関東ローム台地の地盤構造と地耐力

宇野沢 昭*

Structure and Ground Bearing Power of the Upland Overlaid by "Kwantō Loam Beds"

By

Akira Unozawa

Abstract

"Kwantō loam beds" composed of aeolian volcanic ashes, have some more different characteristics from non-volcanic soils, so far as the soil mechanic nature is concerned. Especially it has been noticed as to a dynamic nature in case of a humic condition that N-value increases as *moisture content* and *void vatio* rise, thereupon water in soil plays a greater part in the bearing power of a ground consisting of the loam beds. The writer points out that the above-mentioned fact is due to the character of adherent water in the loam beds, where higher water content remains than in a non-volcanic soil. It is one of the distinct features of the loam beds that N-value keeps fairly constant figures, i. e. N = 4, ranging from 2 to 9, in a considerably extensive area.

The diluvial upland in Kwantō region, for instance Ōmiya upland and Shimōsa upland, consists of marine sediments which are overlaid by "Kwantō loam beds"; hereabout the grounds of marine sediments show such a tendency that N-value increases vertically toward a depth. In the Shimōsa upland district, the latent altitude of a ground (stratum) which is stable enough to bear a heavier construction has been identified as $22 \sim 28$ m (above sea level) in the neighbourhood of Shisui and about 34 m (a.s.l.) near Sawara City. While in the Ōmiya upland district the latent altitude of a stable ground (stratum) has been identified as $0 \sim 4$ m (a.s.l.) on Iwa-tsuki heights along the right bank of the (river) Moto-Arakawa and as $4 \sim 6$ m (a.s.l.) on Jionji heights along the left bank of the river.

1. 研究地域の範囲

この報告で対象とした地域は、千葉県下では酒々井・ 佐原の2地域(第1図)で、埼玉県下では岩槻市周辺地 域(第2図)である。前者は下総台地に、後者は大宮台 地に属し、立川・武蔵野ローム層(以下新期ローム層と 呼ぶ)、および下末吉ローム層相当といわれる凝灰質粘土 層に覆われる。

酒々井・佐原の両地域は初年度のモデル地域として研 究を行なったので、対象範囲はきわめて小さいが,岩槻 市周辺地域は、岩槻市街をほぼ中心とし、蓮田町の一部 を含む面積約 60 km² の地域である。

2. 研究の方法と計測値の処理

対象地域の地盤地耐力構造を明らかにするため、地表 面下15m程度を限度として、スエーデン式サウンディン

*応用地質部

グ法による地盤強度の測定を行なった。計測地点はそれ ぞれ,第1図・第2図に示してある。

スエーデン式サウンディング計測値のN値への換算に は、建設省の上田嘉男氏の実験式(N = 115.5 P.N^{-0.755}, N=標準貫入試験のN値, P.N=半回転25回の貫入量cm) を適用し、地盤地質区分については露頭調査、既存の地 質・地盤調査資料およびサウ、ディング計測時の判断によ った。なお後述のように多摩・土橋・新期各ローム層に ついて、スエーデン式サウンディング計測と標準貫入試 験を同一箇所で実施した結果、両計測値の間には相関を 認めることができなかった。したがって本研究において のローム層のサウンディング計測は単にその層厚を判定 するにとどめた。

関東ローム層の土質工学的な 2,3 の性質について

本調査地域の地盤はローム層地盤と砂質層地盤との2

37-(37)

地質調査所月報(第23巻第1号)

第1図 佐原·酒々井地区計測点位置図

第2図 岩槻地区計測点位置図

つに大別されるが, ここではローム層地盤注¹⁾に限って 記載する。

地盤としての関東ローム層の厚さは, 酒々井・佐原で 5.0~5.5m, 岩槻市周辺で約6.0 mである。

3.1 関東ローム層の№値

関東ローム層の土質工学的な特殊性は,近年強く認識 されつつあるが,本稿では主として地耐力調査資料(第 3図)および土質試験結果(第1表・第2表)のほか, 2,3の事例を引用して紹介することにする。

