543:550.4

GSJ Optical Emission Direct-Reading Spectrograph for the Analysis of Geological Materials

Atsushi ANDO* and Kiyoji IKEDA*

Abstract

An optical emission direct-reading spectrograph, which is specially designed for the analysis of major and minor elements of geological materials, was recently set up at the Geological Survey of Japan. Analytical programs, spectral lines and detailed specifications of the instrument are described. Applications to the analysis of geological materials are also demonstrated.

1. Introduction

An optical emission direct-reading spectrograph: a direct-reader was recently set up at the Geological Survey of Japan for the analysis of a wide variety of geological materials. Up to 40 photomultipliers are installed in the GSJ direct-reader for a wide element coverage in the analytical specimens. Analytical programs, spectral lines and detailed specifications of the instrument are described.

The direct-reader was programmed for: silicate major (10 elements), silicate minor (11 elements), iron and manganese oxide (18 elements) and sulfide ore (14 elements) with five different kinds of internal standards and a mercury monitor.

Six basic exitation circuits are available: high voltage AC spark, DC arc, spark ignited uni-arc, spark ignited low voltage AC arc, high voltage AC arc and multisource.

Applications of the direct-reader to the geological materials have been reported by many workers (Ahrens and Taylar, 1961; ASTM, 1968; Ando, 1965; Danielsson, Lundgren and Sundkvist, 1959; Danielsson and Sundkvist, 1959a, 1959b; Govindaraju, 1960, 1963a, 1963b; Hasler, 1952; Hasler and Barley, 1952a, 1952b; Matsumoto, 1960; Roubault, Roche and Govindaraju, 1962/1963; Schwander and Marling, 1967; Thompson and Bankston, 1969; United Nations, 1963; Vorob'ev and Rusanov, 1964).

2. Instrumentation

2.1 Direct-reader

The direct-reader is a Nippon Jarrel-Ash "Compact Atomcounter" model 66000, a concave grating spectrograph with an electronics system.

^{*} Geochemistry and Technical Service Department.

Fig. 1 Optical system, Compact Atomcounter.

Fig. 2 Constitution of the Compact Atomcounter.

32-(382)

A light beam passes through the vertical entrance slit with refractor plate and to the grating. Exit slits with refractor plates are placed at the chosen wavelength positions on the focal curve of the spectrograph. Spectral energies are received by photomultipliers and integrated for a single explosure. Sequential readout electronics system permits the indication of integrated values both on a disital scaler (5 digits) and also on an automatic typewriter for up to 22 channels. An optical system is shown in Fig. 1 and a construction of the Compact Atomcounter in Fig. 2.

2.2 Analytical program

Four analytical programs: silicate major (A), silicate minor (B), iron and manganese oxide (C) and sulfide ore (D) are designed. Programs, wavelengths of both analytical and internal standard lines, and concentration ranges of analytical components are summarized in Table 1.

