静岡県下田市多々戸海岸における海浜縦断形状の変化過程に関する研究*

磯 部 一 洋**

A Study of Beach Profile Changes on Tatado Beach in Shizuoka Prefecture

Ichiyō Isobe

Abstract: In order to make clear beach profile changes which are generated by waves, profile measurements were made between March 1971 and November 1972 on the three cross sections of central portion of Tatado Beach (Fig. 4), southwest of Shimoda City, Izu Peninsula. This beach is a small pocket beach and shows predominant beach changes. A total of 63 successive upper beach profiles along the C or A range covering from backshore to foreshore has been gotton with a transit in this period, on the other hand 8 successive lower beach profiles along the A range covering from inshore to shallow water zone of offshore have been gotton with a depth recorder between July and September in 1972.

This paper presents the result of analysis of these data in relation to the wave data observed at Hiratuka sandy coast 80 km apart from the studied area northeastward. From the upper beach profile changes, nine storm cycles are able to be distinguished. During the storm cycle IX which began on July 17 and ended on September 18, 1972, large scale changes had been caused. From frequent measurement with short intervals, the storm cycle IX can be divided into characteristic four stages. Four stages are summarized in term of characteristic of beach profile changes during this period and these four stages correspond to four wave conditions respectively. First wave condition is transitional large waves following the largest ones, second is smaller waves, third is the smallest waves just before next large storm, and fourth is the largest waves during storm. Then four profiles are summarized on the basis of both beach profile changes (Fig. 19) and these wave conditions. The profile A shows the storm beach which has neither lower berm nor step cutting during the storm. The profile D shows the ordinary type beach which has both a lower berm and a step filling during the calmer weather. While profile B and C show the transitional forms between the storm beach and the ordinary type beach.

The upper beach portions of the profile A and D are the same as the profiles of the storm beach or the ordinary type beach which have been reported by JOHNSON (1949) and others. But the lower beach portions of the profile A and D are markedly different from those. As regards the storm beach the former has neither longshore bar nor longshore trough while the latter has them, and as regards the ordinary type beach the former has a step and shows convex upward while the latter shows concave upward or planar.

The author has examined the factors caused to change beach profiles. From comparison between wave energy flux W which is shown eq. (4) and the mean slope of beach face (an elevation of 0–1 m above mean sea level) or a part of lower beach (a depth of 2–5 m below mean sea level) concerning the storm cycle IX, it is able to consider that the major factor is the energy flux instead of wave steepness.

It is considered that wave energy is reduced by means of stirring bottom sediments in the shoal water. So Um (the maximum horizontal orbital velocity at the bottom) has been calculated about significant wave which was observed, at the time when the profile A and D have been formed. In Fig. 23, solid lines indicate the variation of $Um^2/Um10^2$ from a depth of 10 m below mean sea level to a depth of breaker point, and dashed lines indicate a part of the lower beach profile A (the lower column) or profile D (the upper column) covering the distance from each origin between 150 m and 500 m. According to this figure it is obvious that these profiles are closely associated with the reduction in the wave energy.

* 本研究報告は東京教育大学へ提出した学位請求論文(筑波大学下田臨海実験センター業績 No. 328) に,一部加筆し修正を加えたものである. ** 環境地質部

要 旨

波によって形成される砂浜海岸の地形変化,特に汀線 に直角方向の縦断形状の変化過程を究明するために,伊 豆半島南端付近の小規模な砂浜海岸において1971年3月 から1972年11月にかけた期間に水準測量および深浅測量 を実施した.その結果,砂浜が後退→前進→後退を9回 にわたって繰り返し,これらの後退がいずれもstorm に 伴う暴浪によって生じていたことから,9回のstorm cycle が存在していたものと考えられる.

そのうち1972年7月から9月にかけて生じた9番目の storm cycle IX を代表例とみなし、縦断形状の変化過程 について検討を加えた.縦断形状の変化は4段階に区分 することができ、暴浪期直後に形成された縦断形状(A) は暴風海浜、暴浪期直前に形成された縦断形状(D)は正 常海浜、その中間時に当たる波の静穏期に形成された縦 断形状は暴風海浜から正常海浜への変化過程を示すもの と考えられる.

従来から報告されてきた正常海浜および暴風海浜と本 調査結果から明らかとなったそれらとを比較すると,浜 堤から深度¹⁰1mにわたる上部浜においてはよい一致が みられた.しかし,深度1mから10mにわたる浅海底の 下部浜においては著しい差異がみられ,本調査結果から は,暴浪時には棚状の地形である stepあるいは沿岸州を 欠き,平滑な形態となることが明らかになった.

次に、storm cycle IX にほぼ相当する期間の縦断形状 についてその形成要因を考察した結果,波高と波長の比 である波形勾配よりも、むしろ入射波の持つエネルギー の方が重要な要因であると考えられる.すなわち,入射 波は、海底砂の移動を通じてそのエネルギーを減衰する ものと考えられる.そこで、縦断形状AおよびDの形成 時の波について,波のエネルギーの減衰を深度10mから 砕波点にわたる縦断方向の変化として求め、これを2本 の曲線に表わした.そして、縦断形状AおよびDの下部 浜の形態と相対応するそれらの曲線とをそれぞれ比較し た結果、両者ともほぼ同一の特徴を示すことが明らかと なった.従って、これらの縦断形状は波のエネルギーの 減衰と密接に関連するものと考えられる.

1. 緒 言

1.1 従来の研究と問題点

海と陸地の接する海岸は砂浜海岸²⁾(sandy coast) と

岩石海岸(rocky coast)とに2分される.このうち,砂 浜海岸は岩石海岸に比べて短時間のうちに著しく変化す ることも少なくない(荒巻,1971).

砂浜海岸の地形変化は明らかに海水の流動と風の作用 によるが,前者の作用によるものがより重要とみなされ る.さらに,海水の流動は波浪流・潮流および海流に分 類でき,このうち砂浜海岸の地形変化に対しては波浪流 の作用が最も重要と考えられる.

本稿ではこの波浪流,すなわち波による砂浜海岸の地 形変化について述べることにする.経年的には海側へ前 進または陸側へ後退をしない,すなわち平衡状態にある 砂浜海岸においても,波の静穏期には砂浜³⁹(beach)の 幅が相対的に広くやや起伏に富む地形が,逆に暴浪期に はその幅が狭く平滑な地形が,それぞれ砂浜海岸全体に わたって観察される.このように地形変化が波の季節的 変化に対応して繰り返される現象は,従来から beach cycle あるいは seasonal cycle と呼ばれてきた (SHEPARD, 1950b).波の静穏期にみられる砂浜は夏浜 (summer beach),暴浪期にみられる砂浜は冬浜 (winter beach) と呼ばれる.これは静穏期と暴浪期がそれぞれ夏と冬に 当たる米国 California 海岸における多数の観察 結果に 基づくものである (SHEPARD, 1950b).

この夏浜と冬浜とを汀線⁴⁾ に直角な模式縦断形状とし て示したものが第1図である.これは、BASCOM (1964) によるものの一部修正であり、海底の縦断形状の特徴も 併せて示してある.すなわち、夏浜の縦断形状は砂浜に おいて階段状の高まりの berm⁵⁾の存在および bermから 海底にかけ凹形で平滑な形態を呈している.これに対 し、冬浜の縦断形状は、陸寄りの berm が存在するが、 海寄りの berm が侵食されてなくなった平滑な形態を呈 し、海底部にはトラフ (longshore trough) とその海側の 沿岸州 (longshore bar) がみられる.

夏浜と冬浜の縦断形状の根本的な違いは, 海寄りの bermの有る無しである. そこで, bermが十分に侵食さ れつつある状態を冬浜,それが十分に形成されつつある 状態を夏浜とみなせば,夏浜と冬浜の形成は berm 付近 の変形をもとにして明らかとなるものと考えられる. し かしながら両者の形成過程および形成要因は,これまで 野外研究によって十分に解明されているとは考えられな い.

上述の考え方に基づいて従来の野外研究について夏 浜と冬浜の形成要因を追究すると次の通りである.

¹⁾ 本稿では、平均海水位から海底までの水深を深度と呼ぶ.

以下,砂浜海岸とは暴浪の時,海水の遡上限界線から波動運動に よる海底砂の移動限界線にかけた地帯をさす.

³⁾ 砂浜とは海水の遡上限界線から汀線にわたる地帯をさす.

⁴⁾ 平均海水位と海岸の交わる位置をさす.

⁵⁾ 汀段または径浜(みちはま)と呼ばれる.

静岡県下田市多々戸海岸における海浜縦断形状の変化過程に関する研究(磯部一洋)

第1図 夏浜と冬浜の模式縦断形状 H₀: 深水波高, L₀: 深水波長, h: 水深 BASCOM (1964) を一部修正

SHEPARD (1950b)と、ZEIGLER et al. (1959) は砂浜が大 規模に侵食される⁶⁹ のは特に大きな波の時であると述べ ている.これは冬浜の形成が,波高が大きくかつ周期の 長い波によるものであることを意味する.同様に、 SHEPARD and La FOND (1940) からは、冬浜の形成とし て波高が大きく周期の長い波に、一方夏浜の形成として は波高が小さく周期の短い波によることが読みとれる. 以上の野外研究からは夏浜と冬浜の形成要因が波高の規 模と周期の長短に基づいていることは推定できるが、そ の形成限界値すなわち波高と周期から求められる波長と がどのような比率になれば夏浜または冬浜が形成される のかという値は不明である.

一方砂浜海岸の縦断形状に関する研究は造波水槽実験 によっても行われており、実験的に夏浜に相当する縦断 形状を有する正常海浜 (ordinary type beach) と冬浜に 相当する縦断形状を有する暴風海浜⁷⁾(storm beach)の 形成要因および形成限界値が報告されている. JOHNSON (1949)は、MEYER (1936)と WATERS (1939)の行った 実験結果について述べ、縦断形状が正常海浜と暴風海浜 との二つに分類でき、両者は深水波8)の波高と波長との 比である波形勾配 (wave steepness)のある限界値によっ て決定されるとしている. そして, 波形勾配が 0.025 よ り小さい時に必ず正常海浜、0.03より大きい時に暴風海 浜、0.025-0.03の範囲の時にそのどちらかの海浜が形成 されるか不明であるとしている. JOHNSON (1949)によっ て明らかにされたこの限界値は、 Scorr (1954) を 始 め 多数の研究者に受け入れられたが、この値には砂の粒径 変化に対する考慮がなされていない. そこで、 RECTOR

その時に berm は侵食されるはずであり、従って冬浜が形成される。

(1954) と WATTS (1954) は正常海浜と暴風海浜の形成要 因として,波形勾配のほかに,砂の粒径(中央粒径 dm) と波の大きさ(深水波長 Lo) との比を加えるべき であ ると述べている. さらに、SAVILLE Jr. (1950) は大型水 槽を用いて実験を行い、また岩垣・野田(1961)は他の研 究者による多数の水槽実験資料に自らの水槽実験結果を 加えて検討した結果、両報告ともに正常海浜と暴風海浜 の形成要因として波形勾配のほかに波の大きさ(深水波 高H₀)と底質の粒径との比を加えるべきであると述べ ている. Rector (1954) および WATTS (1954) の成果と SAVILLE Jr. (1950) および岩垣・野田(1961) との成果 との違いは、波の大きさとして、前者が深水波長 Loを 用いたのに対して後者が深水波高Hoを用いたことにあ る. 岩垣・野田 (1961) に従えば、波形勾配が小さく、 かつ波高と砂の粒径の比が小さい時に正常海浜が形成さ れ、一方波形勾配が大きく波高と砂の粒径の比が小さい 時に、あるいは波形勾配にほぼ関係なくその比が大きい 時に暴風海浜が形成される.

波形勾配は水槽実験結果に基づいて明らかにされた正 常海浜と暴風海浜の形成要因のうちで最も重要なもので ある.またこれは野外における海浜縦断形状の変化の考 察を進める際に, Bascom (1964)や荒巻 (1967)を始 め,数多くの研究者によって使用されてきた.しかし, Sonu and Van BEEK (1971)は,米国 North Carolinaの 砂浜海岸の縦断形状変化とその要因について考察する際 に,波形勾配の値によって侵食傾向の波と堆積傾向の波 とに分類することは単純化しすぎであると述べている.

