宮城県鳴子温泉地域の天然ガス

本島 公司* 米谷 宏* 比留川 貴*

Natural Gas Accumulation near Narugo Hotspring, Miyagi Prefecture

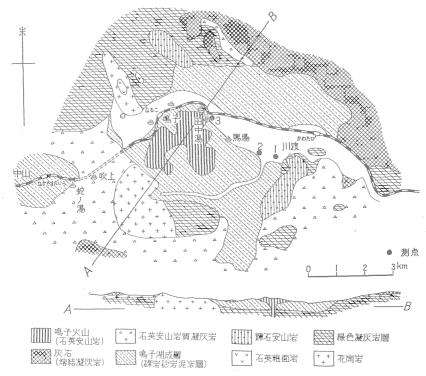
By

Koji Motojima, Hiroshi Yonetani & Takashi Hirukawa

Abstract

The natural gas accumulation near Narugo hotspring is well explained genetically as the result of relationships between two factors; one is natural gas reservoirs of dissolved-in-water type in the Narugo-Nakayamadaira lake deposits of Plio-Pleistocene in age, the other is primary composition of hotsprings such as Cl⁻, CO₂, N₂ and He.

The content of Helium gas in the natural gases collected at the casing head of wells is very low (up to 0.001%).


要 旨

鳴子温泉付近のガス鉱床は成因的には、①鮮新一洪積世の鳴子・中山平湖成層中にあるメタン系水溶性天然ガス層に対する②火成活動による温度・Cl-・CO₂・N₂・Heなどの影響、として説明できる。坑口遊離ガス中のHeは最高0.001%程度できわめて少なく、He/N₂も小さい。

また温泉との関係から、メタンガス鉱床としての価値も 低いと判断される。

1. 緒 言

メタン系の天然ガス鉱床が温泉活動と接して存在する 場合, 北陸地方や上諏訪などにその例をみるように応々 にしてガス成分中に多量のヘリウムが存在することがあ

第1図 鳴子・中山平温泉周辺地質図(中村久由,1962による)

る4)。 鳴子温泉のガス中には,著量の CH_4 があることが,中村と前田 $^{10}(1959)$ によって公表されたので,著者らはこの地域と上諏訪地域 30 との類似性などを念頭において,若干の試料を入手してとくに不活性ガスの面から分析結果の検討を試みた。

現地における試料採取は本島によって昭和37年2月行なわれ、地下水の分析は比留川が、ガスの分析はガスクロマトグラフによって米谷が行なった。

2. 地 質

鳴子付近の地質は、中村²⁾ (1962) によれば第1図のようである。この図のほぼ中央を荒離川が東流する。鳴子駅付近の標高はおよそ160m、川渡付近のそれはおよそ130mである。中村は構成地質を、古いほうから基盤岩層、鳴子・中山平湖成層、石英安山岩質凝灰岩、鳴子火山の4つに大別している。

基盤は第三紀緑色凝灰岩・花崗岩・火山岩類からなるが、このうち凝灰岩層は凝灰岩・角礫凝灰岩を主とし、 黒色泥岩・砂岩も挟む。黒色泥岩はエタン・プロパンなど重炭化水素ガスの存在を考察する場合に重視される。 また花崗岩は第三紀のものらしく、Heを生成する Uや Thを多く含む点でその分布が注目されるが、鳴子町の 西方に露出し、東部の田中湯~川渡地区ではその存在が 不明である。

湖成層は層理の明らかな泥岩と礫岩からなり、水溶性 のメタン系天然ガスをその中に含む。

地域全般の水理地質的条件はよくわからない。

3. 既存資料の説明

中村・前田 11 (1959)による天然ガス組成と、それに伴なう温泉水の組成を第 11 表に示す。すなわちガス質は地域によって大差があり、田中温泉では 11 CO $_2$ がきわめて多く、川渡では 11 CH $_4$ CO $_2$ N $_2$ であるが、中山平では 11 CH $_4$ N $_2$ CO $_2$ である。一方 馬 場 温 泉 は 11 CH $_4$ になっている。この資料にはガス水比の記載がないので、量と対応させた質的考察はできない。

一方水質をみると,高温帯に Cl^- が多く, Cl^- 量は Br^- 量および HBO_2 量と正相関するし, Br^- / Cl^- は(0.08 ~ 0.12)× 10^2 で小さく,これら三成分は温泉の 初生的 成分と考えられている。そして,この地域の流体のあり 方を成因的にみると,初生的な温泉水(Cl^- , H_2S を含む)と,湖成層中のガス水(CH_4 , CO_2 , HCO_3)に加えて, 潟沼からの酸性地下水(SO_4 2-)によって成分的特徴が付加されたと理解されている。