			Concentration range (%)			
No.	Com Wavel	ponent。 ength(A)	(A) Silicate major	(B) Silicate minor	(C) Iron & mang- anese oxide	(D) Sulfide ore
1 2 3 4 5	SiO_2 Al ₂ O ₃ Fe ₂ O ₃ MnO CaO	2516 x 2 3961 x 2 2599 x 2 2933 x 2 3158 x 2	$\begin{array}{rrrr} 20 & -80 \\ 0.5 & -20 \\ 0.5 & -30 \\ 0.02 & -5 \\ 0.6 & -20 \end{array}$		1 -30	0.01-10 0.01- 5
6 7 8 9 10	MgO TiO2 P2O5 Na2O K2O	2783 3685 2149 3302 x 2 4044	$\begin{array}{c} 0.25-40\\ 0.1 - 5\\ 0.1 - 1\\ 0.1 - 10\\ 0.1 - 10\\ 0.1 - 10\end{array}$		0.1- 5 0.1- 5	
11 12 13 14 15	Ni Co Cr V Cu	3414 x 2 3453 x 2 4254 3202 x 2 3247 x 2		0.0007-0.1 0.0007-0.1 0.001 -0.1 0.0025-0.1 0.0003-0.1	0.0007- 5 0.0007- 5 0.001 - 5 0.0025- 1 0.0003- 1	0.0007- 1 0.0007- 1 0.0003- 1
16 17 18 19 20	Pb Ba Rb B Zr	3683 x 2 5535 7800 2497 3391		0.002 -0.1 0.015 -1.0 0.001 -0.1 0.0025-0.1 0.0015-0.1	0.002 - 1	0.002 - 1
21 22 23 24 25	As Zn Sn Si Al	2349 3345 x 2 2706 2881 3944			$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.05 - 5 0.05 - 5 0.002 - 1
26 27 28 29 30	Mo Mg In Sb Bi	3170 2798 x 2 4511 2598 3067 x 2			0.001 - 1 0.0003- 1 0.001 - 1	0.001 - 1 0.01 - 5 0.001 - 1
31 32 33 34	Cd Ag Mn Sr	3261 3280 x 2 2949 4607		0.0015-0.1	0.1 -25	0.002 - 1 0.0003- 1
35 36 37 38 39 40	Hg Li Sr Co Pd Pd	4358 4972 I 3380 II x 2 4867 I 3481 I 2658 II x 2	Monitor I.S.#5 I.S.#4 I.S.#3 I.S.#2 I.S.#1			

Table 1 Analytical program-1.

地質調査所月報 (第28巻第6号)

Table 2 Analytical program—2.

Program (A) Silicate major

	Difference major		
Element	Wavelength $(\overset{\circ}{A})$	Channel No.	Dynode No.
C .	2516 2	, , , , , , , , , , , , , , , , , , , ,	1
51	2516 x 2	1	1 2
AL	3961 X Z	2	2
re	2033 x 2	3	3
Mil Co	2933 X Z	4	4
Ca Ma	3138 X Z	5	5
MQ mi	2/03	6	0 7
TT	2002	/	7
r	2149	0	0
Na V	3302 X Z	10	10
K	4044	10	10
Program (B)	Silicate minor		
Element	Wavelength(Å)	Channel No.	Dynode No.
Ni	3414 x 2	1	11
Co	3453 x 2	2	12
Cr	4254	3	13
V	3202 x 2	4	14
Cu	3247×2	5	15
Pb	3683 x 2	6	16
Ba	5535	7	17
Rb	7800	8	18
В	2497	9	19
Zr	3391	10	20
Sr	4607	11	34
Program (C)	Iron and manga	nese oxide	
Element	Wavelength(Å)	Channel No.	Dynode No.
Ni	3414 x 2	1	11
Co	3453 x 2	2	12
Fe	2599 x 2	3	3
V	3202 x 2	4	14
Cu	3247 x 2	5	15
Pb	3683 x 2	6	16
Ti	3685	7	7
P	2149	8	8
As	2349	9	21
Zn	3345 x 2	10	22
In	4511	11	28
Mn	2949	12	33
Cr	4254	13	13
Sn	2706	14	23
Si	2881	15	24
Al	3944	16	25
Mo	3170	17	26
Mg	2798 x 2	18	27
Program (D)	Sulfide ore		
Element	Wavelength(Å)	Channel No.	Dynode No.
Ni	3414 x 2	1	11
Co	3453 x 2	2	12
Fe	2599 x 2	3	3
Mn	2933 x 2	4	4
Cu	3247 x 2	5	15
Pb	3683 x 2	6	16
Sb	2598	7	29
Bi	3062 x 2	8	30
As	2349	9	21
Zn	3345 x 2	10	22
In	4511	11	28
Cd	3261	12	31
Aa	3280 x 2	13	32
Sn	2706	14	23
Internal st	andard and mon:	itor	
Element	Wavelength (Å)	Channel No.	Dynode No.
Pd	2658 x 2	I.S.#1	40