筆者も次の理由により水槽実験結果をそのまま野外研 究へ応用することには問題が残されていると考えてい る.すなわち,水槽実験と異なって野外においては波高 および周期(波長)の変化の幅が大きく,波高と波長の 組合わせによっては波形勾配はいろいろな値になる.例

⁷⁾以下,夏浜および冬浜に相当する縦断形状を有する海浜を,それ ぞれ正常海浜・暴風海浜と呼ぶ。

波長の1/2より深い海を進行する波をいう(第1図).

えば、波高が小さくとも周期(波長)が極端に短かけれ ば波形勾配は大きくなるが、波の規模が小さいことから 暴風海浜とならずに正常海浜が形成されているはずであ る. さらに、野外においては水槽実験と異なり波の静穏 な時でさえ波高と海浜砂の粒径の比が著しく大きくなる ので、上述の岩垣・野田(1961)の成果に従えば暴風海 浜が波形勾配と無関係に常時形成されることになる.従 って、岩垣・野田(1961)によって得られた値は、野外 における暴風海浜と正常海浜の形成要因に関する限界値 としてそのまま応用することには適さないものであると 考えられる.

さらに, 正常海浜と暴風海浜の縦断形状に関する問題 がある. 堀川 (1973) と SONU (1973) は、波の静穏期に ある間隔を置いてとった幾つかの海浜縦断形状を比べた ところ、正常海浜と暴風海浜が共存する事実があると報 告している、暴浪時期でもないのに暴風海浜がみられる ということは、上述のような波の静穏期に正常海浜、暴 浪期に暴風海浜がそれぞれ形成されるという考え方と明 らかに矛盾する. さらに,水槽実験によれば暴風海浜の 海底部の縦断形状は沿岸州とトラフからなると報告され ている. 一方, INMAN (1953) は、大波の時期に沿岸州 が侵食され、逆にトラフが埋積され、その結果海底部の 縦断形状は平滑な形態を呈すと述べている。沿岸州とト ラフについては従来、野外観測の難しい暴浪時期にそれ らが実際に形成されているのか否か十分確かめられてい るとはいえない.従ってそれらの形成時期についてはな お再検討の必要がある.

1.2 本研究の目的と研究地域の選定

本研究は、波によって生ずる海浜縦断形状の変化過程 を明らかにすることを目的とするものである.この目的 を達成するための具体的な研究内容は次の通りである. まず、砂浜から浅海底にわたる縦断形状の測量を主とす る野外調査によって、波の静穏期に生ずる縦断形状(正 常海浜)と暴浪期に生ずる縦断形状(暴風海浜)を明ら かにし、従来から報告されてきた海浜縦断形状と比較検 討を行う.また、正常海浜から暴風海浜への変化過程, 逆に暴風海浜から正常海浜へのそれを明らかにする.さ らに本研究では、正常海浜と暴風海浜に関して従来から 報告されてきた形成要因について検討を加え、その形成 要因および形成限界値を明らかにする.かつ、本研究か ら明らかにされた形成要因を用いて、暴風海浜と正常海 浜の縦断形状の一部分の形成過程について定性的な説明 を試みるものである.

入射波による海浜縦断形状の変化,すなわち海と陸方 向の二次元的な地形変化について観測を行うためには, 波が海岸に対してほぼ直角に入射し易く,沿岸流の発達 しにくいと考えられる砂浜海岸を調査地として選定する 必要がある.このためには,湾口の開いた大規模な砂浜 海岸ではなく,湾口が狭く小規模な砂浜海岸の方が調査 地として適するものと考えられる.

また、ある小規模な砂浜海岸を調査地として限定すれ ば、そこにおける海浜砂の粒径(中央粒径)をほぼ一定 とみなすことができ、海浜縦断形状の変化に関する要因 から粒径の効果を除外することができる.以上の点を考 慮し調査地としては、伊豆半島南端付近多々戸海岸を選 定した.

本稿の作成に当たり,終始御指導を頂いた筑波大学井 口正男教授,同町田 貞副学長,また貴重な御助言を頂 いた立正大学山本荘毅教授,筑波大学高野史男教授に厚 く謝意を表する次第である.また現地調査に当たっては 筑波大学下田臨海実験センターの職員諸氏,筑波大学松 倉公憲助手・同大学院佐々木 巽君から多大の協力が得 られた.記して謝意を表する次第である.

2. 研究地域の概観と調査の概略

2.1 研究地域周辺の地形および地質

調査の行われた多々戸海岸は,静岡県下田市の中心街 から南西2kmに位置し(第2図),相模灘(太平洋)に 面する小規模な砂浜海岸(pocket beach)の一つである. ほぼ南向きの本海岸の東側には隆起波食台の発達した岬 を隔てて大浦湾や下田湾の湾入と須崎半島があり,一方 西側には相対的に規模の小さな岬を隔てて入田海岸と大 浜海岸がある.これら三つの pocket beach は全体とし て南東向きの大きな湾入となっている(第3図).

本海岸の砂浜の規模は長さ500m,幅は砂浜の西寄り で100mと最大で東寄りに狭くなる(第4図).そして, 砂浜の中央から西寄りにかけて,凸形の浜堤(beach ridge)が砂浜の陸側に存在する.砂浜の中央東寄りに多 々戸川が流入するが,その流域面積は0.44 km²とごく小 規模であり,従って流量および流出土砂量は少ない.

波の静穏期には汀線の陸側に berm が,海側に step⁹⁾ が存在し,このうち berm は弓状の平面形態を呈して砂 浜全体に連続する. step から沖合の深度10mにわたる海 底は凹形で平滑な地形を示し,そこから沖合の深度20m にかけての海底はさらに緩勾配の地形を呈する.

さらに沖合にかけて行われた深浅測量の調査結果100に

海水面下にあって引き波 (back-wash) により形成される小規模 な棚状の地形も step と呼ばれるが、本研究では低潮台 (low tide terrace) に相当するさらに大規模な地形を step と呼ぶ。

¹⁰⁾ 東京教育大学地形営力研究グループにより1974年7月に行われた.

静岡県下田市多々戸海岸における海浜縦断形状の変化過程に関する研究(磯部一洋)

「この地図は、国土地理院発行の5万分の1地形図(下田・神子元島)を使用したものである」

よれば、小規模な海底谷が本海岸の東側の岬(地保根) 沖合350m,深度18m付近から海側に向かって存在する. 深度38m以深から先には緩勾配の地形が広がっている (第3図).

本海岸周辺の地質は主として新第三系(中新世後期の 白浜層)であり、浅海底で行われた火山活動に伴う噴出 物からなり、水成砕屑岩に乏しい(角,1958)・多々戸海 岸の砂浜の両端をなす岬は輝石安山岩の火山角礫岩およ び溶岩、砂浜の背後をなす山地はディサイトの凝灰岩か らなる。第四系は狭小な沖積平野および砂浜に小規模に 分布するだけである。また、尾原(1937)によって海成 段丘であると指摘され、最近坂本・磯部(1975)によっ てその一部が海成段丘であることが確認された数段の平 坦面(第5図)上には、海成堆積物はごく断片的にわず かの地点にしか存在せず、主として赤褐色の薄い風化層 が認められるにすぎない。

海浜堆積物の形成に直接関係のあるこれらの岩層は, 安山岩およびディサイト質の火山岩類であることから粗 粒堆積物(砂)として存在しにくいといわれている(小 出,1973).さらに,本地域の岩石海岸から供給される岩 屑量は,海食崖が短期間にほとんど後退しないことから 判断して少なく,かつ小規模の河川から海岸へ供給され

第3図 多々戸海岸周辺の海底地形図(東京教育大学地形営力研究グループ測量)

る土砂量も少ないものと考えられる. これらの理由によって本海岸の海浜堆積物は岩石片および鉱物片が貝殻片に比べて相対的に少なく、貝殻片からなる砂粒が重量比率50%以上にも達する程である (町田ほか、1972;武田、1977).そして、海浜堆積物は淘汰の良い灰白色の中粒一細粒砂からなり、粗粒砂および礫に乏しい. 波の静穏期に汀線に対して直角方向^{III}に採取した海浜砂の中央粒径 $Md\phi$ と淘汰度 $\sigma\phi$ の代表例を第6図に示す. 採取点ごとにみられる中央粒径の変化は 1.4-2 ϕ ,淘汰度の変化は 0.4-0.7 ϕ の各範囲に入る. 詳細にみれば、MILLER and ZEIGLER (1958)の指摘している通り berm 上で粗粒となり、berm からその海側にかけて淘汰が良い.

2.2 波の資料収集ならびに海象

次に述べる海象は,筆者の1968—1972年にわたる現地 観察の結果である.多々戸海岸・入田海岸および大浜海 岸の三つの pocket beach のうち, 西端の大浜海岸には南 東方向からの波の入射が卓越するが, 東端の本海岸には 大浜海岸と比べて南に片寄った南一南東方向からの波が 卓越して入射する.本海岸に入射する波の規模と入射方 向を季節的にみれば, 夏季には台風に伴う大きなうねり

(swell)が汀線にほぼ直角に、すなわち南南東方向から 時々入射する (Plate 5-1).冬季には強い北西季節風が陸 側から海側に向かって吹くことが多く、波の入射方向と 逆の関係になるために波が小さい.この季節には特に大 きな風浪 (seas)がしばしば入射するが、これは日本海 上で発達する低気圧に吹きこむ強い南風によって生ずる ものである.春季または秋季には北東風による小さな風 浪が多く、東側の岬を迂回して南東方向から汀線に対し て入射する (Plate 5-2).

波高計による波の連続観測は、本研究のための野外調 査の行われた1971-1972年に調査地付近ではまだ実施さ

第4図 多々戸海岸の地形と調査測線 Fig. 4 Topography of Tatado Beach and position of the three cross sections

れていなかった.波に関する唯一の情報として、石廊崎 測候所によって行われている定時目視観測があげられ る.この目視観測は日中4回波高と波の周期について行 われているものであるが、それらの観測値は精度に乏し く、かつ波の周期に欠測が多いという欠点がある.従っ て、石廊崎測候所による波の目視観測値は、本研究のた めの波の資料としては不十分である.

そこで、本調査期間に関する波の資料として、次の条

件を満たすような波の観測値を使用することにする. す なわち,距離的に近く,かつ波の入射方向が本海岸にお けるそれと近似している場所において,波高計により継 続的に観測された同一期間の観測値である. この条件に 合う観測値として,神奈川県平塚市虹ケ浜海岸にある防 災科学技術センター平塚支所の観測施設のそれを用いる ことにする. 第7図に示す通り本海岸と平塚虹ケ浜海岸 に対する波の入射方向と入射角はほぼ等しく,前者にお

第5図 多々戸海岸周辺の海成段丘分布図(坂本・磯部, 1975)

第6図 海浜砂の中央粒径と淘汰度の縦断方向変化図(1972年4月28-29日採取試料)

ける入射方向が S28°W-S57°E であって入射角が 85°, 後者における入射方向が S23°W-S44°E であって入射角 が78°である.後者平塚虹ケ浜海岸における波の観測は, 距岸1km,深度 20m地点の海象観測塔に設置された容 量式波高計によって,偶数時ごと最初の10分間行われ, 1966年以来継続されている.

この海象観測塔で観測された波形記録のうち、現地調 査実施中の1971年3月から1972年11月にかけた全期間, 波の特性に関する計算処理はなされていない.そこで,各 10分間の波形記録から最大波の波高 H_{max} と周期 T_{max} を読み取り,深水最大波高 H_0 max と深水最大波長 L_0 max を微小振幅波理論により求めた.そして、1日12回の観 測値から H_0 max, L_0 max および T_{max} を計算し、続いて それぞれの平均値を求め、日平均深水最大波高 $\overline{H_0 max}$, 日平均深水最大波長 $\overline{L_0 \max}$, そして日平均最大波周期 T_{\max} とした.従って, $\overline{H_0 \max}$ ($\overline{L_0 \max}$ と $\overline{T_{\max}}$) は, 10分 間に関する最大波高(最大波周期)を2時間ごとに12波 読みとって得られたものである.さらに, 1972年9月中 旬の暴浪期およびその直前の波については,波形記録か ら10分間の有義波高 H_{3} と有義波周期 T_{3} を読み取り, 微小振幅波理論により深水有義波高 H_{0} '3 と深水有義波 長 L_{0} '3 を求めた.

