南部北上山地登米相と薄衣相のカリウム・トリウム・ウランおよび帯磁率

金谷 弘* 片田 正人**

Contents of Thorium, Uranium and Potassium, and Magnetic Susceptibility of the Permian Toyoma and Usuginu Facies in the Southern Kitakami Mountains

Hiroshi KANAYA and Masato KATADA

Abstract

The Toyoma Facies is a miogeosynclinal sedimentary facies distributed in the Southern Kitakami Mountains. The facies consists largely of mudstone, which are called "Toyoma slate", with associated sandstone and impure limestone.

Eighty-eight samples of the facies were analysed for K, Th and U by the γ -spectrometric method. There are close linear relationships between K₂O and Th, and K₂O and U in mudstone and sandstone. Since most of K₂O in the clastic sediments is contained in authigenic sericite, it is inferred that Th and U are chiefly fixed in this mineral. Average contents of the elements are 10.4 ppm Th and 2.8 ppm U for claystone and silty claystone, 4.4 ppm Th and 1.8 ppm U for siltstone and fine-grained sandstone, and 2.9 ppm Th and 1.0 ppm U for medium- to coarse-grained sandstone. The ratio of Th to U is approximately 2.5–4.0. The values of Th and U in the calcareous rocks, impure limestone and calcareous slate, show no systematic trend in the K₂O–Th and K₂O–U diagrams but deviate from the linear trends of mudstone and sandstone to Th-and U-axis sides. This evidence suggests the presence of some other minerals containing Th and U.

The abundance of the three elements in ten samples from the Usuginu Facies was also determined. The facies consisting chiefly of ill-sorted conglomerate interfingers with the lower part of the Toyoma Facies.

The values of magnetic susceptibility of the clastic sediments from the Toyoma facies range from 10 to 40×10^{-6} (emu/g). The values of some mudstones and sandstones from the lower part (subfacies) of the facies are apparently higher than those of the average values, 20×10^{-6} (emu/g) for mudstone and 14×10^{-6} for sandstone.

要 旨

南部北上帯古生層, 登**相・薄衣相の試料88個の天然 放射性3元素, カリウム・トリウム・ウランの分析を r スペクトロメトリーにより行い,同時に帯磁率,炭素も 測定した.

これら測定値を中心に考察を行ったが,登米相はアル カリに関しても特徴をもつこと,ウラン含量は普通の泥 質岩であって強還元環境下の堆積相ではないことなどが

* 物理探查部

** 地 質 部

明らかになった.また薄衣相は花崗岩礫のトリウム,ウ ランをのぞけば平均的な値を示し,これら測定値に関し ては登米相と大きな差異は認められなかった.

1. 緒 言

アスペクトロメトリー法による天然放射性元素,カリ ウム・トリウム・ウランの分析は HURLEY (1956) によ ってその可能性が示されて以来,今日では一つの確立さ れた方法として諸外国では堆積環境の推定 (たとえば (ADAMS et al., 1958)や,火成岩の成因解明の一助として 用いられている.また飛行機やヘリコプター利用により 広域地質図作成 (SCHWARZER et al., 1970) の試みその他 の目的にも広く利用されている. これらの目的のために はまず基礎的な存在量を知る必要があるが,わが国での 研究は非常に少ない.

登米相には,湊(1944)の研究以来,堆積環境に関し て問題があり,それに関連してこれらの元素をめぐる議 論が断片的になされている(近藤, 1966;神戸ほか,1969; 石原ほか, 1969;遠藤ほか, 1973).

今回筆者らは,登米相の代表的層準から88個の試料を 選び,カリウム・トリウム・ウランをrスペクトロメト リー法で測定し,また鉱物組成を間接的に推定するため 比帯磁率の測定も行った.また地球化学的資料をより完 全にするためナトリウム・炭素の分析値を加えた.

本研究は主としてこれら測定結果より登米 層 を 考 察 し、これに鏡下観察などの結果を加味した. なお地質学 的鉱物学的考察は別の機会に行う.

2. 地質および採取試料

ここでいう登米相 (Toyoma Facies) は登米粘板岩または 登米スレートと称されている南部北上山地二畳紀後期の

Distribution of the Toyoma and Usuginu Facies, and sample localities. Shadow: The Toyoma and Usuginu Facies. Numbers: Sample numbers; see the first column in Table 2.

14-(14)

南部北上山地登米相と薄衣相のカリウム・トリウム・ウランおよび帯磁率(金谷弘・片田正人)

第2図 登米相・薄衣相の模式断面および試料採取の地層・地点 Diagramatic section of the Toyoma and Usuginu Facies, and members or localities where samples were colleded. Members or localities refer to Table 1.