 Pd
 2658 x 2
 I.S.#1
 40

 Pd
 3481
 I.S.#2
 39

 Co
 4867
 I.S.#3
 38

 Sr
 3380 x 2
 I.S.#4
 37

 Li
 4972
 I.S.#5
 36

 Hg
 4358
 Monitor
 35

		Exit slit	Refractor Mirror		Channel No.			Dynode	Photo-		
Element	Wavelength(A)	width, (µ)	plate*	type**	A	В	С	D	I.S.	No.	multiplier
P As B Sb Sn	2149 2349 2497 2598 2706	75 75 75 75 75 75		v	8	9	9 14	9 7 14		8 21 19 29 23	HTV R 106 R 106 R 106 R 106 R 106 R 106
Mg Si Mn Cd	2783 2881 2949 3170 3261	75 75 75 75 75 75		H V	6		15 12 17	12		6 24 33 26 31	R 106 R 106 R 106 R 106 R 106
Zr Pd Ti Al K	3391 3481 3685 3944 4044	75 75 75 75 75 75	Q Q Q G		7	10	7 16		#2	20 39 7 25 10	R 106 R 106 R 106 R 106 R 106 R 136
Cr Hg In Sr Co	4254 4358 4511 4607 4867	75 25 75 75 75 75	G G G Q	V H		3 11	13 11	11	#Monitor #3	13 35 28 34 38	R 106 R 106 R 106 R 106 R 106 R 106
Li Si Fe Pd Ba	4972 2516 x 2 2599 x 2 2658 x 2 5535	75 75 75 75 75 75	G C C C G	V	1 3	7	3	3	#5 #1	36 1 3 40 17	R 106 R 106 R 106 R 106 931 A
Mg Mn Bi Ca V	2798 x 2 2933 x 2 3067 x 2 3158 x 2 3202 x 2	75 75 75 75 75 75	00000	V	4	4	18 4	4 8		27 4 30 5 14	R 106 R 106 R 106 R 106 R 106
Cu Ag Na Zn Sr	3247 x 2 3280 x 2 3302 x 2 3345 x 2 3380 x 2	75 75 75 75 75 75	00000	V H V	9	5	5 10	5 13 10	#4	15 32 9 22 37	R 106 R 106 R 106 R 106 R 106 R 106
Ni Co Pb Rb Al	3414 x 2 3453 x 2 3683 x 2 7800 x 2 3961 x 2	75 75 75 75 75 75	0 0 0 0	H	2	1 2 6 8	1 2 6	1 2 6		11 12 16 18 2	R 106 R 106 R 106 R 136 R 106

Table 3	3 8	Specifications	of	optical	and	photoelectric s	vstems.
							-

*) Q:Quartz G:Glass C:Corax **) Reflection mirror type, V:vertical H:horizontal

A selector switch permits to select instantly up to five different kinds of internal standard lines for each analytical program. Li I 4972 Å is chosen for the volatile elements, atomic lines (Co I 4867 Å; Pd I 3481 Å) and ionized lines (Sr II 3380 Å; Pd II 2658 Å) are chosen for the arc and spark exitations as internal standard. Choise of spectral lines was made on the basis of reported data (literatures are mentioned in chapter 1).

Specification details with corresponding wavelengths are shown in Tables 2, 3. Arrangement of photomultipliers along the focal curve of the spectrograph is shown in Fig. 3. Four holizontal mirrors are used to deflect the light beam to the photomultipliers. Seven photomultipliers are hunged holizontally and vertical mirrors deflect up the light beam to the photomultipliers (Fig. 4). Other photomultipliers receive spectral energy directly without auxiliary separate mirrors. Number of photomultipliers: 40 is a nearly maximal limit for this spectrograph, hence best lines have not been chosen for some elements by the room limitation around the focal curve.

