15)、後者では0.15±0.13% (分析数 15) で海成頁岩で高い.また、狛 (1978) によると、北 海道空知炭田の第三紀堆積岩においても海成層では各層 準の平均硫黄含有量が0.33-0.52%,非海成層の場合は 0.06-0.14%であり、海成層の方がより多くの硫黄を含 んでいる.

第4表及び第5表から明らかなように、本研究で分析 した海成層の各層準の平均全硫黄含有量は最低0.010% から最高0.642%に及んでいる。そして全体の平均値は 0.215%(分析数152)である。時代別に見ると古生層で は比較的低く、平均硫黄含有量は中国地方0.105%、四国 地方0.186%である。これに対して中生層-新生代層では 高い地層が多く、成羽層群地頭層、豊浦層群、和泉層 群、奈半利川層などはいずれも平均0.4%以上である。 一方,非海成層の全硫黄含有量は三畳系美祢層群の桃 木層0.029%(分析数13),梶浦層0.015%(分析数12), 山野井層0.075%(分析数3)で全体の平均値は0.028% である.この値は三畳系美祢・厚保両層群の海成層の平 均硫黄含有量(0.205%,分析数12)に比べておよそ1/7で 低い.また,海成層のうち硫黄含有量の低い中国地方の 古生層の値と比較しても1/3以下である.このように,本 研究結果においても全体的には海成層の硫黄含有量が高 く,非海成層で低い結果が得られた.しかし,海成層で はあっても宮古統の0.01%,常森層群の0.047%など低 い値も得られており,硫黄含有量を堆積環境の判別に利 用する場合は地域,地層,時代等について充分な考慮が 必要と思われる.

同一地層群における硫黄含有量の変化を検討するため 比較的分析試料数の多い豊浦層群の各層準における含有 量範囲と平均値を算出した(第6表).同一層あるいは 部層内においても含有量に大きな差が認められるが,層

第3図 全硫黄とシリカ含有量との関係

Total sulfur plotted against the SiO_2 contents. Symbols same as Fig. 2.

第6表 豊浦層群頁岩の全硫黄分析結果 Abundance of total sulfur in the shales from the Jurassic Toyora Group in Chugoku.

Formation	Member	Total sulfur, %			
romation	Wiember	Range	Average(n)		
Higashi-					
nagano	Nsh	0.93-1.04	0.97(3)		
Nishi-	Nd'?+				
nakayama	Na'	0.26 - 0.90	0.62(3)		
Utano	Up-Ut ₃	0.01-0.96	0.30(20)		
	$\mathbf{U}\mathbf{p}$	0.02, 0.04	0.03(2)		
	$\mathbf{U}\mathbf{b}$	0.02 - 0.25	0.09(4)		
	$\mathbf{U}\mathbf{h}$	0.01 - 0.46	0.22(3)		
	Ua	0.02 - 0.74	0.48(3)		
	Ua?	0.54, 0.96	0.75(2)		
	Ut_1	0.55, 0.62	0.59(2)		
	Ut_2	0.32, 0.37	0.35(2)		
	Ut ₃	0.02, 0.28	0.15(2)		

別では最下位の東長野層(0.97%)で最も高く,次いで 西中山層(0.62%),歌野層(0.30%)の順に上位に向 って減少している.なお,東長野層は一般に砂岩,礫岩 に富み,しばしば黄鉄鉱が認められる(松本・小野, 1947).歌野層の部層別平均値は上位に向ってUp,Ub, Uh,Ua,Ua?の順に増加し,その後はUt₁,Ut₂,Ut₈ の順に減少する傾向があり,地域的には戸谷地区が平均 0.11%(分析数10)と低いのに対して歌野地区は0.46% (分析数8)と高い.