新期ローム層における標準貫入試験のN値は, 佐原で は, N=7を示した(第3図)。岩槻市周辺では既存の17 本のボーリング資料によると, N=2~9, 平均N=4 の範囲にある。藤沢市西部の事例によれば,特別な状態 (ロームの固結現象など)でない場合のN値は,ほとん どこの範囲にあり,川崎市生田(多摩II面)の事例注²⁾ (第4図)では,多摩・土橋・新期各ローム層でしかも 15m~20mに達する層厚中の各部でも,ほぼこの範囲内 にある注³⁾。このように関東ローム層のN値は現在の資料 でみる限り新期・古期に関係なく,しかも広範囲にわた ってほぼ定常的な値を示しているように思える。この現 象は関東ローム地盤のN値に関する力学的特性の一面を 示すものであろう。ただ関東ローム層中にみられるN値

- 注2) 川崎市生田で科学技術庁研究調整費によって行なった未発表資 料から引用。
- 注3) 多摩I面ローム層中でも同様の結果がでている。

注1) 当研究地域では,凝灰質粘土層(下末吉ローム相当)・新期ロ ーム層に限られる。

第3回 岩槻·佐原地区地質,地耐力柱状図

の相対的な差異は、多くの場合、埋没土壌といわれてい る部位や風化の進んだ軽石層などの部位では低く、スコ リア質などの部位で高くなるのが普通である。

次にスエーデン式サウンディングのような静的貫入試 験では、どのような反応を示すかについて試験的計測を 行なってみたところ,標準貫入試験のN=2~9,平均 N≒4に対し、サウンディングによる換算N値は1~ 6, 平均≒3でわずかに低値を示した。しかし多摩Ⅱ面 の例にみられるように,新期ローム中で対応するもので 土橋・多摩ロームに達するにつれてしだいにN値とかけ 離れた値となっている(第4図)。これはN値が打込みと いう動的な貫入方式による計測であるのに対し、スエー デン式サウンディング計測値は静的な計測方式、すなわ ち、回転貫入方式による連続計測であるため、貫入孔壁 に当たるローム層の構造組織が破壊されることによる練 返し現象が生じ,粘着力の増加を起こしロッドに対する 摩擦力となって作用すること、あるいは新期・古期ロー ム(とくに土橋・多摩ローム)の粘土化の程度、ローム 層中の地下水(宙水など)の有無による地盤状態の相違 などが反映した結果ではなかろうか。したがって現時点

39-(39)

地質調査所月報(第23巻第1号)

第1表 土質試験結果(千葉地区)

地			点	佐		原	酒	<u>ل</u> ر	井	千葉	技能(1)	千葉	技能(2)
採	取	深	度	1.4~1.95		95	3.0~3.5		ō	1.5~2.0		3.2~3.5			
地			質	火	山	灰	火	Щ.	灰	火	山	灰	火	山	灰
稠度試験	液 性 塑 性 塑 性 適 性 筋 動	限限指指	界(%) 界(%) 数 数		163.7 82.6 81.1 25.2	, ; ;		152.3 72.8 79.5 25.7			169.6 77.2 92.4 22.8			91.3 38.9 52.4 21.5	
自然	比 含 湿 潤 ギ 乾 燥 ギ	水度密酸	重 比(%) (g/cm ³) (g/cm ³)		2.84 109.7 1.42 0.68	:		2.85 102.6 1.44 0.71			2.79 90.6 1.48 0.78			2.76 56.4 1.65 1.05	
状	 飽 土粒子部:	原 和 分の名	比 度 \$ 積 率(%)		98.0 23.9)		97.1 24.9			2. 38 98. 0 28. 0			95.5 38.0	
態	水 部 分 の 密 積 率(%) ガ ス 部 分 の 容 積 率(%) 水+ガス部分の容積率(%)		74.6 1.5 76.1		72.8 2.3 75.1		70.7 1.3 72.0		59.2 2.8 62.0						
	透水	試 験	(cm/sec)					<u>.</u>							
一軸圧縮	· 破 壊 · · · · · · · · · · · · · · · · ·) 度 壊 敏	(kg/cm²) 歪(%) 比		1.43 4.6 5.3	}		0.83 3.8 6.9			0.51 3.8 6.1			1.08 5.0 5.7	
三縮軸圧	粘 着 内 部	力 奪 擦	(kg/cm ²) 角(°)		0.51 16°42	l 2'					0.21 13°30′			0.41 14°34	,
剪断	粘 着 内 部	力 奪 擦	(kg/cm²) 角(°)					0.32 17°13′							
圧 密	先 行 圧 縮	带 重 指	(kg/cm²) 数		2.00 1.08) 3		2.65 0.88			1.50 1.20	1		2.00 0.37	5
	収 縮	限	界(%)		66.7			57.1			58.9			42.3	