第1表 鳴子・川渡・中山平温泉の分析表

710 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1-1 1 1104 274		
The state of the s	田中温泉, 高 友 旅 館	馬場温泉		中山平温 泉, 仙庄 館
坑井深度 (m)	120~400	320	不明	110
水 温 (°C)	48~80	43	30	72. 5
温泉水の pH	6.5~8.0	6. 9	7. 0	8, 1
$\mathrm{Cl}^-(\mathrm{mg}/l)$	23~268	45. 9	19. 4	8. 3
SO ₄ ²⁻ (")	7.4~61.7	3. 3	1.0	16. 5
$\mathrm{HCO_{8}^{-}}(\ ''\)$	559~1770	1020	976	118
CO ₂ ²⁻ (")	0.0	0.0	0.0	14, 4
free $CO_2(\mathscr{U})$	44~114	37. 4	48. 4	0.0
Na+(")	250~680	297	nd	nd
K+(")	15~30	12. 9	nd	nd
Al ³⁺ (")	0.9~3.0	2. 4	1.4	1.5
Fe ²⁺ (")	0.2~1.7	0.3	0.3	0.1
Ca ²⁺ (")	18.0~46.1	23. 1	77.2	1. 5
$\mathrm{Mg}^{2+}(\prime\prime)$	2.0~14.6 12.4 33.		33. 2	0.2
$H_2S(\ ''\)$	3.2~18.4	nd	0.0	nd
$\mathrm{HBO}_{2}(\ \prime\prime\)$	9. 7	17.0	17. 1	nd
$\mathrm{H_2SiO_3}(\ ^{\prime\prime}\)$.	222~333	170	117	278
Br ⁻ (")	0.35	nd	nd	nd
I-(")	tr	nd	nd	nd
Br/Cl×10 ²	0.13	nd	nd	nd
温泉ガスの CO ₂ (%)	77.2	22. 2	12. 6	1. 3
$O_2(")$	0.2	0. 2	0. 1	0.2
CH ₄ (")	13. 5	42. 8	82, 8	72. 8
残(〃)	9.1*	34. 8*	4. 5	25. 7

(中村久由・前田憲二郎, 1959による)

* 著者ら注

中村・前田から1964年 7 月にこのように、訂正するように連絡をうけた。残ガスはおもに N_2 。

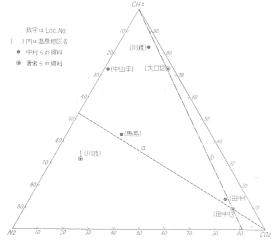
4. 天然ガス鉱床の立場からの検討

4.1 ガスの産状

天然ガスは温泉水にも、地下水にも伴なう。第1図の測点番号に対応した調査資料が第2表に示される。川渡(Loc. No. 1)では、自噴水量70kl/日に対して、ガス量は0.05 m^3 /日ほどで、きわめてガス量が少ない。大口(Loc. No. 2)では、水温の低い地下水とともにガスが湧出するが、坑口ガス水比は割合に大きく(約0.3)ほぼ深度対応の飽和計算ガス水比に近い値を示している。一方、田中温泉(Loc. No.3)では、ガス量は約5 m^3 /日で多いが、水量の正確な値はわからない。しかし、水量を100kl/日と仮定しても、水温が高いのでガス水比は飽和値に対して相当に大きな値を示す。

以上のガスの産状は、地下における流体のあり方を推 測するのに、きわめて重要な資料である。

4.2 天然ガスの質


中村ら(1959)による分析値は第1表に、この度の試

料に対するガスクロマトグラフによる分析値は第2表に示される。まず、 CO_2 、 N_2 、 CH_4 の主要3成分を基にして三角座標上へその坑口ガスの組成を記入して、第2図を得る。

第	2	表	調	查	表
243	him	21	1019	141.	-200

項目		所	Loc. No. 1 川渡, 高東 旅館 (東五 郎湯)	Loc. No. 2 大口,遊佐 鉄工所	Loc. No. 3 田中,高友 旅館
坑 井 深	度: (m	.)	The state of the s	200	400
水	温 (°0	1)	57.0	25. 0	67. 5
水位(地表面基準)		士0	士0	±0	
ガ ス 量 (m³/日)			0.05	3	5
水	量 (kl.	/日)	70	10	
水の外観		淡黄褐色	淡黄褐色, 白濁	淡褐黄色	
水 質	pН		(7.3)	6.8	
	Cl~ (r	ng/l)	(21.0)	40. 9	
	HCO_3	$^{-}(")$	(309)	1, 370	
	SO₄2-		(125)	2	
	$NH_{+}^{4}-I$	N(//)		6. 67	
	Ca ²⁺	(")	(48)	110	
	$\mathrm{Mg^{2+}}$	(")	(8.2)	43. 5	
	KMnC cons.			70. 7	
ガス質	He (V		0.000	0.000	0.00
	H_2	(")	0.002	0.000	0.002
	O_2	(//)	0. 98	0.03	0.04
	Ar	(")	測定せず	0.06	0.08
	N_2	(")	56. 32	1. 92	7. 60
	$\mathrm{CH_4}$	(//)	31.40	72. 99	9. 25
	CO_2	(")	11.03	25. 00	82. 66
	C_2H_6	(")	tr	tr	0. 37
	$\mathrm{C_3H_8}$	(//)	0.00	0.00	tr
	N_2/Ar	(// .)	測定せず	32	95
		,			