本海岸における海浜縦断形状の測量時,および台風や 発達した低気圧など storm の接近に伴う暴浪期に,砕波 高と砕波周期に関する目視観測を約3分間にわたり第8 図に示す方法で行った.そして,目視観測により得られ た最大砕波高 Hmaxbr および最大砕波周期 Tmaxbr と, 平塚虹ケ浜海岸の深度20mで観測して得られた対応する

日の日平均最大波高 \overline{H} maxおよび日平均最大波周期 \overline{T} max とをそれぞれ比較したのが、第9図である. なお、最大 砕波高Hmaxbr と日平均最大波高 \overline{H} max は深水波高に計 算しなおされてはおらず、かつ観測時間にも著しい違い があり、概略的な比較にすぎないが、第9図によれば両 者の相関は十分に高いとみなされる. 従って、平塚虹ケ 浜海岸で観測された日平均最大波高,日平均最大波周期 等に関する波の資料は、本海岸の波のそれとしても十分 に使用できるものと考えられる.

2.3 調査の方法

1971年8月から1972年11月にかけて,砂浜海岸の縦断 形状¹²⁾およびその変化を把握するために,汀線に対して ほぼ直角方向の縦断測量を繰り返し行った.砂浜のほぼ 中央に100m間隔にA測線とB測線をN6°W方向にと り,測線の起点を浜堤の海側に設定した(第4図のA・ B地点).また調査開始前に,小林(1972)によって設定 されたC点を起点とする南南東方向のC測線(第4図) は,本調査の観測にも使用された.

縦断形状の変化を知るためには、INMAN and RUSNAK (1956)・DUNCAN Jr. (1964)と寺田 (1972)らのように金 属杭あるいは木杭を砂の中に鉛直に打込んで,後に砂の 表面と杭の頂部あるいは杭の基準位置との高度差を測定 する方法もある.しかし,本海岸においては杭の位置が 人為的な改変を受け易いので,本調査では縦断形状の変 化を水準測量と深浅測量を反復することにより把握し た.

このうち水準測量はレベリングのためにトランシット,水平距離を測定するために間縄および高度差の測定 には測線上の砂の表面に鉛直に立てられた標尺が用いら れ,観測は主として干潮時に行われた.この水準測量の 行われた範囲は,砂浜を中心として浜堤から深度1m付 近にわたるものである.その測量誤差は深浅測量のそれ と比べてさらに小さく,±1-2 cm以内であると考えら れる.

深浅測量は浅海用音響測深機を用いて、満潮時に行わ れた.すなわち、測深機を塔載した舟を起点の海側 500 m付近からA測線上とB測線上を砂浜に向かって低速で かつ一定の速度で走航させ、東側の隆起波食台(第4図 のD地点)からトランシットで測深機の方位を一定時間 ごとに測定し、後に舟の位置は図上で決定された.かつ 同時刻にD地点の近くの岩礁で潮位観測を行い、後に測 量時の潮位をもとに深度補正が行われた.深浅測量には 位置決定に伴う誤差と波浪に伴う誤差の両方が考えられ るが、この測量の精度は汀線から500m未満で、かつ深度 10m以浅の縦断形状変化に関する本研究に対しては十分 であると考えられる.なお、上述の水準測量と深浅測量 は干潮時と満潮時にそれぞれ行われたために、縦断形状 の変化がその間に多少は生じているはずである.本研究 ではこの変化を極く少ないものと判断し、考慮はされて いない.

3. 海浜の変形

3.1 海浜縦断形状の特徴

本海岸において波の静穏期に観察される模式的な縦断 形状、各々の地形的特徴の名称およびそれらの位置関係 は、第10図に示す通りである。同図において、縦断形状 の左端の部分が浜堤に当たり、そこから berm edge にか け凹形の縦断形状を呈している、さらに詳細にみると、 berm は上位と下位の2段に区分され、そのうち下位の berm は特に発達が良く、その berm edge は多々戸川に よって一旦途切れるがほぼ砂浜全体に弓状に 連 続 す る (第11図). 一方, 上位の berm edge は弓状で は なく, cusp 状の平面形態を呈し、多々戸川から西寄りの砂浜に 連続する。また第10図によれば、下位の berm edge か ら, 平均海水位の下方に時おり存在する runnel の陸側 までの間は beach face となり, 凹形で平滑な斜面を呈す る. 波の静穏期にみられるこの beach face は、浜堤から 深度10mにわたる縦断形状のうちで最も急勾配な部分で ある.

本海岸において runnel と ridge は対をなして深度 0-1 m付近にみられることが多い (木村, 1977).従って, 大潮¹³³の干潮時には ridge が海水面上に出るために,常 に海水面下に存在するといわれる沿岸州(茂木, 1971) とは明瞭に区別されるものである.木村(1977)はこの runnel と ridge の陸側への移動を詳細に述べているが, 第11図には筆者により確認されたもののうち最も一般的 な平面分布を示してある.これによると, ridge は runnel の海側にあり, 汀線に沿った方向に 4 カ所で途切れ ている. runnel は ridge の頂部よりも, 1 m弱深まった 溝をなし, ridge 間の切目に向かって深まりながら連続 している. ridge を越えて進入した海水は干潮時に runnel を通じて海側へ排出される.

さらに ridge から海側の深度1-2mの位置には棚状 の地形を示す stepが存在する. この stepを中心とした縦 断形状は凸形を呈し,さらに海側の深度4-5mから10 mにわたる,凹形の緩傾斜の部分へと連なっている.

- 396 --

¹²⁾ 以下,砂浜海岸の縦断形状を海浜縦断形状あるいは単に縦断形状 と略記する.

¹³⁾ 下田市における大潮差(大潮平均高潮位と大潮平均低潮位の差) は、1.2mである(井島、1960).

- 397 ---

地質調査所月報(第30巻第7号)

第11図 多々戸海岸における berm, ridge および runnel の一般的な配列

外浜あるいは沖浜のように縦断形状のある範囲を表わ す地形の名称は、従来から多数の研究者によって独自に 使用されてきた.しかし、同じ名称が必ずしも同じ場所 を示さず、混乱が生じている.本研究で使用する縦断形 状の名称は、第10図に示したように INGLE Jr. (1966) によるものを一部修正したものである.すなわち、浜堤 から下位の berm edge にかけては後浜 (backshore)、こ の berm edge から平均低低潮位 (深度約1.0m) にかけて は前浜 (foreshore),平均低低潮位から step の海側の深 度 4-5 mにかけては外浜 (inshore),その海側は沖浜 (offshore) と呼ぶ.

さらに本研究では、後浜と前浜を一括して上部浜14)

Russell (1967) は砂浜を upper beach, 平均海水位下の砂浜海 岸を lower beach と呼んでいる。

(upper beach),外浜と沖浜を下部浜 (lower beach) と 呼んだ (第10図参照)が,上部浜と下部浜とに2分した のは次の理由によるものである.後浜と前浜は干潮時に はほぼ海水面上に出るのに対して,外浜と沖浜は海水面 下にあり,常に波の作用を受ける.従って,外浜と沖浜 は砕波帯(第8図参照)の海側に当たることが多いのに 対して,後浜と前浜は遡上波帯およびその陸側に当たる ことが多く,両者の間には波の変化形態の違いが著しい からである.なお,後浜と前浜に当たる縦断形状は水準 測量によって,外浜と沖浜に当たるそれは深浅測量によ ってそれぞれ得られたものであり,両測量の頻度および 精度の違いからも2分して表現する方が適切である.

3.2 上部浜の変形

1971年3月から1972年11月までの1年9カ月間, 筆者 および小林(1972)によって行われた¹⁵⁾上部浜における水 準測量結果を,ZEIGLER et al. (1959)による Isopleth ダ イヤグラムに表現したのが第12図である.1971年3月か ら1972年2月にかけてはC測線の、1972年2月から11月 にかけてはA測線の等高度(等深度)の変化を破線と実 線でそれぞれ示した(測線の位置は第11図参照).なお, A測線と同時に測量されたB測線についての結果は,詳 細にみればA測線のそれと異なる変化を表わす部分もあ るが,概観するとほぼ同様であるので,以下ではB測線 についての結果は省略することにする.

第12図によれば、等深度0.5mと砂浜に相当する等高 度0-3mは、ほぼ全期間にわたって追跡でき,次のよう な変化が特徴として読み取れる.時間の経過とともに右 側である海側へ前進したとみなせるものと左側である陸 側へ後退したとみなせるものとが、何度か繰り返されて いる.例えば、著しい前進は、1971年9月から12月にか けて、また1972年7月から9月にかけてであり、逆に著 しい後退は1971年7月から8月にかけて、また1972年9 月においてである.これらのうちで、明瞭な砂浜の後退 を表わしているとみなせる時期は10回あり、1971年5月 2日、6月13日、8月8日、9月10日、1972年1月23 日、2月21日、5月11日、6月9日、7月17日、そして 9月18日である.

砂浜が前進するのは storm が接近しない晩春と晩秋の 波の静穏期に対応し、逆にそれが後退するのは晩冬と初 秋の strom が接近して暴浪が卓越する期間に対応する. ちなみに上述の著しい後退が生じたとみなせる年月日の 前には、第21図に示すような storm が必ず接近してい る. このことは、何度か繰り返された砂浜の後退が storm に伴う暴浪によって生じたことを示唆している. 15) 1971年3月から7月にかけた水準測量は小林(1972) による. そして,後退から次の後退まで,すなわち storm から次 に来襲する storm までを SHEPARD (1963)の述べた storm cycle の l cycle とみなすことができる.本研究で は,storm の来襲時に縦断形状の測量が必ずしも行われ ていないので,ある storm cycle の終了時または次の storm cycle の開始時は,便宜上 storm 通過直後の最初に 行われた測量時をもって表わすことにする.このような 表現方法によれば,第12図において 1971年5月2日-6 月13日の storm cycle I から 1972年7月17日-9月18日 の storm cycle IXにわたる9回の storm cycle が識別さ れる.このうち,1972年1月23日から2月21日にかけて (storm cycle W)と同年6月9日から7月17日にかけて (storm cycle W)は砂浜の前進が第12図に表現されてい ないが,観察によれば砂浜は明らかに前進していた.

9回の storm cycle ごとに、その開始時、中間時期お よび終了時の3時期における縦断形状を重ね合わせると 第13図のようになる. なお, storm cycle V および畑に おいては、中間時期の縦断形状は欠測のため示されてい ない. 第13図にみられる通り, storm cycle の中間時期 の縦断形状(同図②)は、同開始時(同図①)および終 了時のそれ「(同図③)に比べ、一般に起伏に富み、beach face は急勾配である. これは ridge と runnel が形成さ れたためと、下位の berm が発達した結果である. 一 方, storm cycle の開始時と終了時の縦断形状は, 平滑で 緩傾斜を呈する、これは ridge と runnelが存在せず、か つ下位の berm が侵食されて後退するか,または存在し なくなった結果である.またこの二つの縦断形状は一致 しないものが多い. すなわち,縦断形状が復元せずに大 きく後退した状態のもの、逆に前進した状態のものがあ る.

berm の発達した縦断形状から平滑な縦断形状へ,すな わち第13図の②から③の縦断形状へは暴浪によって短期 間に変化すると従来からいわれている(SHEPARD, 1950b; Hayes, 1970).なお,調査の都合で第13図の②の縦断形状 が測量された中間時期から終了時にかけた期間が比較的 長いものもみられる.しかし,現地における観察から, 暴浪によって②の縦断形状から③の縦断形状へと短期間 に変化することが明らかとなった.そこで,上述の9回 の storm cycle は,②の縦断形状から③の縦断形状へ変 化する規模の違いによって、3 グループに分けられる. なお, storm cycle V および呱については①の縦断形状 と③の縦断形状とを比較する.