第1表 登米相・薄衣相の試料の岩質, 試料採取の部層・地点および試料番号 Constituents, members or localities where samples were collected, and sample numbers in the Toyoma and Usuginu Facies.

Table 1 A Toyoma Facies in Toyoma region.

Member	Claystone	Silty claystone	Siltstone	Sandstone*1	Calcareous rocks
入谷および小村沢部層 Iriya & Komurasawa Members	1—6			7—10	11* ³ 12—15* ⁴
北 沢 部 層 Kitazawa Member	16	17—21		2226 27*2	28-31*4
ナライ 沢 部 層 Naraizawa Member			32—34	35	36* ³ 37*4

*1 This sandstone is medium- to coarse-grained and is mostly calcareous; calcite, 20-30%. This is excluded from the "calcareous rocks" in this table.

*2 Alternation of silty claystone and fossiliferrous very coarse sandstone.

This is omitted from the calculation of averages (Table 4) but is included in mudstone in Figs. 5-8.

*3 Calcareous claystone; calcite, 20-70%.

*4 Impure limestone; calcite, >70%.

Sample numbers refer to the first column in Table 2.

Гable	1 B	Toyoma	Facies	in	Okatsu	region.

Locality	Claystone	Silty claystone	Siltstone	Fine sandstone	Sandstone*1	Calcareous rocks
明 神 Myojin	38—42	43, 44				
名 振 Naburi		45—59				
船 越 Funakoshi	50	51—53				
船越北方 N. of Funakoshi		54	55—57	58, 59	60, 61	62* ³ 63*4

地質調査所月報(第26巻第1号)

Member	Claystone	Silty claystone	Siltstone	Sandstone*1	Calcareous rocks
上 • 中 部 層 Upper and middle Members	64, 65	66, 67		68—70	
下 部 層 Lower Member		71, 72			73*³ 74*4

Table 1 C Toyoma Facies in Utatsu region.

Table 1 D Toyoma Facies in the other regions.

Locality	Claystone	Silty claystone	Siltstone	Calcareous rocks
米 谷 東 方 E. of Maiya	75	76	77	
薄 衣 Usuginu			78, 79	
気 仙 沼 Kesennuma		80		81*4
雪 沢 Yukisawa	82—84			85*3
姥石 峠 東 方 E. of Ubaishi-toge		86, 87		
上 有 住 Kamiarisu		88		

Table 1 E Usuginu Facies.

Locality	Granitic rocks	Volcanic and hypabyssal rocks	Matrix	Sandstone
米 谷 東 E. of Maiya		89, 90	91	
姥 石 峠 東 方 E. of Ubaishi-toge	92—94	95		96—98

堆積岩であり,薄衣相(Usuginu Facies)とは同山地のほ ぼ同時期の薄衣礫岩と称されている堆積岩である. これ らについては従来さわめて多くの研究論文がある. 以下 に湊(1944),神戸ほか(1969),加納(1971), 片田ほか (1973),柴田(1973),村田(1973) などを参考にしてそ の概略をのべる.

2.1 地 質

登米相は、二畳紀叶倉階から二畳紀末にかけて発達す るほとんど泥質岩だけからなる堆積相であって(第1, 2図),登米階に発達するものがその典型であり、宮城県 登米・雄勝・歌津地域に模式的な地層がみられる.登米 ・雄勝両地域では、上部相と下部相が識別され、上部相 は主として粘土岩ないしシルト質粘土岩、下部相は細粒 砂岩・シルト岩ないしシルト質粘土岩である.ごく少量 の砂岩・石灰岩が挾在し、このうち砂岩は下部相にやや

顕著である.

歌津地域には登米相(層)としても最も上位の地層ま で発達する.この最上位の部分も岩質は上記上部相と同 様であるが砂岩が比較的多い.また歌津地域の下部の地 層は登米・雄勝地域の下部相に時代的には相当するが, 岩質はシルト質のものは少なく粘土岩質である.

全体からうける印象では登米相は湊(1944)の主張す るように内湾性またはそれに近い条件下で、ゆっくり堆 積した堆積相であろう.これは、いわゆる大島造山運動 の影響で今ではスレートに変化している.

登米上部相では鉄鉱物のほとんどが黄鉄鉱である(遠 藤ほか,1973)ことからみて、当時の堆積面下は還元性 であったことは事実であろう.