(1962年2月現地調査) () 印県衛生研分析

第2図 遊離ガスの組成図

ガスの主成分の組成上の特徴としては、次の諸点をあげることができる4°。

- (1) 田中温泉では CO_2 がおよそ $70\sim85$ %に達してきわめて多い。しかもそこのガスの $CH_4:N_2$ はおよそ50:50である(第 2 図の a 線を参照)。 また $CO_2:N_2$ はおよそ90:10である(第 2 図のb線を参照)。
- (2) 大口(Loc. No. 2) と川渡 (水温30℃) のガスは, 第三紀末ないし第四紀の地層中にある高ポテンシヤルの 水溶性ガスの普通の組成と同じである。
- (8) 川渡(Loc. No. 1, 水温 57° C)のガス質は N° が多くて CH_4 が少なく、ガス水比の小さいことと考えあわせて、水溶性ガスのガス質とほぼ一致している。ただ、統計的にやや細かくみれば、 $CH_4:N_2$ に較べて、 CO_2 がわずかに多い感じもする。
- (4) 馬場温泉では、水溶性ガスを基準にすれば、 $CH_4:N_2$ に較べて明らかに、ほぼ $10\%CO_2$ が多い。
- (5) 中山平のガスは産状を実際に著者らが見ていないので確実にはいえないが、感じとしては水溶性天然ガスのややポテンシャルの低いガス質に似ている。

次に天然ガスの微量成分面の特徴としては次の諸点を あげることができる。

- (1) Heは田中温泉にわずか存在する(0.001%)。
- (2) C_2H_6 は 3 測点いずれにも存在し、田中温泉では 0.37%に達する。 C_2H_6 の一部は第三紀緑色凝灰岩層中、に挟在する黒色泥岩に由来する可能性もあるが、著者らはその泥岩を実地に見ていないので断定はできない。
 - (3) C₃H₈ は田中温泉に痕跡程度存在する。
- (4) H₂は水温の低い大口(Loc.No. 2)を除き, 0.002% 存在する。
- (5) N_2/Ar は大口 (Loc. No. 2) では 32 でほぼ大気平 衡地下水の値 6 に近いが,田 中 温 泉 (Loc. No. 3) では、95となり,明らかに N_2 増加が起っていること が わ か る。

4.3 地下水と温泉水の質

水の外観はおおむね淡黄褐色である。第 2 表の KMn O_4 消費量 70 mg/l や, NH_4 ⁺-N 6.7 mg/l か ら 考 え る と , この着色は水溶性有機物によると思われる。そして 産状からもこの地下水はメタンガスと成因的に密接に関連すると推定される。水温の高い田中温泉(Loc. No.3)では Cl^- が最も多い。これに対して,メタンガス の 多 い大口 (Loc. No. 2) などでは Ca^{2+} が多く, SO_4^{2-} の少ない特徴がある。

地域全体に HCO₃⁻ が多いのは, ガス中に CO₃ の多いことからして当然である。

4.4 ガスの賦存状況

測定した坑井の地質と仕上げ状況の詳細がわからない ので、ガスの地下における賦存状況は確実には把握でき ない。坑口における観察によれば,大口 (Loc. No. 2) ~ 川渡 (Loc. No. 1) 付近では,地下浅部 (200m 以浅) に CH_4 系のガスをもつ水溶性のガス層があり,それ 以深では,温泉の影響が強くあらわれているように見受けられる。本邦の湖成層にある大部分の水溶性ガス鉱床は,地表下 $50\sim250m$ (上諏訪では特に深くて 250m に達している) 間に良好なガス層をもっているので,鳴子付近でもこの深度範囲内に CH_4 系 のガスが多いと考えてよさそうに思える。そしてこのような条件下でガスが存在するならば,少数の測点による観測によって,比較的広い地域にわたるガスおよび地下水の状況を推定することが可能と思われる。