地質調査所月報(第28巻第6号)

36-(386)

Fig. 4 Some photomultipliers are hunged holizontally and vertical mirrors are used to deflect the light beam to the photomultiplier.

2.3 Exitation source

The Compact Atomcounter is installed combined with Jarrell-Ash Ebert 3.4 m plane grating spectrograph as shown in Fig. 5. Both varisource units in the direct-reader

Fig. 5 Floor plan for a spectrochemical laboratory around a Ebert 3.4 m grating spectrograph and a Compact Atomcounter.

37-(387)

Table 4 Parameter specification of varisource units for the GSJ direct reader.

Nakanodenshi Multi-source Unit					
Multi-source	Input: Single phase, 200V Open circuit voltage: 1KV Inductance, microhenries: 50 and 360 Capacitance, microfarad: 2-60, controlled by combination of steps, 2, 5, 5, 10, 20 and 20 Resistance, ohms: 0-200, controlled by combination of steps, residual, 2, 3, 10, 10, 25, 50 and 100				
JAco Varisource Unit, Custo	m 4075				
High voltage AC spark	Input: Single phase, 230 V at 20 amps High voltage transforming rating: 7.5 KVA Primary voltage control: Variable auto transformer Open circuit secondary voltage: 31 KV peak Maximum continuous current: 20 RF amps Added primary resistance, ohms: 6 steps, 37-13 Secondary inductance, microhenries: 6 steps, residual, 40, 155, 310, 625 and 1250 Capacitance, microfarads: 5 steps, .0025, .005, .0075, .010 and .015 Secondary resistance, ohms: 4 steps, residual, 1, 2 and 3				
DC arc	Input: Single phase, 230 V, 45 amps Open circuit terminal voltage: 280 V DC Output current rating: 2.5-30 amps Current control: Motor driven variable core reactor Ignition: Tesla coil AC ripple component: Average 3%				
Spark ignited uni-arc	Input: Single pfase, 230 V, 25 amps Open circuit terminal voltage: 280 V DC Output current rating: 1.0-8.0 amps Current control: 24 step resistor Ignitor: AC spark				
Spark ignited low voltage AC arc	Input: Single phase, 230 V, 25 amps Open circuit voltage: 280 V Output current rating: 2.0-10.0 amps Current Control: 24 step resistor, 1/3 amp steps Ignition: AC spark				
High voltage AC arc	Input: 230 V, 60 amps Open circuit voltage: 4800 and 2400 V Output current rating: 0.8-2.7 and 1.65-5.5 amps Current control: Motor driven variable core reactor Ignition: Tesla coil				

side (Multisource, Nakanodenshi) and in the Ebert side (Jaco Custom 4075) are available. A selector switch permits to select up to six basic exitation circuits. Parameter specification of varisource units is given in Table 4.

3. Application to the analysis of geological materials

3.1 Silicate major

Powdered rock sample (0.5 g) is mixed with a flux (2 g), Johnson Matthey spectrographic flux, a fused mixture of lithium tetraborate: 60%, strontium tetraborate: 30%and cobalt oxide: 10%) and funneled into a graphite crusible. A mixture is fused in a electric furnace at 1000°C for 5 minutes. After cooling a glass bead is easely pried from the botton of crusible. The bead is crushed with a tungsten carbide mortors (Elis mortor

38-(388)

Fig. 6 Working curves for some major elements, by pellet-high voltage spark method. Standard pellets of known concentrations are prepared with geochemical reference samples: W-1, G-1, G-2, GSP-1, AGV-1, BCR-1, DTS-1, PCC-1, SY-1, JG-1, JB-1 (Flanagan, 1973).

