543.42.062:549.6

珪酸塩岩石および天然珪酸塩の分光分析*

主成分元素の定量

M. K. Govindaraju

一国雅尼歌

要 約

珪酸塩岩石および天然珪酸塩中の主成分元素定量のための分光法を記述した。試料はホウ酸、炭酸リチウムと融解し、えられた融成物を粉砕し、内部標準としての酸化ニッケル、バッファーとしてのグラファイトと混合する。混合物をペレットとし、このペレットについて普通の分光法または ARL カントメーターを用いる直接記録法によつて分析を実施する。結果は米国地質調査所標準岩石試料の G-1 と W-1 を用いてチェックした。 直接記録法は良好な結果を与え、アルカリ金属を除いたケイ酸塩の全分析を可能とする。

岩石および類縁物質の化学分析に対して一般的に用いられる方法は3種類に分けられる。

- a) 重量法(48, 14)
- b) 迅速比色法,光電法と滴定法(40,41,26)
- c) 分光化学法

いずれの方法もある元素に対しては特別な利点をもつている。当面する問題の性質に応じて独自の分析系統図を分析者たちは確立するので、多数の方法を平行して適用している例は少なくない。したがつて Ca と Mg に対しては重量法、Ti と Mn に対しては比色法、Fe に対しては滴定法、Na と K に対しては光電法(炎光分析)が普通好まれている。 しかしこれらの方法の精度は、一部は問題の元素の 濃度に依存するものであつて、酸化物として 5% を超えるとき最良の結果がえられる。ことに重量法に関しては、この含量以下では精度は減少する。酸化物含量が 1% 以下では分光化学法がよい精度を示す(9, 11)。

3つの方法は岩石学地球化学研究センターの実験室において多数の元素に平行して適用された。 6 種の岩石がそれぞれ 20 回ずつ重量法によって分析された。 これは平均値を確立し、 分析のバラッキを明確にするためである。これらの試料は分光化学分析に標準として用いられた(第 1 表)。

これら 6 個の標準試料のうち、 花崗岩 1 種(ジェラルドメエル) と玄武岩 1 種(エセイ・ラ・コオト) はこの実験室で常に行なつている迅速比色—滴定分析の 各系列中で定期的に分析されるために選ばれた。第 2 表は重量法および迅速法でえられた分析値のバラッキと平均値の比較を示す。この結果の議論はこの研究の枠外にある注1。 しかし第 3 表には化学者によつてもつとも正確と考えられた値を掲げておく。

- *M. K. Govindaraju (1960) : Contribution a l'analyse Spectrochimique des Roches Silicatées et des Silicates Naturels —Dosage des éléments majeurs—, Groupement pour l'Avancement des Méthodes Spectrographiques, p. $221{\sim}245$
- 注1) 岩石学地球化学 研究センターで 用いられる 化学 分析法 とその 結果の 批判的 研究は BEHR および MALAPRADE 両氏の別の報文の 対象と なるであろう。 この報告中で用いた化学的データは両氏に負うものである。

他方米国地質調査所の好意的提供にかかる G-1 と W-1 (11) は、この報告のなかで述べた種々の分光化学的方法の確立の過程でチェックのために用いられた(第8表)。

こと 10 年間に多数の分光化学的方法がケイ酸塩岩石、 鉱物または類縁の 生成物の常在元素の大部分の分析のために記述された。分光化学的方法の迅速性、精度、低い原価は当然地質学者、化学者または物理学者の注意をひいた。この分野における報文の多いこともこの関心の端的な現われにすぎない。

AHRENS(1,2)とその一派の連続アークを用いた 研究は 周知のものであり、 斯界の権威である。その方法は KVALHEIM(25)の方法に由来するもので、試料を $SrCO_3$ または $BeCO_3$ と混合し、さらに炭素粉末で希釈するというものである。 HAWLEY と MACDONALD(19)は 後になつて STALLWOOD(42)のエアジェットを使用してこの方法を完全なものとした。 分光法と化学分析法の精度の比較は 花崗岩 G-1 と輝緑岩 W-1 の主成分定量について行なわれた。これらの試料は岩石の化学分析の精度に関する FAIRBAIRN(9,11)の非常に重要な研究の基礎試料として用いられた。FAIRBAIRN らによれば、同じ方法をより塩基性または水和した岩石に適用しても好結果はえられないという。

LENINGER と TAYLOR (23) はケイ酸塩岩石中の Si, Al, Ca, Mg, Mn および 13 の微量元素の分析のために、SrCO₃ を用いた KVALHEIM 法の他の改良を報告している。Al₂O₃ と SiO₂ は Al/Si の強度比から"相互標準"(8) の計算法によって決定される。

ドイツでは、HAGEMANN(20)と共同研究者が同じ領域について多くの研究を行なつた。 試料を BaO とグラファイトで希釈したのち、ゆつくり回転する傾斜ディスク上において断続アークで励起した(Pfeilsticker 型)。一般元素については 2-3% にも及ぶ分析精度が強調されている。

試みられた他の方法では、NiO, CuO, GeO $_2$ (30, 21, 22) のような金属酸化物、または Ge, Ag (44, 47) のような金属それ自身を分析物質の希釈緩衝剤として用いている。

セメント中の一般元素の定量に HASLER, HARVEY ら (17) は一方向アークと平面電極法を 用いた。

ケイ酸塩物質中の Al, Ti, Ca, Mg および Mn の分光化学定量の基礎はマンチエスター大学のB. J. RUSHTON と G. D. NICHOLLS の著作 (37) に述べられている。

溶液に応用された方法は W. Muld (29) によつて記述された。この方法はすべての元素に対し、 $2\sim3\%$ の誤差で定量することを可能にする。J. Connor と N.F. Shimp (7) は類似の方法を土壌分析に応用した。

W. J. PRICE (33) はスラッグや鉱石のために特別に研究された融解法を発展させた。 分析 試料と内部標準はほう砂で融解する。冷却後えられたガラス状物を粉砕し、グラファイトと混合してペレットに圧縮する。アークスペクトルを制御された連続アークによつてとる。この方法は多くの利点をもつが、合成標準を使用できる点ですぐれている。平均平方誤差が 6.5% を超えることはない。この誤差は各試料について多くの測定を行なうことによつて小さくすることができる。

 Li_2CO_3 とホウ酸を用いる融解法は HASLER (18) によつて述べられた。 **製鉄**スラッグ用に 開発されたこの方法はセメント, 亜鉛融解スラッグや他の 類似物の 分析に 拡張された(12, 24)。

これに近い方法で J. R. GOLDSMITH とその共同研究者は炭酸塩岩石の分析を行なつた(13)。 コバルトが内部標準にえらばれた。 含まれる元素の 定量精度は 5% 以上である。 同じ方法が W. H. TINGLE と C. K. MATOCHA(45) によつて ARL カントメーター によるボーキサイ トや他の耐火物の分析に採用された。