豊浦層群は、平穏な内湾の堆積物と考えられている が、上記のように硫黄含有量には大きな差が認められ る.この理由についてはさらに詳細な検討が必要である が、堆積時における有機物及び硫酸イオンの供給とこれ らの反応も一つの要因と考えられる.すなわち、有機物 は主として陸地又はこれに近い浅海から供給されると仮 定すれば、硫酸イオンは主として海水から供給される. [島津ほか,1972によると平均河川水中の SO4²⁻イオン濃 度はSとして 3.7×10³ µg/ml、海水では 9.28×10⁵µg/l

である]と考えられるので,両者が充分に供給される地域 では(1)式の反応が起こりやすい.従って硫酸環元による 硫化水素の発生が多く,これが黄鉄鉱として固定される. 一方,有機物又は硫酸イオンのいずれかが不足している 地域では硫化水素の発生が少なく,黄鉄鉱として固定さ れる割合も少ないであろう.

3.3 炭酸塩炭素及び硫酸塩硫黄

炭酸塩炭素の定量に当っては、まずすべての試料について塩酸を作用させ、気泡が認められた試料については すべて定量を行った、気泡の認められなかった試料については、各地域毎に全炭素の含有量が多い試料を中心に 定量分析を行った、この結果、塩酸を作用させても気泡 の認められない試料中の炭酸塩炭素はいずれも0.02%以 下であった、従って炭酸塩炭素含有量の明示していない 試料についての炭酸塩炭素含有量は無視して差し支えな いと思われる.

第1-4表から明らかなように、炭酸塩炭素の含有量は 地層、地域などにより大きく異なる.中国地方古生層で は鹿足層群(平均0.60%,分析数6),寺内層(0.59%, 分析数5)で高く、常森層群(0.21%,分析数10),広 島一岡山地域の粘板岩(0.15%,分析数10)は中間的で あり、広島一岡山地域の千枚岩質粘板岩(0.06%,分析 数4),太田川地域(0.02%,分析数3)では低い.中国 地方中生層の頁岩では美祢地域の美祢層 群(平均0.72 %,分析数11)で高いが、その他はいずれも平均値は 0.1%以下である.四国地方の頁岩及び粘板岩では古生 代(0.46%,分析数5),中生代(0.50%,分析数12)の 試料に比べ新生代(0.11%,分析数5)では低い.

(2)式からわかるように重炭酸イオンはカルシウムと反応するため、堆積岩中においても炭酸カルシウムとして

- 175 -

地質調查所月報(第32巻第3号)

固定される可能性が大きい.このため,0.01%以上の炭酸塩炭素が検出された試料について酸化カルシウム含有量との関係を検討した.その結果,鹿足層群の4試料 (No. 15, 17-19)を除きほぼ良好な相関関係を示すことがわかった(第7図).鹿足層群の泥質岩は成熟度が大きく,遠くまで運ばれてより分解,淘汰された物質が堆積したものと考えられ(稲積,1975 a),また上記4 試料に塩酸を作用させた場合,同程度の炭酸塩炭素を含む他の試料に比べて気泡の発生が非常にゆるやかであることから,一部ドロマイト・菱鉄鉱などの炭酸塩鉱物が 生成して炭酸塩炭素が過剰になっていることも考えられる.寺内層の5試料(No.62-66)も炭酸塩炭素がわずかに過剰である.全炭素と炭酸塩炭素含有量との関係については,全体としては明らかな傾向は認められないが,鹿足層群,寺内層,美祢地域の美祢層群などでは正の相 関関係が認められた.

硫酸塩硫黄は炭酸塩炭素を定量した試料及び全硫黄含 有量の多い試料を中心に全体で103試料について分析し た..硫酸塩硫黄の含有量は極めて低く,また地層,地域 などにより大きく異なるのが特徴である(第1-3表). 中国地方古生層では広島一岡山地域の粘板岩の5試料 (0.01-0.07%),太田川地域の3試料(0.01-0.10%),鹿 足層群の1試料(0.06%)から検出されたのみであり, 中国地方中生層の試料では豊浦層群の13試料(0.01-0.72%,平均0.18%),厚保層群の2試料(0.09,0.31%),成羽層群の1試料 (0.05%)に認められた.そして四国地方の試料ではわず かに3試料(0.01-0.02%)から検出されたのみである.

