東海地域の地下水観測データの解析 一地下水位変動の解析(その1)-

杉山雄一* 佃 栄吉* 加藤 完* 池田喜代治*

SUGIYAMA, Y., TSUKUDA, E., KATOH, K. and IKEDA, K. (1981) Analyses of groundwater data from observation wells for earthquake prediction in the Tokai District, Japan—An analysis of water level fluctuations (Part 1)—. Bull. Geol. Surv. Japan, vol. 32 (3), p. 133– 150.

Abstract: This report presents the results of a hydrological analysis of water level fluctuations of five observation wells (i.e., Shimizu, Shizuhata, Sagara, Daito and Haibara wells) in the Tokai District during the fifteen-month period from July, 1978 to September, 1979.

The main items made clear by the analysis are summarized as follows.

- (1) The water levels of the Shimizu and Shizuhata observation wells are chiefly controlled by precipitation. The uprising amount of water level (ΔH) is in proportion to the volume of precipitation (R), and log(R/ ΔH) is also correlative to the water level just before the precipitation.
- (2) The water level of the Sagara observation well is strongly affected by intense pumping in the neighbourhood and by ocean tides. The tidal efficiency of the well is 1/5.5 to 1/5.8, and the average phase lag of the periodical water level change in the well to sea level fluctuation in the nearby coast is estimated to be 40 minutes. A barometric change also has influence upon the water level of the Sagara well but is merely subsidiary to the preceding two factors.
- (3) The main factor causing fluctuation in water level of the Daito and Haibara wells is barometric change. The barometric efficiency of the former well is 0.61 to 0.78, and that of the latter 0.49 to 0.89. The barometric efficiency of the Haibara well has a tendency to become smaller as the water level rises. Precipitation has a small but obvious effect on the water level of the two observation wells.

要 旨

本稿では、地震予知を目的とした地下水自動観測シス テムの一環として、東海地域に設置されている清水、賤 機、相良、大東、榛原の5つの地下水観測井における、 '78年7月(榛原観測井は'78年2月)から'79年9月まで の地下水位観測データの解析結果について述べた。

データ解析の結果, 次のようなことが明 ら か に なった.

(1) 清水及び賤機観測井の地下水位¹⁾は,降雨の影響を強くうけ,降雨による地下水位の上昇量(*d*H)は降雨量(R)に比例している.また,log(R/*d*H)は,降雨前の地下水位に比例している.みかけの無効雨量も降雨前地下水位が高くなるほど増大している.

*環境地質部

(2) 清水及び賤機観測井の地下水位は,無降雨期間に は,次第に低下している.清水観測井の地下水位は,平 均10~11 cm/day の割合でほぼ直線的に低下している. 賤機観測井の地下水位低下率は,通常,清水観測井の水 位低下率よりも小さく,日数の経過とともに変化してい る.

 (3) 清水観測井の地下水位は、降雨の影響のほかに、
 変動幅20 cm 以内の地下水汲みあげの影響を うけている.
 一方、賤機観測井の地下水位は、水田灌溉(水田の 湛水)の影響をうけている.

(4) 相良観測井の地下水位は、製氷工場及び水田灌溉 用と推定される地下水汲みあげの影響を強くうけて変動 している.

(5) 同観測井では、潮汐の影響も大きく、潮汐による 地下水位変動成分は、清水港の潮位変動に比べて平均45 分の位相の遅れがあり、その変動幅は潮位変動幅の1/5.7 ~1/6.0である.

(6) 相良観測井における気圧変化の影響は、上述の2

本稿中の「地下水位」は総て、地下のある基準面(地下水面より も低位)から測定した地下水面の高さを意味している.各観測井の 基準面は、それぞれ、管頭から-15m(清水)、-14m(賤機)、-13.45m(相良)、-12.22m(大東)、-10m(篠原)である。

つの要因の影響が著しいためあまり明瞭ではないが,気 圧係数はほぼ0.63~0.75であると推定される.

(7) 大東及び榛原観測井の地下水位は、主として気圧 変化の影響をうけて変動している.気圧係数は、それぞ れ、ほぼ0.61~0.78及び0.49~0.89である.後者では地 下水位の上昇に伴って気圧係数が小さくなっている.

(8) 大東及び榛原観測井は、降雨の影響が小さく、また地下水汲みあげの影響も見られないため、地震の前兆現象を把握するには最も有望な観測井と考えられる.しかし、大東観測井では、気泡の発生によって、地下水位の測定が困難になっており、気泡の発生に影響されない新しい水位計の開発が急務である.