薄衣相は登米下部相および叶倉層の一部と指交の関係 で発達し,礫岩と少量の砂岩からなる地層である.多く 南部北上山地登米相と薄衣相のカリウム・トリウム・ウランおよび帯磁率(金谷弘・片田正人)

	No		Na ₂ O (%)	K ₂ O (%)	C (%)	Th (ppm)	U (ppm)	Th/U	χ (emu/g)
1	КТ	103	1.57	3.03	0.71	11.4	3.3	3.5	21×10 ⁻⁶
2		138 C		2.96		11.8	3.0	3.9	14
3		142 A	1.77	3.15		10.4	3.6	2.9	17
4		142 B	1.76	3.09		12.2	3.1	3.9	14
5		212 C	1.88	3.04	1	12.1	3.5	3.5	14
6		273A	1.67	3.12		12.6	3.2	3.9	16
7	71 K	$383\mathrm{C}$		1.52		5.2	2.0	2.6	9
8		383D		0.94		4.1	1.3	3.2	8
9		383 E		1.04		3.5	1.3	2.7	10
10		383G		1.16		4.9	1.6	3.1	10
11	ΚT	142 C		0.98		6.2	2.1	3.0	17
12		212 E		0.65		7.0	3.4	2.1	23
13		220 A		0.30		3.5	2.7	1.3	21
14	71 K	383 A		2.87		51.4	10.9	4.7	10
15		383 B		1.12		18.8	5.1	3.7	8
16	КΤ	203 B	1.72	3.11	0.71	12.0	2.8	4.3	22
17		143A	2.33	2.87	0.73	8.5	2.2	3.9	22
18		143 B	2.67	2.60		7.8	2.7	2.9	25
19		203 A	2.60	2.71	0.50	9.9	2.9	3.4	18
20		203D	0.70	2.70	0.72	9.6	2.7	3.6	18
21		214A	2.72	2.63		9.9	2.8	3.5	17
22		143D	2.50	0.82		2.2	. 0.9	2.4	19
23	7112	210 B		0.40		1.0	0.7	2.3	10
24	/16	384G		0.73		1.9	0.3	3.0 3.2	13
25		304D 204 F		0.95		2.5	0.7	5.5 8.4	13
20		386		1.00		6.3	0.3	3.4	14
28	кт	110 B		0.51		2 9	1.8	5.0 1.6	13
20	71K	384 A 1		1 95		77	3.0	2.4	9
30	/ 1 1 1	384 A 2		1.35		7 4	1.4	5.3	14
31		384 B		0.51		2.5	1.9	1.3	12
32	КΤ	221	3,60	1.66	0.70	4.4	2.0	2.2	29
33		251	3.50	1.88	0.69	4.4	1.6	2.8	28
34	71 K	385 A		1.51		5.5	2.0	2.8	(16)
35		385 B		0.94		1.7	0.7	2.4	(16)
36	ΚT	215A	2.61	2.14		6.2	2.4	2.6	15
37		215 B		0.83		2.1	1.8	1.2	15
38		128	1.05	2.70		11.3	2.7	4.2	(17)
39		150 A	1.31	3.11		13.2	3.5	3.8	13
40		151 A	1.39	2.73	1.20	10.6	3.0	3.5	22
41		151 C	1.27	2.94		11.8	2.4	4.9	15
42		211	1.03	2.94		12.1	2.8	4.3	17
43		211'A	1.85	2.90		12.3	3.5	3.5	(15)
44	Z	238	1	2.75		11.7	2.9	4.0	12
45	ΚT	202 A		2.84	1	10.4	2.9	3.6	15

第2表 登米相の Na₂O, K₂O, C, Th, U, Th/U およびス値 Contents of Na₂O, K₂O, C, Th and U, ratio of Th/U, and X value in rocks from the Toyoma Facies.

17—(17)

地質調査所月報 (第26巻第1号)