スラッグと耐火物の分析に関するソ連の研究の総説(6)は多くの興味ある方法を紹介し

第1表 化学分析値 (重量法) 各20 回ずつ分析した 6 種の ケイ酸塩岩石についてのバラッキ

	7	7 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7	推大	Υ	H H	抽	7.4	* 1	7 .		31 '	•	17	ン 岩 ・	1.3	ジェ	ラルド	×
		-				ł	•	- A	W	7	£.,			30		1	#	
	#27	滙	型印	型	凝	雅	扚	噩	3/12	X	哲	业	书	堰	址	¥	噩	#
	×	0	ETR	×	0	ETR	×	D	ETR	j×	Q	ETR	×	ь	ETR	×	0	ETR
SiO2	67,34	0,25	0,38	59, 99	0,15	0,37	64, 5	0,16	0,25	42,82	0,25	0,58	69,93	0, 18	0,26	66,98	0, 27	0,40
Al ₂ O ₃	14, 91	0,59	4,0	3, 42	0, 29	8,6	15, 05	0, 41	2,7	12,84	0,35	2,90	12,93	0,36	2,8	15, 33	0,246	1,6
Fe,O,	2,82	0, 27	9,6	6,78	0, 26	3,8	2, 68	0, 26	2,6	5,93	0,45	8,4	3, 99	0,44	11,0	2, 98	0,076	2,6
FeO	2,16	0,05	2,3	2,00	0,06	3,0	1,83	0,04	2,3	5,87	0,05	0,8	2,03	0,05	2,7	1,22	0,031	2, 5
MnO.	0,10	0,008	8	0, 10	0,03	32, 5	0,016	0,006	37,5	0, 13	0,007	5,3	0, 10	0,012	11,7	0,04	0,007	17,2
MgO	1,55	0,24	16,0	34,72	0, 47	1,4	2,37	0,17	7,0	10,7	0,09	6,0	0,58	0, 12	21,2	0,35	0, 108	31,0
CaO	2,71	0,21	7,8	1,47	0,117	8,0	2,14	0, 18	8,4	11,66	0,13	1,1	0,86	0, 13	15, 4	1,98	0,048	2, 4
Na_2O	3,04	0,10	3,4	0, 22	0,039	17,7	1,97	0, 17	8,8	1,93	0,07	3,6	2,95	0, 17	5,9	2,85	0,145	5,1
K20	3,86	0,12	3,2	0,21	0,029	14,0	5,50	0,38	6,9	1,81	0,03	1,7	3, 75	0,07	2,0	4,00	0,069	1,7
TiO2	0,44	0,02	5,0	0, 22	0,025	11,5	0,55	0,05	9,8	2,17	0,05	2,2	0, 33	0,03	10,0	0,31	0,021	2,9
P_2O_5	0, 21	0,037 17,4		traces	and the same of th	1	- 0, 48	0,03	1,3	0,91	0,000	1,0	0,10	0,01	11,9	0,35	0,041	11,7

ETK:相対標準偏差

g:標準偏差

X:平均值

ている。たとえば SLAVIN のスペクトルエネルギー法、融解スラッグ法、ブリケット化法などである。最後の方法がもつとも広く用いられている。しかし "第三者的構成成分" の影響でほう砂のような融剤を使用するようになつた。スラッグ試料は1:4 の比で無水ほう砂と混合される。混合物は銅皿の上にのせて4分間 $800\sim850^{\circ}$ C のマッフル炉で融解する。試料をのせた鍋皿は電極として用いられる。励起の間、小さい電動モーターによつて連続的に回転させる。固定電極は炭素である。平均相対誤差は次のとおりである:Si 5.2%,Ca 5.6%,Al 6.7%,Mg 6.2%,Mn 4%,Fe 4%。

表 化学分析値(重量法と迅速法)2種のケイ酸塩岩石(花崗岩と 玄武岩)について上記2法でえられた平均値とバラッキ

無

		ジエラル	ドメエル	産花	噩			· 177	7・コオー	- 雕 女	以市	
		閩町	郑	用用	捯	地	(44)		郑	用	展	斑
	5)	(20回分析)			(18回分析)		(2)	(20回分析)			(18回分析)	
	×	Q	ETR	×	Q	ETR	×	Q	ETR	×	ø	ETR
SiO_2	66,98	0,27	0,4	67, 51	0,86	1,3	42,82	0,25	0,6	44,05	0,58	1,3
Al ₂ O ₃	15,33	0,25	1,6	14, 23	0,69	5,0	12,24	0,35	2,9	11,71	1,30	Į,
Fe ₂ O ₃	2,98	0,08	2,6	3,14	0,17	5,3	5,93	0,45	8,4	5,91	0,22	3,7
FeO	1,22	0,03	2,5	1,17	0,15	13,0	5,87	0,02	0,8	5, 49	0,24	4,3
MnO	0,04	0,007	17,2	0,05	0,01	20,0	0,13	0,007	5,3	0,18	0,02	11,9
MgO	0,35	0, 108	31,0	1,37	0, 27	19,5	10,7	0,09	0,9	10,18	0, 20	2,0
CaO	1,98	0,048	2,4	2,16	0,12	5,8	11,66	0,13	-	11,71	0, 20	1,7
Na ₂ O	2,85	0,145	5,1	3, 59	0, 20	5,5	1,93	0,07	3,6	3,17	0, 22	6,8
K20	4,00	0,069	1,7	4,68	0,17	3,7	1,81	0,03	1,7	2,36	0, 13	5,4
TiO2	0,31	0,021	6,7	0,25	0,05	18,3	2,17	0,05	2,2	2, 11	0,09	4,1
P_2O_5	0,35	0,041	11,67	0,31	0,044	14,3	0,91	0,000	1,0	06 '0	0,000	9,6
				X:平均值	σ: 標準偏差		ETR:相対標準偏差	票準備差				

岩石学地球化学研究センターの開設以来,分光学研究室の活動はケイ酸塩岩石中の主成分定量に向けられてきた。多年にわたつて JOBIN-YVON のプリズム分光写真器 (36) を用いて研究を行なつたが,数カ月来このセンターに直接記録式回折格子分光計が設置されている。この両方の装置についてえられた結果は"分光写真法"および"直読分光計"という表題で2部にわけて述べることにする。

1. 分光写真法

著者らの研究の現時点を述べる前に、これまでの研究経過を手短かに紹介しておくのが有益であろう。種々の操作条件が次々と適用された。

操作条件 No.1 (36)

a) 試料の調製

岩石粉末 -200 メッシュ

200 mg

珪酸塩岩石および天然珪酸塩の分光分析 (一国雅巳訳)

第3表 重量法 (20回分析) と迅速法 (18回分析) によつて2種の 岩石について化学者がえた値

	ジエラルドメエル産 花 崗 岩	エセイ・ラ・コオト産 玄 武 岩
SiO_2	67,5	43, 5
Al_2O_3	14, 0	11,5
Fe_2O_3	4, 35	12, 0
$_{ m MgO}$	1, 1	10,7
CaO	2, 0	11,6
Na_2O	3, 3	2,8
K_2O	4, 4	2, 4
${ m TiO}_2$	0, 25	2, 2
P_2O_5	0, 25	0,90
H_2O	2, 5	3, 0
	99, 65	100,6