まえがき

地震に伴って、またはその前後に、地下水位の異常変 動が観測された例は、過去の歴史地震、最近の地震を問 わず数多く報告されている.このような地震に随伴した 地下水位の変動は、地殻変動による地下水系の変化・変 形によるものと考えられる.

したがって、精度の高い地下水位変動の連続観測は、 地震予知への一つの有力な手がかりになるものと考えら れ、79年11月現在、地質調査所ではテレメタリングシス テムを利用して、静岡県下6井の地下水位の連続観測・ 監視を行っている.

しかしながら,実際には,地下水位はその井戸の諸条件(深度,地理的及び人為的環境,取水帯水層の物理的 性質等)に従って,降雨・気圧変化・潮汐・地下水の汲 みあげ等の影響をうけてたえず変動している. このた め、地下水位変動を地震予知に役立てようとする際に は、上記のような地殻変動以外の要因による影響ができ るだけ少ない井戸を選んで観測することが肝要であると 思われる.同時に、各観測井の地下水位に対する降雨・ 気圧変化等の影響の大きさを予め知っておき、見かけの 地下水位変動から、純粋に地殻応力の変化を反映したと 考えられる成分だけを抽出する必要がある.

筆者らは、このような観点から、'79年9月までに比較 的良好なデータが得られた清水、賤機、相良、大東及び 榛原の5観測井の地下水位データを解析し、各観測井の 水位に対する降雨・気圧変化及び地下水汲みあげ等の影 響の大きさを定量的に把握することに努めた²⁾. それぞ れの観測井の井戸諸元・測定計器等の詳細は、加藤ほ か(1977, 1979, 1981)を参照されたい.

解析は、主として、本自動観測システムに組込まれて いる MELCOM70-モデル25 を用いて行った.

また,総括として,各観測井の評価と問題点の整理を 行った.

1. 清水観測井の地下水位変動

本観測井(第1図の1)の地下水位は,第2図及び第 3図に示したように,降雨の影響を強くうけている.降 雨の影響が大きいのは,1)ストレーナーは中新統の富士 川層群の砂岩及び礫岩からなる被圧帯水層内にあるが, その深度が地表面下44.5~50mと浅いこと,2)地表面下

²⁾ 浜岡観測井は、透水係数が4.86×10⁻⁶ cm/secと小さく、その地 下水位は、ラドン濃度測定のための揚水によって著しく影響をうけ ているため、解析の対象から除いた。

第1図 観測井位置図

 清水観測井, 2. 賤機観測井, 3. 榛原観測井, 4. 相良観測井, 5. 浜岡観測井, 6. 大東観 測井

東海地域の地下水観測データの解析(杉山・佃・加藤・池田)

降雨量と気圧変化は清水観測井のデータである

— 135 —

35 —

WATER LEVEL(M)

— 136 —

~

地質調査所

月報(第32巻

窸 8

小 小 35mまでは主として第四系砂礫層(不圧帯水層)からなっていること、などによるものと思われる.

本観測井の地下水位は、みかけの無効雨量(脚注3参 照)以上の降雨があると、第4図に一例を示したよう に、降雨開始後数時間で上昇し始めている。地下水位の 上昇期間は、一般に、降雨量が多いほど、降雨前の地下 水位が低いほど長い(第1表).

降雨量(R)とその降雨による地下水位の上昇量(AH)

(=降雨後の最高水位一降雨前水位)との比(R/4H) は、一般に雨量係数と呼ばれている(山本、1962).本観 測井の雨量係数は一定ではなく、第5図に示したよう に、その対数値が降雨前地下水位にほぼ比例して変化し ている、^{79年9}月までの観測データによると、4H は降 雨前地下水位が7mの場合は、Rの17~22倍、9mの場 合はRの3~13倍である.このような事実は、降雨前地 下水位が高くなるにしたがって、降雨の影響が小さくな