	No	•	Na ₂ O (%)	K ₂ O (%)	C (%)	Th (ppm)	U (ppm)	Th/U	χ (emu/g)
46		202 B	1.60	2.96	1.06	11.1	3.1	3.6	21×10 ⁻⁶
47		202 C	1.68	2.96		12.5	3.3	3.8	15
48		$202 \mathrm{E}$	1.66	2.87		10.2	3.0	3.4	16
49	71 K	406		3.10		13.2	3. 5	3.8	14
50		403 A		3.04		13.4	2.8	4.8	14
51	71 K	403 B		2.89		13.4	3.9	3.4	(12)
52		404		3.25		12.9	2.9	4.4	13
53		405		2.96		11.8	3.5	3.4	15
54		401 A		2.71		8.3	2.3	3.6	36
55	КΤ	133A	2.50	2.52	0.49	6.0	2.1	2.9	31
56		133 F	2.61	2.37		6.6	2.1	3.1	36
57		134 B 2		2.39		5.5	2.3	2.4	34
58		121	3. 76	1.16		3.0	1.6	1.9	39
59		123	3.79	1.33		4.0	2.3	1.7	39
60		133 E	2.65	1.12		2.4	0.9	2.7	(38)
61	71 K	401 C		0.77		2.8	1.0	2.8	(34)
62		401 B		1.78		7.1	3.3	2.2	(17)
63		402		0.84		3.4	2.6	1.3	10
64	U	5	1.90	3.38		11.5	2.9	3.8	(23)
65		7	2.11	3.32		12.3	2.8	4.4	21
66		3A		3.22		9.8	2.5	3.9	16
67		6 A		3.01		12.0	3.1	3.9	(23)
68		4 B		0.88		2. 2	0.9	2.4	19
69		6 B		0.79		3.0	1.0	3.0	(35)
70		9	3.02	1.03		2.4	0.8	3.0	16
71		11	2.89	2.26		6.2	2.3	2.7	16
72		12A	3.02	2.32		6.5	2.2	3.0	17
73		12 B		0.86		4.3	1.4	3.1	16
74	KΤ	$276\mathrm{E}$	1.35	0.72		3.8	2.1	1.8	13
75		269	1.75	3.42		11.9	3.3	3.6	(18)
76		270	2.10	3.21		11.3	2.2	5.1	(14)
77		141	3.06	1.66		2.3	1.1	2.1	(18)
78	ΚS	1003	3.23	1.56		3.3	1.3	2.5	32
79		1004	3.62	1.59		3.4	1.5	2.3	13
80	ΚT	628	3.40	1.57		3.4	1.4	2.4	(17)
81		500 A	1.58	1.81		3.8	2.1	1.8	14
82		613A	1.86	3.36		12.1	3.5	3.5	(13)
83		613 B	1.97	3.03		12.1	3.5	3.5	(16)
84		616	1.88	2.51		11.0	3.3	3.3	13
85		613 F	2.05	4.23		12.8	4.4	2.9	13
86		515		1.27		1.3	0.8	1.6	(51)
87	ΥS	23	2.45	1.51		3.0	1.8	1.7	14
88	ОТ	2008	2.95	2.58		4.4	1.5	2.9	(19)

は登米相に伴って分布し,花崗岩礫で特徴づけられる礫 岩であるが,火山岩や半深成岩礫も多く,場所によって は花崗岩礫より多い.その他の礫種は主にチャート・泥 質岩・石灰岩などの堆積岩類である.

2.2 採取試料

第1図に登米相および薄衣相のおおよその分布と試料 採取地点を示す.また第2図右方と第1表に登米相の模 式地である登米・雄勝・歌津3地域とその他の地域の, 試料の岩質・地層区分または地層上下関係などを表示す る.これらの図や表からわかるように,筆者らは熱変成 作用をうけていない登米相の試料を,分布上からも層序 上からも,かなり網羅的に採取した.

また薄衣相も岩質上様々な試料が得られるよう採取した.

3. 登米相および薄衣相の分析結果と各平均値

3.1 分析值

第2,3表に登米・薄衣両相のNa₂O,K₂O,C,Th,U
(比帯磁率)を示す.Na₂O は大森えい・東野徳夫両氏の原子吸光法による測定値であり、C(総炭素からCO₂のCを除去したもの)は大森えい・藤貫正両氏によるものである.

3.2 各成分の平均値

登米相の各成分の平均値を第4表にあげる. 含有量は 岩質によって異なるから砂岩・シルト岩および細粒砂岩 ・シルト質粘土岩および粘土岩に分類して表示した. こ こで単に砂岩と名付けたものは,いずれも石灰質である 第4表 登米相泥質岩・砂岩の K₂O, Th, U, Th/U の平均値

Averages of contents of K_2O , Th and U, and ratio of Th/U in rocks from the Toyoma Facies.

	Claystone & silty claystone	Siltstone & fine sand- stone	Medium to coarse san- dstone
n	44	11	15
K ₂ O (%)	2. 83	1.78	0.94
Th (ppm)	10.4	4.4	2.9
U (ppm)	2.8	1.8	1.0
Th/U	3.6	2.4	2.9

第5表 登米相泥質岩・砂岩・石灰質岩石のX 値の平均値

Average of χ value of mudstone, sandstone and calcareous rocks from the Toyoma Facies.

	Mudstone	Sandstone (medium to coarse)	Calcareous rocks
n	41	11	16
χ (emu/g)	20×10 ⁻⁶	14×10 ⁻⁶	14×10 ⁻⁶

(方解石20~30%).これとは別に石灰質岩石と分類した 岩石があり,これは不純石灰岩(方解石70%以上)およ び石灰質粘土岩(方解石20~70%)であるが,これらは 値がばらついているので平均値の計算をしていない.比 帯磁率(X)の平均値は第5表にあげてある.この値は 新鮮な岩石と少しでも風化作用を受けた岩石では値が異 なっている可能性があるので新鮮な岩石のみ採用してあ

第3表	薄衣相の試料の Na ₂ O, K ₂ O, Th, U, Th/U, X 値および岩質
Contents	of Na ₂ O, K ₂ O, C, Th and U, ratio of Th/U, and $\boldsymbol{\chi}$ value in
lasts and	d sandstone from the Usuginu Facies.