内部標準 NiO グラファイト粉末 600 mg

2000 mg

混合および炭素電極の孔への充塡は手で行なう。

b)装置と励起法

分光写真器 Jobin-Yvon NZ フランス GAMS 製万能発光装置

炭素電極および対電極

陰極励起-Si に対しては連続アーク

陽極励起-Al, Fe, Ca, Mg, Mn, Ti に対しては断続アーク

目的とする定量範囲にわたる化学組成既知の試料4種と分析試料3種を同じ乾板上に撮影した。各元素について、対数紙の縦軸に分析元素と内部標準であるニッケルの近接線の強度比、横軸に含量をとつて検量線を作成した。

組成既知の標準は調製に長時間を要するので、分析試料を系統的にこれらの標準でとりかこむ必要性はこの方法を著しく面倒なものにした。そこで一度検量線をひいておけばそれで事足りる新しい条件の研究にとりかかつた。

操作条件 No. 2

- a) 試料の調製 同上
- b) 装置と励起法 同じ装置

陽極励起-連続アーク 7A

6段回転セクターの使用

6段セクターによつて各スペクトル線について漸次強度の減少する多くの部分がえられる。 この場合光電測定値は写真エマルジョンの固有ファクターを考慮することなしに直接解析する ことができる(5,27)(セルフーカリブレーション法)。 解析は Seidel の変形を利用した I. A. I BLACK(I 4)の改良法に従つて行なわれる。 しかし計算表がないとこの方法の使用はいく らか困難である。そこである場合にはスペクトル線のI 2組のI 七グラフ法によつておきかえら れた(I 39,I 3,I 31)。非常に簡単であつてもこの方法は満足な結果を与える。

永続性のある検量線は化学的に分析された 7 個の標準のそれぞれを 4 枚の異なる乾板にとつた 4 本のスペクトログラムからつくられた。 4 つの測定値を平均して画かれた検量線は偶発的なズレをチェックするために定期的に検討される。 Seidel 関数の使用は 検量線の直線性を著しく改善する。

乾板移動法によつて下記線対(38)をえらび、読取式ミクロフォトメーターで測定した。

Si 2987 (4.93 eV)/Ni 2821 (4.42 eV)

Al 2660 (4.66 eV)/Ni 2821 (4.42 eV)

Fe 2929 (8.43 eV) /Ni 2863 (7.27 eV)

Ca 3179 (7.05 eV)/Ni 2863 (7.27 eV)

Mg 2776 (7.05 eV)/Ni 2863 (7.27 eV)

Ti 3088 (4.07 eV)/Ni 2821 (4.42 eV)

はんれい岩 20 種と長石 60 種(35)がこの方法で分析された。全部の乾板について,はんれい岩のある試料(F82)のスペクトログラムが,分光化学法に固有のバラッキと化学分析でえられた値とこの平均値の差を調べるために系統的に再現してある(第4表)。

c) 応用の可能性についての注意

これまで述べてきた方法は比較的正確であるが、岩石学の実験室で普通にみられるすべての 場合に充分満足とはいえない。

この方法自身にはある限界がつきものである。一番の難点は、分析すべき岩石の種別ごとに 注意深く分析した天然標準が必要なことである。非常に異なった幅をもつ標準をつくることは 湿式化学分析室にとつては負担の多い仕事である。他方天然標準の使用は分光分析の結果に化 学分析に原因する系統的誤差を導入することになる。とくに含量が小さいとき、この危険性は 分析にいくら注意を払つても顕著になる。

第 4 表 粉末についての分光法 平均値一標準偏差一化学分析値との比較 (重量法と迅速法)

はんれい岩	分 光	法 (8回	分析)	重量法	迅速法
F 82	X	σ	ETR	里 里 以	. 10 10 10
SiO ₂	45, 16	3, 36	7, 4	44, 40	44, 50
$\mathrm{Al_2O_3}$	12, 43	1, 14	9, 2	13,77	12,73
$\mathrm{Fe_2O_3}$	14, 44	1,00	6, 6	17,00	14, 96
MgO	5, 20	0,74	14, 2	6, 99	6, 60
${ m TiO_2}$	1, 95	0, 14	7, 2	2, 20	2, 12
CaO	8, 43	0, 38	4,5	10,72	10, 31

X:平均值, σ:標準偏差, ETR:相対標準偏差

他方、理想的方法は共存元素の効果を消去する方に向かつている(すなわち、共存する他の元素の存在度に応じて一定量存在するある元素の"応答"にみられるすべての変動)、天然標準については、このことは分析試料に充分近い範囲で検量線を作成することを要求する。理想的方法は構造因子についても問題のないものでなければならない(すなわち、岩石の結晶集合体中における元素の結合様式の応答に対する影響)(32)。このような方法は天然標準を純粋な物質でつくつた合成標準にとりかえることを正当化するであろう。時間の節約は顕著であり、天然標準の化学分析につきものの危険性は除去され、分光化学分析は全面的に独立した方法となる。

これらの理由からスラッグ分析に応用された融解法(33,18)に注意を向けるに至つた。 融解後の分光法 - 操作条件 No.3

a) 試料の調製

珪酸塩岩石および天然珪酸塩の分光分析 (一国雅巳訳)

岩石粉末 -200メッシュ

300 mg

炭酸リチウム

600 mg

ホウ酸

2000 mg

混合と融解:白金ルツボ中。ステンレス板上で冷却。えられたガラス状物の粉砕。ガラス を内部標準およびグラファイト粉末と適当な割合に混合:

融解物粉末 -200メッシュ

600 mg

内部標準 NiO

200 mg

グラファイト粉末

1200 mg

混合と加圧ペレット製造:融解によつて普通の酸化物はホウ酸塩に変る。ただしケイ素は 部分的にケイ酸ナトリウムに入るので、均一マトリクス中の不純物と考えられる。構造因子 はこうして除去され、融成物と合成標準の直接比較が可能となる。

b)合成標準の調製

合成標準は厳密に決定された割合に純物質 (Al, Fe, Ca, Mg, Ti, Si に対しては酸化物, Na, K に対しては炭酸塩, Mn に対しては軟マンガン鉱, P に対してはリン灰石) を混合してつ

メノウ乳鉢で均一にした混合物を 24 時間, 1000°C に加熱する。次にこれをふたたび微粉と し注意して貯えておく。調製量は5gである。実験によればこの方法がよい燃焼をうるのに適