第1のグループは大規模に侵食され、浜堤の基部にわ ずかの埋積が起こるものであり、storm cycle IX がその 例である。第2のグループは中規模に侵食され、下位の

- 399 -

-- 400 ---

400 ----

静岡県下田市多々戸海岸における海浜縦断形状の変化過程に関する研究(磯部一洋)

第13図 上部浜縦断形状の変化にみられる storm cycle ① storm cycle の開始時, ② storm cycle の中間時期, ③ storm cycle の終了時

berm がなくなり上位の bermがさらに発達するものであ り、storm cycle II・III・IV・V・VII がその例である. 第3のグループは小規模に侵食されるものであり、storm cycle I・VI・VII がその例である.以下では第1の グループから順に侵食タイプA・B・Cと呼ぶ.

次に、水準測量が最も頻繁に行われた1972年7月17日 から9月18日に対応する storm cycle IX を storm cycleの 代表的な例とみなして、その縦断形状の変化過程につい て述べる.上述の期間に上部浜縦断形状は14回 測量 さ れ、第14図に示す通り13組の縦断形状の変化を得ること ができた.ここで、7月17日から18日にかけた縦断形状 の変化を上部浜縦断形状の変化1、以下同様に変化2、 ……変化13のように呼ぶ.なお、第14図に黒点で示され た断面は堆積が、斜線で示された断面は侵食が、それぞ

地質調査所月報(第30巻第7号)

第14図 storm cycle IX における上部浜縦断形状の変化図(A測線)

れ該当する期間内に生じたことを示す.

第14図において、1972年7月17日から9月18日にかけ た変化過程は、堆積と侵食の生じた縦断形状における位 置と、縦断形状の変化の特徴とから、4段階に区分され る. すなわち、変化1-6に当たる第1段階、変化7-8 に当たる第2段階、変化9-12に当たる第3段階、そして 変化13に当たる第4段階である. 次にそれらの特徴につ いて述べる. 第1段階は1972年7月17日から8月2日にかけて生じ た縦断形状の変化である.7月13日からこの期間の前半 にかけては,第21図(5)に示すように相次いで日本へ接近 または上陸した台風6・7・9号に伴う暴浪が続き,一 方後半には波は静穏な状態へと変化した.この期間直前 の7月14日には暴浪の入射に伴い砂浜の侵食が始まり, 特に翌15日には以前に発達していた下位の berm が大規 模に侵食されているのが観察された.同 berm 付近の侵 食状況は次の通りである.入射してきた暴浪は,砕波と 磯波を繰り返した後に遡上波(up-rush)となって下位 のberm edge をのり越え,後浜に達する(Plate 6-1).そ れは一転して引き波(back-wash)となり,下位のberm 上に形成された溝をさらに侵食しながら,海浜砂を海側 へ運搬する(Plate 6-2).このような作用を繰り返し,遂 に同 berm が侵食されてしまう.この観察の2日後に当 たる7月17日に測量された縦断形状¹⁶⁾をみると,下位の berm が侵食されて消失し,凹形で平滑な形態を呈して いる.その後,7月24日頃まで暴浪が引き続き入射して も,高度0.5-2mにかけた位置では侵食が生ぜず,逆に 堆積が卓越し,新たに下位のberm が形成されている. 一方,深度0.5m-高度0.5mにかけた位置では侵食が卓 越し,この結果 beach face が急勾配になる.この変化傾 向は,その後波が静穏となっても引き続いてみられる.

第2段階は1972年8月2日から23日にかけて生じた縦 断形状の変化であり、この期間の波は比較的静穏なもの であった.初期にみられた凹形の beach face は埋積さ れたために次第に緩勾配となり、8月23日には以前に凹 形の beach face が存在した位置に、新たにさらに下位の 凸形の形態を呈す berm が形成されている.この結果、 砂浜が大きく海側へ前進する.

第3段階は1972年8月23日から9月14日にかけて生じた縦断形状の変化である.この期間の波は storm が来襲した7月中旬および下旬以後で最も静穏なものであっ

16) 第14図中の上部浜縦断形状の変化1に破線で示される.

第1表 縦断形状の変化の段階と	そ	その	期間
-----------------	---	----	----

	上部浜縦	送断开	 彡状		下部浜	縦断形	 /状
変化 段階	年	月	日	変化 段階	年	月	Ħ
1	1972.	7.17	-8.2	1	1972	2.7.27	-8. 2
2		8. 2	-8.23	2		8. 2	-8.29
3		8.23	9.14	3		8.29	-9.14
4		9.14	-9.18	4		9.14	-9.19

た. 8月28日には, storm cycle の開始の時期の直後か ら発達を始めた下位の berm と新しくより下位の berm が合体し,その結果下位の berm edge がさらに高まり 高度1.5mに達し,かつ beach face は凹形で急勾配なも のとなる.その後, berm edge の海側を中心に堆積が小 規模に生じ, beach face は急勾配を保ったまま海側へ前 進する.

第4段階は1972年9月14日から18日にかけて生じた縦 断形状の変化である.この期間には日本へ急速に接近後 に上陸した台風20号に伴う暴浪がみられた.暴浪が最も 大規模であった9月16日夕刻から17日午前中にかけて は、砂浜全体が大規模に侵食され、以前に発達していた 下位の berm は侵食されてなくなり、特に下位の berm edge 付近では縦断形状の高度が1.3mも低下する.一 方、浜堤海側の基部は埋積されて平滑となっている.こ れらの結果、9月18日の縦断形状は浜堤から深度1mに わたり一連の凹形の形態を呈す.上述の縦断形状の変化 が生じた時期を各段階についてまとめたのが、第1表で ある.

各段階の縦断形状の変化にみられる特徴を 要約 する と、第15図に示す通りである. 同図において,縦断形状 a→bの変化は第1段階に,縦断形状b→cの変化は第 2段階に,縦断形状c→dの変化は第3段階に,縦断形 状d→aの変化は第4段階にそれぞれ当たる. 波の状態 および推移と比較してみると,縦断形状aは暴浪期直後 に,縦断形状bは暴浪期直後から波の静穏期初期にかけ て,縦断形状cは静穏期初期から中期に,縦断形状dは 静穏期末期すなわち次の暴浪期直前までにそれぞれ形成 されたものである.

3.3 下部浜の変形

深浅測量はA測線上とB測線上の下部浜において1972 年5月から11月までの6ヵ月間に行われた. 測量の結 果,A測線とB測線の縦断形状は全く同一とみなすこと ができるので,以下ではA測線の結果だけについて述べ ることにする.

A 測線上の下部浜の測量は1972年7月27日から9月19 日にかけて8回行われた.これらの測量結果を順次比較 したものが,第16図である.1972年7月27日から8月2 日にかけて生じた縦断形状の変化を下部浜縦断形状の変 化①,以下同様に変化②,……変化⑦のように呼ぶ.

第16図において、縦断形状の変化にみられる特徴から 変化①-⑥と変化⑦に大きく2分される.まず、変化①-⑥に属する変化過程においては、深度4-5mから陸側 に凸形の形態を呈す stepがいずれも存在しているが、変 化⑦の変化過程では stepが侵食されて縦断形状からは確 認できない.

この変化⑦は1972年9月14日から19日にかけて生じた 変化であり、この期間にはすでに述べたように台風20号 に伴う暴浪が入射していた.そのために、下部浜におい ても上部浜同様に著しい縦断形状の変化が生じている. 起点から200mの地点を境にして,そこから陸側では上部 浜の海寄りにかけて連続して侵食が生じ、一方そこから 海側では堆積が大規模に生じる.この結果、9月19日の 下部浜の縦断形状は最も緩勾配で平滑な形態を呈し、 step が確認できない.また、本海岸においては暴浪直後 に下部浜の縦断形状は沿岸州やトラフが形成されておら ず、第1図に示したような暴風海浜の特徴と著しく異な っている.

上述のように9月19日を除くほかの時点の縦断形状に は stepがすべて認められる.この stepの形態は時間の経 過とともに変化しており、変化④においては stepの海寄 りの侵食が特に著しい.変化④に引き続く変化⑤と⑥か らも stepの海寄りが侵食されたままの状態となってい る.従って, stepの発達状態の違いに基づいて,それが よく発達する変化①-③とそれが小規模となった変化④-⑥とに区分できる.

さらに、step の発達状態の良い変化①-③を詳しくみ ると、変化①は縦断形状全体にわたって堆積と侵食の規 模が著しく小さいが、変化②と③はそれらの規模が大き い.従って、変化①-③はこの堆積と侵食の規模の 違い に基づいて、さらに変化①と変化②-③とに細分できる.

以上から,縦断形状の変化に関する段階を次のように 区分できるものと考えられる. すなわち,第①段階とし て7月27日から8月2日(変化①),第2段階として8月 2日から29日(変化②-③),第③段階として8月29日か ら9月14日(変化④-⑥),第④段階として9月14日から 19日(変化⑦)である. このうち第①段階は暴浪期直後 から波の静穏期初期にかけて生じ,第②・③段階はとも に静穏期に生じ,第④段階は静穏期末期(暴浪期直前)

起点からの水平距離

第16図 下部浜縦断形状の変化図(A測線)

から暴浪期直後にかけて生じたものである.

これらの下部浜縦断形状に関する変化の4段階とそれ に対応する期間は、第1表に示す通り上部浜のそれらと ほぼ一致する.従って、1972年7月から9月にかけて、 1回の storm cycle が上部浜同様に下部浜にも影響を与 えたとみなすことができる.

ところで、1972年7月27日の縦断形状と1972年9月19 日のそれとを比較したのが第17図である.同図によれ ば、両時点はともに暴浪期直後に当たるにもかかわら ず、それらの縦断形状は著しく異なっている.すなわ ち、stepは7月27日の縦断形状では確認されるが、9月 19日では確認できない.また、起点から200mの地点を 境にして、そこから海側にかけては、9月19日の縦断形 状が7月27日のそれと比べて高く、すなわち堆積されて 浅くなっている.これらの縦断形状の違いが生じた理由 としては、暴浪の規模の違いと、暴浪入射時から縦断形 状の測量時までの経過時間の違いとが考えられる.7月 27日の縦断形状は7月13日に暴浪が入射を始めてからす でに14日経過した時に測量されたものであるが、一方9 月19日の縦断形状は別の暴浪の入射(9月15日)後わず か4日経過した時に測量されたものである.むしろ,後 者の暴浪が入射し始めてから14日経過した時に測量され た9月29日の縦断形状は,stepが未発達ではあったが, 明らかに9月19日の縦断形状より7月27日の縦断形状に 近似している.このことから台風6号に伴う暴浪が最も 大きかった7月14日と15日の両縦断形状は,台風20号に 伴う暴浪期直後である9月19日の縦断形状同様に stepが 侵食されて平滑な緩勾配の海底地形をなしていたものと 考えられる.

上述の4段階の縦断形状の変化にみられる特徴を要約 して第18図に示す.同図において,縦断形状 a'→b'の変 化は第①段階に,縦断形状 b'→c'の変化は第②段階に,縦 断形状 c'→d'の変化は第③段階に,縦断形状 d'→a'の変 化は第④段階にそれぞれ当たる.波の状態および推移と 比較してみると,縦断形状 a' は暴浪期直後に,縦断形 状 b' は暴浪期直後から波の静穏期初期にかけて,縦断 形状 c' は静穏期初期から中期に,縦断形状 d' は静穏期 末期すなわち次の暴浪期直前までの静穏期にそれぞれ形 成されたものである.

3.4 海浜縦断形状の変化の要約と侵食タイプ

先に示した上部浜および下部浜における各縦断形状の 変化の要約図(第15図および第18図)は、それぞれ storm に伴う暴浪期直後から次の暴浪期直前に至るまでの 4時期を代表する各縦断形状によって示されている.従 って、海浜縦断形状の変化過程を論ずる上では、第15図 の a と第18図の a', 第15図の b と第18図の b', ……第15 図のdと第18図のd'は、それぞれ近似的に同一時点と みなして対応させることができる、このようにして各時 点ごとに上部浜と下部浜の縦断形状を対応させ、連続し た海浜縦断形状として第19図に示す. 同図におけるA・ B・C・Dはそれぞれ暴浪期直後,波の静穏期初期,静 穏期中期、静穏期末期(次の暴浪期直前)の各海浜縦断 形状を代表するものであり、そのうちAとDはそれぞれ 暴風海浜および正常海浜に相当すると考えられる。すな わち、これらの縦断形状は暴風海浜から正常海浜への変 化過程を示すものと考えられる。なお、代表的な海浜縦 断形状を示す各時点と各時点間における変化段階および 波の状態によって区分される期間など、上述の諸要素相

笰

百の関係を総括すれば第2表の通りである.