and a hand mortor), and is sieved with a 200 mesh screen. An equal amount of (0.5 g) glass powder and a graphite powder for pellet are mixed with a Spex mixer mill using a tungsten carbide capsule for 5 minutes. A mixture is then pressed into a 1/2'' diameter pellet at 80,000 lbs/inch² for 10 seconds. High voltage spark method is applied for the exitation (30 KV, 0.015 μ F, 0.9 mH, 2 Ω , Ir=4.0 A, 4 Brks/H.C. electrode gap 3 mm, exposure 20 sec. or I.S. counting control, sample pellet: upper electrode, sharpen end graphite rod: lower electrode). Good precisions of about 3% in the coefficient of variation were obtained for the determination of SiO₂, Al₂O₃, Fe₂O₃, MnO, CaO, MgO, TiO₂ and Na₂O using Co 4867 Å, Co 3453 Å and Sr 3380 Å as internal standard lines. Working curves for the rock components are shown in Fig. 6.

3.2 Minor element

Detection limits for the minor elements in D.C. arc method are presented in Table 1 (lower values in the concentration ranges), and some typical example of working curves in Fig. 7 (D.C. arc: 230 V, 8 A, electrode gap 3 mm, preburn 3 sec., exposure 60 sec.).

One disadvantage inherent in the photoelectric spectrometer is a difficulty in background estimation (THOMPSON and BANKSTON, 1969). After a exposure, the total dark current of photomultiplier tube and background signals from the D.C. arc exitation are integrated together with the spectral energy of analytical line. Integrated value of dark current and D.C. radiation signals reaches appreciable amount for prolonged exposure. Photomultiplier responce is linear, however as well known the back ground radiation

39—(389)

地質調查所月報 (第28巻第6号)

Fig. 7 Working curves for some minor elements, by powder D.C. arc method. Standard: $SiO_2+NaCl (1+1)$ base

of D.C. arc exitation is not stable hence the measurement and correction of background are necessary.

Background correction can made by monitoring on the focal curve one or several positions which are free from the line and band interference. In the analytical programs B, C and D, if a complete lacking of a element is found in the samples, a photoelectric channel which is chosen for the element is usable for the background monotoring. D.C. arc background radiation for each photoelectric channel can measure by arcing of blank samples which has the same major composition and the same buffer material. Two internal standard lines Pd 2658 Å and Pd 3481 Å can serve for the good background monitoring by conversion of an electric connection.

Acknowledgement

Grateful acknowledgements are made to Mr. Kihachiro MURAKAMI (Nippon Jarrell Ash Co., Ltd.) whose experience provided the groundwork for this instrument, and to Dr. Ken Shibata (Geological Survey of Japan) for his kind advice and for reading the manuscript.

References

AHRENS, L. H. and TAYLAR, S. R. (1961) Spectrochemical analysis. 2nd ed., 454 p., Addison-Wesley, London.

American Society for Testing Materials (1968) Methods for emission spectrochemical

40-(390)

analysis. 919 p., ASTM, Phyradelphia.

- ANDO, A. (1965) The direct-reader for the analysis of nonmetallic materials. *Analysis* and instruments (Bunseki-Kiki), vol. 3, no. 5, p. 12–20 (in Japanese).
- DANIELSSON, A., LUNDGREN, F. and SUNDKVIST, G. (1959) The tape machine-I, -A new tool for spectrochemical analysis. *Spectrochim. Acta*, vol. 15, p. 122–125.
- - and ——— (1959b) The tape machine-III, -Notes on useful corrections in spectrochemical analysis with the tape technique. *Spectrochim. Acta*, vol. 15, p. 134–137.

FLANAGAN, F. J. (1973) 1972 values for international geochemical reference samples. Geochim. Cosmochim. Acta, vol. 37, p. 1189–1200.