合成標準はついで天然試料とまつたく同様に処理される(第5表)。

第 5 表 一般岩石について確立された分析予定表

分	析 線		検	量線	作成。	こ用し	· ら わ	た合	成 標	進	
73	17 1/215	1	2	3	4	5	, 6	7	8	9	10
SiO_2	2514Å	(75, 00)	71,00	65, 00	60,00	55, 00	50,00	(45, 00)	52, 31	62, 50	57, 50
$\mathrm{Al_2O_3}$	3082	13,00	14,00	15,00	16,00	17,00	18,00	(12,00)	15,00	20,00	(22, 50)
$\mathrm{Fe_2O_3}$	2739	(1,00)	3,00	4,00	6,00	8,00	10,00	(13, 00)	11,00	2,00	7, 25
CaO	3159	(0,75)	2,00	3, 12	4, 92	7, 35	8, 93	(13,00)	11,00	1,00	0,50
MgO	2852	(0, 50)	1,00	2,00	3, 00	5,00	7,00	(11,00)	6,50	9,00	8,00
MnO	2576	(0,05)	0,12	0,07	0,14	0,13	0,13	0,10	(0, 19)	0,05	0,10
${\rm TiO}_2$	3372	(0, 20)	0, 90	0,60	0,70	0,40	(1,60)	1,00	1,10	1, 35	1,50
$\mathrm{P_2O_5}$	2553	0,14	0,19	0,21	0, 24	0,12	(0, 34)	0, 28	0, 15	(0, 10)	0, 15
Na_2O	3302	3, 75	3, 29	(5,00)	5,00	4,00	3,00	2,00	2,00	1,00	(0,50)
K_2O	4047	(5, 61)	4,50	5,00	4,00	3,00	1,00	2,62	(0,75)	3,00	2,00

天然岩石の化学組成との対応

1-花崗岩(平均アルカリ) 2 一平均花崗岩 5 一平均フオノライト 6 一角閃石黑雲母閃緑岩

3 一平均花崗閃緑岩

4 一平均閃長岩 7 一平均はんれい岩 8 一輝緑岩 (W-1)

10一片岩 9 一片岩

(): 各元素に対する最大, 最小値

c) ペレット調製操作の詳細

秤量は感量 0.1mg の天秤で行なう。粉砕と均一化のいろいろな操作を付属工場でつくつた 小形の均一粉砕器で実施している。この装置は5分間でメノウ乳鉢を用いて手で90分間粉砕 したと同じ結果を与える。

ペレット調製前の最後の混合はメノウ乳鉢中で手で始め (5分間), 前述の装置においたプ

ラスチック管中の機械的混合に終る(5分間)。

直径り。インチのペレットは ARL ペレットプレスを用い, 10 t 加圧でつくられる。

d)装置と励起法

装置は前述のとおりである。ペレットは銅製の特殊ペレット支持体に入れ、グラファイトの対電極と向いあわせる。

初期には 7 A の連続アークで励起したが、 系統的研究によつて 火花放電がよりよい再現性 を与えることが明らかとなつた。連続アークの方が試料の鉱物組成には影響されることが少ないのであるが、 最終的には火花放電が採用された。操作条件は次のとおりである。

2.51

励起条件:Durr 万能発光装置。高圧部分

(L=80 mH, C=6000 cm)

6段回転セクターの比率

スリット 20 μ

電極とペレットとの距離 3 mm

予備放電 5 sec

露 出 20 sec

極 性 試料を陽極

乾 板 Kodak B 40

e) スペクトルの解析

乾板移動法によつて揮発性の研究を行なつたのち、下記線対 (38) をとりあげて読取式 Hilger ミクロフォトメーターで測定した。

Al 3092 (4.02 eV) — Ni 3243 (3.85 eV)

Fe 2599 (4.8 eV) — Ni 3243 (3.85 eV)

Ca 3179 (7.05 eV) - Ni 3243 (3.85 eV)

Mg 2852 (4.34 eV) — Ni 3243 (3.85 eV)

Ti 3349 (4.31 eV) — Ni 3243 (3.85 eV)

永続性のある検量線とスペクトログラムの解析は操作条件 No. 2 (Seidel 関数を用いるノモグラフ法) に示した方法によつてえられた。

f)融解-分光法のルーチン化試験:

ある方法を実用に供するにはルーチン化試験を行なう必要がある。そこで実験室の技術員の 1人に1ヵ月にわたつて米国地質調査所標準岩石試料 G-1 と W-1 を含む組成の異なる 5種の岩石について何回もの分析を行なわさせたのである。

ペレット調製に伴う誤差が見すごされないように 3 回にわけてペレットを調製した。それぞれの試料のスペクトルも同じく多数の乾板に分配した。全部で 55 のスペクトルが 12 枚の乾板に撮影された。すべての結果を 1 つ残らず保存して第 6 表をつくつた。

2. 直読分光法 (カントメトリー)

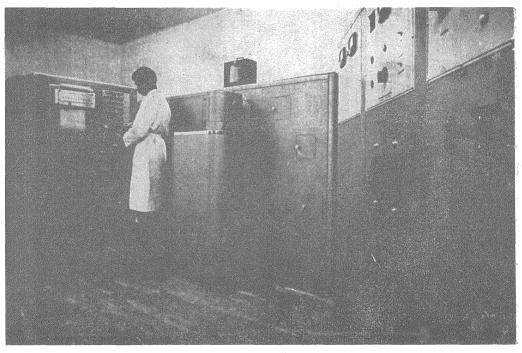
数年来、発光スペクトル記録のための写真法に代るべき技術の発達に関心がますます注がれてきた。この研究は、光強度測定のためのフォトマルチプライヤーを備えた直読分光計の実現に導くに至つた。ARL 社で"カントメーター"の名のもとに製作されたこの種の装置は当研究室に1958年末備えつけられた。写真法にくらべての利点は一つは測定の迅速性、一つは高再現能、高精度にある(15、16)。

カントメトリーは主として大きな製錬、製鉄所の生産管理に用いられている。そこでは迅速がもつとも重要視される無数の分析が必要なのである。

岩石学研究分野では、最後的な手段としてのみしか化学分析を利用しない。それは分析が困難であること、原価が高くつくこと、その目的のために整備された実験室が少ないことが原因

第6表融解一分光法

		花崗岩(8回:)	輝 緑 岩 (10回			才	E 崗 岩 (14回		4	閃	長岩 (9 回		10	閃	】緑 岩 (14回		'8
	平均值	標準偏差	相対標準偏差	化学分析值	平均值	標準偏差	相対標準偏差	化学分析值	平均值	標準偏差	相対標準偏差	化学分析值	平均值	標準偏差	相対標準偏差	化学分析值	平均值	標準偏差	相対標準偏差	化学分析值
Al ₂ O ₃ Fe ₂ O ₃ CaO	13, 94 1, 58 1, 54	0, 26 0, 34	16, 5 22, 2	1, 41	11, 75 11, 57	1, 12 0, 42	9, 6 3, 6	11, 72 10, 96	0, 91	0, 56 0, 17	42, 4 19, 2	0,38	2, 86 1, 11	2, 10 0, 26 0, 26	9, 2 23, 4	0,52	11, 65 8, 11	0, 84 0, 87	9, 1 10, 7	
MgO TiO ₂	0, 26		31, 7 15, 1							traces 0,11	 54, 1	, , , ,		0,04					10, 8 53, 4	