武蔵工業大学土質研究室測定

では、スエーデン式サウンディングを関東ローム層の地 耐力計測に適用するには、余りにも未解決の要素が多い といえる。しかし計測値(貫入回転数・第5図)を利用 したローム層の厚さの計測や層中の相対的強度を知るの には、本研究での例からかなりの効果が期待できよう。

3.2 土質試験結果からみた性質

対象地域の関東ローム層の物理的・力学的性質を解明 するため、11点の試料(第1表・第2表)について土質 試験を行なった。

関東ローム層は土質工学的に"火山灰質の高含水比粘 性土"とも呼ばれるように,本地域でのボーリング試料の 試験結果においても,自然状態におけるローム層構成容 積率のうち59.2~75.7%が含有水分によって占められ, 含水比は56.4~130.6%に達している。また液性限界・ 塑性限界についてみれば,試料の乾燥状態によっていち じるしく異なり,一度乾燥すると含有水分は非可逆的に 失われ,再び水を与えても元の性質にもどらない。した がって関東ロームの含有水は単なる自由水とは考えられ ないといわれるように,非火山灰土と比較してきわめて 異なった性質をもっている。工事現場などでよく見かけ る練返しによるいちじるしい軟化現象は,火山灰層の自 然構造の破壊にともなって解放される高率の間隙水が軟

40-(40)

関東ローム台地の地盤構造と地耐力(宇野沢 昭)

	地			点	城跡公園	柏崎	和土(1)	和土(2)	新和(1)	新和(2)	新和(3)
採		取	深	度	2.7~3.2	1.0~1.5	0.5~1.0	2.0 ~ 2.5	1.5~2.0	2.0~2.5	2.5~3.0
地				質	火山灰	火山灰	火山灰	火山灰	火山灰	火山灰	火山灰
稠度試験	液塑塑流	性性性動	限限指指	界(%) 界(%) 数 数	163.2 76.3 86.9 23.2	184.5 84.2 100.3 24.8	193.6 81.7 111.9 26.2	183.5 78.5 105.0 26.2	176.3 75.1 101.2 24.9	179.1 77.3 101.8 21.7	169.5 70.9 98.6 20.9
自然	比含湿乾胆	才 潤 密 燥 密	く度度	重 比(%) (g/cm ³) (g/cm ³)	2.88 117.2 1.39 0.64	2.87 118.3 1.35 0.62	2.86 114.5 1.35 0.63	2.88 126.4 1.34 0.59	2.87 120.8 1.36 0.62	2.85 114.0 1.37 0.64	2.87 130.6 1.34 0.58
状態	◎ 飽 土 水 ガ ナ	^図 新 立子部分 部 分 <i>の</i> ス 部 分	R D の容 の容 の	比 度 (%) 積 率 (%) 積 率 (%)	3.50 96.4 22.2 75.0 2.8	3.63 93.5 21.6 73.3 5.1 70.4	3.54 92.5 22.0 72.1 5.9	3.88 93.8 20.5 74.6 4.9 70.5	3.63 95.5 21.6 74.9 3.5 78.4	3.45 94.2 22.5 73.0 4.5	3.95 94.9 20.2 75.7 4.1
	透	水試	<u>」</u> 験	(cm/sec)	//.0	70.4	70.0	79.5	/0.4	11.5	/5.0
一軸 圧 縮	破破鋭	壊 強 場	度数	(kg/cm ²) 歪(%) 比	0.77 3.8 4.5	0.72 4.6 4.0	0.87 3.6 4.1	0.80 3.4 5.9	0.76 3.7 5.1	1.09 4.0 4.8	0.84 3.4 4.3
三圧 軸縮	粘 内	着 部 摩	力 擦	(kg/cm²) 角(°)							
剪 断	粘内	着 部 摩	力 擦	(kg/cm²) 角(°)	0.33 17°30′	0.29 21°48′	0.34 19°17′	0.32 17°45′	0.30 16°10′	0.46 15°39′	0.35 18°47′
圧 密	先 圧	行 荷 縮	重 指	(kg/cm²) 数	$\begin{array}{c} 2.00\\ 1.48 \end{array}$	2.40 1.52	2.60 1.33	2.70 1.87	2.10 1.65	2.50 1.56	1.80 1.66
	収	縮	限	界(%)	63.7	68.1	65.0	65.2	59.8	63.8	61.3