N	о.	Na2O (%)	K2O (%)	Th (ppm)	U (ppm)	Th/U	$\begin{pmatrix} \chi \\ (emu \\ /g) \end{pmatrix}$	
89 71K	387 G	2.11	1.92	0.7	0.3	2.3	((24))	Metamorphosed andesite
90	387H	5.00	1.18	1.1	0.3	3.7	((26))	Quartz porphyrite including quartz diorite
91	$387\mathrm{E}$		1.19	2.1	0.8	2.6	(16)	Sandy matrix
92	18B	4.17	1.11	2.8	0.7	4.0	(14)	Trondhjemite
93	19C	5.39	2.28	3.4	1.1	3.1	(13)	Granodiorite
94	315	4.79	2.04	3.1	1.1	2.8	((23))	Granodiorite
95	19 F	3.62	1.53	1.0	0.3	3.3	(16)	Metamorphosed granite porphyry
96	19A	5.74	1.10	3.2	1.1	2.9	13	Sandstone
97 K.T	511	4.35	1.00	2.3	0.8	2.9	19	Sandstone
98	513Q	4.10	0.69	1.7	0.9	1.9	15	Sandstone

K₂O, Th, U, χ: Analysed by H. Kanaya.

Na₂O and C: Analysed by T. Tono and E. Ohmori (no. 97).

(): Very slightly weathered; a few grains of iron minerals are altered into iron hydroxides.

(()): Slightly weathered; iron minerals and some ferromagnesian minerals are altered into iron hydroxides and clay minerals.

19-(19)

地質調査所月報(第26巻第1号)

る. なお後述のように,この値は岩質別よりもむしろ層 序別の区別が大きいので,泥質岩(粘土岩~細粒砂岩) は一括して示してある.

これらを平均値でみると Na₂O は泥質岩としては比較 的多く, K₂O は少ない (SHAW, 1956; 岩崎ほ か, 1965). Th, U はごく普通の値である (ROGERS, et al., 1969; 石 原・金谷, 1973). X 値は鉄酸化物の量に左右されると考 えられるが, 結果からみるかぎり堆積岩として比較的平 均的な値と思われる.

4. 登米相の各成分間の関係および考察

4.1 Na₂O $\succeq \mathbb{K}_2O$

 $Na_2O \ge K_2Oの関係を第3図に示した.$

この図でわかるように泥質岩はアルカリ総量に関し, Na₂O+K₂O 値が約5%付近で両成分はかなり明瞭な負 の相関関係を示し、石灰岩質のもの (sandstone と calcareous rocks) で著しい減少傾向がみとめられる.しかし アルカリ比はK₂O/Na₂O=0.31~2.37間で大きく変化す る. 一般に泥質岩は、K₂O>Na₂O の領域を占めるのが 普通であるが、登米相の泥質岩は、 $K_2O/Na_2O < 1$ のものが多いから特異な泥質岩と見なしうる.

 Na_2O に富むものは主として下部相の比較的粗粒の泥 質岩, K_2O に富むものは上部相の比較的細粒の泥質岩で ある. そして Na_2O は砕屑性鉱物の大半を占めている斜 長石に含まれ, K_2O はマトリックスの自生絹雲母に含ま れている. K_2O を含む可能性のある, 砕屑性カリ長石・ 黒雲母・白雲母はごく少量認められるにすぎない. 黒雲 母は比較的多いけれども, 容量比3%以下であるし変質 しているから, 黒雲母に含まれる K_2O もごく少量であ ろう. したがって K_2O/Na_2O 比は,マトリックスの多い 泥質岩, つまり細粒のものほど大きい傾向にあるのは当 然である. なおマトリックスには, 絹雲母とともに緑泥 石が存在する.

第3図の泥質岩中,やや石灰質(slightly calcareous) の泥質岩としたものは、3.5~15%の方解石を含んでい る.石灰質でないものと比べ、アルカリ総量はやや少な いが、方解石を差し引くと石灰質でない岩石とほぼ変わ らないものと思われる.したがって方解石以外の構成鉱

- O Mudstone (claystone—fine sandstone).
- ∂ Ditto; slightly calcareous; calcite, 3.5-15%.
- \ominus Sandstone (medium to coarse); calcareous; calcite, 20-30%.
- Calcareous rocks except the sandstone; calcareous mudstone (calcite, 20-70%) and impure limestone (calcite, >70%).