5. 論 議

この地域の天然ガス鉱床の性質を主として成因的立場から述べる。

- (1) 川渡付近の Loc. No. 1(第2表)は,ガス産量がきわめて少なく,ガス水比も小さい。したがってこのガス組成中の N_2 は, CH_4 系天然ガス鉱床中で生成されたものとしても説明できる。ただ, $CH_4:N_2$ から考えると,わずかに CO_2 が火成活動で供給されたおそれはある。 CI はこのようにして供給された形跡は無く, N_2 が多いにかかわらず He=0.000%の数値であることもよく了解できる。
- (2) 川渡付近の他の例(第 1 表の 高 橋 金)は、 CH_4 系のガスを産し、 CO_2 の火成活動からの影響は な v 。水中に CI^- が少なく、 Ca^{2+} が多く、後 述 の 大 \Box (Loc No.2)と同じ性格である。地球化学的には、(Loc. No.1)のガス層は、このガス層の下位にくると思われる。
- (3) 馬場温泉(第1表)の43℃の温泉水を産する測点は,田中温泉(Loc. No. 3)と同系統の傾向を示すと思われる。すなわち, CH_4 ガスの層に対して,火成源の CO_2 の供給が若干目立ち, CH_4 系ガスを含んでいる測成層の化石水的地層水に対して Cl-の供給もあったと推定される。後述(Loc. No. 3)のように,田中温泉では火成活動によって CO_2 とともに N_2 も若干供給されているようであるから,馬場温泉でも N_2 の供給が少しはあったと考えるべきであるが,第2図上では CO_2 増加に較べて N_2 増加は判然としない。
- (4) 大口 (Loc. No. 2) のガス井では、典型的な湖沼成の水溶性ガス鉱床の性格が読みとれる。ガス水比から考えても、この地区は高ポテンシャルであって、鳴子地域の CH_4 系水溶性ガス層の基本型としてこの資料が利用できよう。その 特 徴 は、水に Ca^{2+} が多く、 CI^- は少なく、ガスには CO_2 が多いが、これは高ポテンシャルの水溶性ガスとして理解できる。この層へは火成活動がおよばないので、He=0.000% であるが、そのことは $N_2/$

Ar=32という数値からも予期されるところである。

(5) 田中温泉 (第 2 表の Loc. No.3 および第 1 表)では,火成活動による CO_2 、CI-の供給が明らかである。 N_2 /Ar が95であるので, N_2 の供給も考えられ,He=0.001% の数値もこのことから理解される。 有機物の熱分解などによって, C_0 Haや H2もできる可能性が大きい。火成活動で供給される源ガスの質は,第 2 図から推定すると(a線参照) CO_2 =90%, N_2 =10%と考えられる。ただし, N_2 は有機物の分解ででもできるし, CO_2 は地下における化学反応で減少することも考えられるので,火成源ガスが N_2 >10%, CO_2 <90% になることは考えにくい。供給される火成源ガスに N_2 が少ないので,Heもまた相対的に少ないものと思われる。

以上に述べたところを総括すると、当地域では、主として鳴子・中山平湖成層中にある水溶性の CH_4 系天然ガス鉱床に対して、火成活動による CO_2 、 Cl^- 、 N_2 、He、He、 C_2H_6 、 C_3H_6 などの供給があるものと解釈される。

He は、田中温泉で N_2 =7.6%に対して、0.001%にすぎないので、水溶性ガス層の影響の少ない所、すなわちより深い所、あるいは花崗岩に近い西の方(鳴子駅方面)で、検討する必要があろう。

メタン系のガス層の広がりを判定するには、資料が不 足であり、鉱床の規模も不明であるが、温泉とガス層間 には密接な関係があるので、ガスだけを単独に採取する には大きな問題があろう。

6. 結 言

鳴子付近の温泉の地球化学的一面を,天然ガス鉱床の立場から論議した。天然ガス中の He 含有量はきわめて少ないが,このたびの概査によって地球化学および鉱床学の点からは多くの興味ある面が明らかになって,今後のHe資源の調査・研究に役立つところが多い。

(昭和39年7月稿)

文 献

- 中村久由・前田憲二郎:宮城県鳴子・川渡・中山平 温泉について, 地質調査所月報, Vol. 10, No. 3, 1959
- 2) 中村久由:本邦諸温泉の地質学的研究, 地質調査所 報告, No. 192, 1962
- 3) 本島公司・品川芳二郎・牧 真一:諏訪湖天然ガス鉱 床調査報告, 地質調査所 月 報, Vol. 4, No. 9, 1953
- 4) 本島公司: ヘリウム資源について、地質ニュース、 No. 86, 1961
- 5) 金原均二他2名:天然ガス,朝倉書店,東京,1958
- 6) 米谷 宏:本邦水溶性天然ガスの微量成分,地質調 査所月報, Vol. 14, No. 11, 1963