上部浜縦断形状の変化からは、本研究中の調査期間に 当たる1年9カ月間に9回の storm cycle が識別され、 各 storm cycle の終了時に生じた顕著な縦断形状の変化 はその変化規模の違いに基づいて三つの侵食タイプに分 けられることを先に述べた.各侵食タイプの特徴を要約 して示したのが第20図である.同図によれば、縦断形状 の変化の規模が最も大きいものは侵食タイプA,逆にそ れが最も小さいものは侵食タイプCに属する.各侵食タ イプとも暴浪期直前の縦断形状は、いずれも波の静穏期 に形成されていることと下位の berm が発達しているこ とから、正常海浜と考えられる.一方、暴浪期直後の縦 断形状では、侵食タイプAおよびBの縦断形状は、下位 の berm が暴浪によって侵食されているために存在しな くなるかあるいは大規模に陸側へ後退されているので、 暴風海浜と考えられる¹⁷⁰.なお、暴浪期直後でも侵食タ

17) 侵食タイプAに属する縦断形状の変化は storm cycle IX の終了 時にみられたものであり、暴風海浜と考えられることをすでに述 べた。

Fig. 19 Summarized beach profile changes at Tatado Beach

	縦断形状	縦断形状の時点	縦断形状の 変化段階	波の状態によって 区分 される 期間	縦断形状の特徴
			}	大規模な暴浪期	下位の berm・step 破 壊海浜平滑化
cle	A (a と a'), 暴風海浜	暴浪期 (storm 通過 直後) } 第1段階	 暴浪の余波が残り静穏 期に入るまでの過渡期	下位の berm・step 形 成開始
o 1 cy	B (b と b')	波の静穏期初期	第2段階	ĺ	
sycle a	С (с と с′)	静穏期中期) } 第3段階	〉波の静穏期)下位の berm・step 発 達
torm c	D (d と d'), 正常海浜	静穏期末期 (暴浪期直前)) } 第4段階	・大規模な暴浪期	・ 下位の berm・step 破
ŝ	(a ≥ a')	暴浪期直後)	J	壞海浜平滑化

32 表 海浜純断形状の変化適種に関する総

第20図 侵食タイプとその縦断形状の変化の模式図(上部浜)

イプCの縦断形状は,暴浪期直前に存在する下位の berm が小規模な後退を示す程度の変形であり,正常海浜から 暴風海浜への変化途中の段階を示すにすぎないものと考 えられる.

4. 海浜縦断形状の変化に関する考察

4.1 正常海浜および暴風海浜の比較検討

JOHNSON (1949) を始めとして主に水槽実験結果 に 基 づいて従来から報告されてきた正常海浜および暴風海浜 と,現地における調査結果から明らかとなった正常海浜 (第19図の縦断 形状D) および 暴風海浜(第19図の縦断 形状A) とを比較すると、上部浜においては次のように 良い一致をみる.すなわち,従来から報告されてきた正 常海浜と本調査結果から得られた正常海浜はいずれも明 瞭な berm および急勾配の beach face とからなり,従来 から報告されてきた暴風海浜と本調査結果から得られた 暴風海浜とはいずれも下位の berm が侵食された結果凹 形で平滑な形態を呈す.ところが、下部浜においては両 者の正常海浜と暴風海浜を比較すると次のように著しく 異なっている.従来から報告されてきた正常海浜は凹形 で平滑な形態を呈するといわれている(第1図)が、本 調査結果から得られたそれは凸形の stepをもち起伏に富 んでいる¹⁸⁾.かつ従来から報告されてきた暴風海浜はト ラフと沿岸州からなり起伏に富むといわれているが、本 調査結果から得られたそれは平滑な海底の縦断形状を呈 している.

ここで、暴風海浜の下部浜が平滑な縦断形状を呈して いるものかどうか、本海岸以外で従来から行われてきた 野外研究について若干の検討を加える。SHEPARD (1950 a) による California, La Jolla 海岸, Scripps 海洋研究 所前の桟橋に沿って行われた測深結果からは、波高が大 である時に沿岸州の頂部とトラフの比高が小さくなって いることが読みとれる. また, INMAN (1953) による La Jolla 海岸における深浅測量結果からは、大波の後に 測量された縦断形状は大波の前に測量されたそれと比べ てさらに平滑になっている. これらの研究によれば,暴 浪期には沿岸州が侵食により破壊され,逆にトラフが埋 められ、その結果下部浜の縦断形状は平滑な形態を呈す るに至ることが考えられる.暴浪期に形成される縦断形 状は暴風海浜とみなされるので、上述の平滑な下部浜の 縦断形状は暴風海浜の特徴を表わしていることになる. そして、従来から報告されてきた暴風海浜においていず

- 407 -

¹⁸⁾ 堀川(1973)も野外調査結果をもとに、正常海浜の下部浜縦断形状に step が認められることを述べている.

れもみられるとされる沿岸州とトラフは、暴浪期間中で はなく,むしろ暴浪期直後から発達し始めるものと考え られる. 堀川(1973)と SONU(1973)によって指摘さ れているように、波の静穏期に正常海浜と暴風海浜とが 共存する事実は、上述の考えに従えばさらに 理解し易 い. すなわち,暴浪に引き続く波の静穏期には、暴風海 浜に加えて,暴浪期直後急速に発達を始める沿岸州とト ラフが存在することは十分に考えられるからである. 以 上から,波の静穏期にみられるといわれる暴風海浜は、 暴浪期に形成されるものではなく、暴浪期直後から波の 静穏期にかけて急速に形成されるものであると考えられ る.

4.2 海浜縦断形状の変化と入射波との関係

storm cycle IX に当たる期間に上部浜と下部浜の縦断 形状の変化が4段階に区分でき, storm cycle 開始時ある いは終了時である暴浪期直後の縦断形状(第19図の縦断 形状A)は暴風海浜、その間に当たる波の静穏期の縦断 形状(第19図の縦断形状Dおよび縦断形状B・C)は正 常海浜およびそれへの変化過程を示すことを先に述べ た.第3表に storm cycle IX にほぼ相当する期間におけ る波の特性・日本に接近および上陸した storm の種類お よび上部浜と下部浜の縦断形状の変化に対応する各期間 を示した.波の特性としては日平均深水最大波高($\overline{H_0}$ max), 日平均最大波周期(\overline{T} max),それに波形勾配($\overline{H_0}$ max) $\overline{L_0}$ max)が示してある.

Storm cycle IX の開始時(1972年7月17日)は第21図 に示すような台風6号に伴う暴浪期直後に、その終了時 (9月18日)は台風20号に伴う暴浪期直後に一致してい る. なお、台風7・9号に伴う余波は7月17日から24日 まで続いている.静穏期に通常観察できる波高19)は1m 以下であるので、単純な目安ではあるが、波高2.5m 以 上を示す大きな波高の日は、上述の暴浪期および余波が 残っていた7月13日から24日にかけて7日あり、さらに 通常観察できる波の周期は5-8秒であるので、周期10.0 秒以上を示す長い周期の日も7日ある. すなわち, この 期間には波高が大きく周期の長い波が入射している. 一 方,台風20号に伴う波は9月15日から17日にかけて3日 間連続する、この期間に波高2.5 m以上を示す日は2日 あり²⁰⁾, 周期が約7秒前後と上述の storm cycle 開始時 の波の周期と比べて短かい.従って, storm cycle IX の 終了時直前の波形勾配の値は3日のうち2日までが0.03 以上であるが、むしろ開始時前後の波形勾配は、 0.025 未満の値を示す日が13日のうち11日にも達する. 明らか に、JOHNSON (1949)の述べている暴風海浜の形成要因 の限界値(波形勾配が0.025)末満の波の入射条件下で も、暴風海浜が形成されている.

さらに、第3表に示した通り暴浪期および暴浪の余波 もなくなった波の静穏期(7月25日-9月14日)には、波 高は全期間を通じて小さく、2.0m以上を示すのは8月 11日にすぎない.また周期の短いものが多く、特に6.0 秒末満を示す日が13日もあり、その結果0.03以上の波形 勾配の値を示す日が8日にものぼる.この波の静穏期に は0.03以上の波形勾配の値を示す日が実際に存在するに もかかわらず暴風海浜は形成されずに、むしろ先に述べ た通り berm が海側へ前進して正常海浜が形成されてい る.以上から、波形勾配が大きい時でさえも、波高が小 さければ暴風海浜が形成されずに、正常海浜が形成され る.従って、正常海浜と暴風海浜の形成要因としては波 高の規模の方が重要であって、波形勾配は重要でないこ とが考えられる.

すでに1.1節において、筆者は正常海浜と暴風海浜の 形成要因について, SHEPARD and La FOND (1940) およ びほかの野外研究をもとに推察を試みた、その結果、波 高が大きくかつ周期の長い波の入射条件下に暴風海浜が 形成され、波高が小さくかつ周期の短い波の入射条件下 に正常海浜が形成されることがわかった. なお, 暴風海 浜と正常海浜の形成に対して波高の規模が重要であるこ とは予想される通りであるが、波の周期の長短も重要で あることは注目に値する. そこで、本調査結果について みると, storm cycle IX の開始時の波 (第3表)は, 波高 が大きくかつ周期の長い波が多く、上述の野外研究から 推察される内容と良い一致をみる.一方,その終了時の 波は、波高が大きいが周期のやや短いものであり、上述 の内容と必ずしも一致しない. これらのことから,暴風 海浜の形成には、波高の大きくかつ周期の長い波の入射 が必要な条件ではあるが、波高の大小の違いの方が周期 の長短の違いに比べ、さらに重要な要因であると考えら れる.

ところで, KING (1959) は, beach slope²¹⁾の勾配と入 射波の波形勾配,波長および実験に用いた砂の粒径との 間に密接な関係が認められ,その勾配の増大が波形勾配 と波長の減少および砂の粒径の増大にそれぞれ依存する と述べた.この関係は,

$$\tan \theta_b \propto L_0/H_0 \tag{1}$$

$$\tan \theta_b \propto 1/L_0 \tag{2}$$

¹⁹⁾以下、日平均深水最大波高を波高、日平均深水最大波周期を周期 と略記する場合がある。

²⁰⁾ 暴浪によって波高計が破損されたために、9月17日の波は不明で あるが、9月16日の波と比べさらに大規模なものであった。

²¹⁾ beach face と同じであり、以下では KING (1959)の beach slope を beach face と呼ぶ。

静岡県下田市多々戸海岸における海浜縦断形状の変化過程に関	トる研究	(磯部一洋)
------------------------------	------	--------