			清	水				賤	機	
降雨期間	降雨量 (R) (mm)	降雨前地 下水位 (m)	水位上昇量 (<i>ΔH</i>) (mm)	雨量係数 (%) (<i>R/ H</i> × 100)	水位上 昇日数	降雨量 (R) (mm)	降雨前地 下水位 (m)	水位上昇量 (<i>ΔH</i>) (mm)	雨量係数 (%) (<i>R</i> / <i>ΔH</i> ×100)	水位上 昇日数
'78年8月2~3日	61	9.27	390	15.6	約4	67	8.90	340	19.7	3
8月16~17日	7	8.49	_		0	19	8.28	—		0
9月11~16日	96	6.29	1,700	. 5.6	-	146	8.20	800	18.3	
9月23~24日	37	7.83	580	6.4	約4	44	8.87	70	62.9	2
9月29~30日	31	8.05	360	8.6	約3	30	8.74	—	—	0
10月 5 ~ 6 日	24	7.95	30	80.0	1	24	8.68	20	120.0	1
10月10~11日	15	7.69			0	16	8.64	-	_	0
10月19~21日	60	6.64	980	6.1	-	36	8.34	—	_	0
10月27~29日	96	7.19	2,140	4.5	7	117	8.04	910	12.9	4
11月13日	37	8.97	470	7.9	5	?	8.51	260	?	3
{11月27日(清水) {11月26~27日(賤機)	29	8.76	400	7.3	4	44	8.42	140	31.4	3
12月23日	10	7.11	170	5.9	3	18	7.84	—	_	0
'79年1月18日	15		水位	計故障	,	19	5.79	60	31.7	2
1月29日~2月6日	75	3.20	5,700	1.3		111	5.37	2,540	4.4	-
2月10日	7	1月22	4日~2月 5 中で不明	日の降雨による	上升	10	7.87	40	25.0	2
2月17日	6	7.02			0	9	7.81			0
{ 2 月23日(清水) { 2 月23~26日(賤機)	36	6.31	1, 310	2.7	7	64	7.61	580	11.0	-
3月10日	13	7.10	170	7.6	3	18	7.92			0
3月30日) 雨量計	5		•	,	116	8.46	430	27.0	3
4月2日	∫ 故障					26	8.93			0
4月8日	130	水 们	7.計故	障 中		160	8.65	730	21.9	3
4月26~30日	23			· ·		45	8.22	280	16.1	-
5月8日	(雨量計					163	8.32	920	17.7	3
5月14~15日	∫ 故障	V	1	1		44	8.95	· —		0
5月27日	16	8.95	50	32.0	1	18	8.43	—	—	0
6月7~8日	28	8.40	210	13.3	2	48	8.41	200	24.0	4
6月27日~7月1日	82)				89	7.66	1,300	6.8	
7月11日	7					12	8.85			0
7月14~15日	41	水 位	2 計 故	障中		43	8.82	80	54.0	2
7月17~18日	58					66	8.92	380	17.4	2
7月20日	59	IJ				55	9.30	150	36.7	1
7月26~27日	14	8.30	—	_	0	35	9.03	-		0
8月18~22日	225	7.52	2,200	10.2		217	8.88	990	21.9	-
8月23日	8	9.73			0	53	9.87	-		0
8月27~28日	12	9.41	—	-	0	15	9.47	—		0
8月30日	20	9.35	10	200.0	1	17	9.33	_		0
9月4日	41	9.19	150	27.3	1	46	9.18	220	20.9	2
9月26日~10月1日	135	8.45	1,030	13.1	—	180	8.92	840	21.4	

第1表 清水及び賤機観測井の地下水位に対する降雨の影響

* 水位上昇日数は降雨が48時間以内にあったときだけ表示した.

地質調査所月報(第32巻第3号)

第5図 清水観測井の地下水位と雨量係数の関係

ることを示している.

また,みかけの無効雨量³⁹ も降雨前地下水位が高いほ ど,大きくなる傾向がみられる(第6図).本観測井のみ かけの無効雨量は,地下水位が8mの場合には,約10 mm である. 第6図 清水観測井の地下水位 - 降雨量-地下水位上昇量の関係

本観測井の地下水位は、無降雨期間及び降雨の著しく 少ない期間には、次第に低下しており、その低下率は平 均10~11 cm/day である.しかし、'78年10月16~18日 では、20 cm/day に達した.

清水観測井の地下水位変動には、降雨の影響のほか に、日周期的変動がみられる.この日変化は変動幅が20 cm以内で、最高水位は4~7時(平均6時),最低水位 は18~22時(平均20時30分)にみられる.この日変化 は、日曜日、祭日には変動幅が小さくなっており、地下 水汲みあげの影響と推定される.