第2表 土質試験結果(岩槻地区)

武蔵工業大学土質研究室測定

化を促進するものと考えられ、このことは火山灰粒子の 物性と相まって、吸着水的な性格をもつ高率の含有水分 と、その容器である間隙との関係(第7図)からも理解 することができよう。

含水比は、土の基本的性質として力学的性質に関連す るといわれている。N値と含水比およびN値と間隙比と の関係を藤沢市西部の例注⁴⁾(第8・9図)でみると、相 関の程度は低いが明らかに関連性を認めることができ る(厳密には、土質試験に供した部位のN値ではなく、 その直上・下のN値をとっているので当然誤差が含まれていると思われるが)。

関東ローム層の構造組織における含有水分の容積率 が、きわめて高率なことはすでに述べた。これに関連し て、関東ローム層地盤の自然状態における支持力は、土 粒子の骨格組織よりはるかに含有水分に負うところが大 きいのではないだろうか。これは、前述のN値と含水比 および間隙比の関係、含有水分の吸着水的な性質などか ら考えられることであるがこれを解明する方法として、 現位置載荷試験を各ローム層について行なうことも必要 と思われる。もちろんこの場合には該当箇所のロームに

41-(41)

注4) 藤沢市西部開発事務局によって行なわれた土質試験結果から引 用。

地質調査所月報 (第23巻第1号)

岩 槻

四街道

第5図 サウンディング貫入回転数によるローム層の識別例

ついて土質試験を行なうことはいうまでもない。しかし 現時点ではまったく推論の域を出ないものであり,今後 の問題として指摘しておきたい。

凝灰質粘土層(下末吉ローム相当)のN値は,N=1 ~7,平均N≒3.5で新期ローム層とほぼ同値を示す, しかし水中堆積相を示しきわめて粘土化が進んでおり, 乾燥状態では多くのクラックが発達する。地盤として は,N値の示すとおり,軟弱なものと考えられる。

要するに、関東ローム層を地盤として利用するには、 その特性を十分理解して対処することが必要なのであ

る。

4. 酒々井・佐原地区の地盤地質とN値

関東ローム層地盤を除いた両地区の地盤は、砂質層か

42-(42)

関東ローム台地の地盤構造と地耐力(宇野沢 昭)

第10図 b N値グラフ(岩槻地区・スエーデン式サウンディングによる)

らなる。酒々井地区は第11図に示すように、計測点(1)~ (5)・(7)を結ぶ範囲では、地表下5~10m(標高約22~28 m)を境として、上部は粘性土を挾在する砂質層で、下 部は砂層からなる。上部層の地盤としての地耐力をN値 で示すと、N=10以下、10~15~20の部分が互層状態に なっていて、地耐力的に定常性に欠ける面がある。下部 地盤はN=20~30以上を示し、強度が大きい。計測点(6) ・(8)の地区はやや台地面の開析が進み、前者の標高約35 ~38mよりやや高い40m台である(地形面についての調 査は行なっていないので、断定はできないが、40m台で は層厚約2mの軽石層および軽石まじりローム層からな る下末吉ロームがあり、また面の開析の状態からも前者 とは地形面を異にすると思われる)。

中~粗粒の砂層からなり、N値は20~30以上を示し, 強度が大である。計測点(1)~(5)・(7)に賦存する上部の砂 質層は、これにアバットした形で堆積するようにみられ る。

佐原地区は第12図に示すように砂層地盤からなる。N 値分布から地表下4.5 m± (標高+34m±)を境として 上・下の2地盤に区分される。上部地盤のN値は10~20 以上,平均15程度である。下部地盤は,計測点(1)の標準 貫入試験から深度17m以浅でN=20~40以上,それ以深 ではN=50以上を示し,強度はきわめて大きい。両地域 とも凝灰質粘土層(下末吉ローム相当)と接する部位で は,凝灰質砂層となっていることが多く,一般にN値が 低いが,薄層なのでさして問題にはならない。