20-(20)

第4図 γ スペクトルメトリー法分析と原子吸光法分析による K_2O の比較 Relation of the contents of K_2O measured by the γ -spectrometric to that by the atomic absorption methods.

物は,両者に著しい差はないものと予想される.

なお参考までに同一試料について原子吸光法とrスペクトロメトリー法とで分析した K_2O の結果を第4図に示す.

4.2 K20とTh

泥質岩および砂岩の K₂O と Th の関係は第5 A 図に 示される. プロットされる点は大別して2群に分けるこ とができるが,これらはいずれも正の相関関係を示す. しかも点の分布の延長がグラフの原点を通る.これらの 事実によれば,Th は自生絹雲母に含まれると推定され る(ただし絹雲母と緑泥石の量比がすべての泥質岩・砂 岩でほぼ一定とすれば,若干の Th が緑泥石に伴ってい る可能性もある).

石灰質岩石の一部のものは Th 値がばらつい て お り (第5 B図),大体は正の相関性を示すが,石灰質でない 岩石とくらべ相関性に乏しい. おそらく Th を含む他の 鉱物が存在するのであろう.

4.3 K₂OとU

 K_2O とUとの関係は(第6A, B図),泥岩および砂岩 の場合、 K_2O -Th関係とよく似た正の直線関係(K/U= 8.3×10^3)を示している.したがってUの大半はやはり 絹雲母に含まれている可能性が強い.しかも岩石の種類 に関係なくいずれの岩石でも絹雲母に同じ割合で含まれ るとみてよい. なおUは炭素にも吸着されているかも知 れないが,炭素の大半は岩石の1%にもみたないから (第2表),吸着されている絶対量はごく少量であろう. 石灰質岩石はUを顕著に含む鉱物が存在するらしいこと も Th の場合と同様でしかもそれより顕著である.

4.4 Th とU

Th/U 比は、多くの岩石では2~5の比較的一定した 値を示すのが通例である(石原・金谷、1973). 登米相の 場合も、Th-K₂Oの関係やU-K₂Oの関係がほぼ直線関 係を示すことから予想されるように、Th/U 関係は単純 で、泥岩および砂岩の場合、Th/U 比は2~5(ほとん どが2.5~4.5)である.そして興味深いことは、石灰質 岩石も主として1~3の範囲に入り、Th-K₂OやU-K₂O 図でみられる値のちらばり方とは異なって、意外にせま い範囲の値をとっていることである.

4.5 帯磁率

帯磁率の大きさはもちろん磁性鉱物の種類と量に依存 するものであるが、磁性鉱物のうちでは鉄鉱物の種類と 量が最も大きな影響力をもっている.登米相の鉄鉱物 は、黄鉄鉱・磁硫鉄鉱・チタン鉄鉱などであるが、地表 での試料はスレート劈開に沿って風化作用が進みやすい

21-(21)

地質調査所月報 (第26巻第1号)

第5A図 登米相泥質岩・砂岩の K2O と Th との関係 Relation between K₂O and Th in mudstone and sandstone from the Toyoma Facies.

Mudstone (claystone—fine sandstone).
Sandstone (medium to coarse).

22-(22)

第6B図 登米相石灰質岩石の $K_2O \ge U \ge$ の関係 Relation between K_2O and U in calcareous rocks from the Toyoma Facies.

23-(23)

地質調査所月報 (第26巻第1号)

Symbols refer to Figs. 5A and 5B.

ため,鉄鉱物の一部は針鉄鉱,その他の水酸化鉄鉱物に 変化している.磁性の低い黄鉄鉱が比較的高い針鉄鉱な どに変化した場合には岩石の帯磁率が若干高くなってい るかも知れない.したがって鏡下でごくわずかでも水酸 化鉄鉱物の認められる試料は第2表の値を()で示した.

第3~6図と同様に K₂O を横軸にとって χ 値を プロ ットしたのが第8 A 図である. この図も第5~7 図と同 様の記号で岩質を区別してあるが χ 値の多くは(10-25) ×10⁻⁶ (emu/g,以下同様)付近に集中し,泥質岩と砂岩 には40×10⁻⁶ またはそれ以上の値を示すものがある.石 灰質岩石も上記の石灰質でない岩石の大半と同様に(10 -25)×10⁻⁶ の値のものが多い. 25×10⁻⁶以上の値を示 すものは存在しなかった.