箆 3 表	storm cycle IX	にほぼ相当する期間の波の特性その他	亚塚町方
			1001001001001001001000

		第3表	storm cycle IX	にほぼ相当する	る期間の波の特性そ	の他 平塚虹	ケ浜海岸での観測値
年月日	$\overline{H_{0\text{max}}}$	$\overline{T_{\max}}_{(sec)}$	W ton•m/day•m	$\overline{H_{0\mathrm{max}}}/\overline{L_{0\mathrm{max}}}$	接近した storm の種類	上部浜縦断形状 の変化の期間	下部浜縦断形状 の変化の期間
年月日 1972. 7. 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 8. 1 2 3	$ \begin{array}{c} \overline{H_{0max}} \\ (m) \\ \hline 0.67 \\ 1.35 \\ 2.16 \\ 2.70 \\ 3.14 \\ 3.19 \\ 2.49 \\ 2.47 \\ 2.63 \\ 2.49 \\ 3.60 \\ 2.89 \\ 4.02 \\ 2.26 \\ 1.85 \\ 1.57 \\ 1.14 \\ 0.79 \\ 0.82 \\ 1.28 \\ 0.98 \\ 0.87 \\ 0.91 \\ 1.21 \end{array} $	第3表 $\overline{T_{max}}$ (sec) 6.2 6.6 5.9 13.0 11.7 9.7 9.7 9.7 10.5 13.0 11.4 11.9 11.1 9.0 7.7 10.5 9.7 9.7 9.7 10.5 13.0 11.4 11.9 11.1 9.0 7.7 9.7 9.7 10.5 13.0 11.4 11.9 10.5 9.7 9.7 9.7 10.5 13.0 11.4 11.9 10.5 9.7 9.7 10.5 13.0 11.4 11.9 10.5 9.7 9.7 10.5 9.7 9.7 10.5 9.7 9.7 10.5 9.7 9.7 9.7 9.7 10.5 9.7 8.5 9.4 6.3 4.2 5.7 8.0 4.2 5.7 8.0 4.2 5.7 7.6	$\begin{array}{c} \text{storm cycle IX} \\ \hline \\ $	にほぼ相当する $\overline{H_{0max}/L_{0max}}$ 0.0112 0.0199 0.0398 0.0102 0.0147 0.0217 0.0170 0.0144 0.0100 0.0123 0.0163 0.0150 0.0318 0.0244 0.0108 0.0107 0.0101 0.0057 0.0132 0.0465 0.0193 0.0087 0.0077 0.0134	5 期間の波の特性そ 「初間の波のた storm」 「の渡辺」 6 7 号 6 7 号 台台風風7 · 9 号 " " 1 一日 日 1 1	の他 平塚虹 上 か変化の期間 「変化」 2 3 4 1 5 -→ 6 -→ 1 6 -→ 1	か浜海岸での観測値 下部浜縦断形状 の変化の期間 変化①
4 5 6 7 8 9 10 11	0. 97 1. 03 1. 16 1. 35 1. 42 1. 44 1. 84 2. 07	8.5 12.3 12.9 10.3 7.2 5.4 4.3 5.1	$\begin{array}{c} 6.74 \times 10^{5} \\ 1.10 \times 10^{6} \\ 1.46 \times 10^{6} \\ 1.58 \times 10^{6} \\ 1.22 \times 10^{6} \\ 9.43 \times 10^{5} \\ 1.23 \times 10^{6} \\ 1.84 \times 10^{6} \\ \end{array}$	0.0086 0.0044 0.0045 0.0082 0.0176 0.0317 0.0638 0.0510	台 風 13 号 日本海の低気圧 ″	7 ↓ ↓	
12 13 14 15 16 17 18 19 20 21 22	$ \begin{bmatrix} 1.42\\ 1.34\\ 1.51\\ 1.43\\ 1.50\\ 1.42\\ 1.22\\ 1.28\\ 1.56\\ 1.43\\ 0.72 \end{bmatrix} $	$\begin{array}{c} 5.8\\ 5.4\\ 9.3\\ 9.7\\ 12.1\\ 12.2\\ 10.9\\ 4.5\\ 4.8\\ 7.4\end{array}$	$\begin{array}{c} 9.85 \times 10^{5} \\ 8.17 \times 10^{5} \\ 1.79 \times 10^{6} \\ 1.67 \times 10^{6} \\ 2.29 \times 10^{6} \\ 2.07 \times 10^{6} \\ 1.37 \times 10^{5} \\ 8.14 \times 10^{5} \\ 9.23 \times 10^{5} \\ 8.27 \times 10^{5} \\ 3.23 \times 10^{5} \end{array}$	$\begin{array}{c} 0.0271\\ 0.0295\\ 0.0113\\ 0.0097\\ 0.0066\\ 0.0066\\ 0.0236\\ 0.0494\\ 0.0398\\ 0.0084 \end{array}$		8	2
23 24 25 26 27 28 29 30 31 9. 1 2	$ \begin{bmatrix} 0.69\\ 0.71\\ 0.79\\ 1.32\\ 1.40\\ 0.70\\ 0.80\\ 0.46\\ 0.84\\ 0.47\\ 0.48 \end{bmatrix} $	$\begin{array}{c} 9.0\\ 8.0\\ 7.2\\ 5.1\\ 5.4\\ 6.0\\ 7.5\\ 8.1\\ 5.4\\ 6.7\\ 7.8\end{array}$	$\begin{array}{c} 3.\ 61\times10^5\\ 3.\ 40\times10^5\\ 3.\ 79\times10^5\\ 7.\ 49\times10^5\\ 8.\ 92\times10^5\\ 2.\ 48\times10^5\\ 4.\ 04\times10^5\\ 1.\ 44\times10^5\\ 3.\ 21\times10^5\\ 1.\ 51\times10^5\\ 1.\ 51\times10^5\\ \end{array}$	$\begin{array}{c} 0.\ 0055\\ 0.\ 0071\\ 0.\ 0098\\ 0.\ 0325\\ 0.\ 0308\\ 0.\ 0125\\ 0.\ 0091\\ 0.\ 0045\\ 0.\ 0185\\ 0.\ 0067\\ 0.\ 0051\\ \end{array}$		$\downarrow \\ 9 \\ \downarrow \\ \uparrow \\ 10 \\ \downarrow$	
3 4 5 6 7 8 9 10 11 11 12 13	0.46 0.58 0.64 0.91 0.75 0.71 0.60 1.09 0.80 0.76	7.9 6.7 7.3 8.7 7.0 6.6 8.8 6.8 6.8 6.8 6.2 7.6	$\begin{array}{c} 1.\ 41\times10^5\\ 1.\ 90\times10^5\\ 2.\ 52\times10^5\\ 6.\ 07\times10^5\\ 3.\ 32\times10^5\\ 2.\ 80\times10^5\\ 2.\ 67\times10^5\\ 6.\ 81\times10^5\\ 3.\ 23\times10^5\\ 3.\ 99\times10^5\\ 5.\ 30\times10^5\\ \end{array}$	$\begin{array}{c} 0.\ 0047\\ 0.\ 0083\\ 0.\ 0077\\ 0.\ 0077\\ 0.\ 0098\\ 0.\ 0104\\ 0.\ 0050\\ 0.\ 0151\\ 0.\ 0142\\ 0.\ 0072\\ 0.\ 0072\\ 0.\ 0100\\ \end{array}$			
13 14 15 16 17 18	0.91 0.71 1.96 3.43 欠測	7.0 7.2 7.5	$\begin{array}{c} 2.97 \times 10^{5} \\ 2.33 \times 10^{6} \\ 7.43 \times 10^{6} \end{array}$	0. 0093 0. 0242 0. 0391	台風 20 号 <i>"</i> "	↓ ↑ 13 ↓	

- 409 -

tan $heta_b \propto \mathit{dm}$

のように表現される.

- ここで $\tan \theta_b$: beach face の平均勾配
 - H_0/L_0 : 深水波の波形勾配

dm: 砂の粒径 (L)

野外の同一海岸において、短期間内に生ずる beach face の勾配の変化を検討する際には、海浜砂の粒径はほぼ一 定とみなすことが可能である.そこで、beach face の勾 配変化の要因は、波形勾配と波長だけということにな る.(1)式と(2)式をみると、互いに矛盾する内容が含まれ ている.すなわち、波長が大になれば、(1)式からは勾配 が大に、(2)式からは勾配が小になる.両方の式が矛盾し ないためには、波長が大きくなる時に波高も波長以上に 大きな増大率を示す必要があり、一方波長が小さくなる 時には波高も波長以上に大きな減少率を示す必要があ る.

以上述べたことから, beach face の平均勾 配 の 変 化 は、入射波の波高と周期または波長の変化と関連するも のであるが、特に波高の変化と密接に関連すると考えら れる. 従って、beach face の平均勾配変化とこれらの要 因との関係は、砂の粒径 *dm* を一定とすれば、

$$\tan \theta_b \propto \frac{1}{H_0^n T} \tag{3}$$

で示される.

ここで
$$n>1$$

T: 波の周期 (T) (3)式の右辺の *H*₀"*T* に示されている波の特性は,次の(4)

式に示される波のエネルギー量に近似する.

$$W = \frac{1}{32} \frac{\rho g^2}{\pi} H_0^2 T \tag{4}$$

ここで ρ:流体の密度 (ML⁻³)

π:円周率

 (4)式は単位時間に単位幅当たりに輸送される平均の波の エネルギー量W(土木学会,1963)であり、エネルギー フラックスと呼ばれている。(3)式のnを2とみなせば、
 (3)式は、

$$\tan \theta_b \propto \frac{1}{W} = \frac{32\pi}{\rho g^2 H_0^2 T} \tag{5}$$

のように表現できる.

以上から、beach face の平均勾配 tan θ_b とエネルギー フラックスW との間には密接な関係があることが考えら れる. 次に、このことを storm cycle IX にほぼ相当する 期間をモデルとして検証する. beach face の一部分の平 均勾配は、高度 0-1 m の値を用いた. これは縦断形状 に berm edge および runnel が現われた時に、そこの勾 配を採用することを避けるためである. beach face の平 均勾配 tan θ_b とエネルギーフラックス W との変化を示 したのが、第22図である. なお、(5)式の波高と周期とし ては、日平均深水最大波高 H_0 max と日 平均最大波周期 T_{max} を用いた.

これによれば, beach face の平均勾配は storm cycle IXの開始時および終了時である暴浪期直後に小さく, 静 穏期に大きい. 一方, エネルギーフラックスは明らかに 暴浪期およびその直後で余波の残る期間に大きく, 波の 静穏期に小さい. すなわち, beach face の平均勾配が増 大または減少する時にエネルギーフラックスは減少また は増大するというように, 両者の変化の位相がほぼ一致 する. 以上のことから, beach face の平均勾配はエネル ギーフラックスの変化に対応して変化を生じており, (5) 式に示されるように両者間に明らかに有為な相関が存在 する.

さらに、下部浜縦断形状のうち外浜から沖浜にわたる 部分について、その平均勾配($\tan \theta_s$)の変化を求め,第 22図に併せて示した. そこは波の静穏期における砕波帯 の海側に当たり、入射波の変化に対応して変形を示す所 と考えられる. この場合の下部浜縦断形状の平均勾配は 深度2-5mにおける値であるが、これは縦断形状に step が現われた時に、その stepの頂部の勾配を採用すること を避けるためである. なお, storm cycle IX の開始時か ら暴浪の余波が残る10日間には、深浅測量が行われてお らず、下部浜の平均勾配の変化は不明である。第22図に よれば、 storm cycle IX に相当する期間に、 下部浜の縦 断形状の平均勾配の変化とエネルギーフラックスの変化 との間に、明らかに相関が認められる.従って、海側に 向かって傾斜する beach face に加えて下部浜の縦断形 状の一部分も、エネルギーフラックスの変化に対応し て、その勾配を次のように変化させていることがわか る. 暴浪が入射してエネルギーフラックスが大になると これら両者の平均勾配は小さくなり、逆に波が静穏とな りエネルギーフラックスが小さくなると両者の平均勾配 は大きくなる.

正常海浜と暴風海浜の形成要因としては、波高の規模 の違いの方が周期および波長の長短の違いよりも重要で あることを述べた.このことから、エネルギーフラック スが上述の海浜の勾配変化の要因同様に、海浜の形成要 因としても重要なものであると考えられる.以下では本 調査期間中に上部浜縦断形状の変化から識別できた9回 の storm cycle とエネルギーフラックスとの関係を考察 する.

storm cycle の終了時と次の storm cycle の開始時と

- 411 -

ここで $\tan \theta_b$: beach face の平均勾配, $\tan \theta_s$: 下部浜陸寄り部分の平均勾配

storm cycle 名	年月日	storm の種類	(m)	$\overline{T_{\max}}_{(\mathrm{sec})}$	W (ton·m/day·m)	侵食タイプ
I	1971.6. 4	低気圧	3.11	6.0	4.89×10 ⁶	С
п	8. 4 – 5	台風19号	4.49*	11.7*	1.99×10*	В
ш	8.27	台風23号	2.27	12.0	5. 21×10^{6}	С
	8.31	台風23号	4.57	11.0	1.94×10^{7}	В
IV	1972.1.12	低気圧	3. 52	12.2	$1.27 imes10^7$	В
v	2.14	低気圧	3.89	9.6	$1.22 imes10^7$	В
VI	5. 1	低気圧	2.05	6.7	2.37×10^6	С
VII	6.8	低気圧	2.86	7.1	4.89×10^{6}	C
VIII	7.15	台風6号	3.14	11.7	9.7 $2 imes10^6$	В
IX	9.16–17	台風20号	3.43**	7.5**	7.43×10 ^{6**}	Α

第十衣 茶夜による頭者な腕側形状の変化時にわりる彼の特	第4表	表 暴浪に	よる	顕者	な额	断形	犬の	変化	時にお	ける	う波	の衆
-----------------------------	-----	-------	----	----	----	----	----	----	-----	----	----	----

* 8月5日の波の特性

** 9月16日の波の特性

は、storm 通過後最初に行われた測量時をもって表わす と述べた通りである. storm 通過後最初に行われた測量 は、storm に伴う暴浪の最大の期間には行われ て お ら ず、暴浪期直後で相対的に波が静穏となった静穏期初期 に行われたものばかりである.従って、暴浪による顕著 な縦断形状の変化の生じた時は, storm cycle の終了時 とは必ずしも一致しない. そこで, 9回の storm cycle の終了時について現地観察の結果と気象資料(気象庁, 1972・1973)とから,その縦断形状の変化の生じた時を 求めると,第4表の通りである.また,その時の波の特 性と侵食タイプを併せて示す. なお, storm cycle Ⅲ の 終了時のものについては,一旦侵食されかかった8月27 日とその直後に大規模に侵食された同月31日の2日につ いて示す. また, storm cycle IX の終了時直前の波のエ ネルギーフラックスは,最も顕著な縦断形状の変化を示 した9月17日の波の資料が得られていないため,代わっ て9月16日の波をもって代表させる.