である。研究のかなりの領域がそのためにまつたく手つかずであるか、または古典的方法を用いては容易に近づけない種類のものである。岩石学に多数の試料を処理できる超迅速分析技術を導入することは、地球化学が鉱物群の概念を原子群の概念によつて完成しようとしているこの瞬間においてとくに必要なのである。この報告で大きな部分をさいているこの岩石学的見解は、すでに M. Roubault が J. Sinsou (36) との協同研究になるケイ酸塩岩石の分光化学分析の第1報において規定された。その報告において始めて岩石学研究に対するカントメトリー応用の可能性が強調されたのであつた。その考え方は急速にかたまつて岩石学地球化学研究センターにカントメーターを設置するという所まで至つた。残されたことは、鉄鋼工業の管理に試験された技術をケイ酸塩岩石の分析という異質で極度に複雑な問題に移しかえることであった。以下数頁は4ヵ月の試験ののちえられた結果を紹介することを目的としている。

本質的にはカントメーターは3つの部分からなりたつている。

- 1) 励起電源 (ARL 高精度電源) アーク性からスパーク性まで変化する低圧 (1000 V) コンデンサー放電または高圧 (30000V) スパークをつくりうる。
- 2) 分光計 回折格子 (1.5 m) 分光計は 1 次で、6.95 A/mm,2 次で 3.5 A/mm の分散を与える。分離された光をうける固定スリットとフォトマルチプライヤーは第 7 表に規定されている。本装置は現在 10 種の主成分元素の分析に予定されているが、このほかに微量成分の分析も可能である。最大予定数は全体で 52 元素の分析を可能とする。
- 3) 記録部 光電管電圧制御のためのアテニュエーター (レオスタット), 光電管から供給された電荷を蓄積するためのコンデンサー, 電荷の逐次測定のための増幅部および記録計を備える。制御盤は操作の継続を決定することができる。電気的ゼロの調節と感度の制御は研究すべき濃度範囲に応じてその元素に対応する回路ごとに別々に行なわれる。

岩石のカントメーター分析

ルーチン分析の試験は一連の火成岩(花崗岩・関長岩・関緑岩・玄武岩・輝緑岩)について 行なわれた。前述(第5表)の7種の合成標準がカントメーターの較正と検量線作成に用いら

第 1 図

れた。

厳密な意味での岩石試料のカントメーター分析は同じペレットについての4回の連続測定を含んでいる。火花放電が行なわれた度ごとに、その放電のごく表面的な効果を取り去るために、ペレットの表面は小さい金属製ヤスリで修復される。記録紙上のペンは4回の各測定ごとに同じ出発点にもつて行く。こうして同じ元素に関して4つの山形図形が重なつたものを得ることができる。4回の測定のバラッキは直ちに明らかとなり、分析の精度に最初の検討を与え、平均値が即座に求められる。

記録計について読みとられた平均値を酸化物%へ換算することは、一連の分析に対して作成された検量線によつて同じく迅速である。

- a) 内部標準-分析線-分析可能な濃度

カントメーターは異なる内部標準: Ni, Ag, Sr および Li を使うことができるように設計されている。 また励起時間は "Reflected Beam" という全発光エネルギーの記録装置によって調節が可能であることを述べておこう。しかも Li がアルカリ元素 (Na と K) に対して強制的に用いられるので、同時に 2 つの内部標準を使用することができるのである。

分析線と定量可能の濃度範囲は第7表に示す。分析試料である岩石中の濃度と実際にカントメトリーを実施するはるかに低い濃度を区別するのは当然である。というのは定量すべき元素が高含量であることと、岩石がケイ酸塩であるという性質はペレット調製の段階で相当の希釈を要求するからである。ペレット中で岩石の占める割合は3%にすぎない。

第7表 カントメトリー 分析線と濃度範囲

	Lad	tole.	All Market Marke	A STATE OF THE STA
分	析	線	濃 度 範 囲	ペレット中に存在する濃度
N	i 2821		内 部 標 準	
L	i 4972		内 部 標 準	
S	i 2514		40 % - 80 %	1,2%-2,4%
.A	.1 3082		1 % - 30 %	0,03 % - 0,9 %
F	e 2739		1 % - 25 %	0.03 % - 0.75 %
·C	la 3159		0,50% — 30 %	0,015 % - 0,9 %
N	fg 2852		0,50% - 30%	0,015 % - 0,9 %
.N	In 2576		0,05% - 1,00%	0,0015% - 0,03 %
ľ.	i 3372	·	0,20% - 1,60%	0,006%-0,048%
N	la 3302		2,00% - 15%	0,06 % - 0,45 %
K	4047		0,50% — 15 %	0,015 % - 0,45 %

b) 試料の調製

融解-分光法に用いられた試料調製をそのまま行なつた。このことは、故障の場合など装置を別のものにとりかえることを可能にする。試験期間にはとくに便利である。ペレットをつく-るとき、融成物とグラファイトの比も1:2に保たれた。Ni を内部標準として用いない場合でも NiO の比率は同一とした。NiO の存在は、内部標準としての役割のほかに励起を規則的にする効果をもつているようである。とくにアルカリの含量が低い試料の励起を共通な条件に近づける。

c)装置と励起法

励起法 No.1 (スパーク条件)

分光計: ARL Production Control カントメーター

励起電源:高精度電源 4700 (高圧部)

容量: 0.007 mF

地.質.調查.所.月報 (第17巻 第12号)

インダクタンス:360 mH

直列抵抗: 5 Ω 1次電圧 200V 大

サイクルあたりの放電数:2

励起法 No.2 (アーク条件)

励起電源: ARL 高精度電源 4700 (マルチソース)

容量:30 mF

インダクタンス:56 mH

抵抗:45 Ω 電圧:950 V

2つの異なつた励起条件が岩石の分析に用いられた。励起条件 No.1 (スパーク条件) は励起時間が "Reflected Beam" によつて制御され、Al を除くすべての元素の分析に好適である。Al に対しては励起法 No.2 (アーク条件) がより正確、かつ精度のよい結果を与えた。この場合、Ni が内部標準として使用されている。

3 秒のプレインテグレイションののち、22 秒程度の放電が行なわれる。 この時間は どの場合にも内部標準の励起によつて自動的に決定される。この間中、各種の元素、すなわち内部標準または定量すべき元素の励起は光電管回路積分コンデンサーによつて積分される。これらのコンデンサーには光電管がうけた光子の数に比例する電圧が落えられる。

内部標準のコンデンサーがあらかじめ定めたある電圧に達したとき(記録計で目盛 100 に相当), 放電は自動的に停止される。 定量すべき元素のコンデンサーにかかつた電圧は続いて増幅され、記録紙に次々と記録される。