³⁾本稿中の「みかけの無効雨量」とは、降雨があっても地下水位が 上昇しなかった場合の最大降雨量のことである.実際には、みかけ の無効雨量以下の降雨でも、地下水位の低下率の減少などのかたち で、地下水位に影響を与えている場合が多い.また、厳密には、同 一降雨量でも雨の降り方(持続時間等)によって、地下水位への影 響は異なっている.

2. 賤機観測井の地下水位変動

賤機観測井(第1図の2)は、安倍川の氾濫原上に位 置しており、ストレーナーは地下20~37mの第四系砂礫 層中にある.本観測井の地下水は自由地下水であって、 その水位は降雨の影響をうけている(第2図,第3図).

地下水位に対する降雨の影響の大きさは,清水観測井 に比べて小さく,降雨後の水位上昇期間も短かい(第2 図・第3図・第1表).

第7図に示した本観測井の雨量係数と降雨前地下水位 との関係は、清水観測井と同様に、地下水位が高くなる と雨量係数が大きくなる(すなわち、降雨の影響が小さ くなる)傾向を示している. '79年9月までのデータで は、地下水位が8m50 cm 前後の場合には、4H は Rの 6.3~3.2倍程度である.

木観測井の地下水位に対するみかけの無効雨量は、地 下水位が9mの場合、約44mmとなり(第8図),清水観 測井のそれに比べてかなり大きい.

無降雨期間及び降雨の著しく少ない期間中には、本観 測井の地下水位も、徐々に低下する傾向をもっている が、清水観測井のような直線的な水位低下は示さない. '78年9月~'79年1月及び'79年6月の中~下旬には、降 雨後の日数の経過とともに地下水位の低下率は次第に大 きくなり、最大12 cm/day に達した.一方、'79年4~ 6月の上旬及び7~8月には、降雨後の日数の経過とと もに地下水位の低下率は小さくなり、特に6月3~6日 には、地下水位が上昇に転じた(5月28日~6月6日間 にはわずかに2mmの降雨があった).このような地下水 位の変動は、観測井周辺における灌溉による水田の湛水 状態の影響によるものと推定される.

3. 相良観測井の地下水位変動

相良観測井(第1図の4)は海岸からほぼ450mの距離にあり、ストレーナーは、地下44~55m及び115~126 mの上部中新統相良層群中にあり、地下水は被圧地下水 である.

地下水位は潮汐と地下水汲みあげの影響を最も強くう けている.潮汐の影響は、相良港の潮汐データがないた め、清水港の潮汐データ(海上保安庁の潮汐表によっ た)を用いて解析した.その結果、1)本観測井の潮汐の 影響による地下水位変動成分の変動幅と、清水港の潮位 の変動幅との比は約1/5.7~1/6.0であること、2)この潮 汐の影響による地下水位変動は、清水港の潮位変動に比 べて、-30~90分(平均45分)の位相の遅れがあること がわかった.清水と相良の潮高比は0.97とされているた め、本観測井の潮汐係数は1/5.5~1/5.8と推定される. また、清水と相良とでは約5分の潮汐のずれがあるとさ

第8図 賤機観測井の地下水位 - 降雨量 - 地下水位上昇量の関係

- 139 -

地質調査所月報(第32巻第3号)

れており、本観測井の潮汐の影響による地下水位の変動 成分は、隣接した海域の潮位変動に対して、平均40分の 位相の遅れがあると推定される.このような位相の遅れ を伴う地下水位変動の存在は、本観測井が貫いている帯 水層の末端が何れかの場所で海域と連絡していることを 示していると考えられる.

帯水層が海域と連絡している場合の一次元モデルの数 学的取扱いは、山本(1962)及び湯原・瀬野(1969)に よると次のようになる.

帯水層が海域と連絡している所からの距離を x, x = 0での平均水位からの変動量(h)を $h = h_0 \sin 2\pi/t_0 \cdot t$ (t_0 は 潮汐の周期)とすると、潮汐の影響による井戸の地下水 位変動 (h')は、

$$\mathbf{h'} = \mathbf{h_0} \, \exp\left(-\mathbf{x} \sqrt{\frac{\pi \mathbf{S}}{t_0 \mathbf{T}}}\right) \, \sin\left(\frac{2\pi}{t_0} \ \mathbf{t} - \mathbf{x} \ \sqrt{\frac{\pi \mathbf{S}}{t_0 \mathbf{T}}}\right)$$