第4表によると、波のエネルギーフラックスWの値の 大小から、暴風海浜となるもの(侵食タイプ A および B)と暴風海浜への変化過程にあるもの(侵食タイプ C)との違いが明瞭に区別される.すなわち、暴風海浜 となるものは、7.43×10⁶ ton·m/day·m以上の波のエネ ルギーフラックスの値を示す波の入射条件下で形成さ れ、一方暴風海浜への変化過程にあるものは、5.21× 10⁶ ton·m/day·m以下のその値を示す波の入射条件下で 形成されている.なお、上述の中間域のその値を示す波 の入射条件下では、暴風海浜が形成されるかどうか不明 である.

また第4表によれば侵食タイプBが生じた暴浪期にお ける波のエネルギーフラックスは、侵食タイプAが生じ た暴浪期におけるそれよりも常に大きい. 第20図から明 らかなように侵食タイプAを示す時期における縦断形状 の変化の規模は、侵食タイプBのそれより大きく、波の エネルギーフラックスの相対的に小さな時に縦断形状が 逆に大規模に変化することになり、先に述べたようにエ ネルギーフラックスと縦断形状の変化との間に相関が認 められたことと明らかに矛盾する.これには,侵食タイ プAすなわち storm cycle IX の終了時直前の暴浪期であ る1972年9月16日と17日のうち、波がさらに大きくなっ た17日の波は観測されておらず、従って第4表に9月16 日に観測された小さな波のエネルギーフラックスの値の 方が示されたことに問題があると考えられる. ちなみ に, storm が現地へ最も接近した9月16日22時のHomax と T max はそれぞれ 5.05m, 7.4秒であり, この観測直 後には台風の進行に伴ってさらに発達した暴浪によって 波高計が破壊されてしまった.

4.3 正常海浜と暴風海浜の形成

9回の storm cycle のうちから代表的な例としてstorm

cycle IX をとりあげ、第19図に示された縦断形状Aおよ びDが暴風海浜と正常海浜とそれぞれみなされることを 先に述べた。この縦断形状Dは下位の berm と stepが存 在するために相対的に起伏に富むことに特徴がみられ、 逆に縦断形状Aは下位の berm と stepが侵食されて消失 し、砂浜全体が凹形で平滑となったことに特徴がみられ る、そして、これらの縦断形状は波のエネルギーフラッ クスと次のように密接な関係が認められることも述べ た. すなわち, 波のエネルギーフラックスが大きくなっ てある限界値を越えるような条件下で縦断形状Aが形成 され、一方波のエネルギーフラックスの小さな状態が続 く条件下で縦断形状Dが形成される。ここでは縦断形状 Dが形成された storm cycle IX の中間時期に関する波の エネルギーフラックスおよび縦断形状Aが形成された storm cycle IX の終了時直前の暴浪期の波のエネルギー フラックスと縦断形状の形成との関係について考察を進 める.

縦断形状DとAが形成された時の波の特性等を第5表 に示す.なお,縦断形状Dが形成された時の代表的な波 として,1972年9月14日0-22時にかけた2時間ごと最 初の10分間に観測された時の波を,一方縦断形状Aの形 成された時の波として,1972年9月16日12-22時にかけ た同様の10分間に観測されたそれを平均して使用する.

砂浜海岸へ入射してきた波(深水波)は、深水波長の 半分以下の深度に達すると変化を遂げ、浅水波とみなさ れるようになる.第5表によれば、縦断形状Dと縦断形 状Aが形成された時の波についてそれらが浅水波となる のは、深度55.0m、深度43.9mであり、本研究のための 深浅測量の限界深度とした10.0mでは、いずれも浅水波 となっている.この浅水波のもつエネルギーの一部は海 岸に向かって進行するうちに次のような海底砂の移動に よって消費されるはずである.この砂の移動状況は、こ れまでに本海岸の沖浜における筆者による潜水観察によ って確認されている(磯部、1971).すなわち、波の峰の 通過時に陸側へ、逆に波の谷の通過時に海側へ海底砂が 移動し、その結果種々のタイプの砂れんが沖浜の海底に 形成される.入射波が深度10mに達する間に、波のエネ ルギーの一部はすでに減衰されているはずであり、さら

縦断形状の 形成時の波	観測日時	h (m)	$H^{1/3}$ (m)	$\begin{array}{c} T \frac{1}{3} \\ (\text{sec}) \end{array}$	$\begin{array}{c c} H_0^{\frac{1}{3}} \\ (m) \end{array}$	$\begin{array}{c} L_0^{1/3} \\ (m) \end{array}$	<i>hb</i> (m)	W (ton·m/sec·m)
縦断形状D	1972. 9. 14 0 –22時	20	0.45	8.4	0.50	110.0	1.3	2.05
縦断形状A	1972. 9. 16 12–22時	20	2.14	7.5	2.36	87.8	4.4	40.70

第5表 縦断形状DとAの形成時における波の特性

平塚虹ケ浜海岸での観測値

Ø

に第19図に示された縦断形状AおよびD上の深度10mか ら砕波点にかけた浅海底面でもその一部は減衰されるは ずである.本研究では,減衰がさらに顕著となる深度 10mから砕波点にかけた海底面における波のエネルギー 減衰率に関する考察を行う.

単位時間に単位幅当たりに輸送される平均のエネルギ 一量(エネルギーフラックス)Wは(4)式に示す通りであ る. このエネルギー量は、微小振幅波理論(Small amplitude wave theory あるいは Airy wave theory)によれ ば砕波点に達するまでその全量が伝播されるものと仮定 されている.ところが現実には上述のように海底面付近 で波のエネルギー量の一部が減衰されているとみなさ れ、その減衰量は次式に示される摩擦応力に比例するも のと考えられる.

$$\tau = f \rho U_0^2 \tag{6}$$

ここで τ:砂面の単位面積当たりに作用する摩擦応力 (ML⁻¹T⁻²)

f: 摩擦係数

ρ: 流体の密度 (ML⁻³)

 U_0 :海底面における水粒子の水平速度 (LT⁻¹) (6)式の ρ を一定とみなせば、摩擦応力 r は U_0 だけに よって変化する.従って、 U_0^2 の深度ごとの変化を求め れば、それは摩擦応力 r の変化を示すものであり、入射 波のエネルギーの減衰はこれに比例するものと考えられ る.そこで、 U_0 を波の理論式から計算によって求め る ことにする.(6)式の U_0 を海底面における水粒子最大 水 平軌道速度 Um とすれば、微小振幅波理論によって Umは次式のように求められる(十木学会、1963).

$$Um = \frac{\pi H}{T \sinh \frac{2\pi h}{I}} \tag{7}$$

砕波点近くの非常に浅い深度まで入射した 波の 性 質 は、微小振幅波理論によっては現実にさらに近づけて説 明できず、孤立波理論 (Solitary wave theory) によって 説明しなければならない. 従って、そのように浅い深度 まで入射した波の Um を(7)式から求めることはできない ので、代わって孤立波理論から求めることにする. 孤立 波理論の適用可能な水理条件を示すと、

$$T\frac{C}{h} > \frac{10}{Mm}$$
 (8)

のようになる (Inman, 1957).

ここで h: 波の谷から測った水深(L)

C: 波速で、 $C = \sqrt{g(h+H)}$ (LT⁻¹) Mm: 相対波高 ($\gamma = H/h$)の関数できまる値であ り、次の Nm とともに次式のように示され、 MUNK (1949) による Mm および Nm と γ と

$$\begin{split} \gamma &= \frac{Nm}{Mm} \tan^{1/2} \left[Mm(1+\gamma) \right] \\ Nm &= \frac{2}{3} \sin^2 \left[Mm \left(1 + \frac{2}{3} \gamma \right) \right] \end{split}$$

(8)式が成立する深度すなわち非常に浅い深度を示す下部 浜においては、孤立波理論を用いて Um を計算によって 求める.そして、波の峰の通過時に生ずる陸側への最大 水平軌道速度 Um は、MUNK (1949) による孤立波理論に 基づいて水粒子の陸側への移動速度 Umax から、水粒子 の海側への戻り流れによる移動速度 Ur を差引いて、

$$Um = U_{\max} - Ur$$
 (9)
ように求める. この $U_{\max} \ge Ur$ は、さらに

$$U_{\max} = \frac{1}{2} CNm$$

$$Ur = \frac{4h}{T} \sqrt{\frac{H}{3h}}$$

の両式によって求められる.

以上の諸式を用いて,深度10mから砕波点にかけた海 底面における水粒子最大水平軌道速度Umの変化を明ら かにしよう.まず縦断形状Aの形成時の波としては第5 表を用い,微小振幅波理論の適用範囲の波については(7) 式を,一方孤立波理論の適用範囲の波については(9)式を 用いて,深度ごとの Um^2 をそれぞれ計算する.また縦断 形状Dの形成時の波としても第5表を用い,同様の方法 によって, Um^2 をそれぞれ計算する.なお,砕波点の深 度 hb は, Мимк(1949)による次式から求められる.

$$\frac{hb}{Hb} = 1.28$$

ここで Hb: 砕波高 (L)

次に,深度10mの地点の値を $Um10^{2}$ とし,これと各深 度における Um^{2} の値との比 $Um^{2}/Um10^{2}$ を求めてこれを 第6表に,またこれを図に表わして第23図にそれぞれ示 す.まず第6表によれば各深度における Um^{2} の値は,深 度の減少に伴って増加する.さらに第23図によれば,各 深度の Um^{2} の値と $Um10^{2}$ の値との比は,深度の減少方 向,すなわち陸側へ向かうにつれて明らかに増大してい る.特に縦断形状Dで砕波直前の非常に浅い深度におい てはこの増加傾向が著しい.ここで ρ を一定とみなせ ば,(6)式により摩擦応力 τ が深度の減少に伴って急激に 増加することがわかる.

上述の通り微小振幅波理論によると、波のエネルギー フラックスWは、砕波点に達するまでその全量が減衰さ れずに伝播されるものと仮定されているのであるが、現 地の海底面においては摩擦応力 r に速度と長 さの 次元 (LT^{-1} ·L) をもつ係数 *K* を乗じて得られるエネルギー量

第6表 深度ごとの Umの変化

縦断形状Dの形成時の波

縦断形状Aの形成時の波

h	Um	Um^2	$Um^{2}/Um^{1}0^{2}$	波の理論式
(m)	(m/sec)	(m^2/sec^2)		適用範囲
1.5	1.05	1.100	30.60	S
2.0	0.86	0.740	20.10	S
2.5	0.70	0.490	13.60	s
3.0	0.56	0.310	8.61	S
3.5	0.48	0.230	6.39	s
4.0	0.41	0.170	4.72	S
4.5	0.38	0.140	3.89	A
5.0	0.35	0.120	3.33	A
5.5	0.32	0.100	2.78	A
6.0	0.29	0.084	2.33	A
6.5	0.28	0.078	2.17	A
7.0	0.26	0.068	1.89	A
7.5	0.24	0.058	1.61	A
8.0	0.23	0.053	1.47	A
8.5	0.22	0.048	1.33	A
9.0	0.21	0.044	1.22	A
9.5	0.20	0.040	1.11	A
10.0	0.19	0.036	1.00	A

h	Um	Um^2		波の理論式
(m)	(m/sec)	(m^2/sec^2)	$Um^2/Um10^2$	適用範囲
4.5	1.58	2.500	3.62	S
5.0	1.51	2.280	3.30	S
5.5	1.41	1.990	2.88	s
6.0	1.32	1.740	2.52	Α
6.5	1.21	1.460	2.12	Α
7.0	1.13	1.280	1.86	A
7.5	1.05	1.100	1.59	A
8.0	1.00	1.000	1.45	A
8.5	0.96	0.920	1.33	A
9.0	0.91	0.830	1.20	A
9.5	0.88	0.770	1.12	A
10.0	0.83	0.690	1.00	A

S:孤立波 A:微小振幅波

Kr が減衰されているはずである.従って,砕波点まで伝播される波のエネルギー量は,各深度ごとにKr を求め, かつ積算した量 Σ Kr を W から差引いたもの,すなわち $W-\Sigma$ Kr として示される.以上から,第23図に実線で示された2本の曲線は,深度10mから砕波点にかけて生ずる波のエネルギー減衰率の変化を表わすものと考えられる.