硫酸塩硫黄の存在に関しては、黄鉄鉱の風化や試料の 微粉細過程における酸化を全く否定する材料はないが,

Relation between total carbon and total sulfur in shales and slates from Shikoku.

前者の場合は炭酸塩炭素と共存することが少ないこと (第8図),後者に対しては全硫黄の含有量が0.6%以上 の試料においても硫酸塩硫黄が全く検出されない場合も あることからその影響は極めて小さいと思われる.(1)式 によれば硫酸イオンの分解が不充分な条件では炭酸塩炭 素の発生が少なく,したがって炭酸カルシウムの生成は 少ないことになるが,これが硫酸塩硫黄と炭酸塩炭素が 共存する場合の少ない主要な原因と思われる.他の地域 に比較して豊浦層群の試料に硫酸塩硫黄が多い傾向を示 すが,これはこの地層が内湾性堆積物であるため,地域 によっては硫酸イオンの分解速度が遅く,かつ不充分で あったことも考えられる.

硫酸塩硫黄の認められた試料についてのみ硫化物硫黄 (全硫黄含有量から硫酸塩硫黄を差し引いた)の含有量 を求め,両者の関係を第9図に示した.硫酸塩硫黄は古 生層に比べて中生層の試料に多く含まれる傾向があり, また中国地方中生層の4試料(No. 4,44,47,62)を除 きいずれも硫化物硫黄が硫酸塩硫黄より多く存在する. 硫化物硫黄/硫酸塩硫黄の比は平均10.4(試料数30) であ る. 硫酸塩硫黄の存 在 状 態 に 関 し て は一般には石膏 (CaSO₄・2H₂O) が考えられるが,実際に上に述 べ た ドロマイトの存在が考えられる場合を除き,ほとんどの 試料では CO₂によって消費される分の酸化カルシウム を差し引いても充分な酸化カルシウムが存 在 す る. 但 し,中国地方中生層の5 試料 (No. 23,44,58,62,64) で は酸化カルシウムが不足しているため他の硫酸塩鉱物を 考える必要がある.

中国・四国地方の泥質岩中の炭酸塩炭素,非炭酸塩炭 素(塩酸を作用させても気泡の認められない試料につい ては炭酸塩炭素が含有されないと仮定し,全炭素から炭 酸塩炭素を差し引いた値),全硫黄,硫酸塩硫黄の平均 含有量を世界の平均的泥質岩についての値と比較して第 7表に示した.非炭酸塩炭素,全硫黄,硫酸塩硫黄につ いての本研究による分析結果は世界の平均値とほぼ良好

— 177 — ,

Relation between carbon dioxide and calcium oxide. Symbols same as Fig. 2. Broken line, CO_2 : CaO = 1:1 (mol ratio).

第7表 本研究における泥質岩の分析結果と既存データとの比較

Comparison of the results for carbonate carbon, non-carbonate carbon, total sulfur and sulfate sulfur in pelitic and psammitic sediments.

Samples	n	Carbonate carbon as CO_2 , %	Non- carbonate carbon, %	Total sulfur %	Sulfate sulfur %	CaO %
Shales and slates (Chugoku, Paleozoic)	67	0.57	0.57	0.11	0.011(42)	0.84
Shales (Chugoku, Mesozoic)	69	0.52	1.24	0.23	0.101(37)	1.13
Shales and slates (Shikoku)	44	0.74	0.52	0.24	0.002(24)	1.27
Shales and slates (This study)	180	0.59	0.81	0.19	0.041(103)	1.06
Shales (Clarke, 1924)		2.63	0.80	_		3.11
Slates (Eckel, 1904)		1.47		·	—	1.54
Pelitic sediments (CLARKE, 1924)		1.40	0.66		_	2.17
Shales (TUREKIAN and WEDEPOHL, 1961)				0.24		3.09
Clays and shales (RICKE, 1960)				0.22	0.05	
Sandstones (RICKE, 1960)				0.022	0.017	

な一致を示している.炭酸塩炭素の含有量は世界の平均 的泥質岩に比べて低いが,これはこの地域の泥質岩中の 酸化カルシウム含有量が少ないことと対応している(第 7表).