で与えられる.ここに、S及びTはそれぞれ帯水層の 貯留係数と透水量係数である.これから、潮汐係数は $\exp(-x\sqrt{\pi S/t_0T})$,位相の遅れは $x\sqrt{\pi S/t_0T} \cdot t_0/2\pi$ となる.相良観測井の地下水位の潮汐係数(1/5.5~1/5.8)と 位相の遅れ(平均40分)から,各々おおよその $x\sqrt{\pi S/t_0T}$ を求めると、前者では1.70~1.76,後者では約0.35(t_0 は分潮によって異なるが、ここでは $t_0 = 12$ 時間として 計算した)とかなり異なった値となる.潮汐係数から求 めた $x\sqrt{\pi S/t_0T}$ の方が位相の遅れから求めたそれよりも かなり大きいということは、本観測井では上述のモデル に比べて、振幅の減衰が位相の遅れに対して相対的に大 きいことを示している.

地下水汲みあげの影響は,第9図の地下水位から潮汐 の影響を差引いた曲線に明瞭に表われている.第9図の '79年4月4~7日の特徴的な水位変動は,本観測井か ら約400mの距離にある相良町漁業協同組合の製氷工場 の地下水汲みあげ(早朝の汲みあげ開始と夕方の汲みあ げ停止)の影響である.この製氷工場は4月7日の午前 中をもって操業を停止した(ただし,後述するように, 7月5日~8月7日には試験的に地下水の連続汲みあげ を行った).

4月7日の午後から8日にかけての直線的な水位の上 昇(2 cm/hour)は、製氷工場の操業停止に伴う地下水 位の回復上昇と考えられる.製氷工場の操業停止以降 も、午後5~6時に地下水位の低下が見られるが、これ は同工場以外(場所不明)の、小規模な地下水汲みあげ の影響と思われる.なお、'78年9月15~17日、9月29 ~30日、'79年1月1~4日等の地下水位の急激な上昇 (第2図)は、この工場の一時的な地下水汲みあげの休 止によるものである. 第10図に示したように、本観測井の地下水位は、製氷 工場の操業停止以降、5月15日まで(5月16~21日は水 位計故障のため、データなし)、全体として上昇を続けた. このうち、操業停止直後の4月7~8日には、前述した ように、2 cm/hourで直線的に水位が上昇し、その後 は、平均 1.8 cm/day のゆっくりとした水位上昇がみら れた.

相良観測井では、観測開始以来、製氷工場の地下水汲 みあげの影響が大きく、しかも一定でなかったために、 気圧変化の影響を正確に見積ることは困難であった.し かし、'79年4月9日~5月15日には、地下水汲みあげの 影響がほとんどなかったために、気圧変化の影響を抽出 することができた.その結果、この期間の気圧係数⁴⁾

(気圧効率)は、0.63~0.75であることが明らかになった. その後、5月23~26日にかけては、約78 cm に達する急激な水位低下が見られた(第10図,第11図).

この急激な水位低下と4月9日~5月15日の緩慢な水 位上昇については、現在のところ、次に述べるような幾 つかの解釈が考えられるが、最終的な結論は、観測井周 辺における地下水汲みあげの詳細な実態調査と、なお一 層のデータの蓄積を待たなければならない.

当初,筆者らは,上述の地下水位変動は,5月23日15 時34分に,清水市南部,有度山の北東約1km,深さ20 kmの地点(気象庁の地震旬報による)を震源とした,マ グニチュード4.3の地震に伴う異常水位変動である可能 性が強いと考えていた.

しかし、その後の観測によって、5月23~26日の地下 水位低下に匹敵するスケールの急激な地下水位の低下及 び上昇が観測された(第10図). このうち、7月5日から 8月7日にかけての2m近い地下水位の低下は、製氷工 場の試験的な地下水連続汲みあげの影響である.また、 他の期日の地下水位の急激な低下及び上昇も第12図及び 第13図に例示したように、地下水位の日変動パターンの 変化と密接に関係していることが明らかになった.すな わち、地下水位の低下には、第12図の6月23~26日に見 られるように、特徴的な日周期的変動パターンをとりな がら、徐々に低下する場合(タイプ1)と第13図の8月 23~26日に見られるように、急激かつ直線的に低下する 場合(タイプ2)の2つの型がある.