22 秒という値は 一連の研究の結果採用された。 この値はその 上乾板にスペクトログラムを 撮影するため同種のペレットに適用した一定励起時間 (20 秒) に近い。

d) 岩石についてのカントメーター試験の結果

前記のカントメーター法は、別に化学的方法で分析した 10 種の異なる岩石に 適用された。 これらの岩石は、米国地質調査所標準岩石試料の G-1 と W-1、それに岩石学地球化学研究 センターの化学実験室において重量法でそれぞれ 20 回分析した 5 種の 試料である。 普通の酸 化物はすべて定量された。 ただし P_2O_5 と K_2O は除いた。 これらの定量はまだいくらか問題点がある。化学分析とカントメーターによる結果は第8、9 表に比較してある。

鉱物のカントメーター分析

ある岩石のつつこんだ地球化学的研究は岩石全体の化学分析と顕微鏡による薄片の検査にとどまるものではない。いくつかの鉱物、しばしば4ないし5種の鉱物からなる岩石においては,鉱物種それぞれの組成と相対的存在度を明らかにしなければならない。多くの場合,ある鉱物種の光学的性質はその化学組成に関連している。光学的性質によつて,鉱物種の決定とその近似的組成の推定が可能である。しかしながら一般鉱物種の複雑性は光学的規準では大きな不確実さが残存するような性質のものであり,またそれが各鉱物種ごとの個別分析にとつて代ることもありえない。すでに主成分元素の場合でも重要であるこの分析は微量元素の場合,その真価を発揮する。微量元素に対しては,光学的特性は事実上何の知見も与えないのである。

他方、分光法またばカントメーター法を確立する期間に、ある種のえらばれた鉱物への適用はいくつかの問題を選びだし、ある種の影響を明らかにすることを可能にした。岩石はあまりにも複雑な混合物であつて、励起時における構成元素の相互作用を評価することは容易ではない。1つの鉱物種または族の内部では、独立変数の数は逆に限られている。励起に対する同形置換の影響は、鉱物について容易に手がけることのできる問題のもつとも典型的な例である。

岩石の鉱物研究はあらかじめそれらを分離する必要がある。これは構成鉱物が大部分完全にばらばらになるまで小規模に粉砕し、"superpanner" または重液による比重分離、パラマグネチックセパレーター Forrer による磁気分離、双限顕微鏡下のハンドピッキングによつて行なわれた。

第 8 表 標準岩石試料 G-1 と W-1 についてのカントメトリーと FAIRBAIRN (11) による化学分析値との比較

			花 崗 岩	$\frac{1}{4}$ G_1			200			輝 縟	岩 W ₁			
	1	2	3			4								
4	1)	, —	化学分析值 Fairb.	標準	偏差	相対標	準偏差	カントメトリー	19 ~	化学分析值 Fairb.	標準	偏 差	相対標	準偏差
	1系列	2系列	Transmit Annual State of the National Annual State of the		化学分析		化学分析	1系列	2系列			化学分析		化学分析
	32 anal.	31 anal.	29 anal.	トリー63 anal.	29 anal.	トリー63 anal.	29 anal.	32 anal.	30 anal.	32 anal.	トリー62 anal.	32 anal.	トリー62 anal.	32 anal.
SiO_2	73,00	72,70	72, 86	1,37	0,35	1,9	0,5	52, 80	52, 90	52, 69	1,13	0,32	2, 2	0,6
$\mathrm{Al_2O_3}$	14, 50	13, 90	13,94	0,59	0,32	4,2	2, 2	14, 80	14,80	14,72	0, 51	0,50	3, 4	3,3
$Fe_2O_3(5)$	2, 20	1,95	2,02	0,15	Marketonia .	7,2		11,85	11, 10	11,73	0,40	ROTHINA	3, 5	
CaO	1,47	1,40	1,41	0,06	0,11	4, 1	8, 2	10,80	11,00	10,96	0,22	0,19	2,0	1,8
MgO	0,41	0,40	0,39	0,03	0,10	9,0	27,0	6,60	6, 50	6,63	0, 25	0,28	3, 8	4, 2
MnO	0,031	0,032	0,027	0,001	0,007	3,0	28, 0	0,169	0,175	0,165	0,004	0,034	2,3	21,0
${ m TiO_2}$	0, 22	0, 25	0, 25	0,01	0,04	4,3	17,0	0,96	0,98	1,10	0,04	0,15	4,2	14, 0
Na ₂ O(6)	3, 33	3, 33	3, 25	0,09	0,17	2,7	5, 2	2,08	2,08	2,00	0,11	0, 19	5,2	9, 3
$K_2O(6)$	5, 50	5, 50	5, 42	0,31	0,37	5, 6	6,8	0,60	0,60	0,63	0,13	0,15	22,0	23, 0

¹一最初の系列の合成標準を用いたペレットについての一連のカントメーター分析

71-(819)

²一新しい系列の合成標準を用いた別のペレットについての一連のカントメーター分析

³⁻異なる実験室で行なわれ、Fairbairn (11) によってまとめられた化学分析値

⁴ 一相対標準偏差

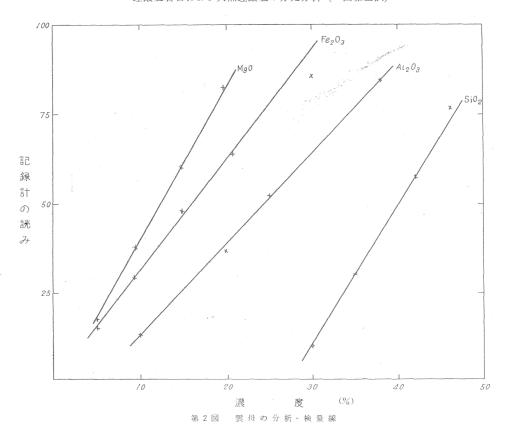
⁵ 一全鉄は Fe₂O₈ として表現

⁶ 一融解物から炎光法で定量したアルカリ

CRPG 研究室において分析された8種の 試料に対するカントメーター値と化学分析値の比較 カントメトリー 9 涨 無

			Д				. Q		国		Ţ		D			H	
2	1		23	60	-	2		2	-	2	Н	2	-	2		2	က
7	74,30	67,50	66,98	67, 51	68,80	67,34	64,50	64,50	68,80	69,93	71,40	67,10	50,00	T	41,00	42,82	44,05
2	12, 45	12,75	15,33	14, 23	14,70	14,91	12,75	15,05	12,65	12,93	15,85	15,73	15,75	15,70	11,20	12,24	11,71
0	0,97	4,50	4,33	4,43	4,50	5, 22	5,40	4,71	5,00	6,24	3, 10	2,71	10,85	11,00	11,30	12,45	11,54
_	0,38	2, 25	1,98	2,16	3,00	2,71	2,20	2,14	0,50	0,86	0,35	0,52	9, 10	7,94	11,65	11,66	11,71
. 4	0,00	1,05	0,35	1,37	1,50	1,51	2,35	2,37	0,25	0,58	trace	0,21	4,35	4,81	10,25	10,70	10,18
		0,05	0,04	0,02	0,12	0,10	0,05	0,01	0, 10	0,10	0,21	1	0,25		0,16	0,13	0,18
-	0, 10	0,16	0,31	0,25	0,35	0,44	0,40	0,55	0,18	0,33	0,45	0,40	0, 90	1,12	1,75	2,17	2, 11
	3,71	3,50	2,85	3,59	3,00	3,04	3,20	1,97	4,40	2,95	5,70	5,53	2,40	2,68	2,70	1,93	3,17
	4,30	and the same of th	4,00	4,68	**************************************	3,86	1	5,50	1	3,75	1	5,49	al automatic	2,10	1	1,81	2,36