さらに、第23図に示された破線は、波のエネルギー減 衰率に関する深度3mおよび10mの位置と第19図の起点 から200mおよび500mの位置とがそれぞれ一致するよう に工夫し、かつ第19図の起点から150-500mにかけた350 m間の縦断形状DおよびAを書き入れたものである.こ れによれば、縦断形状Aの形成時の波に関するエネルギ ー減衰率は、縦断形状Aの下部浜の一部分の形態の特徴 にほぼ一致するとみなせる. また, 縦断形状Dの形成時 の波に関するエネルギー減衰率も、縦断形状Dの下部浜 の一部分の形態のそれにほぼ一致するとみなせる.従っ て、下部浜に関する縦断形状AおよびDはそれらの形成 時の波のエネルギー減衰率と密接に関連した形態を示す ものである. さらに、上部浜に関する縦断形状Aおよび Dも、4.2節における考察結果から、それらの形成時の 波のエネルギー減衰率と密接に関連した形態を呈すもの と考えられる.

5. 結 論

上部浜および下部浜の縦断形状の測量を1971年3月か ら1972年11月にかけた期間に行った結果,そこにおける 変化過程が明らかにされ,かつ9回の storm cycle が確 認された(第12図).各 storm cycle の開始時あるいは終 了時の直前には、いずれも storm に伴う暴浪期間中に砂 浜が大きく後退している(第13図).一方,各 storm cycle の中間時期には波の静穏期に砂浜が大きく前進している が、次の暴浪期の開始により、再び急速に砂浜が後退す る.この顕著な砂浜の後退は、現地における観察結果か ら判断すると、1-2日のように極く短時間に生じてい る.そして、縦断形状の変化はその規模の違いに基づい て3タイプ(侵食タイプA・B・C)に分けることがで きる(第20図).このうち、その規模の最大のものは侵食 タイプA、最小のものは侵食タイプCである.

9回の storm cycle のうちから, storm cycle IX を代表 的な例とみなし,その期間の縦断形状の変化について検 討を加えた.その結果,縦断形状の変化過程は上部浜お よび下部浜とも第1表および第2表に示したように4段 階に区分でき,各段階に対応する縦断形状の特徴は,第 19図に要約された通りである.縦断形状Aは暴風海浜, 縦断形状Dは正常海浜,縦断形状BおよびCは暴風海浜 から正常海浜への変化過程を示すものと考えられる. さ らに,侵食タイプAおよびBの暴浪期直後の縦断形状は 暴風海浜とみなされる.一方,侵食タイプCの暴浪期直 後のそれは,正常海浜から暴風海浜への変化過程を示す ものと考えられる.

ここで、従来から報告されてきた正常海浜および暴風 海浜と本調査結果から明らかとなったそれらとを比較す ると、上部浜においては両者の正常海浜と暴風海浜はほ ぼ一致する.しかし、下部浜においては、次の通り著し く異なっている.すなわち、従来報告されてきたところ によれば、正常海浜においては凹形で平滑な縦断形状 を、暴風海浜においては沿岸州とトラフからなり、やや 起状に富む縦断形状を呈すといわれている.これに対し て本調査結果では正常海浜においては stepが存在するこ とにより、やや起状に富む縦断形状を、暴風海浜におい ては、むしろ凹形で平滑な縦断形状をそれぞれ呈してい る.

次に, storm cycle IXに当たる縦断形状の変化から縦断 形状の形成要因を考察した結果,波形勾配よりもむしろ 波のエネルギーフラックスが形成要因として重要である と考えられる.その理由は,1)波のエネルギーフラック スの時間的変化が, beach face における平均勾配および 下部浜縦断形状における陸寄りの一部分の平均勾配の変 化とほぼ一致すること,2)波のエネルギーフラックスが 正常海浜の形成された時,暴風海浜への変化過程にあっ た時,そして暴風海浜の形成された時の順に大きくなっ ていることによる.

さらに、縦断形状AおよびDの下部浜の特徴につい て、波のエネルギー減衰率から説明すれば次の通りであ る. すなわち、入射波のエネルギーは、海底面における 水粒子の最大水平軌道速度の2乗Um²に比例して減衰さ れていると考えられる.そこで、これらの縦断形状の形 成時について各深度におけるUm²と深度10m地点におけ る値 Um10² との比を求め(第6表)、そして深度10mか ら砕波点にかけたこの比の変化を曲線に表わした(第23 図).その結果、波のエネルギー減衰率の変化を示すもの とみなされる2本の曲線は、縦断形状AおよびDの下部 浜の一部分の形態とほぼ一致する.従って、本研究から 明らかとなった縦断形状AおよびDの下部浜の一部分の 形態は、波のエネルギー減衰率と密接に関連したもので あると考えられる.

文 献

荒巻 孚(1967) 日本の海岸地形. 地理, vol. 12,

p. 39-44.

- -(1971) 海岸. 犀書房, 東京, 426 p.
- BASCOM, W. N. (1964) Waves and beaches. Anchor Book Doubleday & Co. Inc., Garden City, New York, 267p.
- 土木学会(1963) 水理公式集. 603 p.
- DUNCAN Jr., J. R. (1964) The effects of water table and tide cycle on swash-backwash sediment distribution and beach profile development. *Marine Geology*, vol. 2, p. 186–197.
- HAYES, M. O. (1970) Forms of sediment accumulation in the beach zone, in MEYER, R. E., ed., Waves on beaches and resulting sediment transport, Academic Press, New York, London, p. 297–356.
- 堀川清司(1973) 海岸工学.東京大学出版会,東京, 317 p.
- 井島武士(1960) 海岸・港湾測量. 森北出版,東京, 305 p.
- INGLE Jr., J. C. (1966) Movement of beach sand. Elsevier Publishing Co., Amsterdam, London, New York, 221p.
- INMAN, D. L. (1953) Areal and seasonal variations in beach and nearshore sediments at La Jolla, California. Beach Erosion Board, *Tech. Memo.*, no. 39, 82p.
- (1957) Wave-generated ripples in nearshore sand. B. E. B., *Tech. Memo.*, no. 100, 41p.
- 磯部一洋(1971) 波による浅海底砂の移動について. 地理学評論, vol. 44, p. 605-617.
- 岩垣雄一・野田英明(1961) 海浜変形に及ぼす scale effect の研究. 京都大学防災研究所年報, no. 4, p. 210-220.
- JOHNSON, J. W. (1949) Scale effects in hydraulic models involving wave motion. Trans. Amer. Geophy. Union, vol. 30, p. 517-525.
- 木村龍二(1977) 海浜縦断形の変化について一静岡 県下田市多々戸海岸の場合一.昭和51年度 東京教育大学卒業論文,53 p.(未発表).

- KING, C. A. M. (1959) Beaches and coasts. Edward Arnold Publishers Ltd., London, 403p.
- 気象庁(1972) 気象要覧. vol. 862・864・865・ 869・870.
- ------(1973) 気象要覧. vol. 872・873・874・ 875・877.
- 小林正一(1972) 下田多々戸浜における beach profile の変動について. 昭和46年度東京教育 大学卒業論文(未発表).
- 小出 博(1973) 日本の国土 (上巻).東京大学出版 会,東京, p. 61-62.
- 町田 貞・井口正男・松本栄次・石井孝行・池田 宏(1972) 伊豆下田,多々戸海岸における 砂れん型とその配列. 地理学評論, vol. 45, p. 216-229.
- MEYER, R. D. (1936) A model study of wave action on beaches. Univ. of California, Department of Engineering, MS. Thesis.
- MILLER, R. L. and ZEIGLER, J. M. (1958) A model relating dynamics and sediment pattern in equilibrium in the region of shoaling waves, breaker zone, and foreshore. *Jour.* of Geology, vol. 66, p. 417–441.
- 茂木昭夫(1971) Ⅱ汀線と砕波帯. 星野通平編,浅 海地質学,東海大学出版会,東京,p. 109-252.
- MUNK, W. H. (1949) The solitary wave theory and its application to surf problems. Ann. New York Acad. Sci., vol. 51, Art. 3, p. 376-424.
- 尾原信彦(1937) 伊豆下田付近の海蝕段丘地形と隆 起汀線(1). 地理学評論, vol. 13, p. 243-255.
- RECTOR, R. L. (1954) Laboratory study of equilibrium profiles of beaches. B. E. B., *Tech. Memo.*, no. 41, 38p.
- Russell, R. J. (1967) River plains and sea coasts. Univ. of California Press, Berkeley and Los Angeles, 173p.
- 坂本 亨・磯部一洋(1975) 段丘変形(第四紀の変 動)について、1974年伊豆半島沖地震に関 する特別研究報告書,科学技術庁, p. 48-49.
- SAVILLE Jr., T. (1950) Model study of sand transport along an infinitely straight beach.

- 417 -

Amer. Geophy. Union, vol. 31, p. 555-565.

- Scorr, T. (1954) Sand movement by waves. B. E. B., *Tech. Memo.*, no. 48, 37p.
- SHEPARD, F. P. and La FOND, E. C. (1940) Sand movement along the Scripps Institution Pier, California. Amer. Jour. Sci., vol. 238, p. 272-285.
- ------(1950a) Longshore-bars and longshoretroughs. B. E. B., Tech. Memo., no. 15, 21p.
- (1950b) Beach cycles in Southern California. B. E. B., Tech. Memo., no. 20, 26p.
 (1963) Submarine geology (2nd ed.).
- Harper and Row, New York, 557p.
- SONU, C. J. and VAN BEEK, J. L. (1971) Systematic beach changes on the Outer Banks, North Carolina. Jour. of Geology, vol. 79, p. 416– 425.
- (1973) Three-dimentional beach changes. Jour. of Geology, vol. 81, p. 42-64.
- 角 清愛(1958) 5万分の1地質図幅「神子元島」

および同説明書. 地質調査所, 33 p.

- 武田一郎(1977) 伊豆下田,多々戸海岸における浅 海底堆積物の粒度組成および貝殻片含有率. 昭和51年度東京教育大学卒業論文,66 p. (未発表).
- 寺田 稔(1972) 神奈川県平塚海岸における垂直変 化について.地理学評論, vol. 45, p. 246-251.
- WATERS, C. H. (1939) Equilibrium slopes of sea beaches. Univ. of California, Department of Engineering, MS. Thesis.
- WATTS, G. M. (1954) Laboratory study of effect of varying wave periods on beach profiles.B. E. B., *Tech. Memo.*, no. 53, 19p.
- ZEIGLER, J. M., HAYES, C. R. and TUTTLE, S. D. (1959) Beach changes during storms on Outer Cape Cod, Massachusetts. *Jour. of Geology*, vol. 67, p. 318–336.

(受付:1978年10月6日;受理:1979年1月18日)

1. 多々戸海岸へ入射するうねり (1972年8月7日撮影)

2. 多々戸海岸へ入射する風浪 (1969年11月撮影)

1. 後浜に達する遡上波と洗われる虎石根(中央にみえる岩礁)

2. berm 上の溝を流れ下る引き波. 中央の鉛筆は長さ 15 cm