泥質岩と砂岩とを第2図で表示したように登米相の上 部相と下部相の区別をしたのが第8B図である.下部相 の登米・雄勝・歌津地域の試料のプロットされる範囲を 破線で囲ってある.この図からあきらかなように、下部 相には15×10⁻⁶以下の比較的低いX値のものも一部ある が、雄勝地域の全試料と登米その他の地域の一部のもの は高い値である.すなわち、25×10⁻⁶以上の値を示すも のは下部相だけで上部相にはみられない.第8A,B図 には、ごく微量の水酸化鉄鉱物を含む試料の χ 値もプロ ットしてあるがこの結論をかえる必要はないであろう. 筆者らの経験的事実によれば、水酸化鉄鉱物が微量認め られる試料で(第2表で()を付した試料の場合 1 cm^2 の面積内に 1 個程度の水酸化鉄鉱物が鏡下で見いだされ る)、もし岩石の χ 値が変わっているとしても $3 \sim 4 \times$ 10^{-6} 程度しか変化していないようである.これは磁化率 計の測定精度、経年変化を考慮した場合、測定誤差の範 囲に入ると考えられる.

ここで当然鉄鉱物と χ 値との関連性をしらべなければ ならないが、この作業の多くは今後に残されている.た だ現在予察的にいえることは χ 値が 20×10^{-6} 以下 の試 料では黄鉄鉱が主であり、 30×10^{-6} 以下 の式 鉄鉱・チタン鉄鉱など黄鉄鉱以外の鉄鉱物の存在が目立 つ.したがって χ 値の違いは、大ざっぱに登米相中の堆 積環境の違いを指示するものかも知れない.

5. 薄衣相の各成分値と考察

薄衣相はすでに述べたように、細粒質の登米相とは逆 に、主として礫岩からなる粗粒相である.登米下部相と ほぼ同時期のこの相の後背地が登米相と同じであったか どうか不明である.漠然とした推定では、登米、薄衣両

第8A図 登米相泥質岩・砂岩・石灰質岩石の K₂O と X 値との関係 Relation between K₂O and X value in mudstone, sandstone and calcareous rocks from the Toyoma Facies.

Symbols refer to Figs. 5A and 5B.

第8B図 登米相泥質岩・砂岩の K2O, X 値と層序との関係

Relation between K_2O , χ value and stratigraphy of mudstone and sandstone from the Toyoma Facies.

- O Mudstone and sandstone from the Upper Subfacies in the Toyoma Faices.
- ♦ Mudstone and sandstone from the Lower Subfacies, Toyoma region.
- ⇔ Ditto, Okatsu region.
- ♦ Ditto, Utatsu region.
- \triangle Ditto, the other region.

25—(25)

相の岩相があまりにも異なり、中間の岩相が認められな い点からみて、両相の後背地は、少なくとも地理的には 異なっていたと思われる.しかし同時代の異質の堆積相 としてこれらを比較することは意味があると考える.

第3表によりこれらを考慮してみると,no.91,96-98は 砂岩,および礫岩のマトリックス(=砂岩)であるが, $K_2O \cdot Th \cdot U \cdot Th/U$ に関しては登米相砂岩の一部と 差はない.

次に花崗岩礫であるが、ROGERS et al. (1969),石原・ 金谷 (1973) によると花崗岩質岩では Th=4~20ppm, U=2~6 ppm 程度の存在量を示すが、薄衣相の 花崗 岩類の礫は岩質を考慮しても、Th=2.8~3.4 ppm, U= 0.7~1.1 ppm と低すぎる値を示している.花崗岩礫には 風化作用の影響がみとめられるから、値が低 い こ と は Th, Uの溶脱を意味しているのかも知れない.

一方火山岩および半深成岩では緻密質のために礫自身 が割合に新鮮であり、Th、Uはそれほど溶脱していない らしい. Rogers et al. によれば、火山岩類では一般に Th= $0.3 \sim 4$ ppm、U= $0.1 \sim 0.8$ ppmで、薄衣相の場合 もこれらと大差はない.

Th/U 比でこれらをみると,薄衣相砂岩(含マトリッ クス)・花崗岩質礫(含半深成岩礫)ともに3前後であ り,登米相と同様である.

なお薄衣相の帯磁率は岩石の風化作用が比較的進んで いるため詳しい議論をすることができない.

6. まとめ

登米相・薄衣相を測定値を主にし、鏡下の観察を加え ると次のようにまとめられる.

1. ナトリウムーカリウムの測定結果から登米相をみ ると、これら酸化物としてのアルカリ総量は約5%で両 者間に明瞭な負の相関を示す.しかしアルカリ比は大き く変化し Na₂O>K₂O の領域に入るものも多いことから この泥質岩は特異なものといえる.

2. 登米相中の放射性3元素の,カリウムートリウム,カリウムーウランの間には密接な正の相関関係がみられる.この事実によれば,岩石中のカリウムを含む鉱物のほとんどが絹雲母であるから,大半がこの鉱物中に含まれていると考えられる.一方石灰質粘土岩,不純石灰岩ではこれら元素間に密接な相関はみとめられない.このことはトリウム・ウランを含む別の鉱物が存在することを意味している.