前者のような地下水位の低下は, '78年7~8月にも 認められた.この日周期的な地下水位の変動パターン

大気圧が dP cm (H₂O) だけ増加したとき,井戸の地下水位 が dh cm だけ減少したとすると,気圧係数(B)は

 $B = \frac{\Delta h}{\Delta P}$

で表わされる.

第9図 相良観測井の地下水位に対する潮汐と製氷工場における地下水汲みあげの影響

'79 5 /22 5 /23 5 /24 5 /25 5 /26 5 /27 5 /28 5 /29

第12図 相良観測井における地下水位変動パターンの一例(タイプ1の地下水位低下現象)

第13図 相良観測井における地下水位変動パターンの一例(タイプ2の地下水位低下現象)

東海地域の地下水観測データの解析(杉山・佃・加藤・池田)

を含んでいるのか,否かを判断することはできない.

4. 大東観測井の地下水位変動

大東観測井(第1図の6)は、深度260mの比較的深 い井戸で、ストレーナーは地下144.5~166.5m及び 210.5~221.5mの鮮新統掛川層群中にある.本観測井の. 地下水には、水溶性ガスが多量に含まれており、これが 遊離するために生ずる気泡のために、地下水位を正確に 測定するのが著しく難しくなっている.

現在までに得られた観測データのうち,信頼のおける データは, '78年10月20日から'79年3月12日までのもの である.したがって,本稿ではこの期間の観測データの 解析結果について述べる.

本観測井の地下水位は,第14図に一例を示したよう に,気圧の影響をうけて変動している.気圧係数は,3 月5~12日の1.10を除くと0.61~0.78の範囲に集中して いる(第2表).

本観測井の地下水位に対する降雨の影響はあまり大き くない. '78年10月27日から10月29日にかけて, 103 mm 572 r の降雨があったが、この降雨によって、約6 cm の地下 水位の上昇があった.一方、'79年1月30日から2月1日 にかけての38 mm の降雨では水位の上昇はみられなか った(第3表).降雨による地下水位の上昇は、ほぼ降雨 後1日で終了するが、降雨後の地下水位と気圧変化との 相関関係の乱れは、1~3日に及んでいる.

本観測井の地下水位の無降雨期間における低下量は,約0.7~1.6 cm/day である.

'79年3月13日以降,信頼のおける地下水位データは

第2表 大東観測井の地下水位に対する気圧変化の影響

観測期間	1008 mb 時の 地下水位(m)	気圧と地下水 位の相関係数	気圧係数	
'78年10月20~27日	557	-0.82	0.75	
11月1~11日	562	-0.81	0.68	
12月 5 ~13日	563	-0.91	0.66	
'79年1月13~16日	536	-0.88	0.70	
1月17~22日	534	-0.90	0.61	
2月1~8日	525	-0.89	0.78	
3月5~12日	485	-0.86	1.10	

- 146 --

得られていないが,これは,現在使用しているスイッチ 付フロートレス式地下水位計では,気泡の影響を完全に 除去できないためである.目下,地下水位計の改良を検 討中である.

5. 榛原観測井の地下水位変動

榛原観測井(第1図の3)のストレーナーは,地下71~154mの掛川層群(71~130m)と相良層群(130~154m)中にある.

本観測井の地下水位は、第15図及び第16図に例示した ように、気圧変化の影響を強くうけている.本観測井の 地下水位は、大東のそれに比べて、気圧変化との相関が高 く、ばらつきが少ない.しかし、気圧係数は0.89~0.49と 変化幅が大きく,地下水位の上昇とともに小さくなる傾向を示している(第4表).これは,地下水位が上昇すると 気圧変化の影響が次第に小さくなることを示している.

本観測井の地下水位に対する降雨の影響は、大東観測 井と同様に小さく、第4表に示したように、172 mm の 降雨でもわずかに8.5 cm の上昇があったにすぎない.ま た、降雨による地下水位の上昇期間は、ほぼ降雨後 0.5 ~1日であり、この水位上昇によって乱された、気圧変 化と地下水位変動との相関関係も、降雨後約1日以内に 安定した状態に回復している(第15図,第16図).