5. 岩槻地区の地盤地質とN値

5.1 地盤の地質構成(第2図・第13図参照)

対象地域は南西部を綾瀬川で限られ、ほぼ中部を元荒 川が貫流し、地域を2分する。台地面の高度は10~16m で、16mに達する高所は綾瀬川・元荒川の左岸に細長く 断続的に分布し、ともに北西部一帯に高度を減じる高度 非対称を示している。種々の地形形態注5)は多くの場合、 地形発達の観点から浅層地盤の地質構成や相対的な地盤 強度を概察するのに役立つが、当地域の場合でも、かな

43-(43)

注5) 例えば台地・段丘・冲積低地など地形面の異なる場合。とくに 冲積低地の場合は,河川流路の変遷,自然堤防,後背温地など。

り重要な要素となっている。

第13図は既存の地質・地耐力調査資料, 露頭調査およ びスエーデン式サウンディング計測による判断を基に描 いた地域全般の地質構成である。この図からわかるよう に,本地域の浅層地盤はその地質構成から5種に区分で きる(右表)。

Iのタイプは下末吉面(広義の)といわれる当台地の 代表的地質層序をもつ台地主部であり、II・IIIのタイプ は河成作用によるより新期の地形面と考えられ、IV・V のタイプはさらに新しい冲積期の河成作用によるもので ある。以上5種の地盤地質はほぼ地表下10m以浅に該当 する。これより以深では岩槻小学校付近に粗粒砂や砂礫 が堆積するほかは、大部分細~中粒砂、あるいは粘性土 をまじえる細~粗粒の砂からなっている。

タイプ	土質層序	主たる分布地域
I	ローム→粘土→砂	綾瀬川・元荒川左岸の台地高 度の高い地域から中部にかけ て分布することが多い(台地 主面)
H	ローム→砂→粘土 →砂	元荒川右岸沿いの台地面高度 の低い地域に多く分布する
Ш	ローム→砂	元荒川右岸沿いの台地高度の 低い地域および綾瀬川と元荒 川が接近する地域に分布する
N	腐植土→粘土→砂 またはシルト・粘 土	台地の開析谷域に分布する
V	砂・砂礫(後背湿 地などでは, 腐植 土・粘性土)	河川沖積低地

44-(44)

関東ローム台地の地盤構造と地耐力(宇野沢昭)

5.2 №値垂直分布から判定した地盤の累積状態

地耐力構造図(第14図)は地盤地耐力をN値で表現して分類し、断面に投影したものである。

第14図〔a〕に示すように、綾瀬川・元荒川にはさま れた箕輪・平林寺方面の地盤構造は、(11)地点付近を境 として、まったく特異のもので、計測点(11)・(12)・ (13)を結ぶルートでは、関東ローム層直下に、固結ぎみ の中粒砂が分布し、これを境として N 値は 50 以上を示 す。ただ固結ぎみ中粒砂の下位の地盤は、今のところ資 料が得られていない。岩槻市街地を横断して、南東方の 笹久保に達する地帯は、計測点(9)・岩槻小学校・(2)和土 小学校・(4)などを結ぶ断面に見られるように、 Iのタイ プに該当する。ルート(9)~(2)に当る市街地から南郊にか けては、N=10以上の地盤がかなり厚く、一方計測点(3) ~(4)を結ぶ台地南尖端の地区では、対照的に薄くなって いるが、やや強度の劣るN=14±3の地盤は、逆にかな りの厚さを示している。したがって浅層部地盤の強度を N値でみると、後者の方が概して良好といえる。N=20 ~30以上の地盤は一般的に北西から南東方向に低下する 傾向があり, 地表下深度は-9~-14m(標高0~+4m) に伏在する。

図の〔b〕は元荒川冲積低地をはさむNE→SW方向 の代表的な断面で,冲積低地両側のN値垂直分布状態が 対照的である。概して良好な地盤とみられるN=20~30 以上の地盤は,元荒川左岸地区慈恩寺一帯で地表下-7 ~-9m(標高+6m±)に伏在し,今回の調査区域内 ではやや伏在標高が高い方である。元荒川右岸(市街地 の北郊)では計測点(9)から(10)にかけ,この地盤は伏 没する。計測点(10)および第14図〔C〕の測点(14)およ び金重第二浄水場付近では,この地盤はさらに地表下14 m以深(標高-4m以深)に低下する。そして上部にN = 5~10,11~13~17の地盤が厚く発達する。なお(10) ・(14)・金重第二浄水場はⅢのタイプに,(21)・(20)は, それぞれⅣ・VのタイプにみられるN値分布の特徴であ る。