3. 平均値およびその含量に関し登米相の上記3元素 は一般の泥質岩と変わりはない. ウラン含量からみるか ぎり,海水中からウランを直接沈殿するほどの強還元性 下の堆積相ではなかったと考えられる.このことは炭素 の分析値が小さいことからも推察できる.

4. 登米相における比帯磁率は10~40×10⁻⁶ であり, またわずかの差であるが強弱2グループに分かれる.

5. 薄衣相を分析値からみると,風化の影響と思われ る花崗岩礫のトリウム・ウランの低い絶体値のものを除 き,それ以外の値は,他の一般的な類似岩と比較して大 きく異なるものはなかった.

謝 辞

上記研究を進めるにあたり,一部試料の提供を含め御 援助いただいた東北大学村田正文氏,地質調査所遠藤祐 二・東野徳夫・大森えい・大森貞子・藤貫正の各氏,適 切な助言をいただいた石原舜三・吉田尚・広川治の各氏 に厚くお礼申しあげる.

(受付:1974.10.28日;受理:1974.11.28日)

文 献

- ADAMS, J. A. S. and WEAVER, C. E. (1958) Thoriumto-uranium ratios as indicators of sedimentary processes: example of concept of geochemical facies. Bull. Amer. Ass. Pet. Geol., vol. 42, p. 387–430.
- 遠藤祐二・片田正人・佐々木昭(1973)北上山地の 二畳紀登米層中の黄鉄鉱.地質調月, vol. 24, p.113-121.
- HUREY, P. M. (1956) Direct radiometric measurement by gamma-ray scintillation spectrometer. Bull. Geol. Soc. Amer., vol. 67, p. 395 -412.
- 石原舜三・関根節郎・大場きみじ(1969)上部古生 代粘板岩と新第三紀シルトストン中のウラ ン量. 地質調報, no. 232,日本におけるウ ランの産状, p. 221-231.
- ・金谷 弘(1973)諸岩石中のウランおよよびトリウム量について. 鉱山 地質 特別号, no. 5, p. 30-34.
- 岩崎文嗣・桂 敬(1965) 粘板岩の化学組成. 日 本地球化学会ニュース, no. 30, p. 6-8.
- 神戸信和・片田正人・大森貞子(1969)南部北上帯 の二畳系登米粘板岩の化学組成および堆積 環境.地質調月, vol. 20, p. 1-11.
- 加納 博(1971) 北上山地の薄衣式礫岩(総括)—-含花崗質礫岩の研究(その22) ----. 地質 雑, vol. 77, p. 415-440.

26-(26)

南部北上山地登米相と薄衣相のカリウム・トリウム・ウランおよび帯磁率(金谷弘・片田正人)

- 片田正人・神戸信和・大森えい(1973)南部北上山 地二畳紀登米相泥質岩の Na₂O と K₂O.地 質調月, vol. 24, p.233-242.
- 近藤 務(1966) 宮城県に発達するペルム系登米統 黒色粘板岩の放射能. 地質雑, vol. 72, p. 427-437.
- 湊 正雄(1944)薄衣礫岩の層位的位置及び登米海 に就いて、地質雑, vol. 51, p.169-187.
- 村田正文(1973)東北日本における中生代地殻変動 の構造地質学的研究.その1.稲井層の不 整合(予報)・総合研究(A),東北地方にお ける第三紀地殻変動に関する構造地質学的 研究,昭和47年度報告,p.33-37.
- ROGERS, J. J. W. and ADAMS, J. A. S. (1969) Thorium, in Wedepohole et al. ed., *Handbook of Geochemistry*, Springer-Verlag, Berlin,vol. II-1, no. 90.
- ROGERS, J. J. W. and ADAMS, J. A. (1969) Uranium, ibid., no. 92.

- SCHWARZER, T. F., COOK, B. G. and ADAMS, J. A. S. (1970) Low altitude gamma-spectrometric surveys from helicopters in Puerto Rico as an example of the remote sensing of thorium, uranium, and potassium in soils and rocks, in Development of remote methods for obtaining soil information and location of construction materials using gamma ray signatures for project THEMIS, Semi-annual Report to U. S. Army Engineer, Waterways Experiment Station and Corps of Engineers, Dept. Geol. Rice Univ., p. 3-44.
- SHAW, D. M. (1956) Geochemistry of pelitic rocks. Part III: Major elements and general geochemistry. Bull. Geol. Soc. Amer., vol. 67, p. 919–934.
- 柴田 賢(1973) 氷上花崗岩および薄衣花崗岩礫の K-Ar 年代. 地質雑, vol. 79, p. 705-707.