榛原観測井の地下水位の無降雨期間における低下量 は、現在までの観測データ(79年2月17日以降)では、 ほぼ0である.第4表に示したように、一定気圧(この

第3表 大東観測井の地下水位に対する降雨の影響

		21.0			1 / WI-HU->			
降雨前の期日	気 圧 (mb)	地下水位(A) (cm)	降雨後の期日	気 圧 (mb)	地下水位(B) (cm)	地下水位上昇量 (B—A) (cm)	降雨量 (mm)	降雨期間
'78年10月26日	1,019	550	'78年10月30日	1,020	556	6	103	10月27~29日
11月18日	1,017	559	11月23日	1,017	555	- 4	20	11月18~19日
'79年1月28日	1,020	525	'79年2月3日	1,020	517	- 8	38	1月30日~2月1日
2月5日	1,022	514	2月9日	1,022	515	1	2月6日	
2月21日	1,015	475	3月3日	1,015	479	4	63	2月23日
600 F 590 - (m) 以						0 0 0 0 0 0 0 0 0 0 0 0 0 0	79年 3月26日 3月27日 3月28日 3月30日 3月31日 4月1日 30日に97m があった	nm Ø
570 <u>-</u> 992		1000) 1	.008		1016	10:	24
		街 165	図 梅原細洲井へます	トナインシー	トェ気工亦ル	の影響(1) 気	压 (mb)	- 1
		新15 4	□ 1元/示制/四开10地	1. VIVIT (C X)	うる XU工変化	v) 於晉(1)		

地質調査所月報(第32巻第3号)

第16図 榛原観測井の地下水位に対する気圧変化の影響(2)

観測期間	(降雨前の) 1004 mb 時の地 下水位 (cm)	気圧と地下水位 との相関係数	気圧係数	期間中の降雨量 (mm)	左欄の降雨によ る地下水位上昇 量 (cm)	降雨終了後の水 位上昇期間(日)
'79年2月22~27日	555	-0.94	0.89	57	5	1
3月7~11日	568	-0.97	0.87	20	3.5	1
3月26~4月1日	581	-0.92	0.85	97	5	1
4月7~13日	585	-0.95	0.79	97	5	1
4月16~20日	590	-0.96	0.70	5	$\Rightarrow 0$	0
5月15~22日	600	-0.96	0.63	19	$\div 0$	0
6月4~10日	601	-0.96	0.89	50	4	1
7月9~18日	609	-0.92	0.74	136	4	*
8月15~22日	615	-0.88	0.49	172	8.5	**
8月24~30日	623	-0.87	0.54	121	≑ 0	0.
9月6~11日	625	-0.96	0.63	8	÷0	0

第4表 榛原観測井の地下水位に対する気圧変化の影響

* 降雨が観測期間中,数日にわたって,断続的にあった.このため,非常に緩慢な上昇があった.

** 降雨終了直後は水位上昇がなかったが、降雨終了後、24~48時間の間に水位が上昇した.

場合は 1,004 mb) 下の地下水位は, '79年 2 月以降次第 に上昇している.

このような榛原観測井の地下水位変動は、第17図のように模式的に示すことができる. $t_0 \leq t \leq t_1$ のとき、時刻 t における地下水位 H_{ct} , は,

とおける.ただし. P_{tt} は時刻 t における気圧(水柱高 表示), ΔH_{R} ($t_{0} \sim t$)は $t_{0} \sim t$ 間の降雨による地下水位 上昇量(気圧補正をしたもの), B は $t_{0} \leq t \leq t_{1}$ におけ る気圧係数, P_{0} , H_{00} は第17図参照.

また,第17図に示したように, $t = t_1$ にかなりの量の 降雨があって,地下水位の上昇だけでなく,気圧係数も

 $\mathbf{H}_{(t)} \coloneqq \mathbf{H}_{p0} - \mathbf{B} \cdot (\mathbf{P}_{(t)} - \mathbf{P}_0) + \Delta \mathbf{H}_{\mathbf{R}} (\mathbf{t}_0 \sim \mathbf{t})$

東海地域の地下水観測データの解析(杉山・佃・加藤・池田)

B から B' に変わったとすると、 $t_2 \le t \le t_3 \mathcal{O}$ ときには、 $H_{(t)} \coloneqq H'_{p0} - B' \cdot (P_{(t)} - P_0) + \Delta H_R (t_2 \sim t)$ $(H'_{p0} \coloneqq H_{p0} + \Delta H_R (t_0 \sim t_2) - \Delta H_D (t_0 \sim t_2))$

とおける.ただし、 $\Delta H_{D}(t_{0} \sim t_{2})$ は $t_{0} \sim t_{2}$ 間における 地下水位の自然低下量で,現在までの観測データでは, ほぼ0である.