図の〔d〕は、岩槻市街南郊で台地をほぼ W-E 方向 に切る代表的な断面である。(7)・(19)の台地中心部付近 のN=20~30以上の地盤は地表下9~11m(標高+4m 土)に伏在し、(8)付近とともに"たかまり"を形成す る。NE方向では伏没し、地表下13m(標高0m±)に

地質調查所月報(第23巻第1号)

第13図 岩槻地区地盤地質断面図(貫入試験およびボーリング資料による)

低下する。N=11~13~17の地盤は下位地盤の凹所を埋めた状態で分布し、岩槻浄水場付近の開析谷域地下では、厚さ12mにも達している。

ー応支持地盤と目される地盤の伏在深度はその都度述 べてあるが、全般的な傾向として次のように要約でき る。すなわち台地主部では一般にNWからSEに向かっ て低下し、標高+6~0mの深部に発達するのを見る が、かなり波長の細かい起伏が認められ、その比高は4 ~6mである。元荒川右岸沿いでは標高-4m以深に伏 没する。開析谷城下では標高-9mにも達している。

なお地盤のN値垂直分布図として,スエーデン式サウ ンディングについては,N値グラフとして第10図 a ・ b に,標準貫入試験については第3図にそれぞれ示してあ る。

6. 結 言

関東ローム層は土質工学的性質において、非火山灰土 と比較して著しく異なった性質をもっている。とくに含 有水分に関連した力学的性質では、含水比・間隙比の増 加にともなってN値が増加することが認められ(第8図 ・第9図参照)、含有水分がローム層地盤の支持力に占め る要素としてかなり大きいことを示している。この要因 としては高い含有率を表わす間隙水が非火山灰土と異な って、ほとんど吸着水的な性質をもっていることがあげ られる。また広範囲におけるN値が、N=2~9という 変動域にあって平均N≒4という定常的な値を保つの は、風成の火山灰土である関東ローム層の特性の一端を 示すものであろう。

またこれら関東ローム層の下位の浅層地盤は、一般に

関東ローム台地の地盤構造と地耐力(宇野沢 昭)

浅層部から深層部に向かって N 値が増加する傾向 に ある。

本研究地域で一応中~重量構造物の支持地盤と目され るものは、酒々井・佐原地区でそれぞれ、標高約+22~ 28mならびに約+34mのレベルに伏在し、岩槻地区では 元荒川右岸の台地主部で標高約0~+4mに、左岸台地 主部では約+4~+6mのレベルに伏在することが判明 した。

台地主部以外では、開祈谷域および河川冲積低地など 地耐力的に不安定な地域があり、これらの地域で支持地 盤と目されるものの伏在深度は標高-4~-9mに達し ている。

参考文献および資料

池田俊雄・室町思	送彦(1961)	:地耐力調査法,	鉄道
現業社,	p.1~64		

関東ローム研究グループ(1956):関東ローム,その起源と性状

岩槻市役所:岩槻市周辺,浄水場・学校・会館等の

地質, 地盤調査資料

- 鶴見英策・大村 纂(1966):多摩丘陵東部の地形 およびロームに関する若干の知見,第四紀 研究 vol. 5, no. 2, p. 59 ~ 64
- 藤沢市西部開発事務局(1967):藤沢市西部開発区 城第一次地質調査工事報告書(資料)
- 藤沢市西部開発事務局(1967):西部開発事業第2 次地質および水文調査土質試験報告書
- 藤沢市西部開発事務局(1968):藤沢市「西部開発 区域」宅地造成のための基礎地質調査報告 書
- 堀口万吉(1968):日曜の地学「埼玉の地質をめぐ って」,築地書館 p. 15 ~ 20
- 宇野沢昭・岡 重文・黒田和男(1971):藤沢市大 庭地区の表層地質――ローム層の区分とN 値および固結化との関係――,応用地質, vol. 11, no.4, p. 143 ~ 148
- 竹中 肇(1968):関東ロームの物理的性質につい て,第四紀研究, vol. 7, no. 3, p. 109~115