- GOVINDARAJU, K. (1960) Contribution a l'analyse spectrochimique des roches silicatées et des silicates naturels, dosage des éléments majeurs. G.A.M.S., p. 221–245.
- (1963a) Nouveaux progrès dans le dosage des éléments majeurs des roches par spectrométrie photo-électrique, avec le quantomètre A.R.L. *G.A.M.S.*, p. 217.
 - (1963b) Dosage des éléments de trace dans les roches silicatées par spectrométrie photo-électrique avec le quantomètre A.R.L. *G.A.M.S.*, p. 319–326.
- HASLER, M. F. (1952) Quantometry in 1952. Spectrochim. Acta, vol. 6, p. 69–79.
 and BARLEY, F. (1952a) Quantometric analysis of iron slags. Spectrographer's News Letter (ARL), vol. V, no. 2, p. 1–2.
- MATSUMOTO, C. (1960) Studies on the spectrochemical analysis of silicates (8th report) -Problems on the quantitative analysis of silicates-. Bunko Kenkyu, vol. 8, p. 74-82 (in Japanese with English abstract).
- ROUBAULT, M., de la ROCHE, H. and GOVINDARAJU, K. (1962/1963) L'analyse des roches silicatées par spectrométrie photoélectrique au Quantométre A.R.L. et son contrôle par des roches étalons. Science de la Terre, Tome IX, no. 4, p. 339-371.
- SCHWANDER, H. and MARLING, J. B. (1967) Quantitative analysis of the major and minor constituents of silicate rocks and minerals by means of direct reading spectroscopy. Jarrell-Ash reprint no. 67, p. 1–5.
- THOMPSON, G. and BANKSTON, D. (1969) Atechnique for trace analysis of powdered materials using the d.c. arc and photoelectric spectrometry. *Spectrochim.* Acta, vol. 24B, p. 335–350.

UNITED NATIONS (1963) Proceedings of the seminor on geochemical prospecting

地質調査所月報(第28巻第6号)

methods and techniques. Mineral resources development series no. 21, p. 52–56, United Nations, New York.

VOROB'EV and RUSANOV, A. K. (1964) Quantometric and spectrographic analysis of silicate rocks. Zavodsk. Lab., vol. 30, p. 945–949 (C. A., vol. 61, 12614, 1964).

地質試料分析用の GSJ・直読式発光分光分析装置について

安藤 厚・池田 喜代治

要 旨

地質試料を分析する目的でプログラムされた直読式発光分光分析装置(ダイレクトリーダー)が地質調査 所(GSJ)に設置された.この装置の分析プログラム,分析線,光学系,光電子増倍管の配置および発光源 などの概要と,地質試料分析への適用例をあげた.

分析プログラム

- A) 珪酸塩主成分 10元素 (Si, Al, Fe, Mn, Ca, Mg, Ti, P, Na, K)
- B) 珪酸塩微量成分 11 元素 (Ni, Co, Cr, V, Cu, Pb, Ba, Rb, B, Zr, Sr)
- C) 鉄・マンガン酸化物 18元素 (Ni, Co, Fe, V, Cu, Pb, Ti, P, As, Zn, In, Mn, Cr, Sn, Si, Al, Mo, Mg)

D) 硫化鉱 14元素 (Ni, Co, Fe, Mn, Cu, Pb, Sb, Bi, As, Zn, In, Cd, Ag, Sn)

内部標準元素線として,原子線 (Li 4972 Å, Co 4867 Å, Pd 3481 Å) およびイオン線 (Sr 3380 Å, Pd 2658 Å) 計5本を選択した. これらの内標線は上記の各分析プログラムと任意に組み合わせることができる.

装置は、パッシエン-ルンゲ方式、1.5 m 凹面回折格子・直読式分光分析装置 (コンパクト・アトムカウン ター、日本ジャーレル・アッシュ社製). 波長範囲 2,000-8,000 Å,分散度 5.45 (1次) および 2.7 (2次) Å/mm. 分析希望元素の増大に伴い、光電子増倍管の組み込み数は 40 本に達した.

発光源として、高圧スパーク、マルチソース、直流アークなど6種の励起回路がそなえられ、そのうち任 意の回路が選択できる.

(受付: 1976年9月29日; 受理: 1976年10月8日)