Aーカーゲンスフェルト産花崗岩 1-カントメトリー(4回分析) 2 一重量分析值 (20回分析) 3 一迅速分析值 (18回分析)


Bージュラルドメェル産花崗岩 D-フォントネエ産花崗岩 Cーアンドロオ産花崗岩

Gーナッテルシュタイム艦閃濛岩 D 8078

H―エセエーラ・コオト産玄武岩 F-オスロ産関長岩 RPA 140 E-ラオン・レターブ産花崗岩

a) 雲母のカントメーター分析

雲母の分析問題は、化学的には雲母に類似し、しかも天然産のものが占める組成範囲をカバ ーするのに充分なだけ 幅をもたせた 5 種の 合成標準の 調製から始められた。 採用された方法 は、あらかじめ融解を行なつてペレットを調製するという前述の方法である。極端な組成の標 準についてカントメーターの較正を行なつたのち、各元素に対する検量線を5種の標準を使つ

て作成した。検量線は第2図に再現した。

励起法、No.1(スパーク条件)は、Si, Fe, Ca, Mg に対しては再現性のある結果を与えたが、Al に対しては再現性を欠いていた。励起法 No.2(アーク条件)はすべての元素に対して一様によりよい結果を与えた。しかしながら、カリウムの定量は必ずしも満足ではなく、新しいテストの対象となるであろう。各地産(中央山地、(マンフ・サントラール)、マダカスカルヴォージュ)の天然雲母 7種(白雲母、金雲母、黒雲母)がこの方法で分析された。そのうち 2 種は化学的方法で分析され、この 2 つの方法の結果は第 10 表に示してある。

これら7種の試料についてなされた分析は、カリウムの場合を除いて満足なものであつた。

b) ザクロ石のカントメーター分析

ザクロ石のカントメーター分析は、化学的にザクロ石に類似した 4 種の合成標準からなる 1 組について試みられた。雲母におけるように、スパーク励起法は Si, Fe, Ca, Mg に対してはよい再現性を与えたが、 Al に対してはまつたくずれた結果を与えた。断続アークを試みたところ、かなりの改善が認められた。第11表に示した結果は、研究途中のものであつて、いずれ完結する予定である。

c) 輝石のカントメーター分析

ウンモとザクロ石の分析の場合のように、一連の合成標準が調製された。輝石 1 種が励起条件 No. 2 を用いて分析された。約 30 秒の励起時間は、プレインテグレイション 3 秒ののち、 "Reflected Beam" によって調節される。第 1 回の結果は有望である。 その 化学分析値との 対比を第 11 表に示す。

第10表 カントメトリー (雲母の分析) カントメーター値と化学分析値との比較

	チャーノック岩 (マダガスカ		ベアン	/パンガラト	ラ(マダガ	スカル)金雲母
	カントメーター値	化学分析值	,, .	ト メ ー タ 12 回 試 験)	110-0	化学分析值
			X	σ	ETR	10 3 73 141 112
SiO ₂	39, 55	40, 10	41, 4	0,97	2, 3	40,10
$\mathrm{Al_2O_3}$	11,60	12,70	15,00	0,78	5,2	13,70
$\mathrm{Fe_2O_3}$	15,00	14, 32	4, 4	0,27	6,0	4,10
$_{\rm MgO}$	19,00	20, 42	24, 0	1,3	5, 4	26, 16
CaO	0,13	0, 32	0, 25	0,023	10,0	0,34
K_2O		9, 60	*********	_		10,50
${\rm TiO}_2$	0,60	0, 43	0,49	0,030	6, 0	0,33

〒: 平均値

υ:標準偏差

ETR:相対標準偏差

第11表 ザクロ石と輝石の分析

	チャーノック岩のサクロ石 (マダガスカル)	輝	石 .
	カントメーター値	カントメーター値	化学分析值
SiO ₂	38,7	49, 5	47, 40
Al_2O_3	23,6	4, 8	4,70
$\mathrm{Fe_2O_3}$	34, 0	3, 2	3,70
CaO	1,6	26, 5	25, 84
MgO	3,0	16,0	14,02
${ m TiO}_2$	90/mma	0,3	0,40

この報告に集められた結果は、ケイ酸塩岩石の分析に対する分光化学法の価値をよく示している。しかしわれわれの考えでは、これがおもな利点ではない。ケイ酸塩の主成分元素定量という分野における分光法の可能性は、実際多数の研究者によつて開発された。われわれが得た精度と再現性は、基礎的文献の示す所と一致している。少なくとも本来の分光法に関する限りはそのとおりである。カントメトリーは精度を向上させるようである。この結論においてわれわれが強調したいのはケイ酸塩岩石の場合に適用される検量の方法である。

もし未知岩石の組成が、それに近い既知岩石の組成との対比によつて比較的容易に決定されるならば、非常に広い組成の範囲をカバーする合成標準によるただ1つの較正を作成したり、花崗岩・玄武岩ほど異なつた岩石の分析のための永続性のある検量線をつくるのにそれを用いたりすることは野心的であるようにみえるかもしれない。これはそれぞれの特殊な場合ごとに固有な較正の複雑な問題をいくらか除去するということなのである。この意味で、えられた結果は決定的なものであり、直ちに岩石のルーチン分光化学分析にとりかかることを可能にしているであろう。

他方,とくに重要なポイントは操作を単純化し、分析速度を著しく増大するカントメトリーが、その精度も向上させることである。つい最近まで大胆すぎるように思われた道が、これからは広く開かれたのである。 逆説的にいえば、 近い将来においては、 分析法それ自身ではな