例えば,第16図に示した '79年4月7~8日午前の地 下水位は,

 $\underset{(cm)}{\mathbf{H}_{(t)}} \doteq 594 - 0.79 \times (\mathbf{P'}_{(t)} - 992) / 0.98$

また、4月9日午後~13日の地下水位は、 $H_{(0)} = 599 - 0.79 \times (P'_{(0)} - 992)/0.98$

とおける.

ただし, P'₍₁₎ はミリバール単位である.

6. まとめ

以上に述べた5つの観測井の地下水位変動の要因とその影響の大きさをまとめると、第5表のようになる.

地下水位変動から地殻変動を反映した成分だけを取り 出すためには,降雨,地下水汲みあげ等の影響ができる だけ小さく,また,平常時の地下水位の変動幅ができるだ け小さい井戸を観測井として選定することが望ましい. 気圧変化と潮汐の影響は井戸が深くても現われる(後者 は海に近い所に限られる)が,それらの影響は比較的容 易に,かつ正確に見積ることが可能である.従って,実 際には,降雨の影響ならびに人為的影響をうけることの ない深井戸が地震予知を目的とした地下水位観測井とし て最も適当であると考えられる.

このような観点から判断すると、榛原及び大東観測井

第5表 各観測井の地下水位変動の要因

	地下水位変 人動の要因	自	然的弱	要因 人為的		り要因	地下7 定に住	大位測 半う技
観測井		降雨	潮汐	気圧	地下水の 汲みあげ	水田の湛 水	術的加	に問題
清	水	0			0			
賤	機	\odot				0		
相	良	\triangle	O	0	O			
大	東	0		Ø			あ	ŋ
榛	原	0		0				

◎影響大 ○影響小

△影響があると推定されるが不明瞭なもの

が将来最も有望な観測井であると思われる.しかし,大 東観測井は,前述したように,溶存ガスによる気泡の発 生のため,地下水位の測定が技術的に著しく困難になっ ている.本観測井は,この難点を取り除くことができれ ば,榛原観測井と並ぶ有力な観測井になると考えられ る.目下,気泡の発生に影響されない地下水位計の開発 を急いでいる.

清水及び賤機観測井は降雨の影響が,相良観測井は地 下水汲みあげと潮汐の影響がそれぞれ著しく,地下水位 の変動幅も大きい.

従って、地殻変動を反映した地下水位の異常変動が生 じたとしても、その変動幅が著しく小さい場合には、こ れを抽出するのは難しいかもしれない.

現段階では、どの観測井にどのような異常水位変動が 現われるのか全く不明であるが、本論中に述べたよう に、降雨や地下水汲みあげ等の影響を、かなり定量的に とらえることは不可能ではないので、今後、より一層の 観測データの蓄積と解析精度の向上に努力していきたい。

— 149 —

謝 辞

本研究を進めるに際しては,地質調査所の田口雄作博 士と高橋誠氏に,絶えず有益な助言と議論をしていただ いた.ここに厚く感謝の意を表する.

参考文献

- 池田喜代治・村下敏夫・田口雄作・井野盛夫(1980) 東海地方東部地域における地震予知研究 一地下水中のラドン自動連続観測とその結 果についての考察一.地調月報, vol. 32, p. 151-166.
- 加藤 完・衣笠善博・村下敏夫・垣見俊弘・池田喜 代治(1977) 静岡県清水市における地震 予知のための水位および水質観測井の設置 について、地質ニュース, no. 279, p. 14-19.
 - -・佃 栄吉・村下敏夫・池田喜代治・井野 盛夫(1979) 東海地域における地震予知 のための地下水観測井の増設について.地

質ニュース, no. 294, p. 16-22.

- 加藤 完・池田喜代治・東野徳夫・垣見俊弘・井野 盛夫(1981) 東海地方東部地域の地震予 知に関する地下水観測 システムー観測井 及び観測機器についてー.地調月報, vol. 32, p.45-55.
- 村下敏夫(1976) 改著地下水学要論. 昭晃堂, 東 京, 211p.
- 佃 栄吉・衣笠善博・杉山雄一(1980) 東海地域
 地震予知のための地下水変動データ処理・
 監視システム、地調月報, vol. 31, p. 619-634.
- 山本荘毅(1962) 地下水探查法.地球出版,東京, 316 p.
- 湯原浩三・瀬野錦蔵(1969) 温泉学. 地人書館, 東京, 293 p.

(受付:1979年11月19日;受理:1980年8月21日)