4. 結 論

中国・四国地方の頁岩及び粘板岩中の全炭素,炭酸塩 炭素,全硫黄,硫酸塩硫黄を定量し,それぞれ平均値を 算出した.

第8図 炭酸塩炭素と硫酸塩硫黄の関係 Relation between carbonate carbon and sulfate sulfur. Symbols same as Fig. 2.

fur. Symbols same as Fig. 2. Broken line, Sulfide: Sulfate = 1: 1. 全炭素の平均含有量は0.98%であり、古生層に比べて 中生層の試料に多く含まれる傾向が認められ、全体的に はシリカ含有量の増加にしたがって減少する.炭酸塩炭 素の平均含有量は0.59% (CO₂)であり、世界の平均値 に比べて低い.炭酸塩炭素のほとんどは炭酸カルシウム として存在するが、一部ドロマイトの存在も予想され る.全硫黄の平均含有量は0.19%であり、古生代に比べ て中生代の試料に多く含まれる傾向がある.硫黄は陸成 頁岩に比べて海成頁岩に多く含有されるとされている が、本研究結果においても三畳系美称・厚保両層群の海 成層では平均0.205%、非海成層では0.028%で明瞭な差 が認められた.その他についても一般に海成層では高い 硫黄含有量を示したが、一部では0.05%以下の場合もあ り、硫黄含有量を堆積環境の判別に利用する場合は地 域、地層、時代等について充分な考慮が必要である.

硫酸塩硫黄の平均含有量は0.04%でこの値は世界の堆 積岩の平均値とほぼ一致する.硫酸塩硫黄は、中国地方 の中生層に特に多く含まれ、巨視的には中国地方の中生 層、中国地方の古生層、四国地方の古生代-新生代の地 層の順に低下する.すなわち、内帯の地層に多く含まれ

地質調査所月報(第32巻第3号)

る傾向がある. 硫酸塩硫黄のほとんどは石膏として存在 するものと考えられる. 硫酸塩硫黄と炭酸塩炭素の両者 が多量に含まれる試料はほとんど存在しない. この事実 は,有機物による硫酸イオンの分解と炭酸ガスの発生が 密接に関係するためと思われ,堆積岩中の硫化物硫黄は そのような過程で生じたことを物語るものであろう.

文 献

- BERNER, R. A. (1970) Sedimentary pyrite formation. Am. Jour. Sci., vol. 268, p. 1–23.
- CLARKE, F. W. (1924) Data of geochemistry. U.S. Geol. Survey Bull., 770, 841p.
- ECKEL, E. C. (1904) On the chemical composition of American shales and roofing slates. *Jour. Geol.*, vol. 12, p. 25–29.
- 藤貫 正・片田正人・鈴木孝太郎(1974) 南部北上 山地二畳紀登米スレート中の炭素質物質. 地質雑, vol. 80, p. 619-625.
 - ・米谷 宏・西村富子(1971) 本邦石灰岩
 中の炭化水素ガスおよび有機態,元素態炭素含有量.岩鉱, vol. 66, p. 197–211.
- 原村 寛(1961a) 古生層の粘板岩の化学組成— I. 三波川変成帯より太平洋側の地域—. 地質 雑, vol. 67, p.618-623.
- ーーーー(1961b) 古生層の粘板岩の化学組成−Ⅱ. 長野県辰野・塩尻地方−. 地質雑, vol. 67, p. 671-675.
- ——(1962) 古生層の粘板岩の化学組成一Ⅲ.
 西南日本内帯の3地域一.地質雑,vol. 68,
 p. 29–32.
- →→→→ (1963) 古生層の粘板岩の化学組成→V.
 古生層と第三紀層の比較→. 地質雑, vol.
 69, p. 201-206.
- 稲積章生(1971) 四国地方頁岩および粘板岩の化学 組成. 日化, vol. 92, p. 326-330.
- (1975a) 中国地方の古生層泥質岩の化学
 組成.地質雑, vol. 81, p. 513-520.
- ーーーー(1975b) 中国地方の中生層頁岩の化学組 成. 香川大学教育学部研究報告, vol. 25, p. 43-55.
- KATADA, M., ISOMI, H., OMORI, E. and YAMADA, T.
 (1964) Chemical composition of Paleozoic rocks from Northern Kiso district and of Toyoma clayslates in Kitakami mountainland: Supplement. Carbon and carbon