く、試料調製がケイ酸塩岩石に行なわれる分析数を規定することになるであろう。

文 献

- 1) AHRENS L.H. (1950): Spectrochemical Analysis, Addison Wesley Press.
- 2) Ahrens L.H (1954): Quantitative Spectrochemical Analysis of Silicates, Pergamon Press. London.
- 3) Argyle A. and Price W.J. (1948): A new method of photographic evaluation in Spectrographic Analysis. Jour. Soc. Chem. Ind, vol. 67, p. 187-190.
- 4) BLACK I.A. (1952): Application of the Seidel transformation to the determination of intensity ratio by blackening curve separation. Spectrochim. Acta, vol. IV, p. 519-524.
- 5) Breckpot (1939): L'analyse Spectrochimique par la méthode du secteur à échelons. Spectrochim. Acta, p. 137.
- 6) Bulletin of the Academy of Sciences of the U.R.S.S. (Physical Series) 1955. vol. 19, no 1, p. 56-99.
- CONNOR J. and SHIMP N.F. (1956): Spectrographic Analysis of soils and soil clays.
 Spectrochim. Acta, vol. 8, p. 107.
- 8) Dennen W.H. and Fowler W.C. (1955): Spectrographic Analysis of Silicates by use of Mutual Standard Method. Geol. Soc. Amer. Bull. 66, p. 655-662.
- 9) FAIRBAIRN et al. (1951): A cooperative Investigation of Precision and accuracy in chemical, spectrochemical and Modal Analysis of Silicate Rocks. United States Geol. Survey Bull. 980.
- 10) FAIRBAIRN H. and Schairer J.F. (1952): A test of accuracy of chemical analysis of silicate rocks, Amer. Mineral. 37, p. 744.
- 11) FAIRBAIRN H.W. (1953): Precision and accuracy of chemical analysis of silicate rocks. Geochimica et Cosmochimica Acta. vol. 4, p. 143-156.
- 12) GILLETTE J.M., BOYD B.R. and SHURKUS A.A. (1954): Spectrochemical determination of metallic elements in non-metallic samples. Appl. Spec. 4, p. 162-168.
- 13) Goldsmith J.R., Gref D.L. et Joensuu O.I. (1955): The occurrence of magnesium calcites in nature. Geochimica et Cosmochimica Acta. vol. 7, p. 212-230.
- 14) Grooves A.W. (1951): Silicate Analysis, Allen and Unwin, London.
- 15) HASLER M.F. and DIETERT H.W. (1944): Jour. Opt. Soc. Am. 34, p. 751.
- 16) HASLER M.F., KEMP J.W. and DIETERT H.W. (1946): The Spectrochemical analysis steels with a direct reading Instrument. ASTM, Bull. no. 1390.
- 17) HASLER M.F., HARVEY C.E. and BARLEY (1948): The Spectrochemical analysis of cements and other mineral products. Amer. Soc. Test. Materials, 48, p. 944.
- 18) Hasler M.F. (1952): Quantometry in 1952. Spectrochimica Acta, vol. 6, p. 69-794
- 19) HAWLEY J.G. and MACDONALD G. (1956): Quantitative Spectrochemical Analysis of silicates. Clas Email Krarmo Tecknik vol. 3. Cosmochimica Acta, vol. 10, p. 197-223.
- 20) HEGEMANN and ZOELLNER (1952): Complete Quantitative Spectrochemical Analysis of silicates. Clas Email Krarmo Tecknik vol. 3.
- 21) JAYCOX E.K. (1947): Spectrochemical analysis of ceramics and other non-metallic materials, J. Opt. Soc. Amer. 37, p. 162.
- 22) JAYCOX E.K. (1958): Quantitative Spectrochemical Method of Broad Applicability-

- Appl. Spect. 3, p. 87-89.
- 23) Leninger R.K. (1950): Scheme of the analysis of silicate rocks. Spectrographic method. Anal. Chem. 26, p. 436.
- 24) LOUNAMAA N. (1956): Spectrographic analysis of copper-making and lead-making slags for major constituents. Spectrochimi. Acta. vol. 7, p. 358-366.
- 25) Kvalheim A. (1947): Spectrochemical determination of the major constituents of minerals and rocks. J. Opt. Soc. Amer. 37, p. 585.
- 26) MERCY E.L.P. (1956): Geochimica et Cosmochimica. Acta. vol. 9, p. 161-173.
- 27) MITCHELL R.L. (1956): The Spectrographic Analysis of soils, plants and related Materials, Technical Communication no. 44 of the Common Wealth Bureau of Soil Sciences, Harpenden, England.
- 28) MORAND (1956): L'analyse Spectrographique des réfractaires silico-alumineux G.A. M.S. 19e Congrès. p. 73-83.
- Muld W. (1953): On the Spectrochemical analysis of silicate rocks, Spectrochimi.
 Acta. vol. 6. p. 53-54.
- 30) Oshry, Ballard and Schrenk (1942): Spectrochemical determination of Si, Fe and Al in mineral powders with a high voltage direct current arc. J. Opt. Soc. Amer. 32, p. 672.
- 31) PRICE W.J. (1952): Evaluation in Spectrographic Analysis Spectrochim. Acta, vol. 5, p. 278-285.
- 32) PRICE W.J. (1952): J. Rec. Dev. B.C.I.R.A. vol. 4, no 5.
- 33) PRICE W.J. (1953): Spectrographic Analysis of complex Oxides with particular reference to slags and ores, Spectrochimica Acta. vol. 6. p. 26-38.
- 34) ROUBAULT M. (1957): Centre de Recherches Pétrographiques et Géochimiques. Brochure de présentation. Edition C.N.R.S. Paris 1958.
- 35) ROUBAULT M. (1958): Observations sur la composition chimique d'un cristal de microcline pethitique. Paris, CR Acad. Sci., T 247, p. 1355-1358.
- 36) ROUBAULT M. et Sinsou J. (1956): Contribution à la mise au point des méthodes d'analyse Spectroquantitative des roches cristallines silicatées. G. A.M.S. 19e Congrès, p. 35-71.
- 37) Rushton B.J. and Nicholls (1957): A Spectrographic Scheme of the determination of Al, Ti, Fe, Ca, Mg and Mn in Silicates. Spectrochimi. Acta, vol. 9. p. 287-296.
- 38) SAIDEL, PROKOFJEW, RAISKI: Tables des raies spectrales. Veb verlag Technik Berlin.
- 39) SANDERS G. (1948): Correction for Gamma Changes due to variation in Exposure and development with reference to Spectrographic Analysis (Two line pair method). Jour. Soc. Chem. Ind., vol. 67, p. 185-187.
- 40) SHAPIRO L. and BRANNOOK W.W.: U.S.G.S. Cir. 165.
- 41) SHAPIRO L. and BRANNOOK W.W. (1956): U.S.G.S. Bull. 1036. C.
- 42) Shirley H.T., Oldfield A. and Kitchen H. (1956): S. Acta, vol. 7. p. 373-386.
- 43) Stallwood B.J. (1954) : Air cooled electrodes for the Spectrochemical analysis of powders. J. Opt. Soc. Amer. 44. n° 2. p. 171-176.
- 44) STROCK L.W. (1953): Quantitative Evaluation of a Metal-Base method for determining major constituents in non-metallic samples Applied Spec. 7. p. 64-71.
- 45) Tingle W.H. and Matocha C.K. (1958): Spectrochemical Analysis of non-Metallic Samples Anal. Chem, vol. 30, p. 494-498.

珪酸塩岩石および天然珪酸塩の分光分析(一国雅巳訳)

- 46) Voinovitch I. (1958) : Analyse Spectrochimique des silicates. Bull. de la Sté Francaise de Céramique n° 39.
- 47) WARD W. and HARTLEY F. (1953): Spectrographic Testing of Glass making Standards. J. Soc. Glass Tech. 37, p. 1137-1237.
- 48) Washington H.S. (1937): The Chemical Analysis of Rocks. John Wiley, NY.