dioxide. Jour. Japan. Assoc. Miner. Petrol. Econ. Geol., vol. 52, p. 217-221.

- 片山 勝(1939) 美禰統の層序について. 地質雑, vol. 46, p. 127-141.
- KEITH, M. L. and DEGENS, E. T. (1959) Geochemical indicators of marine and freshwater sediments, in ABELSON, P. H., ed., *Researches in Geochemistry*, John Wiley & Sons, Inc., New York, p. 38-61.
- 狛 武(1978) 第三紀堆積岩の硫黄含量と堆積環境
 北海道中央部芦別川流域.石油技術協会誌,
 vol. 43, p. 128-136.
- KOYAMA, T., NAKAI, N. and KAMATA, E. (1965) Possible discharge rate of hydrogen sulfide from polluted coastal belts in Japan. Jour. Earth Sci. Nagoya University, vol. 13, p.1–11.
- 松本達郎・小野 暎(1947) 豊浦層群の化石層序学 的研究一特に菊石類化石に基づいて一.九 大理研報、地質学、vol.2, p. 20-33.
- PRESLEY, B. J. and KAPLAN, I. R. (1968) Changes in dissolved sulfate, calcium and carbonate from interstitial water of near-shore sediments. *Geochim. Cosmochim. Acta*, vol. 32, p. 1037–1048.
- RICKE, W. (1960) Ein Beitrag zur Geochemie des Schwefels. Geochim. Cosmochim. Acta, vol. 21, p. 35–80.
- 島津康男・浦部達夫(1972) 海底物質の成因と進化. 三宅泰雄編,堆積物の化学一海洋科学基礎 講座12-,東海大学出版会, p. 1-30.
- 佐藤 正(1967) ジュラ紀.地史学下巻,朝倉書店, p. 362-407.
- 寺岡易司(1959) 岡山県成羽町南域の中・古生層, 特に上部三畳系成羽層群について.地質雑, vol. 65, p. 494-504.
- 寺島 滋(1979) 赤外吸収分析法による岩石,鉱石, 堆積物中の全炭素,全硫黄,炭酸塩炭素, 非炭酸塩炭素の定量.地調月報,vol.30, p. 609-627.
- 徳山 明(1958) 長門美禰地域の美禰統 第1部 層序と造構史.地質雑,vol. 64, p. 454-463.
- TOKUYAMA, A. (1962) Triassic and some other orogenic sediments of the Akiyoshi cycle in Japan, with some special reference to their evolution. Jour. Fac. Sci. Univ. Tokyo,

- 180 ---

II, vol. 13, p. 379–469.

Bull., vol. 72, p. 175-192.

TUREKIAN, K. K. and WEDEPOHL, K. H. (1961) Distribution of the elements in some major units of the earth's crust. *Geol. Soc. America*

(受付:1980年6月5日;受理:1980年8月1日)